library(cities)
library(dplyr)
library(tidyr)
library(plotly)
library(ggplot2)
library(ggthemes)
The settings below simulates 50 datasets for a clinical trial with two arms; control and treatment over (0,24,48,72,96,120,144) weeks. The control arm has 120 subjects with a mean trajectory of (0,0,0,0,0,0,0) while the treatment arm has a mean trajectory of (0,0.1,0.2,0.4,0.6,0.8,1). The covariance structure for both arms are described using a partial autocorrelation of (-0.2, 0.4), each with a variance of 1. We supply no custom covariance and supply betas using the default covariance matrix provided, i.e. one continuous and one binary covariates. The lack of efficacy and excess efficacy functions are shown below, alongside the behaviors of discontinuity due to adminstrative reasons and adverse events.
Note the following
= 50
total_data = 1
reference_id = NA
threshold = c(0,24,48,72,96,120,144)
timepoints = TRUE
IR_display = c(0,1)
delta_adjustment_in
= 120
n_patient_ctrl = 150
n_patient_expt = c(n_patient_ctrl, n_patient_expt)
n_patient_vector = sum(n_patient_vector)
n_total
= c(0,0,0,0,0,0,0)
mean_control = c(0,0.1,0.2,0.4,0.6,0.8,1)
mean_treatment = list(mean_control, mean_treatment)
mean_list
= c(1, 1)
sigma_ar_vec = list(c(-0.2, 0.4),
pacf_list c(-0.2, 0.4))
= list(c(1.25, 1.25),
beta_list c(1.25, 1.25))
= NA
covariate_df
# LoE & EE
= "Up"
up_good = 0.75
p_loe_max = -7
z_l_loe = -1
z_u_loe = 0.1
p_ee_max = 4
z_l_ee = 10
z_u_ee
# Admin & AE
= 0.02
p_admin_ctrl = 0.02
p_admin_expt = c(p_admin_ctrl, p_admin_expt)
p_admin
= 0.7
prob_ae_ctrl = 0.9
prob_ae_expt = c(prob_ae_ctrl, prob_ae_expt)
prob_ae
= 0.1
rate_dc_ae_ctrl = 0.1
rate_dc_ae_expt = c(rate_dc_ae_ctrl, rate_dc_ae_expt)
rate_dc_ae
= 1
starting_seed_val = TRUE static_output
%>%
estimates_out mutate(mean_se = paste0(mean, " (", round(se, 2) , ")")) %>%
::select(-se, -Arm, -mean) %>%
dplyrpivot_wider(names_from = Estimand, values_from = mean_se)
## # A tibble: 6 × 8
## name Timepoints PP `S++` `S*+` Full IR Delta
## <chr> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 1 24 0.1 (0.22) 0.11 (0.09) 0.14 (0.09) 0.11 (0.08) 0.12 (… 0.13…
## 2 2 48 0.17 (0.19) 0.19 (0.08) 0.21 (0.08) 0.2 (0.07) 0.16 (… 0.19…
## 3 3 72 0.38 (0.21) 0.41 (0.08) 0.43 (0.07) 0.4 (0.06) 0.34 (… 0.39…
## 4 4 96 0.52 (0.21) 0.58 (0.09) 0.6 (0.09) 0.58 (0.08) 0.45 (… 0.53…
## 5 5 120 0.76 (0.23) 0.82 (0.1) 0.84 (0.1) 0.81 (0.08) 0.62 (… 0.73…
## 6 6 144 0.9 (0.23) 1 (0.11) 1.02 (0.1) 1.02 (0.09) 0.72 (… 0.87…
= plot_dc(data_out = data_out,
dc_out total_data = total_data,
timepoints = timepoints,
static_output = static_output)
%>%
dc_out ungroup() %>%
filter(Timepoints == max(timepoints)) %>%
select(Arm, Reason, Value) %>%
pivot_wider(names_from = Arm,
values_from = Value) %>%
arrange(factor(Reason, levels = c("AE", "LOE", "EE", "ADMIN", "OVERALL")))
## # A tibble: 5 × 3
## Reason Ctrl `Expt 1`
## <chr> <dbl> <dbl>
## 1 AE 0.1 0.1
## 2 LOE 0.12 0.08
## 3 EE 0 0.01
## 4 ADMIN 0.12 0.11
## 5 OVERALL 0.3 0.28
= 100
total_data = 1
reference_id = NA
threshold = c(0,6,12,18,26)
timepoints = FALSE
IR_display = NA
delta_adjustment_in
= 195
n_patient_ctrl = 192
n_patient_expt = c(n_patient_ctrl, n_patient_expt)
n_patient_vector = sum(n_patient_vector)
n_total
= c(8, 8, 7.98, 7.97, 7.94)
mean_control = c(8, 7.45, 7.26, 7.21, 7.16)
mean_treatment = list(mean_control, mean_treatment)
mean_list
= c(0.8, 0.8)
sigma_ar_vec = c(0.5, 0.5)
pacf_list
= NA
beta_list = NA
covariate_df
# LoE & EE
= "Down"
up_good = 0.25
p_loe_max = 1
z_l_loe = 4
z_u_loe = 0
p_ee_max = 0
z_l_ee = 0
z_u_ee
# Admin & AE
= 0.03 #(2+3+1+15+1+4)/192 = 0.1354167
p_admin_ctrl = 0.02 #(5+2+9+3)/197 = 0.0964467
p_admin_expt = c(p_admin_ctrl, p_admin_expt)
p_admin
= 0.53 #101/192
prob_ae_ctrl = 0.6 #118/197
prob_ae_expt = c(prob_ae_ctrl, prob_ae_expt)
prob_ae
= 0.01 # 2/192
rate_dc_ae_ctrl = 0.02 # 4/197
rate_dc_ae_expt = c(rate_dc_ae_ctrl, rate_dc_ae_expt)
rate_dc_ae
= 1
starting_seed_val = TRUE static_output
%>%
estimates_out mutate(mean_se = paste0(mean, " (", round(se, 2) , ")")) %>%
::select(-se, -Arm, -mean) %>%
dplyrpivot_wider(names_from = Estimand, values_from = mean_se)
## # A tibble: 4 × 6
## name Timepoints PP `S++` `S*+` Full
## <chr> <dbl> <chr> <chr> <chr> <chr>
## 1 1 6 -0.56 (0.08) -0.55 (0.05) -0.56 (0.05) -0.56 (0.05)
## 2 2 12 -0.73 (0.09) -0.71 (0.06) -0.72 (0.06) -0.72 (0.06)
## 3 3 18 -0.77 (0.09) -0.75 (0.06) -0.77 (0.06) -0.76 (0.06)
## 4 4 26 -0.78 (0.09) -0.77 (0.07) -0.79 (0.06) -0.78 (0.07)
= plot_dc(data_out = data_out,
dc_out total_data = total_data,
timepoints = timepoints,
static_output = static_output)
%>%
dc_out ungroup() %>%
filter(Timepoints == max(timepoints)) %>%
select(Arm, Reason, Value) %>%
pivot_wider(names_from = Arm,
values_from = Value) %>%
arrange(factor(Reason, levels = c("AE", "LOE", "EE", "ADMIN", "OVERALL")))
## # A tibble: 5 × 3
## Reason Ctrl `Expt 1`
## <chr> <dbl> <dbl>
## 1 AE 0.01 0.02
## 2 LOE 0.03 0.01
## 3 EE 0 0
## 4 ADMIN 0.12 0.08
## 5 OVERALL 0.16 0.11
= 100
total_data = 1
reference_id = NA
threshold = c(0, 12, 24, 36, 52, 64, 76)
timepoints = FALSE
IR_display = NA
delta_adjustment_in
= 126
n_patient_ctrl = 131
n_patient_expt = c(n_patient_ctrl, n_patient_expt)
n_patient_vector = sum(n_patient_vector)
n_total
= c(10, 10)
sigma_ar_vec = c(0.5, 0.5)
pacf_list
= c(106, 105.87, 104.81, 102.85, 99.31, 97.67, 95.97)
mean_control = c(106, 106.35, 106.06, 105.29, 102.98, 101.09, 99.17)
mean_treatment = list(mean_control, mean_treatment)
mean_list
= NA
beta_list = NA
covariate_df
# LoE & EE
= "Up"
up_good = 0
p_loe_max = 0
z_l_loe = 0
z_u_loe = 0
p_ee_max = 0
z_l_ee = 0
z_u_ee
# Admin & AE
= 0.03#
p_admin_ctrl = 0.01 #
p_admin_expt = c(p_admin_ctrl, p_admin_expt)
p_admin
= 0.9 #
prob_ae_ctrl = 0.9 #
prob_ae_expt = c(prob_ae_ctrl, prob_ae_expt)
prob_ae
= 0.07 #
rate_dc_ae_ctrl = 0.3 #
rate_dc_ae_expt = c(rate_dc_ae_ctrl, rate_dc_ae_expt)
rate_dc_ae
= 1
starting_seed_val = TRUE static_output
%>%
estimates_out mutate(mean_se = paste0(mean, " (", round(se, 2) , ")")) %>%
::select(-se, -Arm, -mean) %>%
dplyrpivot_wider(names_from = Estimand, values_from = mean_se)
## # A tibble: 6 × 6
## name Timepoints PP `S++` `S*+` Full
## <chr> <dbl> <chr> <chr> <chr> <chr>
## 1 1 12 0.33 (1.23) 0.48 (0.9) 0.46 (0.89) 0.47 (0.84)
## 2 2 24 1.14 (1.53) 1.24 (1.04) 1.23 (1) 1.23 (0.96)
## 3 3 36 2.42 (1.53) 2.45 (1.09) 2.43 (1.05) 2.47 (0.97)
## 4 4 52 3.65 (1.28) 3.68 (1.08) 3.65 (0.95) 3.71 (0.85)
## 5 5 64 3.22 (1.45) 3.25 (1.1) 3.27 (1.01) 3.29 (0.82)
## 6 6 76 3.14 (1.57) 3.14 (1.16) 3.19 (0.98) 3.14 (0.88)
= plot_dc(data_out = data_out,
dc_out total_data = total_data,
timepoints = timepoints,
static_output = static_output)
%>%
dc_out ungroup() %>%
filter(Timepoints == max(timepoints)) %>%
select(Arm, Reason, Value) %>%
pivot_wider(names_from = Arm,
values_from = Value) %>%
arrange(factor(Reason, levels = c("AE", "LOE", "EE", "ADMIN", "OVERALL")))
## # A tibble: 5 × 3
## Reason Ctrl `Expt 1`
## <chr> <dbl> <dbl>
## 1 AE 0.07 0.3
## 2 LOE 0 0
## 3 EE 0 0
## 4 ADMIN 0.17 0.06
## 5 OVERALL 0.23 0.34
The settings below simulates 20 datasets for a clinical trial with three arms over (0,24,48,72,96,120,144) weeks. Arm 1 has 120 subjects with a mean trajectory of (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), while arm 2 has a mean trajectory of (0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.1, 1.2, 1.3, 1.4, 1.5), and finally arm 3 has a mean trajectory twice that of arm 2. The covariance structure is a randomly generated positive definite matrix, labelled Sigma. Further, a custom covariate dataframe is generated with two continuous and one binary covariates. The lack of efficacy and excess efficacy functions are shown below, alongside the behaviors of discontinuity due to adminstrative reasons and adverse events.
Note the following
= 0.02
p_admin_expt = 0.03
p_admin_ctrl
= 0.9
prob_ae_expt = 0.1
rate_dc_ae_expt = 0.7
prob_ae_ctrl = 0.1
rate_dc_ae_ctrl
= 120
n_patient_expt = 100
n_patient_expt2 = 150
n_patient_ctrl
= c(0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.1, 1.2, 1.3, 1.4, 1.5)
mean_treatment = 2*c(0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.1, 1.2, 1.3, 1.4, 1.5)
mean_treatment2 = rep(0, length(mean_treatment))
mean_control
= c(1.25, 1.25, 1)
beta_control = c(1.25, 1.25, 1)
beta_expt = c(1.25, 1.25, 1)
beta_expt2
= 0.6
p_loe_max = -5
z_l_loe = -1.2
z_u_loe = 0.15
p_ee_max = 2.5
z_l_ee = 4.5
z_u_ee = c(0:(length(mean_treatment)-1))*24
timepoints
= "Up"
up_good = NA
delta_adjustment_in = NA
threshold
= list(mean_control, mean_treatment, mean_treatment2)
mean_list
= c(p_admin_ctrl, p_admin_expt, p_admin_expt)
p_admin = c(rate_dc_ae_ctrl, rate_dc_ae_expt, rate_dc_ae_expt)
rate_dc_ae = c(prob_ae_ctrl, prob_ae_expt,prob_ae_expt)
prob_ae = c(n_patient_ctrl, n_patient_expt, n_patient_expt2)
n_patient_vector
= NA
sigma_ar_vec
= 20
total_data = 1
reference_id
= 1
starting_seed_val
= matrix(runif(length(timepoints)^2)*2-1, ncol=length(timepoints))
A = t(A) %*% A
Sigma = list(Sigma,
pacf_list
Sigma,
Sigma)
= sum(n_patient_vector)
n_total = list(beta_control, beta_expt, beta_expt2)
beta_list
= data.frame(continuous_1 = (rnorm(n = n_total, mean = 0, sd = 1)),
covariate_df continuous_2 = (rnorm(n = n_total, mean = 0, sd = 1)),
binary_1 = rbinom(n = n_total, size = 1, prob = 0.5))
= 1
starting_seed_val = TRUE
static_output = TRUE IR_display
%>%
estimates_out mutate(mean_se = paste0(mean, " (", round(se, 2) , ")")) %>%
::select(-se, -mean) %>%
dplyrpivot_wider(names_from = Estimand, values_from = mean_se)
## # A tibble: 22 × 8
## Arm name Timepoints PP `S++` `S*+` Full IR
## <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
## 1 Arm 2 1 24 0.34 (0.23) 0.08 (0.12) 0.18 (0.11) 0.08 (0.1) 0.45 …
## 2 Arm 2 2 48 0.43 (0.2) 0.18 (0.13) 0.24 (0.13) 0.18 (0.12) 0.52 …
## 3 Arm 2 3 72 0.6 (0.29) 0.4 (0.16) 0.48 (0.17) 0.41 (0.15) 0.67 …
## 4 Arm 2 4 96 0.71 (0.35) 0.51 (0.15) 0.62 (0.11) 0.58 (0.12) 0.77 …
## 5 Arm 2 5 120 0.81 (0.32) 0.68 (0.28) 0.86 (0.22) 0.77 (0.15) 0.85 …
## 6 Arm 2 6 144 0.9 (0.35) 0.87 (0.22) 0.96 (0.16) 0.99 (0.16) 0.79 …
## 7 Arm 2 7 168 0.91 (0.46) 0.91 (0.24) 1.1 (0.19) 1.09 (0.16) 0.77 …
## 8 Arm 2 8 192 1.16 (0.42) 1.21 (0.35) 1.21 (0.27) 1.22 (0.21) 0.92 …
## 9 Arm 2 9 216 1.03 (0.31) 1.21 (0.31) 1.21 (0.17) 1.3 (0.1) 0.8 (…
## 10 Arm 2 10 240 1.44 (0.35) 1.48 (0.28) 1.43 (0.22) 1.43 (0.16) 0.87 …
## # … with 12 more rows
= plot_dc(data_out = data_out,
dc_out total_data = total_data,
timepoints = timepoints,
static_output = static_output)
%>%
dc_out ungroup() %>%
filter(Timepoints == max(timepoints)) %>%
select(Arm, Reason, Value) %>%
pivot_wider(names_from = Arm,
values_from = Value) %>%
arrange(factor(Reason, levels = c("AE", "LOE", "EE", "ADMIN", "OVERALL")))
## # A tibble: 5 × 4
## Reason Ctrl `Expt 1` `Expt 2`
## <chr> <dbl> <dbl> <dbl>
## 1 AE 0.1 0.1 0.1
## 2 LOE 0.39 0.26 0.18
## 3 EE 0.19 0.28 0.4
## 4 ADMIN 0.29 0.2 0.2
## 5 OVERALL 0.71 0.65 0.68