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codep-package Multiscale Codependence Analysis

Description

Computation of Multiscale Codependence Analysis and spatial eigenvector maps, as an additional
feature.

Multiscale Codependence Analysis (MCA) consists in assessing the coherence of pairs of variables
in space (or time) using the product of their correlation coefficients with series of spatial (or tem-
poral) eigenfunctions. That product, which is positive or negative when variables show similar or
opposing trends, respectively, are called codependence coefficients. These eigenfunctions are ob-
tained in three steps: 1) a distance matrice calculated from the locations of samples in space (or the
organisation of the sampling schedule). 2) from that distance matrix, a matrix of spatial weights
is obtained; the same matrix as to calculate Moran’s autocorrelation index, hence the name, and 3)
the spatial weight matrix is eigenvalue-decomposed after centering each rows and columns of the
spatial weight matrix.

The statistical significance of the codependence coefficients is tested using parametric or permuta-
tional testing of a τ statistic. The τ statistic is the product of the two Student’s t statistics obtained
from each of the two variables with a given eigenfunction. The τ statistic can take both positive
and negative values, thereby allowing one to perform one-directional or two-directional testing. For
multiple response variables, testing is performed using the phi statistic instead. That statistics is
the distribution of the product of two Fisher-Snedocor F statistics (see Product-distribution for
details).

Details

Function MCA performs Multiscale Codependence Analysis (MCA).

Functions test.cdp and permute.cdp handle parametric permutational testing of the codepen-
dence coefficients, respectively.

Methods are provided to print and plot cdp-class objects (print.cdp and plot.cdp, respectively)
as well as summary (summary.cdp), fitted values (fitted.cdp), residuals (residuals.cdp), and
to make predictions (predict.cdp).

Function eigenmap calculates spatial eigenvector maps following the approach outlined in Dray et
al. (2006), and which are necessary to calculate MCA. It returns a eigenmap-class object. The
package also features methods to print (print.eigenmap) and plot (plot.eigenmap) these ob-
jects. Function eigenmap.score can be used to make predictions for spatial models built from the
eigenfunctions of eigenmap using distances between one or more target locations and the sampled
locations for which the spatial eigenvector map was built.

The package also features an examplary dataset Salmon containing 76 sampling site positions along
a 1520 m river segment as well as functions cthreshold and minpermute, which calculates the
testwise type I error rate threshold corresponding to a given familywise threshold and the mini-
mal number of permutations needed for testing Multiscale Codependence Analysis given the alpha
threshold, respectively.

The DESCRIPTION file:
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Package: codep
Version: 0.9-1
Date: 2018-05-16
Type: Package
Title: Multiscale Codependence Analysis
Author: Guillaume Guenard and Pierre Legendre, Bertrand Pages
Maintainer: Guillaume Guenard <guillaume.guenard@gmail.com>
Description: Computation of Multiscale Codependence Analysis and spatial eigenvector maps, as an additional feature.
Depends: R (>= 3.0.0), grDevices, graphics, stats, parallel
Suggests: vegan
License: GPL-3
LazyLoad: yes
NeedsCompilation: yes
Repository: CRAN
Packaged: 2018-04-16 16:47:02 UTC; guenardg

Index of help topics:

Doubs The Doubs fish data
MCA Multiple-descriptors, Multiscale Codependence

Analysis
Mite Lac Geai oribatid mites community data
Product-distribution Frequency distributions for MCA parametric

testing
Salmon Juvenile Atlantic salmon (parr) density in

St-Marguerite river, Québec, Canada
cdp-class Class and methods for Multiscale Codependence

Analysis involving multiple descriptors
codep-package Multiscale Codependence Analysis
cthreshold Familywise type I error rate
eigenmap Spatial eigenvector maps
eigenmap-class Class and methods for spatial eigenvector maps
gcd.slc Great circle distances
minpermute Number of permutations for MCA

Author(s)

Guillaume Guenard and Pierre Legendre, Bertrand Pages

Maintainer: Guillaume Guenard <guillaume.guenard@gmail.com>

References

Dray, S.; Legendre, P. and Peres-Neto, P. 2006. Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modelling 196: 483-493

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964
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Guénard, G. Legendre, P. 2018. Bringing multivariate support to multiscale codependence analysis:
Assessing the drivers of community structure across spatial scales. Meth. Ecol. Evol. 9: 292-304

See Also

Legendre, P. and Legendre, L. 2012. Numerical Ecology, 3rd English edition. Elsevier Science
B.V., Amsterdam, The Neatherlands.

Examples

data(Mite)
emap <- eigenmap(x = mite.geo,weighting=Wf.RBF,wpar=0.1)
emap
# Organize the environmental variables
mca0 <- MCA(Y = log1p(mite.species), X = mite.env, emobj = emap)
mca0_partest <- test.cdp(mca0, response.tests = FALSE)
summary(mca0_partest)
plot(mca0_partest, las = 2, lwd = 2)
plot(mca0_partest, col = rainbow(1200)[1L:1000], las = 3, lwd = 4,

main = "Codependence diagram", col.signif = "white")
#
rng <- list(x = seq(min(mite.geo[,"x"]) - 0.1, max(mite.geo[,"x"]) + 0.1, 0.05),

y = seq(min(mite.geo[,"y"]) - 0.1, max(mite.geo[,"y"]) + 0.1, 0.05))
grid <- cbind(x = rep(rng[["x"]], length(rng[["y"]])),

y = rep(rng[["y"]], each = length(rng[["x"]])))
newdists <- matrix(NA, nrow(grid), nrow(mite.geo))
for(i in 1L:nrow(grid)) {

newdists[i,] <- ((mite.geo[,"x"] - grid[i,"x"])^2 +
(mite.geo[,"y"] - grid[i,"y"])^2)^0.5

}
#
spmeans <- colMeans(mite.species)
pca0 <- svd(log1p(mite.species) - rep(spmeans, each = nrow(mite.species)))
#
prd0 <- predict(mca0_partest,

newdata = list(target = eigenmap.score(emap, newdists)))
Uprd0 <- (prd0 - rep(spmeans, each = nrow(prd0)))
#
### Printing the response variable
prmat <- Uprd0[,1L]
dim(prmat) <- c(length(rng$x),length(rng$y))
zlim <- c(min(min(prmat),min(pca0$u[,1L])),max(max(prmat),max(pca0$u[,1L])))
image(z = prmat, x = rng$x, y = rng$y, asp = 1, zlim = zlim,

col = rainbow(1200L)[1L:1000], ylab = "y", xlab = "x")
points(x = mite.geo[,"x"], y = mite.geo[,"y"], pch = 21,

bg = rainbow(1200L)[round(1+(999*(pca0$u[,1L]-zlim[1L])/(zlim[2L]-zlim[1L])),0)])
#



cdp-class 5

cdp-class Class and methods for Multiscale Codependence Analysis involving
multiple descriptors

Description

Class and methods to handle Multiscale Codependence Analysis (mMCA)

Usage

## S3 method for class 'cdp'
print(x, ...)
## S3 method for class 'cdp'
plot(x, col, col.signif=2, main="", ...)
## S3 method for class 'cdp'
summary(object, ...)
## S3 method for class 'cdp'
fitted(object, selection, components=FALSE, ...)
## S3 method for class 'cdp'
residuals(object, selection, ...)
## S3 method for class 'cdp'
predict(object, selection, newdata, components=FALSE, ...)

Arguments

x, object A cdp-class object.

col A vector of color values to be used for plotting the multivariate codependence
coefficients.

col.signif Color of the frame used to mark the statistically significant codependence coef-
ficients .

main Text for the main title of the plot.

selection A numeric vector of indices or character vector variable names to test or force-
use. Mandatory if object is untested.

components A boolean specifying whether the components of fitted or predicted values as-
sociated with single eigenfunctions in the map should be returned.

newdata A list with elements $X, $meanY, and $target that contain the information needed
to make predictions (see details).

... Further parameters to be passed to other functions or methods.

Details

The fitted, residuals, and predict methods return a matrix of fitted, residuals, or predicted
values, respectively. The fitted and predict methods return a list a list when the parameter
component is TRUE. The list contains the fitted or predicted values as a first element and an array
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components as a second. That 3-dimensional array has one matrix for each statistically significant
codependence coefficient.
For making predictions, parameter newdata may contain three elements: $X, a matrix of new values
of the explanatory variables, $meanY, a vector of the predicted mean values of the responses, and
$target, a matrix of target scores for arbitraty locations within the study area. When no $X is
supplied, the descriptor given to MCA is recycled, while when no $meanY is supplied, the mean
values of the response variables given to MCA are used. Finally, when element $target is omitted
from newdata, predictions are made at the sites were observations were done. When none of the
above is provided, or if newdata is omitted when calling the prediction method, the behaviour of
the predict method is identical to that of the fitted method.
From version 0.7-1, cdp-class replaces the former class mca used by codep-package because the
standard package MASS also had S3 methods for a class named mca that were overwritten by those
of codep-package.

Value

cdp-class objects contain:

data A list with two elements: the first being a copy of the response (Y) and the
second being a copy of the explanatory variables (X). This is the variables that
were given to MCA.

emobj The eigenmap-class object that was given to MCA.
UpYXcb A list with five elements: the first (UpY) is a matrix of the cross-products of

structuring variable (U) and the response variable Y, the second (UpX) is a matrix
of the cross-product of the structuring variable and the explanatory variables
(X), the third (C) is a 3-dimensional array of the codependence coefficients, the
fourth (B) is a 3-dimensional array of the coregression coefficients, and the fifth
(CM) is a matrix of the multivariate codependence coefficients.

test Results of statistical testing as performed by test.cdp or permute.cdp. NULL
if no testing was performed, such as when only MCA had been called. The results
of statistical testing is a list containing the following members:

$permute The number of randomized permutations used by permute.cdp for permutation
testing. 0 or FALSE for parametric testing obtained using test.cdp.

$significant The indices of codependence coefficient describing statistically significant code-
pendence between Y and X, in decreasing order of magnitude.

$global The testing table (a 5-column matrix) with φ statistics, degrees-of-freedom, and
testwise and familywise probabilities of type I (α) error. It contains one line for
each statistically significant global coefficient (if any) in addition to test results
for the first, non-significant coefficient, on which the testing procedure stopped.

$response Tests of every single response variable (a 3-dimensional array), had such tests
been requested while calling the testing function, NULL otherwise.

$permutations Details about permutation testing not shown in test$global or test$response.
NULL for parametric testing.

Author(s)

Guillaume Guénard, Département des sciences biologiques, Université de Montréal, Montréal,
Québec, Canada.
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References

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

Guénard, G. Legendre, P. 2018. Bringing multivariate support to multiscale codependence analysis:
Assessing the drivers of community structure across spatial scales. Meth. Ecol. Evol. 9: 292-304

cthreshold Familywise type I error rate

Description

Function to calculate the testwise type I error rate threshold corresponding to a give familywise
threshold.

Usage

cthreshold(alpha, nbtest)

Arguments

alpha The familywise type I error threshold.

nbtest The number of tests performed.

Details

Type I error rate inflation occurs when a single hypothesis is tested indirectly using inferences about
two or more (i.e. a family of) sub-hypotheses. In such situation, the probability of type I error (i.e.
the probability of incorrectly rejecting the null hypothesis) of the single, familywise, hypothesis is
higher than the lowest, testwise, probabilities. As a consequence, the rejection of null hypothesis
for one or more individual tests does not warrant that the correct decision (whether to reject the the
null hypothesis on a familywise basis) was taken properly. This function allows to obtain correct,
familywise, alpha thresholds in the context of multiple testing. It is base on the Sidak inegality.

Value

The threshold that have to be used for individual tests.

Author(s)

Guillaume Guénard, Département des sciences biologiques, Université de Montréal, Montréal,
Québec, Canada.

References

Sidak, Z. 1967. Rectangular Confidence Regions for Means of Multivariate Normal Distributions
J. Am. Stat. Assoc. 62: 626-633

Wright, P. S. 1992. Adjusted p-values for simultaneous inference. Biometrics 48: 1005-1013
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See Also

Legendre, P. and Legendre, L. 1998. Numerical Ecology. Elsevier Science B.V., Amsterdam, The
Neatherlands. p. 18

Examples

# For a familywise threshold of 5% with 5 tests:
cthreshold(c(0.05),5) # The corrected threshold for each test is 0.01020622

Doubs The Doubs fish data

Description

Fish community composition of the Doubs River, France.

Usage

Doubs

Format

Contains three matrices: Doubs.fish the abundance of 27 fish species.

Doubs.env 9 environmental variables (all quantitative).

Doubs.geo geographic information of the samples.

Details

Values in Doubs.fish are counts of individuals of each of 27 species observed in a set of 30 sites
located along the 453 km long Doubs River, France (see Verneaux 1973 for further details about
fishing methods and effort).

Doubs.env contains 11 quantitative variables, namely the slope (slo 1/1000) and mean minimum
discharge (flo m³/s) of the river, the pH of the water, its harness (Calcium concentration; har;
mg/L), phosphate (pho; mg/L), nitrate (nit; mg/L), and ammonium (amm; mg/L), concentration as
well as its dissolved oxygen (oxy; mg/L) and biological oxygen demand (bdo; mg/L).

Doubs.geo contains geographical information. Lon, the longitude and Lat, the latitude of the sam-
ple (degree) as well as DFS, its distance from the source of the river (km) and Alt, altitude (m above
see level).

Source

Verneaux, 1973
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References

Verneaux J. 1973. - Cours d’eau de Franche-Comté (Massif du Jura). Recherches écologiques sur
le réseau hydrographique du Doubs. Essai de biotypologie. Thèse d’état, Besançon. 257 p.)

Verneaux, J.; Schmitt, V.; Verneaux, V. & Prouteau, C. 2003. Benthic insects and fish of the Doubs
River system: typological traits and the development of a species continuum in a theoretically
extrapolated watercourse. Hydrobiologia 490: 60-74

See Also

Borcard, D.; Gillet, F. & Legendre, P. 2011. Numerical Ecology with R. Springer, New-York, NY,
USA.

Examples

data(Doubs)
summary(Doubs.fish)
summary(Doubs.env)
summary(Doubs.geo)

eigenmap Spatial eigenvector maps

Description

Function to calculate spatial eigenvector maps of a set of locations in a space with an arbitrary
number of dimension.

Usage

eigenmap(x,opt.coord=NA,weighting=Wf.sqrd,boundaries,wpar,select=.Machine$double.eps^0.5)
Wf.sqrd(D)
Wf.RBF(D,wpar=1)
Wf.binary(D,boundaries)
Wf.PCNM(D,boundaries)
Wf.Drayf1(D,boundaries)
Wf.Drayf2(D,boundaries,wpar=1)
Wf.Drayf3(D,boundaries,wpar=1)
eigenmap.score(object,target)

Arguments

x A set of coordinates defined in one (numeric vector) or many (a coordinate x
dimension matrix) dimensions or, alternatively, a distance matrix provided by
dist. Coordinates are treated as cartesian coordinates and the distances between
them are assumed to be Euclidean.

opt.coord Coordinates to be used when a distance matrix is provided as x. Used for plotting
purposes.
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weighting The function to obtain the edge weighting matrix. That function must have
the raw distances as a first parameter, optionally a second parameter named
boundaries giving the boundaries of the within which locations are regarded
as neighbour and a third parameter named wpar containing any other weighting
function parameter.
Wf.sqrd consists in takingwi,j = −0.5∗di,j and does not involve any trunction.
Wf.sqrd consists in taking wi,j = exp(−wpar ∗ d2i,j) and does not involve any
trunction.
Wf.binary (default value) the spatial weighting matrix is simply the connectiv-
ity matrix,
Wf.PCNM is ai,j = 1− (di,j/(4 ∗ boundaries2))2

Wf.Drayf1 is ai,j = 1 − (di,j/dmax) where dmax is the distance between the
two most distant locations in the set,
Wf.Drayf2 is ai,j = 1− (di,j/dmax)

wpar,
Wf.Drayf3 is ai,j = 1/dwpar

i,j , and
Functions Wf.Drayf1, Wf.Drayf2, and Wf.Drayf3 were proposed by Dray et
al. (2006) and function PCNM was proposed by Legendre and Legendre (2012).
The Wf.sqrd weighting approach is equivallent to submitting the elementwise
square-root of the distance matrix to a principal coordinate analysis. That option
is not much documented in the ecological litterature, but is actually equivallent,
for evenly spaced transect or surfaces (square or rectangle), to using the basis
functions of type II discrete cosine basis transforms.

boundaries (optional) Threshold values (minimum and maximum) used to obtain the con-
nectivity matrix. Pairs of location whose distance to one another are between
these values are considered as neighbours (bi,j = 1) whereas values located
below the mininum and above the maximum are considered as equivallent or
distant, respectively (bi,j = 0 in both cases). Defaults are 0 for the minimum
value and NA for the maximum. Values NA indicates the function to take the min-
imum value that allow every locations to form a single cluster following single
linkage clustering as a maximum value (obtained from hclust. Ignored when
weighting="Wf.sqrd" or weighting="Wf.RBF".

wpar Weighting function parameters.

select The smallest absolute eigenvalue for eigenfunctions to be considered as a suit-
able predictive variables. Default value depends on one’s particular computer
and is set to the square-root of .Machine$double.eps

D A distance matrix.

object A eigenmap-class object.

target A set of distances between the sampling locations (passed to eigenmap using x)
and the target locations where spatially-explicit predictions are to be made.

Details

Spatial eigenvector maps are sets of eigenfunctions obtained from the locations of the observations
in a structuring framework, e.g., space, time, or in a graph. It is obtained by eigenvalue decompo-
sition of a spatial weighting matrix, computed as described in Dray et al. (2006) and Legendre &
Legendre (2012, Section 14.2). That square matrix is Gower-centred before eigen-decomposition.
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The spatial weighting matrix is the Hadamard product of a connectivity matrix B and an edge
weighting matrix A. The function described herein handles user-chosen truncation parameters to
calculate B and provides a default approach to estimate these parameters should they be missing. It
also offers four different ways of computing A through parameters weighting and wpar.

In is noteworthy that in the present implementation, matrix B is not obtained using a minimum
spanning tree as suggested by Dray et al. (2006) but using a simpler approach whereby every
distances within a user-defined trunction interval are taken as neighbour.

Functions Wf.sqrd, Wf.RBF, Wf.binary, Wf.PCNM, Wf.Drayf1, Wf.Drayf2, and Wf.Drayf3 are not
intested to be called as is but through eigenmap (and within eigenmap.score). Other, user-defined,
function can be used by eigenmap and should be visible to if one wants to call eigenmap.score to
obtain predictors.

For eigenmap.score, the distances between sampling locations and the targets locations must be
of the same type as those that had been passed to eigenmap. If cartesian coordinates were passed
to x, the distances to target must be Euclidean.

Value

eigenmap returns a eigenmap-class object and eigenmap.score returns a the scores on for each
target locations

Author(s)

Guillaume Guénard, Departement des sciences biologiques, Universite de Montréal, Montréal, Que-
bec, Canada.

References

Borcard, D. and Legendre, P. 2002. All-scale spatial analysis of ecological data by means of prin-
cipal coordinates of neighbour matrices. Ecol. Model. 153: 51-68

Dray, S.; Legendre, P. and Peres-Neto, P. 2006. Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modelling 196: 483-493

Legendre, P. and Legendre, L. 2012. Numerical Ecology, 3rd English edition. Elsevier Science
B.V., Amsterdam, The Neatherlands.

See Also

MCA eigenmap-class

Examples

#
### Example 1: A linear transect.
#
data(Salmon)
#
## No boundaries provided for a function that requires them: a warning is issued
map <- eigenmap(x=Salmon[,"Position"],weighting=Wf.binary)
map # plot(map)
#
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## Boundaries are provided: the function is happy
map <- eigenmap(x=Salmon[,"Position"],weighting=Wf.binary,boundaries=c(0,20))
map # plot(map)
#
map <- eigenmap(x=Salmon[,"Position"],weighting=Wf.Drayf1,boundaries=c(0,20))
map # plot(map)
#
map <- eigenmap(x=Salmon[,"Position"],weighting=Wf.Drayf2,boundaries=c(0,20))
map # plot(map)
#
map <- eigenmap(x=Salmon[,"Position"],weighting=Wf.Drayf3,boundaries=c(0,20),wpar=2)
map # plot(map)
#
map <- eigenmap(x=Salmon[,"Position"],weighting=Wf.PCNM,boundaries=c(0,20))
map # plot(map)
#
map <- eigenmap(x=Salmon[,"Position"],weighting=Wf.sqrd)
map # plot(map)
#
map <- eigenmap(x=Salmon[,"Position"],weighting=Wf.RBF,wpar=0.001)
map # plot(map)
#
### Example 2: Using predictior scores
#
smpl <- c(4,7,10,14,34,56,61,64) # A sample to discard
map <- eigenmap(x=Salmon[-smpl,"Position"],weighting=Wf.sqrd)
scr <- eigenmap.score(object=map,target=as.matrix(dist(Salmon[,"Position"]))[,-smpl])
all(round(scr[-smpl,] - map$U, 10) == 0) # Scores of sampling points are the eigenvectors
scr[smpl,]
#
wh <- 5L # You can try with other vectors.
plot(map$U[,wh]~Salmon[-smpl,"Position"], ylab = expression(U[5]),

xlab = "Position along transect")
points(y=scr[smpl,wh],x=Salmon[smpl,"Position"],pch=21,bg="black")
#
map <- eigenmap(x=Salmon[-smpl,"Position"],weighting=Wf.binary,boundaries=c(0,20))
scr <- eigenmap.score(object=map,target=as.matrix(dist(Salmon[,"Position"]))[smpl,-smpl])
#
wh <- 1L # You can try with other vectors.
plot(map$U[,wh]~Salmon[-smpl,"Position"], ylab = expression(U[1]),

xlab = "Position along transect (m)")
points(y=scr[,wh],x=Salmon[smpl,"Position"],pch=21,bg="black")
#
map <- eigenmap(x=Salmon[-smpl,"Position"],weighting=Wf.PCNM,boundaries=c(0,100))
scr <- eigenmap.score(object=map,target=as.matrix(dist(Salmon[,"Position"]))[smpl,-smpl])
#
wh <- 1L # You can try with other vectors.
plot(map$U[,wh]~Salmon[-smpl,"Position"], ylab = expression(U[1]),

xlab = "Position along transect (m)")
points(y=scr[,wh],x=Salmon[smpl,"Position"],pch=21,bg="black")
#
### Example 3: A unevenly sampled surface.
#
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data(Mite)
map <- eigenmap(x=as.matrix(mite.geo),weighting=Wf.sqrd)
map # plot(map)
#
map <- eigenmap(x=as.matrix(mite.geo),weighting=Wf.RBF)
map # plot(map)
#

eigenmap-class Class and methods for spatial eigenvector maps

Description

Methods to handle spatial eigenvector maps of a set of locations in a space with an arbitrary number
of dimension.

Usage

## S3 method for class 'eigenmap'
print(x, ...)
## S3 method for class 'eigenmap'
plot(x, ...)

Arguments

x An object of eigenmap-class

... Further parameters to be passed to other functions or methods (currently ig-
nored).

Details

The print method provides the number of the number of orthonormal variables (i.e. basis func-
tions), the number of observations these functions are spanning, and their associated eigenvalues.

The plot method provides a plot of the eigenvalues and offers the possibility to plot the values of
variables for 1- or 2-dimensional sets of coordinates. plot.eigenmap opens the default graphical
device driver, i.e., X11, windows, or quartz and recurses through variable with a left mouse click
on the graphical window. A right mouse click interrupts recursing on X11 and windows (Mac OS X
users should hit Esc on the quartz graphical device driver (Mac OS X users).

Value

eigenmap-class objects contain:

coordinates a matrix of coordinates,

truncate the interval within which pairs of sites are considered as neighbour,

D the distance matrix,

weighting the weighting function that had been used,
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wpar the weighting function parameter that had been used,

lambda a vector of the eigenvalues obtain from the computation of the eigenvector map,
and

U a matrix of the eigenvectors defining the eigenvector map.

Author(s)

Guillaume Guénard, Département des sciences biologiques, Université de Montréal, Montréal,
Québec, Canada.

References

Dray, S.; Legendre, P. and Peres-Neto, P. 2006. Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modelling 196: 483-493

See Also

MCA eigenmap

gcd Great circle distances

Description

Functions to calculate great circle distances among sets of points with known longitude and latti-
tudes.

Usage

gcd.slc(ss, radius = 6371)
gcd.hf(ss, radius = 6371)
gcd.vife(ss, a = 6378137, b = 6356752.314245, f = 1/298.257223563)

Arguments

ss A two-columns data.frame or matrix of the geographic coordinates (in degree.decimals;
lattitude and then longitude) of the locations between which the geodesic dis-
tances are being calculated.

radius Mean earth radius (mean length of parallels) in km. Default: 6371 km

a Length (in m) of major axis of the ellipsoid (radius at equator). Default: 6378137
m (i.e. that for WGS-84).

b Length (in m) of minor axis of the ellipsoid (radius at the poles). Default:
6356752.314245 m (i.e. that for WGS-84).

f Flattening of the ellipsoid. Default: 1/298.257223563 (i.e. that for WGS-84).
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Details

The calculation of spatial eigenvector maps requires a distance matrix. The euclidean distance is
appropriate when a cartesian plan can be reasonably assumed. The latter can be calculated with
function dist. The great circle distance is appropriate when the sampling points are located on
a spheroid (e.g. planet Earth). Function gcd.slc uses the spherical law of cosines, which is the
fastest of the three approaches and performs relatively well for distances above 1 m. Function
gcd.hf uses the the Haversine formula, which is more accurate for smaller distances (bellow 1 m).
Finally, functions gcd.vife uses the Vincenty inverse formula for ellipsoids, which is an iterative
approach that take substantially more computation time than the latter two methods has precision
up to 0.5 mm with exact longitudes and lattitudes.

Value

An object of class ‘"dist"’ (see dist for details) that contains the distances (in km) between the
locations (rows of ss).

Author(s)

Guillaume Guénard, Departement des sciences biologiques, Universite de Montréal, Montréal, Que-
bec, Canada.

References

Mario Pineda-Krch, URL: http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

Vincenty, T. (1975) Closed formulas for the direct and reverse geodetic problems. J. Geodesy 51(3):
241-342

See Also

eigenmap-class

Examples

#
# Calculating the distances between Canada's capital cities:
CapitalCitiesOfCanada <-

matrix(c(45.417,-75.7,53.533333,-113.5,48.422151,-123.3657,
49.899444,-97.139167,45.95,-66.666667,47.5675,-52.707222,
44.647778,-63.571389,43.7,-79.4,46.24,-63.1399,
46.816667,-71.216667,50.454722,-104.606667,62.442222,-114.3975,
63.748611,-68.519722,60.716667,-135.05),14L,2L,byrow=TRUE,
dimnames=list(c("Ottawa","Edmonton","Victoria","Winnipeg",

"Fredericton","St-John's","Halifax","Toronto",
"Charlottetown","Quebec City","Regina",
"Yellowknife","Iqaluit","Whitehorse"),c("Lon","Lat")))

#
sphericalcosdists <- gcd.slc(CapitalCitiesOfCanada)
vincentydists <- gcd.vife(CapitalCitiesOfCanada)
#
cor(as.numeric(sphericalcosdists),as.numeric(vincentydists))
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percentdev <- 100*(vincentydists-sphericalcosdists)/vincentydists
mean(percentdev)
# Spherical Law of Cosines underestimated these distances by ~0.26
# percent.
#

MCA Multiple-descriptors, Multiscale Codependence Analysis

Description

Functions to perform Multiscale Codependence Analysis (MCA)

Usage

MCA(Y, X, emobj)
test.cdp(object, alpha = 0.05, max.step, response.tests = TRUE)
permute.cdp(object, permute, alpha = 0.05, max.step,

response.tests = TRUE)
parPermute.cdp(object, permute, alpha = 0.05, max.step,

response.tests = TRUE, nnode, seeds, verbose = TRUE,
...)

Arguments

Y a numeric matrix or vector containing the response variable(s).

X a numeric matrix or vector containing the explanatory variable(s).

emobj a eigenmap-class object.

object a cdp-class object.

alpha type I (α) error threshold used by the testing procedure.

max.step maximum number of steps to perform when testing for statistical significance.

response.tests a boolean specifying whether to test individual response variables.

permute The number of random permutations used for testing. When omitted, the num-
ber of permutations is calculated using function minpermute.

nnode The number of parallel computation nodes.

seeds Random number generator seeds for parallel the computation nodes.

verbose Whether to return user notifications.

... Parameters to be passed to parallel::makeCluster()
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Details

Multiscale Codependence Analysis (MCA) allows to calculate correlation-like (i.e.codependence)
coefficients between two variables with respect to structuring variables (Moran’s eigenvector maps).
The purpose of this function is limited to parameter fitting. Test procedures are handled through
test.cdp (parametric testing) or permute.cdp (permutation testing). Additionaly, methods are
provided for printing, displaying the testing summary, plotting results, calculating fitted and resid-
uals values, and making predictions. It is noteworthy that the test procedure used by MCA deviates
from the standard R workflow since intermediate testing functions (test.cdp and permute.cdp)
need first to be called before any testing be performed. For MCA, testing functionalities had been
moved away from summary.cdp because testing is computationally intensive. Function parPermute.cdp
allows the user to spread the number of permutation on many computation nodes. It relies on
package parallel. Omitting parameter nnode lets function parallel::detectCores() specify
the number of node. Similarly, omitting parameter seeds lets the draw seeds uniformly between
±.Machine$integer.max. If needed, one may pass initialization parameters to parallel::makeCluster().

Value

A cdp-class object.

Author(s)

Guillaume Guénard, Département des sciences biologiques, Université de Montréal, Montréal,
Québec, Canada.

References

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

Guénard, G. Legendre, P. 2018. Bringing multivariate support to multiscale codependence analysis:
Assessing the drivers of community structure across spatial scales. Meth. Ecol. Evol. 9: 292-304

See Also

eigenmap

Examples

#
###### Begin {Salmon exemple}
#
data(Salmon)
#
## Converting the data from data frames to to matrices:
Abundance <- log1p(as.matrix(Salmon[,"Abundance",drop=FALSE]))
Environ <- as.matrix(Salmon[,3L:5])
#
## Creating a spatial eigenvector map:
map1 <- eigenmap(x=Salmon[,"Position"],weighting=Wf.binary,boundaries=c(0,20))
#
## Case of a single descriptor:
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mca1 <- MCA(Y=Abundance,X=Environ[,"Substrate",drop=FALSE],emobj=map1)
mca1
mca1_partest <- test.cdp(mca1)
mca1_partest
summary(mca1_partest)
par(mar = c(6,4,2,4))
plot(mca1_partest, las = 3)
mca1_pertest <- permute.cdp(mca1)
## Not run:
## or:
mca1_pertest <- parPermute.cdp(mca1,permute=999999)

## End(Not run)
mca1_pertest
summary(mca1_pertest)
plot(mca1_pertest, las = 3)
mca1_pertest$UpYXcb$C # Array containing the codependence coefficients
#
## With all descriptors at once:
mca2 <- MCA(Y=log1p(as.matrix(Salmon[,"Abundance",drop=FALSE])),

X=as.matrix(Salmon[,3L:5]),emobj=map1)
mca2
mca2_partest <- test.cdp(mca2)
mca2_partest
summary(mca2_partest)
par(mar = c(6,4,2,4))
plot(mca2_partest, las = 3)
mca2_pertest <- permute.cdp(mca2)
## Not run:
or:
mca2_pertest <- parPermute.cdp(mca2,permute=999999)

## End(Not run)
mca2_pertest
summary(mca2_pertest)
plot(mca2_pertest, las = 3)
mca2_pertest$UpYXcb$C # Array containing the codependence coefficients
mca2_pertest$UpYXcb$C[,1L,] # now turned into a matrix.
#
###### End {Salmon exemple}
#
###### Begin {Doubs exemple}
#
data(Doubs)
#
## Creating a spatial eigenvector map:
map2 <- eigenmap(x=Doubs.geo[,"DFS"])
#
mca3 <- MCA(Y=log1p(Doubs.fish),X=Doubs.env,emobj=map2)
mca3
mca3_pertest <- permute.cdp(mca3)
## Not run:
## or:
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mca3_pertest <- parPermute.cdp(mca3,permute=999999)

## End(Not run)
mca3_pertest
summary(mca3_pertest)
par(mar = c(6,4,2,4))
plot(mca3_pertest, las = 2)
mca3_pertest$UpYXcb$C # Array containing the codependence coefficients
#
## Display the results along the transect
spmeans <- colMeans(log1p(Doubs.fish))
pca1 <- svd(log1p(Doubs.fish) - rep(spmeans,each=nrow(Doubs.fish)))
par(mar = c(5,5,2,5)+0.1)
plot(y = pca1$u[,1L], x = Doubs.geo[,"DFS"], pch = 21L, bg = "red",

ylab = "PCA1 loadings", xlab = "Distance from river source (km)")
#
x <- seq(0,450,1)
newdists <- matrix(NA, length(x), nrow(Doubs.geo))
for(i in 1L:nrow(newdists))

newdists[i,] <- abs(Doubs.geo[,"DFS"] - x[i])
#
## Calculating predictions for arbitrary sites under the same set of
## environmental conditions that the codependence model was built with.
prd1 <- predict(mca3_pertest,

newdata=list(target = eigenmap.score(map2, newdists)))
#
## Projection of the predicted species abundance on pca1:
Uprd1 <- (prd1 - rep(spmeans, each = nrow(prd1))) %*% pca1$v %*% diag(pca1$d^-1)
lines(y = Uprd1[,1L], x = x, col=2, lty = 1)
#
## Projection of the predicted species abundance on pca2:
plot(y = pca1$u[,2L], x = Doubs.geo[,"DFS"], pch = 21L, bg = "red",

ylab = "PCA2 loadings", xlab = "Distance from river source (km)")
lines(y = Uprd1[,2L], x = x, col=2, lty = 1)

#
## Displaying only the observed and predicted abundance for Brown Trout.
par(new=TRUE)
plot(y = log1p(Doubs.fish[,"TRU"]),Doubs.geo[,"DFS"],pch=21L,bg="green",

ylab="",xlab="",new=FALSE,axes=FALSE)
axis(4)
lines(y = prd1[,"TRU"], x = x, col=3)
mtext(side=4, "log(Abundance+1)", line = 2.5)
#
###### End {Doubs exemple}
#
###### Begin {Oribatid exemple}
#
data(Mite)
#
map3 <- eigenmap(x = mite.geo)
# Organize the environmental variables
mca4 <- MCA(Y = log1p(mite.species), X = mite.env, emobj = map3)
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mca4_partest <- test.cdp(mca4, response.tests = FALSE)
summary(mca4_partest)
plot(mca4_partest, las = 2, lwd = 2)
plot(mca4_partest, col = rainbow(1200)[1L:1000], las = 3, lwd = 4,

main = "Codependence diagram", col.signif = "white")
#
rng <- list(x = seq(min(mite.geo[,"x"]) - 0.1, max(mite.geo[,"x"]) + 0.1, 0.05),

y = seq(min(mite.geo[,"y"]) - 0.1, max(mite.geo[,"y"]) + 0.1, 0.05))
grid <- cbind(x = rep(rng[["x"]], length(rng[["y"]])),

y = rep(rng[["y"]], each = length(rng[["x"]])))
newdists <- matrix(NA, nrow(grid), nrow(mite.geo))
for(i in 1L:nrow(grid)) {

newdists[i,] <- ((mite.geo[,"x"] - grid[i,"x"])^2 +
(mite.geo[,"y"] - grid[i,"y"])^2)^0.5

}
#
spmeans <- colMeans(mite.species)
pca2 <- svd(log1p(mite.species) - rep(spmeans, each = nrow(mite.species)))
#
prd2 <- predict(mca4_partest,

newdata = list(target = eigenmap.score(map3, newdists)))
Uprd2 <- (prd2 - rep(spmeans, each = nrow(prd2))) %*% pca2$v %*% diag(pca2$d^-1)
#
### Printing the response variable
prmat <- Uprd2[,1L]
dim(prmat) <- c(length(rng$x),length(rng$y))
zlim <- c(min(min(prmat),min(pca2$u[,1L])),max(max(prmat),max(pca2$u[,1L])))
image(z = prmat, x = rng$x, y = rng$y, asp = 1, zlim = zlim,

col = rainbow(1200L)[1L:1000], ylab = "y", xlab = "x")
points(x = mite.geo[,"x"], y = mite.geo[,"y"], pch = 21,

bg = rainbow(1200L)[round(1+(999*(pca2$u[,1L]-zlim[1L])/(zlim[2L]-zlim[1L])),0)])
#
###### End {Oribatid exemple}
#

minpermute Number of permutations for MCA

Description

Calculate the number of permutations suitable for testing Multiscale Codependence Analysis.

Usage

minpermute(alpha,nbtest,margin=1,ru=3)

Arguments

alpha The familywise type I error threshold allowable for the complete analysis.
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nbtest The number of test performed (the number of eigenvectors in the ‘mem’ object
in the case of MCA).

margin A margin allowed for the number of permutation. Default value: 1.

ru The magnitude of the round-up to apply to the number of permutations.

Details

This function calculate the number of permutations for use with permute.cdp. Parameter margin
allows to apply a safe margin to the number of permutations. The minimal suitable value for this
parameter is 1. Parameter ru allows one to round-up the number of permutations. A value of 0
implies no round-up, a value of 1 a round-up to the next ten, 2 a round-up to the next hundred,
and so on. Function minpermute is called internally by permute.cdp in case permute = NA. In that
case, the margin is set to 10 (margin = 10) and the outcome is rounded-up to the next thousand (ru
= 3). This function is meant for users that wish to apply their own margins and round-up factors to
calculate the number of permutations for use with permute.cdp.

Value

The minimum number of permutation to be used for permute.cdp.

Author(s)

Guillaume Guénard, Département des sciences biologiques, Université de Montréal, Montréal,
Québec, Canada.

References

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

See Also

permute.cdp

Examples

# For a 5% threshold under 50 tests.
minpermute(alpha = 0.05, nbtest=50)
# Allowing more margin (implies more computation time).
minpermute(alpha = 0.05, nbtest=50, margin=10, ru=3)
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Mite Lac Geai oribatid mites community data

Description

A data set containing information on the microfauna of 70 sites located within the the peat on shore
of Lac Geai, a bog lake located at the Station de Biologie de l’Université de Montréal, St-Hippolyte,
QC, Canada (+45.9954; -73.9936).

Usage

Mite

Format

Contains three matrices: mite.species the abundance of 35 morpho-species of oribatid mites
(Acari).

mite.env 14 environmental variables (quantitative and binary).

mite.geo the relative coordinates of the samples.

Details

Values in mite.species are counts of individuals of each of the morpho-species obtained from 5
cm diameter cores going from the surface of the peat down to a depth of 7 cm. See Bordard &
Legendre (1994) and reference therein for details about sample treatment and species identification.

mite.env contains two quantitative variables, namely the substratum density (g/L) and water con-
tent (percent wet mass over dry mass), in addition to 12 dummy variables. The first seven represent
the composition of the substratum: Sphagnum magellacinum (with a majority of S. rubellum), S.
rubellum, S. nemorum, (with a majority of S. augustifollium), S. rubellum + S. magellicum (in equal
proportions), lignous litter, bare peat, and interface between Sphagnum species. The next three
dummy variables represent the presence and abundance of shrubs (Kalmia polifolia, K. angusti-
folia, and Rhododentron groenlandicum): none, few, and many. The last two dummy variables
represent the microtopography of the peat: blanket (flat) or hummock (raised).

mite.geo contains the location of the samples, in meters, with respect to the sampling grid. Point
(0,0) is the lower left end of the plot for an observer looking from the shore towards the water. The
x coordinate is the offset along the shore (from left to right) while the y coordinate is the offset from
the shore while moving towards the water (See Borcard & Legendre, 1994, Fig. 1 for details on the
sampling area).

Source

Daniel Borcard, Département de sciences biologiques, Université de Montréal, Montréal, Québec,
Canada.
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References

Borcard, D. & Legendre, P. 1994. Environmental control and spatial structure in ecological com-
munities: an example using Oribatid mites (Acari, Oribatei). Environ. Ecol. Stat. 1: 37-61

See Also

Borcard, D.; P. Legendre & P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045-1055

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological and Environmental Statistics 10: 226-245

Borcard, D.; Gillet, F. & Legendre, P. 2011. Numerical Ecology with R. Springer, New-York, NY,
USA.

Examples

data(Mite)
summary(mite.species)
summary(mite.env)
summary(mite.geo)

Product-distribution Frequency distributions for MCA parametric testing

Description

Density and distribution functions of the phi statistic, which is the product of two Fisher-Snedecor
distributions with particular degrees of freedom.

Usage

dphi(x, nu1, nu2, tol = .Machine$double.eps ^ 0.5)
pphi(q, nu1, nu2, lower.tail = TRUE, tol = .Machine$double.eps ^ 0.5)
dtau(x, nu, tol = .Machine$double.eps ^ 0.5)
ptau(q, nu, lower.tail = TRUE, tol = .Machine$double.eps ^ 0.5)

Arguments

x, q vector of quantile.

nu1, nu2, nu degrees of freedom (>0, may be non-integer). Inf is allowed.

lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

tol tolerance used for numerical estimation.
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Details

The density distribution of a variable z that is the product of two random variables x and y with
density distributions f(x) and g(y), respectively, is the integral over the intersection of the domains
of x and y of f(x) * g(z/x) / abs(x) dx.

dphi estimates density values using numerical integration (integrate) the Fisher-Scedecor df den-
sity distribution function. Following the algebra of Multiscale Codependence Analysis, f(x) has df1
= nu1 and df2 = nu1 * nu2 degrees of freedom and g(x) has ’df1 = 1’ and ’df2 = nu2’ degrees of
freedom. Hence, that product distribution has two parameters.

pphi integrates dphi in the interval [0,q] when ’lower.tail = TRUE’ (the default) and on the interval
[q,Inf] when ’lower.tail = FALSE’.

dtau and ptau are similar to dphi integrates pphi, but with f(x) and f(y) being two Student’s t
distribution with nu degrees of freedom. It is called by functions test.cdp and permute.cdp
to perform hypothesis tests for single response variables, in which case unilateral tests can be per-
formed.

Value

dphi and dtau return the density functions whereas pphi and ptau return the distribution functions.

Author(s)

Guillaume Guénard, Département des sciences biologiques, Université de Montréal, Montréal,
Québec, Canada.

References

Springer, M. D. 1979. The algebra of random variables. John Wiley and Sons Inc., Hoboken, NJ,
USA.

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

Guénard, G. Legendre, P. 2018. Bringing multivariate support to multiscale codependence analysis:
Assessing the drivers of community structure across spatial scales. Meth. Ecol. Evol. 9: 292-304

See Also

test.cdp

Examples

#
### Displays the phi probability distribution for five different numbers
### of degrees of freedom:
#
x <- 10^seq(-4, 0.5, 0.05)
plot(y = dphi(x, 1, 10), x = x, type = "l", col = "black", las = 1, ylab = "pdf",

ylim = c(0, 0.5))
lines(y = dphi(x, 3, 10), x = x, col = "purple")
lines(y = dphi(x, 5, 70), x = x, col = "blue")
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lines(y = dphi(x, 12, 23), x = x, col = "green")
lines(y = dphi(x, 35, 140), x = x, col = "red")
#
### Displays the density distribution function for 10 degrees of freedom
### and the cumulative probability above x = 1.
#
x <- 10^seq(-4, 0.5, 0.05)
y <- dphi(x, 5, 70)
plot(y = y, x = x, type = "l", col = "black", las = 1, ylab = "Density",

ylim = c(0, 0.5))
polygon(x = c(x[81L:91], x[length(x)], 1), y = c(y[81L:91], 0, 0),

col = "grey")
text(round(pphi(1, 5, 70, lower.tail=FALSE), 3), x = 1.75, y = 0.05)
#
### Idem for the tau distribution:
#
x <- c(-(10^seq(0.5, -4, -0.05)), 10^seq(-4, 0.5, 0.05))
plot(y = dtau(x, 1), x = x, type = "l", col = "black", las = 1,

ylab = "pdf", ylim = c(0, 0.5))
lines(y = dtau(x, 2), x = x, col = "purple")
lines(y = dtau(x, 5), x = x, col="blue")
lines(y = dtau(x, 10), x = x, col="green")
lines(y = dtau(x, 100), x = x, col="red")
#
y <- dtau(x, 10)
plot(y = y, x = x, type = "l", col = "black", las = 1, ylab = "Density",

ylim = c(0, 0.5))
polygon(x = c(x[which(x==1):length(x)], x[length(x)],1),

y = c(y[which(x==1):length(x)], 0, 0), col = "grey")
text(round(ptau(1, 10, lower.tail = FALSE), 3), x = 1.5, y = 0.03)
polygon(x = c(-1, x[1L], x[1L:which(x==-1)]),

y = c(0, 0, y[1L:which(x==-1)]), col="grey")
text(round(ptau(-1, 10), 3), x = -1.5, y = 0.03)
#

Salmon Juvenile Atlantic salmon (parr) density in St-Marguerite river,
Québec, Canada

Description

A 1520m transect of the St-Marguerite River.

Usage

Salmon

Format

A 76 rows by 5 columns data.frame.
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Details

Contains (1) the 76 sampling site positions along a 1520 m river segment beginning at a location
called ‘Bardsville’ (Lat: 48°23’01.59” N ; Long: 70°12’10.05” W), (2) the number of parr (young
salmon, ages I+ and II+) observed at the sampling sites, (3) the mean water depths (m), (4) the mean
current velocity (m/s), and (5) the mean substrate size (mm). Sampling took place on July 7, 2002,
in the 76 sites, each 20 m long. The ‘Bardsville’ river segment is located in the upper portion of
Sainte-Marguerite River, Quebec, Canada.

Source

Daniel Boisclair, Département de sciences biologiques, Université de Montréal, Montréal, Québec,
Canada.

References

Guénard, G., Legendre, P., Boisclair, D., and Bilodeau, M. 2010. Multiscale codependence analysis:
an integrated approach to analyse relationships across scales. Ecology 91: 2952-2964

See Also

Bouchard, J. and Boisclair, D. 2008. The relative importance of local, lateral, and longitudinal
variables on the development of habitat quality models for a river. Can. J. Fish. Aquat. Sci. 65:
61-73

Examples

data(Salmon)
summary(Salmon)
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