
Package ‘corehunter’
October 12, 2022

Title Multi-Purpose Core Subset Selection

Version 3.2.1

Date 2018-04-16

Description Core Hunter is a tool to sample diverse, representative subsets from large germplasm
collections, with minimum redundancy. Such so-called core collections have applications in plant
breeding and genetic resource management in general. Core Hunter can construct cores based on
genetic marker data, phenotypic traits or precomputed distance matrices, optimizing one of many
provided evaluation measures depending on the precise purpose of the core (e.g. high diversity,
representativeness, or allelic richness). In addition, multiple measures can be simultaneously
optimized as part of a weighted index to bring the different perspectives closer together.
The Core Hunter library is implemented in Java 8 as an open source project (see
<http://www.corehunter.org>).

Depends R (>= 3.2.3), rJava (>= 0.9-8)

Imports naturalsort (>= 0.1.2), methods

SystemRequirements Java JRE 8 or higher

License MIT + file LICENSE

LazyData true

RoxygenNote 6.0.1

Suggests testthat, mockr, StatMatch

Encoding UTF-8

NeedsCompilation no

Author Herman De Beukelaer [aut, cre],
Guy Davenport [aut],
Veerle Fack [ths]

Maintainer Herman De Beukelaer <herman.debeukelaer@gmail.com>

Repository CRAN

Date/Publication 2018-04-16 19:17:55 UTC

1

http://www.corehunter.org

2 corehunter

R topics documented:
corehunter . 2
coreHunterData . 3
distances . 4
evaluateCore . 5
exampleData . 6
genotypes . 7
getAlleleFrequencies . 9
getNormalizationRanges . 10
objective . 12
phenotypes . 14
read.autodelim . 16
sampleCore . 17
setRange . 20
wrapData . 20

Index 21

corehunter Core Hunter 3

Description

Core Hunter is a tool to sample diverse, representative subsets from large germplasm collections,
with minimum redundancy. Such so-called core collections have applications in plant breeding
and genetic resource management in general. Core Hunter can construct cores based on genetic
marker data, phenotypic traits or precomputed distance matrices, optimizing one of many provided
evaluation measures depending on the precise purpose of the core (e.g. maximum diversity, repre-
sentativeness, or allelic richness). In addition, multiple measures can be simultaneously optimized
as part of a weighted index to bring the different perspectives closer together. The Core Hunter
library is implemented in Java 8 as an open source project (see http://www.corehunter.org).

See Also

coreHunterData, genotypes, phenotypes, distances, sampleCore, evaluateCore, objective

Examples

Not run:
sample core based on genetic marker data (default format)
geno.file <- system.file("extdata", "genotypes.csv", package = "corehunter")
geno <- genotypes(file = geno.file, format = "default")
core <- sampleCore(geno)

sample core based on genetic marker data (biparental format)
geno.file <- system.file("extdata", "genotypes-biparental.csv", package = "corehunter")
geno <- genotypes(file = geno.file, format = "biparental")
core <- sampleCore(geno)

http://www.corehunter.org

coreHunterData 3

sample core based on genetic marker data (frequency format)
geno.file <- system.file("extdata", "genotypes-frequency.csv", package = "corehunter")
geno <- genotypes(file = geno.file, format = "frequency")
core <- sampleCore(geno)

sample core based on phenotypic traits
pheno.file <- system.file("extdata", "phenotypes.csv", package = "corehunter")
pheno <- phenotypes(file = pheno.file)
core <- sampleCore(pheno)

sample core based on precomputed distance matrix
dist.file <- system.file("extdata", "distances.csv", package = "corehunter")
dist <- distances(file = dist.file)
core <- sampleCore(dist)

sample core from genotypes with custom objective (allelic richness)
core <- sampleCore(geno, obj = objective("HE"))

sample core from genotypes with custom size and objective (representativeness)
core <- sampleCore(geno, obj = objective("AN", "MR"), size = 0.1)

sample core from genotypes with custom size and stop condition
core <- sampleCore(geno, size = 0.1, impr.time = 2)

sample core based on both genotypes and phenotypes
geno.pheno <- coreHunterData(geno, pheno)
core <- sampleCore(geno.pheno)

End(Not run)

coreHunterData Initialize Core Hunter data.

Description

The data may contain genotypes, phenotypes and/or a precomputed distance matrix. All provided
data should describe the same individuals which is verified by comparing the item ids and names.

Usage

coreHunterData(genotypes, phenotypes, distances)

Arguments

genotypes Genetic marker data (chgeno).

phenotypes Phenotypic trait data (chpheno).

distances Precomputed distance matrix (chdist).

4 distances

Value

Core Hunter data (chdata) with elements

geno Genotype data of class chgeno if included.

pheno Phenotype data of class chpheno if included.

dist Distance data of class chdist if included.

size Number of individuals in the dataset.

ids Unique item identifiers.

names Item names. Names of individuals to which no explicit name has been assigned are equal to
the unique ids.

java Java version of the data object.

Core Hunter data of class chdata.

See Also

genotypes, phenotypes, distances

Examples

geno.file <- system.file("extdata", "genotypes.csv", package = "corehunter")
pheno.file <- system.file("extdata", "phenotypes.csv", package = "corehunter")
dist.file <- system.file("extdata", "distances.csv", package = "corehunter")

my.data <- coreHunterData(
genotypes(file = geno.file, format = "default"),
phenotypes(file = pheno.file),
distances(file = dist.file)

)

distances Create Core Hunter distance data from matrix or file.

Description

Specify either a symmetric distance matrix or the file from which to read the matrix. See www.
corehunter.org for documentation and examples of the distance matrix file format used by Core
Hunter.

Usage

distances(data, file)

www.corehunter.org
www.corehunter.org

evaluateCore 5

Arguments

data Symmetric distance matrix. Unique row and column headers are required, should
be the same and are used as item ids. Can be a numeric matrix or a data frame.
The data frame may optionally include a first column NAME used to assign names
to some or all individuals. The remaining columns should be numeric.

file File from which to read the distance matrix.

Value

Distance matrix data of class chdist with elements

data Distance matrix (numeric matrix).

size Number of individuals in the dataset.

ids Unique item identifiers.

names Item names. Names of individuals to which no explicit name has been assigned are equal to
the unique ids.

java Java version of the data object.

file Normalized path of file from which data was read (if applicable).

Examples

create from distance matrix
m <- matrix(runif(100), nrow = 10, ncol = 10)
diag(m) <- 0
make symmetric
m[lower.tri(m)] <- t(m)[lower.tri(m)]
set headers
rownames(m) <- colnames(m) <- paste("i", 1:10, sep = "-")

dist <- distances(m)

read from file
dist.file <- system.file("extdata", "distances.csv", package = "corehunter")
dist <- distances(file = dist.file)

evaluateCore Evaluate a core collection using the specified objective.

Description

Evaluate a core collection using the specified objective.

Usage

evaluateCore(core, data, objective)

6 exampleData

Arguments

core A core collection of class chcore, or a numeric or character vector indicating
the indices or ids, respectively, of the individuals in the evaluated core.

data Core Hunter data (chdata) containing genotypes, phenotypes and/or a precom-
puted distance matrix. Can also be an object of class chdist, chgeno or chpheno
if only one type of data is provided.

objective Objective function (chobj) used to evaluate the core.

Value

Value of the core when evaluated with the chosen objective (numeric).

See Also

coreHunterData, objective

Examples

data <- exampleData()
core <- sampleCore(data, objective("EN", "PD"))
evaluateCore(core, data, objective("EN", "PD"))
evaluateCore(core, data, objective("AN", "MR"))
evaluateCore(core, data, objective("EE", "GD"))
evaluateCore(core, data, objective("CV"))
evaluateCore(core, data, objective("HE"))

exampleData Small example dataset with 218 individuals.

Description

Data was genotyped using 190 SNP markers and 4 quantitative traits were recorded. Includes a pre-
computed distance matrix read from "extdata/distances.csv", genotypes read from "extdata/genotypes-biparental.csv"
and phenotypes read from "extdata/phenotypes.csv". The distance matrix is computed from the
genotypes (Modified Rogers’ distance).

Usage

exampleData()

Details

Data was taken from the CIMMYT Research Data Repository (Study Global ID hdl:11529/10199;
real data set 5, cycle 0).

genotypes 7

Value

Core Hunter data of class chdata

Source

Cerón-Rojas, J. Jesús ; Crossa, José; Arief, Vivi N.; Kaye Basford; Rutkoski, Jessica; Jarquín, Diego
; Alvarado, Gregorio; Beyene, Yoseph; Semagn, Kassa ; DeLacy, Ian, 2015-06-04, "Application of
a Genomics Selection Index to Real and Simulated Data", http://hdl.handle.net/11529/10199
V10

Examples

exampleData()

genotypes Create Core Hunter genotype data from data frame, matrix or file.

Description

Specify either a data frame or matrix, or a file from which to read the genotypes. See www.
corehunter.org for documentation and examples of the genotype data file format used by Core
Hunter.

Usage

genotypes(data, alleles, file, format)

Arguments

data Data frame or matrix containing the genotypes (individuals x markers) depend-
ing on the chosen format:

default Data frame. One row per individual and one or more columns per
marker. Columns contain the names, numbers, references, ... of observed
alleles. Unique row names (item ids) are required and columns should be
named after the marker to which they belong, optionally extended with an
arbitrary suffix starting with a dot (.), dash (-) or underscore (_) character.

biparental Numeric matrix or data frame. One row per individual and one
column per marker. Data consists of 0, 1 and 2 coding for homozygous
(AA), heterozygous (AB) and homozygous (BB), respectively. Unique row
names (item ids) are required and optionally column (marker) names may
be included as well.

frequency Numeric matrix or data frame. One row per individual (or bulk sam-
ple) and multiple columns per marker. Data consists of allele frequencies,
grouped per marker in consecutive columns named after the correspond-
ing marker, optionally extended with an arbitrary suffix starting with a dot
(.), dash (-) or underscore (_) character.. The allele frequencies of each

http://hdl.handle.net/11529/10199
www.corehunter.org
www.corehunter.org

8 genotypes

marker should sum to one in each sample. Unique row names (item ids) are
required.
In case a data frame is provided, an optional first column NAME may be
included to specify item names. The remaining columns should follow
the format as described above. See www.corehunter.org for more de-
tails about the supported genotype formats. Note that both the frequency
and biparental format syntactically also comply with the default format
but with different semantics, meaning that it is very important to specify
the correct format. Some checks have been built in that raise warnings in
case it seems that the wrong format might have been specified based on an
inspection of the data. If you are sure that you have selected the correct
format these warnings, if any, can be safely ignored.

alleles Allele names per marker (character vector). Ignored except when creating
frequency data from a matrix or data frame. Allele names should be ordered in
correspondence with the data columns.

file File containing the genotype data.

format Genotype data format, one of default, biparental or frequency.

Value

Genotype data of class chgeno with elements

data Genotypes. Data frame for default format, numeric matrix for other formats.

size Number of individuals in the dataset.

ids Unique item identifiers (character).

names Item names (character). Names of individuals to which no explicit name has been assigned
are equal to the unique ids.

markers Marker names (character). May contain NA values in case only some or no marker
names were specified. Marker names are always included for the default and frequency
format but are optional for the biparental format.

alleles List of character vectors with allele names per marker. Vectors may contain NA values in
case only some or no allele names were specified. For biparental data the two alleles are
name "0" and "1", respectively, for all markers. For the default format allele names are
inferred from the provided data. Finally, for frequency data allele names are optional and
may be specified either in the file or through the alleles argument when creating this type of
data from a matrix or data frame.

java Java version of the data object.

format Genotype data format used.

file Normalized path of file from which data was read (if applicable).

Examples

create from data frame or matrix

default format
geno.data <- data.frame(

www.corehunter.org

getAlleleFrequencies 9

NAME = c("Alice", "Bob", "Carol", "Dave", "Eve"),
M1.1 = c(1,2,1,2,1),
M1.2 = c(3,2,2,3,1),
M2.1 = c("B","C","D","B",NA),
M2.2 = c("B","A","D","B",NA),
M3.1 = c("a1","a1","a2","a2","a1"),
M3.2 = c("a1","a2","a2","a1","a1"),
M4.1 = c(NA,"+","+","+","-"),
M4.2 = c(NA,"-","+","-","-"),
row.names = paste("g", 1:5, sep = "-")

)
geno <- genotypes(geno.data, format = "default")

biparental (e.g. SNP)
geno.data <- matrix(
sample(c(0,1,2), replace = TRUE, size = 1000),
nrow = 10, ncol = 100

)
rownames(geno.data) <- paste("g", 1:10, sep = "-")
colnames(geno.data) <- paste("m", 1:100, sep = "-")
geno <- genotypes(geno.data, format = "biparental")

frequencies
geno.data <- matrix(
c(0.0, 0.3, 0.7, 0.5, 0.5, 0.0, 1.0,

0.4, 0.0, 0.6, 0.1, 0.9, 0.0, 1.0,
0.3, 0.3, 0.4, 1.0, 0.0, 0.6, 0.4),

byrow = TRUE, nrow = 3, ncol = 7
)
rownames(geno.data) <- paste("g", 1:3, sep = "-")
colnames(geno.data) <- c("M1", "M1", "M1", "M2", "M2", "M3", "M3")
alleles <- c("M1-a", "M1-b", "M1-c", "M2-a", "M2-b", "M3-a", "M3-b")
geno <- genotypes(geno.data, alleles, format = "frequency")

read from file

default format
geno.file <- system.file("extdata", "genotypes.csv", package = "corehunter")
geno <- genotypes(file = geno.file, format = "default")

biparental (e.g. SNP)
geno.file <- system.file("extdata", "genotypes-biparental.csv", package = "corehunter")
geno <- genotypes(file = geno.file, format = "biparental")

frequencies
geno.file <- system.file("extdata", "genotypes-frequency.csv", package = "corehunter")
geno <- genotypes(file = geno.file, format = "frequency")

getAlleleFrequencies Get Allele frequency matrix.

10 getNormalizationRanges

Description

Get Allele frequency matrix.

Usage

getAlleleFrequencies(data)

Arguments

data Core Hunter data containing genotypes

Value

allele frequency matrix

getNormalizationRanges

Determine normalization ranges of all objectives in a multi-objective
configuration.

Description

Executes an independent stochastic hill-climbing search (random descent) per objective to approx-
imate the optimal solution for each objective, from which a suitable normalization range is inferred
based on the Pareto minima/maxima. These normalization searches are executed in parallel.

Usage

getNormalizationRanges(data, obj, size = 0.2, always.selected = integer(0),
never.selected = integer(0), mode = c("default", "fast"), time = NA,
impr.time = NA, steps = NA, impr.steps = NA)

Arguments

data Core Hunter data (chdata) containing genotypes, phenotypes and/or a precom-
puted distance matrix. Can also be an object of class chdist, chgeno or chpheno
if only one type of data is provided.

obj List of objectives (chobj). If no objectives are specified Core Hunter maximizes
a weighted index including the default entry-to-nearest-entry distance (EN) for
each available data type. For genotypes, the Modified Roger’s distance (MR) is
used. For phenotypes, Gower’s distance (GD) is applied.

size Desired core subset size (numeric). If larger than one the value is used as the
absolute core size after rounding. Else it is used as the sampling rate and multi-
plied with the dataset size to determine the size of the core. The default sampling
rate is 0.2.

getNormalizationRanges 11

always.selected

vector with indices (integer) or ids (character) of items that should always be
selected in the core collection

never.selected vector with indices (integer) or ids (character) of items that should never be
selected in the core collection

mode Execution mode (default or fast). In default mode, the normalization searches
terminate when no improvement is found for ten seconds. In fast mode, searches
terminate as soon as no improvement is made for two seconds. These stop
conditions can be overridden using arguments time, impr.time, steps and/or
impr.steps. In default mode, the value of the latter two, step-based condi-
tions is multiplied with 500, in line with the behaviour of sampleCore when
executed in default mode.

time Absolute runtime limit in seconds. Not used by default (NA). If used, it should
be a strictly positive value, which is rounded to the nearest integer.

impr.time Maximum time without improvement in seconds. If no explicit stop conditions
are specified, the maximum time without improvement defaults to ten or two
seconds, when executing Core Hunter in default or fast mode, respectively.
If a custom improvement time is specified, it should be strictly positive and is
rounded to the nearest integer.

steps Maximum number of search steps. Not used by default (NA). If used, it should
be a strictly positive value, which is rounded to the nearest integer. In default
mode, the value is multiplied with 500, in line with the behaviour of sampleCore
when executed in default mode.

impr.steps Maximum number of steps without improvement. Not used by default (NA).
If used, it should be a strictly positive value, which is rounded to the nearest
integer. In default mode, the value is multiplied with 500, in line with the
behaviour of sampleCore when executed in default mode.

Details

For an objective that is being maximized, the upper bound is set to the value of the best solution for
that objective, while the lower bound is set to the Pareto minimum, i.e. the minimum value obtained
when evaluating all optimal solutions (for each single objective) with the considered objective. For
an objective that is being minimized, the roles of upper and lower bound are interchanged, and the
Pareto maximum is used instead.

Because Core Hunter uses stochastic algorithms, repeated runs may produce different results. To
eliminate randomness, you may set a random number generation seed using set.seed prior to
executing Core Hunter. In addition, when reproducible results are desired, it is advised to use step-
based stop conditions instead of the (default) time-based criteria, because runtimes may be affected
by external factors, and, therefore, a different number of steps may have been performed in repeated
runs when using time-based stop conditions.

Value

Numeric matrix with one row per objective and two columns:

lower Lower bound of normalization range.
upper Upper bound of normalization range.

12 objective

See Also

coreHunterData, objective

Examples

data <- exampleData()

maximize entry-to-nearest-entry distance between genotypes and phenotypes (equal weight)
objectives <- list(objective("EN", "MR"), objective("EN", "GD"))
get normalization ranges for default size (20%)
ranges <- getNormalizationRanges(data, obj = objectives, mode = "fast")

set normalization ranges and sample core
objectives <- lapply(1:2, function(o){setRange(objectives[[o]], ranges[o,])})
core <- sampleCore(data, obj = objectives)

objective Create Core Hunter objective.

Description

The following optimization objectives are supported by Core Hunter:

EN Average entry-to-nearest-entry distance (default). Maximizes the average distance between each
selected individual and the closest other selected item in the core. Favors diverse cores in
which each individual is sufficiently different from the most similar other selected item (low
redundancy). Multiple distance measures are provided to be used with this objective (see
below).

AN Average accession-to-nearest-entry distance. Minimizes the average distance between each in-
dividual (from the full dataset) and the closest selected item in the core (which can be the
individual itself). Favors representative cores in which all items from the original dataset
are represented by similar individuals in the selected subset. Multiple distance measures are
provided to be used with this objective (see below).

EE Average entry-to-entry distance. Maximizes the average distance between each pair of selected
individuals in the core. This objective is related to the entry-to-nearest-entry (EN) distance
but less effectively avoids redundant, similar individuals in the core. In general, use of EN is
preferred. Multiple distance measures are provided to be used with this objective (see below).

SH Shannon’s allelic diversity index. Maximizes the entropy, as used in information theory, of the
selected core. Independently takes into account all allele frequencies, regardless of the locus
(marker) where to which the allele belongs. Requires genotypes.

HE Expected proportion of heterozygous loci. Maximizes the expected proportion of heterozygous
loci in offspring produced from random crossings within the selected core. In contrast to Shan-
non’s index (SH) this objective treats each marker (locus) with equal importance, regardless of
the number of possible alleles for that marker. Requires genotypes.

objective 13

CV Allele coverage. Maximizes the proportion of alleles observed in the full dataset that are retained
in the selected core. Requires genotypes.

The first three objective types (EN, AN and EE) aggregate pairwise distances between individuals.
These distances can be computed using various measures:

MR Modified Rogers distance (default). Requires genotypes.
CE Cavalli-Sforza and Edwards distance. Requires genotypes.
GD Gower distance. Requires phenotypes.
PD Precomputed distances. Uses the precomputed distance matrix of the dataset.

Usage

objective(type = c("EN", "AN", "EE", "SH", "HE", "CV"), measure = c("MR",
"CE", "GD", "PD"), weight = 1, range = NULL)

Arguments

type Objective type, one of EN (default), AN, EE, SH, HE or CV (see description). The
former three objectives are distance based and require to choose a distance
measure. By default, Modified Roger’s distance is used, computed from the
genotypes.

measure Distance measure used to compute the distance between two individuals, one of
MR (default), CE, GD or PD (see description). Ignored when type is SH, HE or CV.

weight Weight assigned to the objective when maximizing a weighted index. Defaults
to 1.0.

range Normalization range [l,u] of the objective when maximizing a weighted index.
By default the range is not set (NULL) and will be determined automatically prior
to execution, if normalization is enabled (default). Values are rescaled to [0,1]
with the linear formula v′ = (v − l)/(u − l). When an explicit normalization
range is set, it overrides the automatically inferred range. Also, setting the range
for all included objectives reduces the computation time when sampling a multi-
objective core collection. In case of repeated sampling from the same dataset
with the same objectives and size, it is therefore advised to determine the nor-
malization ranges only once using getNormalizationRanges so that they can
be reused for all executions.

Value

Core Hunter objective of class chobj with elements

type Objective type.
meas Distance measure (if applicable).
weight Assigned weight.
range Normalization range (if specified).

See Also

getNormalizationRanges, setRange

14 phenotypes

Examples

objective()
objective(meas = "PD")
objective("EE", "GD")
objective("HE")
objective("EN", "MR", range = c(0.150, 0.300))
objective("AN", "MR", weight = 0.5, range = c(0.150, 0.300))

phenotypes Create Core Hunter phenotype data from data frame or file.

Description

Specify either a data frame containing the phenotypic trait observations or a file from which to read
the data. See www.corehunter.org for documentation and examples of the phenotype data format
used by Core Hunter.

Usage

phenotypes(data, types, min, max, file)

Arguments

data Data frame containing one row per individual and one column per trait. Unique
row and column names are required and used as item and trait ids, respectively.
The data frame may optionally include a first column NAME used to assign names
to some or all individuals.

types Variable types (optional). Vector of characters, each of length one or two. Ig-
nored when reading from file.
The first letter indicates the scale type and should be one of N (nominal), O
(ordinal), I (interval) or R (ratio).
The second letter optionally indicates the variable encoding (in Java) and should
be one of B (boolean), T (short), I (integer), L (long), R (big integer), F (float),
D (double), M (big decimal), A (date) or S (string). The default encoding is S
(string) for nominal variables, I (integer) for ordinal and interval variables and
D (double) for ratio variables. Interval and ratio variables are limited to numeric
encodings.
If no explicit variable types are specified these are automatically inferred from
the data frame column types and classes, whenever possible. Columns of type
character are treated as nominal string encoded variables (N). Unordered factor
columns are converted to character and also treated as string encoded nomi-
nals. Ordered factors are converted to integer encoded interval variables (I) as
described below. Columns of type logical are taken to be asymmetric binary
variables (NB). Finally, integer and more broadly numeric columns are treated
as integer encoded interval variables (I) and double encoded ratio variables (R),
respectively.

www.corehunter.org

phenotypes 15

Boolean encoded nominals (NB) are treated as asymmetric binary variables. For
symmetric binary variables just use the default string encoding (N or NS). Other
nominal variables are converted to factors.
Ordinal variables of class ordered are converted to integers respecting the or-
der and range of the factor levels and subsequently treated as integer encoded
interval variables (I). This conversion allows to model the full range of factor
levels also when some might not occur in the data. For other ordinal variables it
is assumed that each value occurs at least once and that values follow the natural
ordering of the chosen data type (in Java).
If explicit types are given for some variables others can still be automatically
inferred by setting their type to NA.

min Minimum values of interval or ratio variables (optional). Numeric vector. Ig-
nored when reading from file. If undefined for some variables the respective
minimum is inferred from the data. If the data exceeds the minimum it is also
updated accordingly. For nominal and ordinal variables just put NA.

max Maximum values of interval or ratio variables (optional). Numeric vector. Ig-
nored when reading from file. If undefined for some variables the respective
maximum is inferred from the data. If the data exceeds the maximum it is also
updated accordingly. For nominal and ordinal variables just put NA.

file File containing the phenotype data.

Value

Phenotype data of class chpheno with elements

data Phenotypes (data frame).

size Number of individuals in the dataset.

ids Unique item identifiers.

names Item names. Names of individuals to which no explicit name has been assigned are equal to
the unique ids.

types Variable types and encodings.

ranges Variable ranges, when applicable (NA elsewhere).

java Java version of the data object.

file Normalized path of file from which the data was read (if applicable).

Examples

create from data frame
pheno.data <- data.frame(
season = c("winter", "summer", "summer", "winter", "summer"),
yield = c(34.5, 32.6, 22.1, 54.12, 43.33),
size = ordered(c("l", "s", "s", "m", "l"), levels = c("s", "m", "l")),
resistant = c(FALSE, TRUE, TRUE, FALSE, TRUE)

)
pheno <- phenotypes(pheno.data)

explicit types

16 read.autodelim

pheno <- phenotypes(pheno.data, types = c("N", "R", "O", "NB"))
treat last column as symmetric binary, auto infer others
pheno <- phenotypes(pheno.data, types = c(NA, NA, NA, "NS"))

explicit ranges
pheno <- phenotypes(pheno.data, min = c(NA, 20.0, NA, NA), max = c(NA, 60.0, NA, NA))

read from file
pheno.file <- system.file("extdata", "phenotypes.csv", package = "corehunter")
pheno <- phenotypes(file = pheno.file)

read.autodelim Read delimited file.

Description

Delegates to read.delim where the separator is inferred from the file extension (CSV or TXT).
For CSV files the delimiter is set to "," while for TXT file "\t" is used. Also sets some default
argument values as used by Core Hunter.

Usage

read.autodelim(file, quote = "'\"", row.names = 1, na.strings = "",
check.names = FALSE, strip.white = TRUE, stringsAsFactors = FALSE, ...)

Arguments

file File path.

quote the set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behaviour on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

row.names a vector of row names. This can be a vector giving the actual row names, or a
single number giving the column of the table which contains the row names, or
character string giving the name of the table column containing the row names.
If there is a header and the first row contains one fewer field than the number of
columns, the first column in the input is used for the row names. Otherwise if
row.names is missing, the rows are numbered.
Using row.names = NULL forces row numbering. Missing or NULL row.names
generate row names that are considered to be ‘automatic’ (and not preserved by
as.matrix).

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields. Note that the test happens after white space is stripped from
the input, so na.strings values may need their own white space stripped in
advance.

sampleCore 17

check.names logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names. If necessary they are
adjusted (by make.names) so that they are, and also to ensure that there are no
duplicates.

strip.white logical. Used only when sep has been specified, and allows the stripping of lead-
ing and trailing white space from unquoted character fields (numeric fields are
always stripped). See scan for further details (including the exact meaning of
‘white space’), remembering that the columns may include the row names.

stringsAsFactors

logical: should character vectors be converted to factors? Note that this is over-
ridden by as.is and colClasses, both of which allow finer control.

... Further arguments to be passed to read.delim.

Value

Data frame.

sampleCore Sample a core collection.

Description

Sample a core collection from the given data.

Usage

sampleCore(data, obj, size = 0.2, always.selected = integer(0),
never.selected = integer(0), mode = c("default", "fast"),
normalize = TRUE, time = NA, impr.time = NA, steps = NA,
impr.steps = NA, indices = FALSE, verbose = FALSE)

Arguments

data Core Hunter data (chdata) containing genotypes, phenotypes and/or a precom-
puted distance matrix. Typically the data is obtained with coreHunterData.
Can also be an object of class chdist, chgeno or chpheno if only one type of
data is provided.

obj Objective or list of objectives (chobj). If no objectives are specified Core Hunter
maximizes a weighted index including the default entry-to-nearest-entry dis-
tance (EN) for each available data type, with equal weight. For genotypes, the
Modified Roger’s distance (MR) is used. For phenotypes, Gower’s distance (GD)
is applied.

size Desired core subset size (numeric). If larger than one the value is used as the
absolute core size after rounding. Else it is used as the sampling rate and multi-
plied with the dataset size to determine the size of the core. The default sampling
rate is 0.2.

18 sampleCore

always.selected

vector with indices (integer) or ids (character) of items that should always be
selected in the core collection

never.selected vector with indices (integer) or ids (character) of items that should never be
selected in the core collection

mode Execution mode (default or fast). In default mode, Core Hunter uses an ad-
vanced parallel tempering search algorithm and terminates when no improve-
ment is found for ten seconds. In fast mode, a simple stochastic hill-climbing
algorithm is applied and Core Hunter terminates as soon as no improvement is
made for two seconds. Stop conditions can be overridden with arguments time
and impr.time.

normalize If TRUE (default), the applied objectives in a multi-objective configuration (two
or more objectives) are automatically normalized prior to execution. For single-
objective configurations, this argument is ignored.
Normalization requires an independent preliminary search per objective (fast
stochastic hill-climber, executed in parallel for all objectives). The same stop
conditions, as specified for the main search, are also applied to each normaliza-
tion search. In default execution mode, however, any step-based stop condi-
tions are multiplied by 500 for the normalization searches, because in that case
the main search (parallel tempering) executes 500 stochastic hill-climbing steps
per replica, in a single step of the main search.
Normalization ranges can also be precomputed (see getNormalizationRanges)
or manually specified in the objectives to save computation time when sampling
core collections. This is especially useful when multiple cores are sampled for
the same objectives, with possibly varying weights.

time Absolute runtime limit in seconds. Not used by default (NA). If used, it should
be a strictly positive value, which is rounded to the nearest integer.

impr.time Maximum time without improvement in seconds. If no explicit stop conditions
are specified, the maximum time without improvement defaults to ten or two
seconds, when executing Core Hunter in default or fast mode, respectively.
If a custom improvement time is specified, it should be strictly positive and is
rounded to the nearest integer.

steps Maximum number of search steps. Not used by default (NA). If used, it should be
a strictly positive value, which is rounded to the nearest integer. The number of
steps applies to the main search. Details of how this stop condition is transferred
to normalization searches, in a multi-objective configuration, are provided in the
description of the argument normalize.

impr.steps Maximum number of steps without improvement. Not used by default (NA).
If used, it should be a strictly positive value, which is rounded to the nearest
integer. The maximum number of steps without improvement applies to the
main search. Details of how this stop condition is transferred to normalization
searches, in a multi-objective configuration, are provided in the description of
the argument normalize.

indices If TRUE, the result contains the indices instead of ids (default) of the selected
individuals.

verbose If TRUE, search progress messages are printed to the console. Defaults to FALSE.

sampleCore 19

Details

Because Core Hunter uses stochastic algorithms, repeated runs may produce different results. To
eliminate randomness, you may set a random number generation seed using set.seed prior to
executing Core Hunter. In addition, when reproducible results are desired, it is advised to use step-
based stop conditions instead of the (default) time-based criteria, because runtimes may be affected
by external factors, and, therefore, a different number of steps may have been performed in repeated
runs when using time-based stop conditions.

Value

Core subset (chcore). It has an element sel which is a character or numeric vector containing the
sorted ids or indices, respectively, of the selected individuals (see argument indices). In addition
the result has one or more elements that indicate the value of each objective function that was
included in the optimization.

See Also

coreHunterData, objective, getNormalizationRanges

Examples

data <- exampleData()

default size, maximize entry-to-nearest-entry Modified Rogers distance
obj <- objective("EN", "MR")
core <- sampleCore(data, obj)

fast mode
core <- sampleCore(data, obj, mode = "f")
absolute size
core <- sampleCore(data, obj, size = 25)
relative size
core <- sampleCore(data, obj, size = 0.1)

other objective: minimize accession-to-nearest-entry precomputed distance
core <- sampleCore(data, obj = objective(type = "AN", measure = "PD"))
multiple objectives (equal weight)
core <- sampleCore(data, obj = list(
objective("EN", "PD"),
objective("AN", "GD")

))
multiple objectives (custom weight)
core <- sampleCore(data, obj = list(
objective("EN", "PD", weight = 0.3),
objective("AN", "GD", weight = 0.7)

))

custom stop conditions
core <- sampleCore(data, obj, time = 5, impr.time = 2)
core <- sampleCore(data, obj, steps = 300)

20 wrapData

print progress messages
core <- sampleCore(data, obj, verbose = TRUE)

setRange Set the normalization range of the given objective.

Description

See argument range of objective for details.

Usage

setRange(obj, range)

Arguments

obj Core Hunter objective of class chobj.
range Normalization range [l,u]. See argument range of objective for details.

Value

Objective including normalization range.

See Also

objective

wrapData Wrap distances, genotypes or phenotypes in Core Hunter data.

Description

If the given data does not match any of these three classes it is returned unchanged.

Usage

wrapData(data)

Arguments

data of class chgeno, chpheno or chdist

Value

Core Hunter data of class chdata

Index

as.matrix, 16

corehunter, 2
corehunter-package (corehunter), 2
coreHunterData, 2, 3, 6, 12, 17, 19

distances, 2, 4, 4

evaluateCore, 2, 5
exampleData, 6

genotypes, 2, 4, 7
getAlleleFrequencies, 9
getNormalizationRanges, 10, 13, 18, 19

make.names, 17

NA, 16

objective, 2, 6, 12, 12, 19, 20

phenotypes, 2, 4, 14

read.autodelim, 16
read.delim, 16, 17

sampleCore, 2, 11, 17
scan, 16, 17
set.seed, 11, 19
setRange, 13, 20

wrapData, 20

21

	corehunter
	coreHunterData
	distances
	evaluateCore
	exampleData
	genotypes
	getAlleleFrequencies
	getNormalizationRanges
	objective
	phenotypes
	read.autodelim
	sampleCore
	setRange
	wrapData
	Index

