
Package ‘cplm’
October 12, 2022

Type Package

Title Compound Poisson Linear Models

Version 0.7-10

Author Yanwei (Wayne) Zhang

Maintainer Yanwei (Wayne) Zhang <actuary_zhang@hotmail.com>

Description Likelihood-based and Bayesian methods for various compound Poisson linear mod-
els based on Zhang, Yan-
wei (2013) <https://link.springer.com/article/10.1007/s11222-012-9343-7>.

Imports biglm, ggplot2, minqa, nlme, reshape2, statmod, stats, stats4,
tweedie

Depends R (>= 3.2.0), coda, Matrix, splines, methods

LinkingTo Matrix

License GPL (>= 2)

URL https://github.com/actuaryzhang/cplm

LazyLoad yes

LazyData yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-04-26 00:00:09 UTC

R topics documented:
cplm-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
bcplm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
class-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
cpglm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
cpglmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
getF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
gini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
sp2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
tp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1

https://link.springer.com/article/10.1007/s11222-012-9343-7
https://github.com/actuaryzhang/cplm


2 cplm-package

Index 25

cplm-package Tweedie compound Poisson linear models

Description

The Tweedie compound Poisson distribution is a mixture of a degenerate distribution at the origin
and a continuous distribution on the positive real line. It has been applied in a wide range of fields in
which continuous data with exact zeros regularly arise. Nevertheless, statistical inference based on
full likelihood and Bayesian methods is not available in most statistical software, largely because the
distribution has an intractable density function and numerical methods that allow fast and accurate
evaluation of the density did not appear until fairly recently. The cplm package provides likelihood-
based and Bayesian procedures for fitting common Tweedie compound Poisson linear models. In
particular, models with hierarchical structures or extra zero inflation can be handled. Further, the
package implements the Gini index based on an ordered version of the Lorenz curve as a robust
model comparison tool involving zero-inflated and highly skewed distributions.

The following features of the package may be of special interest to the users:

1. All methods available in the package enable the index parameter (i.e., the unknown variance
function) to be estimated from the data.

2. The compound Poisson generalized linear model handles large data set using the bounded
memory regression facility in biglm.

3. For mixed models, we provide likelihood-based methods using Laplace approximation and
adaptive Gauss-Hermit quadrature.

4. A convenient interface is offered to fit additive models (penalized splines) using the mixed
model estimation procedure.

5. Self-tuned Markov chain Monte Carlo procedures are available for both GLM-type and mixed
models.

6. The package also implements a zero-inflated compound Poisson model, in which the observed
frequency of zeros can generally be more adequately modeled.

7. We provide the Gini index based on an ordered Lorenz curve, which is better suited for model
comparison involving the compound Poisson distribution.

Author(s)

Yanwei (Wayne) Zhang <actuary_zhang@hotmail.com>

References

Dunn, P.K. and Smyth, G.K. (2005). Series evaluation of Tweedie exponential dispersion models
densities. Statistics and Computing, 15, 267-280.

Frees, E. W., Meyers, G. and Cummings, D. A. (2011). Summarizing Insurance Scores Using a
Gini Index. Journal of the American Statistical Association, 495, 1085 - 1098.

Zhang, Y (2013). Likelihood-based and Bayesian Methods for Tweedie Compound Poisson Linear
Mixed Models, Statistics and Computing, 23, 743-757.
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bcplm Bayesian Compound Poisson Linear Models

Description

This function fits Tweedie compound Poisson linear models using Markov Chain Monte Carlo
methods.

Usage

bcplm(formula, link = "log", data, inits = NULL,
weights, offset, subset, na.action, contrasts = NULL,
n.chains = 3, n.iter = 2000, n.burnin = floor(n.iter / 2),
n.thin = max(1, floor(n.chains * (n.iter - n.burnin) / n.sims)),
n.sims = 1000, n.report = 2, prior.beta.mean = NULL,
prior.beta.var = NULL, bound.phi = 100, bound.p = c(1.01, 1.99),
tune.iter = 5000, n.tune = floor(tune.iter/100),
basisGenerators = c("tp", "bsp", "sp2d"), doFit = TRUE, ...)

Arguments

formula an object of class formula. See glm and cpglmm for details.

link a specification for the model link function. This can be either a literal character
string or a numeric number. If it is a character string, it must be one of "log",
"identity", "sqrt" or "inverse". If it is numeric, it is the same as the link.power
argument in the tweedie function. The default is link = "log".

inits a list of initial values to be used for each chain. It must be of length n.chains.
Each element is a named list with the following components: ’beta’ (fixed ef-
fects), ’phi’ (dispersion), and ’p’ (index parameter). If the formula indicates a
mixed model, it must also contain two additional members ’u’ (random effects)
and ’Sigma’ (variance components). ’Sigma’ must be a list of the same format
as the ST slot in cpglmm. If not supplied, the function will generate initial values
automatically.

data, subset, weights, na.action, offset, contrasts

further model specification arguments as in cpglm; see there for details.

n.chains an integer indicating the number of Markov chains (default: 3).

n.iter the number of total iterations per chain (including burn in; default: 2000)

n.burnin the length of burn in, i.e. number of iterations to discard at the beginning. De-
fault is n.iter/2, that is, discarding the first half of the simulations.

n.thin thinning rate. Must be a positive integer. Set n.thin > 1 to save memory
and computation time if n.iter is large. Default is max(1, floor(n.chains
* (n.iter - n.burnin) / 1000)) which will only thin if there are at least 2000
simulations.
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n.sims The approximate number of simulations to keep after thinning (all chains com-
bined).

n.report if greater than zero, fitting information will be printed out n.report times for
each chain.

prior.beta.mean

a vector of prior means for the fixed effects. Default is a vector of zeros.

prior.beta.var a vector of prior variances for the fixed effects. Default is a vector of 10000’s.

bound.phi a numeric value indicating the upper bound of the uniform prior for the dis-
persion parameter. The default is 100. The lower bound is set to be 0 in the
function.

bound.p a vector of lower and upper bounds for the index parameter p. The default is
c(1.01, 1.99).

tune.iter the number of iterations used for tuning the proposal variances used in the
Metropolis-Hastings updates. These iterations will not be included in the final
output. Default is 5000. Set it to be zero if the tuning process is not desired.

n.tune a positive integer (default: 20). The tune.iter iterations is divided into n.tune
loops. Proposal variances are updated at the end of each loop if acceptance rates
are outside the desired interval.

basisGenerators

a character vector of names of functions that generate spline bases. See tp for
details.

doFit if FALSE, the constructed "bcplm_input" object is returned before the model is
fitted.

... not used.

Details

This function provides Markov chain Monte Carlo [MCMC] methods for fitting Tweedie compound
Poisson linear models within the Bayesian framework. Both generalized linear models and mixed
models can be handled. In computing the posterior distribution, the series evaluation method (see,
e.g., dtweedie) is employed to evaluate the compound Poisson density.

In the Bayesian model, prior distributions have to be specified for all parameters in the model. Here,
Normal distributions are used for the fixed effects (β), a Uniform distribution for the dispersion
parameter (φ), a Uniform distribution for the index parameter (p). If a mixed model is specified,
prior distributions must be specified for the variance component. If there is one random effect in
a group, the inverse Gamma (scale = 0.001, shape = 0.001) is specified as the prior. If there is
more than one random effects in a group, the inverse Wishart (identity matrix as the scale and the
dimension of the covariance matrix as the shape) is specified as the prior.

Prior means and variances of the fixed effects can be supplied using the argument prior.beta.mean
and prior.beta.var, respectively. The prior distribution of φ is uniform on (0, bound.phi). And
the bounds of the Uniform for p can be specified in the argument bound.p. See details in section
’Arguments’.

In implementing the MCMC, a Gibbs sampler is constructed in which parameters are updated one
at a time given the current values of all the other parameters. Specifically, we use the random-walk
Metropolis-Hastings algorithm in updating each parameter except for the variance components,
which can be simulated directly due to conjugacy.
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Before the MCMC, there is a tuning process where the proposal variances of the (truncated) Normal
proposal distributions are updated according to the sample variances computed from the simulations
in each tuning loop. The goal is to make the acceptance rate roughly between 40% and 60% for
univariate M-H updates. The argument tune.iter determines how many iterations are used for
the tuning process, and n.tune determines how many loops these iterations should be divided into.
These iterations will not be used in the final output.

The simulated values of all model parameters are stored in the sims.list slot of the returned
bcplm object. It is a list of n.chains matrices and each matrix has approximately n.sims rows.
The sims.list slot is further coerced to be of class "mcmc.list" so that various methods from
the coda package can be directly applied to get Markov chain diagnostics, posterior summary and
plots. See coda for available methods.

Value

bcplm returns an object of class "bcplm". See bcplm-class for details of the return values as well
as various methods available for this class.

Author(s)

Yanwei (Wayne) Zhang <actuary_zhang@hotmail.com>

References

Zhang, Y (2013). Likelihood-based and Bayesian Methods for Tweedie Compound Poisson Linear
Mixed Models, Statistics and Computing, 23, 743-757.

See Also

The users are recommended to see the documentation for bcplm-class, cpglm, cpglmm, mcmc, and
tweedie for related information.

Examples

## Not run:

# fit the FineRoot data with Bayesian models
# Bayesian cpglm
set.seed(10)
fit1 <- bcplm(RLD ~ factor(Zone) * factor(Stock),

data = FineRoot, tune.iter = 2000,
n.iter = 6000, n.burnin = 1000, n.thin = 5)

gelman.diag(fit1$sims.list)
# diagnostic plots
acfplot(fit1$sims.list, lag.max = 20)
xyplot(fit1$sims.list)
densityplot(fit1$sims.list)
summary(fit1)
plot(fit1)
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# now fit the Bayesian model to an insurance loss triangle
# (see Peters et al. 2009)
fit2 <- bcplm(increLoss ~ factor(year) + factor(lag),

data = ClaimTriangle, n.iter = 12000,
n.burnin = 2000, n.thin = 10, bound.p = c(1.1, 1.95))

gelman.diag(fit2$sims.list)
summary(fit2)

# mixed models
set.seed(10)
fit3 <- bcplm(RLD ~ Stock * Zone + (1|Plant),

data = FineRoot, n.iter = 15000,
n.burnin = 5000, n.thin = 10)

gelman.diag(fit3$sims.list)
summary(fit3)

## End(Not run)

class-methods Classes and Methods for a Compound Poisson Linear Model Object

Description

Documented here are the "cplm" class and its derived classes "cpglm", "cpglmm", and "bcplm".
Several primitive methods and statistical methods are created to facilitate the extraction of specific
slots and further statistical analysis. "gini" is a class that stores the Gini indices and associated
standard errors that could be used to perform model comparison involving the compound Pois-
son distribution. "NullNum", "NullList", "NullFunc" and "ListFrame" are virtual classes for
c("NULL", "numeric"), c("NULL","list"), c("NULL","function") and c("list","data.frame"),
respectively.

Objects from the Class

"cplm" Objects can be created by calls of the form new("cplm", ...).

"cpglm" Objects can be created by calls from new("cpglm", ...) or cpglm.

"cpglmm" Objects can be created by calls of the form new("cpglmm", ...), or a call to cpglmm.

"summary.cpglmm" Objects can be created by calls of the form new("summary.cpglmm", ...),
or a call to summary on a cpglmm object.

"bcplm" Objects can be created by calls from new("bcplm", ...) or bcplm.

"gini" Objects can be created by calls from new("gini", ...) or gini.

"NullNum", "NullList", "NullFunc" These are virtual classes and no objects may be created
from them.
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Slots

The "cplm" class defines the slots common in all the model classes in the cplm package, and thus
the utility methods defined on the "cplm" class such as [, names and so on are applicable to all of
the derived classes.

call: the matched call.

formula: the formula supplied, class "formula"

contrasts: the contrasts used, class "NullList"

link.power: index of power link function, class "numeric". See tweedie.

model.frame: the data frame used. class "ListFrame".

inits: initial values used, class "NullList".

The "cpglm" class extends "cplm" directly. Most of the slots have the same definition as those in
glm. The following slots are in addition to those in "cplm":

coefficients: estimated mean parameters, class "numeric".

residuals: the working residuals, that is the residuals in the final iteration of the IWLS fit, class
"numeric"

fitted.values: the fitted mean values, obtained by transforming the linear predictors by the in-
verse of the link function, class "numeric"

linear.predictors: the fitted linear predictors, class "numeric"

weights: working weights from the last iteration of the iterative least square, class "numeric"

df.residual: residual degrees of freedom, class "integer"

deviance: up to a constant, minus twice the maximized log-likelihood. Where sensible, the
constant is chosen so that a saturated model has deviance zero. This is computed using
tweedie.dev.

aic: a version of Akaike’s Information Criterion, minus twice the maximized log-likelihood plus
twice the number of mean parameters. This is computed using the tweedie density approxi-
mation as in dtweedie.

offset: the offset vector used, class "NullNum",

prior.weights: the weights initially supplied, a vector of 1s if none were, class "NullNum"

y: the response vector used.

control: the value of the control argument used, class "list"

p: the maximum likelihood estimate of the index parameter.

phi: the maximum likelihood estimate of the dispersion parameter.

vcov: estimated variance-covariance matrix, class "matrix"

iter: the number of Fisher’s scoring iterations in the final GLM.

converged: indicating whether the algorithm has converged, class "logical".

na.action: method of handling NA’s, class "NullFunc".

The "cpglmm" class extends "cplm" and the old version of "mer" class from lme4 directly, and has
the following additional slots:
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p: estimated value of the index parameter, class "numeric"

phi: estimated value of the dispersion parameter, class "numeric"

bound.p: the specified bounds of the index parameter, class "numeric"

vcov: estimated variance-covariance matrix, class "matrix"

smooths: a list of smooth terms

The slots it used from the old "mer" class has the following slots (copied from lme4_0.999999-2):

env: An environment (class "environment") created for the evaluation of the nonlinear model
function.

nlmodel: The nonlinear model function as an object of class "call".

frame: The model frame (class "data.frame").

call: The matched call to the function that created the object. (class "call").

flist: The list of grouping factors for the random effects.

X: Model matrix for the fixed effects.

Zt: The transpose of model matrix for the random effects, stored as a compressed column-oriented
sparse matrix (class "dgCMatrix").

pWt: Numeric prior weights vector. This may be of length zero (0), indicating unit prior weights.

offset: Numeric offset vector. This may be of length zero (0), indicating no offset.

y: The response vector (class "numeric").

Gp: Integer vector of group pointers within the random effects vector. The elements of Gp are 0-
based indices of the first element from each random-effects term. Thus the first element is
always 0. The last element is the total length of the random effects vector.

dims: A named integer vector of dimensions. Some of the dimensions are n, the number of obser-
vations, p, the number of fixed effects, q, the total number of random effects, s, the number of
parameters in the nonlinear model function and nt, the number of random-effects terms in the
model.

ST: A list of S and T factors in the TSST’ Cholesky factorization of the relative variance matrices
of the random effects associated with each random-effects term. The unit lower triangular
matrix, T , and the diagonal matrix, S, for each term are stored as a single matrix with diagonal
elements from S and off-diagonal elements from T .

V: Numeric gradient matrix (class "matrix") of the nonlinear model function.

A: Scaled sparse model matrix (class "dgCMatrix") for the the unit, orthogonal random effects, U .

Cm: Reduced, weighted sparse model matrix (class "dgCMatrix") for the unit, orthogonal random
effects, U. .

Cx: The "x" slot in the weighted sparse model matrix (class "dgCMatrix") for the unit, orthogonal
random effects, U , in generalized linear mixed models. For these models the matrices A and
C have the same sparsity pattern and only the "x" slot of C needs to be stored.

L: The sparse lower Cholesky factor of P (AA′ + I)P ′ (class "dCHMfactor") where P is the fill-
reducing permutation calculated from the pattern of nonzeros in A.

deviance: Named numeric vector containing the deviance corresponding to the maximum likeli-
hood (the "ML" element) and "REML" criteria and various components. The "ldL2" element
is twice the logarithm of the determinant of the Cholesky factor in the L slot. The "usqr"
component is the value of the random-effects quadratic form.
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fixef: Numeric vector of fixed effects.

ranef: Numeric vector of random effects on the original scale.

u: Numeric vector of orthogonal, constant variance, random effects.

eta: The linear predictor at the current values of the parameters and the random effects.

mu: The means of the responses at the current parameter values.

muEta: The diagonal of the Jacobian of µ by η. Has length zero (0) except for generalized mixed
models.

var: The diagonal of the conditional variance of Y given the random effects, up to prior weights.
In generalized mixed models this is the value of the variance function for the glm family.

resid: The residuals, y − µ, weighted by the sqrtrWt slot (when its length is > 0).

sqrtXWt: The square root of the weights applied to the model matrices X and Z. This may be of
length zero (0), indicating unit weights.

sqrtrWt: The square root of the weights applied to the residuals to obtain the weighted residual
sum of squares. This may be of length zero (0), indicating unit weights.

RZX: The dense solution (class "matrix") to LRZX = ST ′Z ′X = AX .

RX: The upper Cholesky factor (class "matrix") of the downdated X ′X .

The "summary.cpglmm" class contains the "cpglmm" class and has the following additional slots:

methTitle: character string specifying a method title

logLik: the same as logLik(object).

ngrps: the number of levels per grouping factor in the flist slot.

sigma: the scale factor for the variance-covariance estimates

coefs: the matrix of estimates, standard errors, etc. for the fixed-effects coefficients

REmat: the formatted Random-Effects matrix

AICtab: a named vector of values of AIC, BIC, log-likelihood and deviance

The "bcplm" class extends "cplm" directly, and has the following additional slots:

dims: a named integer vector of dimensions.

sims.list: an object of class "mcmc.list". It is a list of n.chains mcmc objects, each mcmc object
storing the simulation result from a Markov chain. See mcmc and mcmc.convert. Since this is
an "mcmc.list" object, most methods defined in the coda package can be directly applied to
it.

Zt: the transpose of model matrix for the random effects, stored as a compressed column-oriented
sparse matrix (class "dgCMatrix").

flist: the list of grouping factors for the random effects.

prop.var: a named list of proposal variance-covariance matrix used in the Metropolis-Hasting
update.

The "gini" class has the following slots:

call: the matched call.
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gini: a matrix of the Gini indices. The row names are corresponding to the base while the column
names are corresponding to the scores.

sd: a matrix of standard errors for each computed Gini index.

lorenz: a list of matrices that determine the graph of the ordered Lorenz curve associated with
each base and score combination. For each base, there is an associated matrix.

Extends

Class "cpglm" extends class "cplm", directly.

Class "cpglmm" extends class "cplm", directly;

Class "summary.cpglmm" extends class "cpglmm", directly; class "cplm", by class "cpglmm", dis-
tance 2.

Class "bcplm" extends class "cplm", directly.

Methods

The following methods are defined for the class "cplm", which are also applicable to all of the
derived classes:

$ signature(x = "cplm"): extract a slot of x with a specified slot name, just as in list.

[[ signature(x = "cplm", i = "numeric", j = "missing"): extract the i-th slot of a "cpglm" ob-
ject, just as in list.

[[ signature(x = "cplm", i = "character", j = "missing"): extract the slots of a "cpglm" ob-
ject with names in i, just as in list.

[ signature(x = "cplm", i = "numeric", j = "missing", drop="missing"): extract the i-th slot
of a "cpglm" object, just as in list. i could be a vector.

[ signature(x = "cplm", i = "character", j = "missing", drop="missing"): extract the slots
of a "cpglm" object with names in i, just as in list. i could be a vector.

names signature(x = "cplm"): return the slot names.

terms signature(x = "cplm"): extract the terms object from the model frame. See terms.

formula signature(x = "cplm"): extract the formula slot. See formula.

model.matrix signature(object = "cplm"): extract the design matrix.

show signature(object = "cplm"): method for show.

vcov signature(object = "cplm"): extract the variance-covariance matrix of a "cplm" object.

The following methods are defined for the "cpglm" class:

coef signature(object = "cpglm"): extract the estimated coefficients.

fitted signature(object = "cpglm"): return the fitted values.

residuals signature(object = "cpglm"): extract residuals from a cpglm object. You can also
specify a type argument to indicate the type of residuals to be computed. See glm.summaries.

resid signature(object = "cpglm"): same as residuals.

AIC signature(object = "cpglm",k="missing"): extract the AIC information from the "cpglm"
object. See AIC.
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deviance signature(object = "cpglm"): extract the deviance from the "cpglm" object. See
deviance.

summary signature(object = "cpglm"): the same as glm.summaries except that both the dis-
persion and the index parameter are estimated using maximum likelihood estimation.

predict signature(object = "cpglm"): generate predictions for new data sets

The following are written for "cpglmm":

print signature(x = "cpglmm"): print the object

summary signature(object = "cpglmm"): summary results

predict signature(object = "cpglmm"): generate predictions for new data sets

VarCorr signature(x = "cpglmm"): estimation for the variance components

vcov signature(object = "cpglmm"): variance-covariance matrix for fixed effects

The following methods are available for the class "bcplm":

plot signature(x = "bcplm", y = "missing"): summarize the "bcplm" object with a trace of the
sampled output and a density estimate for each variable in the chain. See plot.mcmc.

summary signature(object = "bcplm"): produce two sets of summary statistics. See summary.mcmc.

VarCorr signature(x = "bcplm"): estimation for the variance components if the random effects
are present

fixef signature(object = "bcplm"): extract fixed effects. Additional arguments include: sd =
FALSE: extract standard errors; quantiles = NULL: compute empirical quantiles. These addi-
tional statistics are stored as attributes in the returned results.

The following methods are defined for the "gini" class:

plot signature(x = "gini", y = "missing"): plot the ordered Lorenz curve from each model
comparison. If overlay = TRUE (the default), different curves are plotted on the same graph
for each base.

show signature(object = "gini"): print the computed Gini indices and standard errors.

Author(s)

Wayne Zhang <actuary_zhang@hotmail.com>

See Also

See also cpglm, cpglmm, bcplm, glm.
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cpglm Compound Poisson Generalized Linear Models

Description

This function fits compound Poisson generalized linear models.

Usage

cpglm(formula, link = "log", data, weights, offset,
subset, na.action = NULL, contrasts = NULL,
control = list(), chunksize = 0,
optimizer = "nlminb", ...)

Arguments

formula an object of class formula. See also in glm.

link a specification for the model link function. This can be either a literal character
string or a numeric number. If it is a character string, it must be one of "log",
"identity", "sqrt" or "inverse". If it is numeric, it is the same as the link.power
argument in the tweedie function. The default is link = "log".

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model.

weights an optional vector of weights. Should be either NULL or a numeric vector. When
it is numeric, it must be positive. Zero weights are not allowed in cpglm.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
Another possible value is NULL, no action. Value na.exclude can be useful.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be either NULL or a numeric vector of
length equal to the number of cases. One or more offset terms can be included
in the formula instead or as well, and if more than one is specified their sum is
used.

contrasts an optional list. See contrasts.arg.

control a list of parameters for controling the fitting process. See ’Details’ below.

chunksize an integer that indicates the size of chunks for processing the data frame as used
in bigglm. The value of this argument also determines how the model is esti-
mated. When it is 0 (the default), regular Fisher’s scoring algorithms are used,
which may run into memory issues when handling large data sets. In contrast, a
value greater than 0 indicates that the bigglm is employed to fit the GLMs. The
function bigglm relies on the bounded memory regression technique, and thus
is well suited to large data GLMs.
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optimizer a character string that determines which optimization routine is to be used in es-
timating the index and the dispersion parameters. Possible choices are "nlminb"
(the default, see nlminb), "bobyqa" (bobyqa) and "L-BFGS-B" (optim).

... additional arguments to be passed to bigglm. Not used when chunksize = 0.
The maxit argument defaults to 50 in cpglm if not specified.

Details

This function implements the profile likelihood approach in Tweedie compound Poisson general-
ized linear models. First, the index and the dispersion parameters are estimated by maximizing
(numerically) the profile likelihood (profile out the mean parameters as they are determined for a
given value of the index parameter). Then the mean parameters are estimated using a GLM with the
above-estimated index parameter. To compute the profile likelihood, one must resort to numerical
methods provided in the tweedie package for approximating the density of the compound Poisson
distribution. Indeed, the function tweedie.profile in that package makes available the profile
likelihood approach. The cpglm function differs from tweedie.profile in two aspects. First, the
user does not need to specify the grid of possible values the index parameter can take. Rather, the
optimization of the profile likelihood is automated. Second, big data sets can be handled where the
bigglm function from the biglm package is used in fitting GLMs. The bigglm is invoked when
the argument chunksize is greater than 0. It is also to be noted that only MLE estimate for the
dispersion parameter is included here, while tweedie.profile provides several other possibilities.

The package used to implement a second approach using the Monte Carlo EM algorithm, but it is
now removed because it does not offer obvious advantages over the profile likelihood approach for
this model.

The control argument is a list that can supply various controlling elements used in the optimization
process, and it has the following components:

bound.p a vector of lower and upper bounds for the index parameter p used in the optimization.
The default is c(1.01, 1.99).

trace if greater than 0, tracing information on the progress of the fitting is produced. For optimizer
= "nlminb" or optimizer = "L-BFGS-B", this is the same as the trace control parameter, and
for optimizer = "bobyqa", this is the same as the iprint control parameter. See the corre-
sponding documentation for details.

max.iter maximum number of iterations allowed in the optimization. The default is 300.
max.fun maximum number of function evaluations allowed in the optimizer. The default is 2000.

Value

cpglm returns an object of class "cpglm". See cpglm-class for details of the return values as well
as various methods available for this class.

Author(s)

Yanwei (Wayne) Zhang <actuary_zhang@hotmail.com>

References

Dunn, P.K. and Smyth, G.K. (2005). Series evaluation of Tweedie exponential dispersion models
densities. Statistics and Computing, 15, 267-280.
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See Also

The users are recommended to see the documentation for cpglm-class, glm, tweedie, and tweedie.profile
for related information.

Examples

fit1 <- cpglm(RLD ~ factor(Zone) * factor(Stock),
data = FineRoot)

# residual and qq plot
parold <- par(mfrow = c(2, 2), mar = c(5, 5, 2, 1))
# 1. regular plot
r1 <- resid(fit1) / sqrt(fit1$phi)
plot(r1 ~ fitted(fit1), cex = 0.5)
qqnorm(r1, cex = 0.5)
# 2. quantile residual plot to avoid overlapping
u <- tweedie::ptweedie(fit1$y, fit1$p, fitted(fit1), fit1$phi)
u[fit1$y == 0] <- runif(sum(fit1$y == 0), 0, u[fit1$y == 0])
r2 <- qnorm(u)
plot(r2 ~ fitted(fit1), cex = 0.5)
qqnorm(r2, cex = 0.5)
par(parold)

# use bigglm
fit2 <- cpglm(RLD ~ factor(Zone),

data = FineRoot, chunksize = 250)

cpglmm Compound Poisson Generalized Linear Mixed Models

Description

Laplace approximation and adaptive Gauss-Hermite quadrature methods for compound Poisson
mixed and additive models.

Usage

cpglmm(formula, link = "log", data, weights, offset, subset,
na.action, inits = NULL, contrasts = NULL,
control = list(), basisGenerators = c("tp", "bsp", "sp2d"),
optimizer = "nlminb", doFit = TRUE, nAGQ = 1)

Arguments

formula a two-sided linear formula object describing the model structure, with the re-
sponse on the left of a ~ operator and the terms, separated by + operators, on the
right. The vertical bar character "|" separates an expression for a model matrix
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and a grouping factor. The right side can also include basis generators. See lme4
and basisGenerators below.

link a specification for the model link function. This can be either a literal character
string or a numeric number. If it is a character string, it must be one of "log",
"identity", "sqrt" or "inverse". If it is numeric, it is the same as the link.power
argument in the tweedie function. The default is link="log".

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model.

subset, weights, na.action, offset, contrasts

further model specification arguments as in cpglm; see there for details.

inits a named list with three components ’beta’, ’phi’, ’p’, ’Sigma’ that supply the
initial values used in the optimization. If not supplied, the function will generate
initial values automatically, which are based on a GLM with the supplied model
structure.

control a list of parameters for controlling the fitting process. See cpglm. The parameter
PQL.init is not used.

basisGenerators

a character vector of names of functions that generate spline bases. This is used
when smoothing effects are to be included in the model. See tp for details.

optimizer a character string that determines which optimization routine is to be used. Pos-
sible choices are "nlminb" (the default, see nlminb), "bobyqa" (bobyqa) and
"L-BFGS-B" (optim).

doFit if FALSE, the constructed "cpglmm" object is returned before the model is fitted.

nAGQ a positive integer - the number of points per axis for evaluating the adaptive
Gauss-Hermite approximation to the log-likelihood. This defaults to 1, corre-
sponding to the Laplacian approximation. Values greater than 1 produce greater
accuracy in the evaluation of the log-likelihood at the expense of speed.

Details

Estimation of compound Poisson mixed models in existing software has been limited to the Pe-
nalized Quasi-Likelihood [PQL] approach (e.g., see glmmPQL). While straightforward and fast, this
method is not equipped to estimate the unknown variance function, i.e., the index parameter. In con-
trast, the function cpglmm implements true likelihood-based inferential procedures, i.e., the Laplace
approximation and the Adaptive Gauss-Hermite Quadrature (for single grouping factor), so that all
parameters in the model can be estimated using maximum likelihood estimation.

This implementation is based on the older lme4 package (the 0.9* version), with changes made
on updating of the mean, the variance function and the marginal loglikelihood. For the Laplace
method, the contribution of the dispersion parameter to the approximated loglikelihood is explicitly
accounted for, which should be more accurate and more consistent with the quadrature estimate.
Indeed, both the dispersion parameter and the index parameter are included as a part of the opti-
mization process. In computing the marginal loglikelihood, the density of the compound Poisson
distribution is approximated using numerical methods provided in the tweedie package. For de-
tails of the Laplace approximation and the Gauss-Hermite quadrature method for generalized linear
mixed models, see the documentation associated with lme4.
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In addition, similar to the package amer (already retired from CRAN), we provide convenient in-
terfaces for fitting additive models using penalized splines. See the ’example’ section for one such
application.

Value

cpglmm returns an object of class cpglmm. See cpglmm-class for details of the return values as well
as various method available for this class.

Author(s)

Yanwei (Wayne)) Zhang <actuary_zhang@hotmail.com>

References

Zhang Y (2013). Likelihood-based and Bayesian Methods for Tweedie Compound Poisson Linear
Mixed Models, Statistics and Computing, 23, 743-757. https://github.com/actuaryzhang/
cplm/files/144051/TweediePaper.pdf

Bates D, Maechler M, Bolker B and Walker S (2015). lme4: Linear mixed-effects models using
Eigen and S4..

See Also

The users are recommended to see cpglm for a general introduction to the compound Poisson dis-
tribution, lme4 for syntax and usage of mixed-effect models and cpglmm-class for detailed expla-
nation of the return value.

Examples

## Not run:
# use Stock and Spacing as main effects and Plant as random effect
(f1 <- cpglmm(RLD ~ Stock + Spacing + (1|Plant), data = FineRoot))

coef(f1); fixef(f1); ranef(f1) #coefficients
VarCorr(f1) #variance components

# add another random effect
(f2 <- update(f1, . ~ . + (1|Zone)))
# test the additional random effect
anova(f1,f2)

# try a different optimizer
(f3 <- cpglmm(RLD ~ Stock + Spacing + (1|Plant),

data = FineRoot, optimizer = "bobyqa",
control = list(trace = 2)))

# adaptive G-H quadrature
(f4 <- cpglmm(RLD ~ Stock + Spacing + (1|Plant),

data = FineRoot, nAGQ = 3))

# a model with smoothing effects

https://github.com/actuaryzhang/cplm/files/144051/TweediePaper.pdf
https://github.com/actuaryzhang/cplm/files/144051/TweediePaper.pdf


datasets 17

(f5 <- cpglmm(increLoss ~ tp(lag, k = 4) + (1|year) ,
data = ClaimTriangle))

## End(Not run)

datasets Data sets in the cplm pakcage

Description

The data sets included in package is described here.

Usage

data(FineRoot)
data(ClaimTriangle)
data(AutoClaim)

Format

FineRoot: a data set used for the study of the fine root length density of plants. It is a data frame
with 511 records and 5 variables:

Plant: identifier of the apple tree, 1-8

Stock: root stokcing, one of three different root stocks: Mark, MM106 and M26

Spacing: between-row × within-row spacings, one of the following two: 4 × 2 meters and 5 × 3
meters

Zone: inner or outer

RLD: root length density

ClaimTriangle: a data set from an insurance loss reserving triangle. It is a data frame with 55
records and 3 variables:

year: the year when the accident occurs

lag: development lag

increLoss: incremental insurance loss in 1000s

AutoClaim: a motor insurance data set retrieved from the SAS Enterprise Miner database. It is a
data frame with 10296 records and 29 variables:

POLICYNO: "character", the policy number

PLCYDATE: "Date", policy effective date

CLM_FREQ5: "integer", the number of claims in the past 5 years

CLM_AMT5: "integer", the total claim amount in the past 5 years

CLM_AMT: "integer", the claim amount in the current insured period

KIDSDRIV: "integer", the number of driving children
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TRAVTIME: "integer", the distance to work

CAR_USE: "factor", the primary use of the vehicle: "Commercial", "Private".

BLUEBOOK: "integer", the value of the vehicle

RETAINED: "integer", the number of years as a customer

NPOLICY: "integer", the number of policies

CAR_TYPE: "factor", the type of the car: "Panel Truck", "Pickup", "Sedan", "Sports Car", "SUV",
"Van".

RED_CAR: "factor", whether the color of the car is red: "no", "yes".

REVOLKED: "factor", whether the dirver’s license was invoked in the past 7 years: "No", "Yes",

MVR_PTS: "integer", MVR violation records

CLM_FLAG: "factor", whether a claim is reported: "No", "Yes".

AGE: "integer", the age of the driver

HOMEKIDS: "integer", the number of children

YOJ: "integer", years at current job

INCOME: "integer", annual income

GENDER: "factor", the gender of the driver: "F", "M".

MARRIED: "factor", married or not: "No", "Yes".

PARENT1: "factor", single parent: "No", "Yes".

JOBCLASS: "factor": "Unknown", "Blue Collar", "Clerical", "Doctor", "Home Maker", "Lawyer",
"Manager", "Professional", "Student".

MAX_EDUC: "factor", max education level:"<High School", "Bachelors", "High School", "Masters",
"PhD".

HOME_VAL: "integer", the value of the insured’s home

SAMEHOME: "integer", years in the current address

DENSITY: "factor", home/work area: "Highly Rural", "Highly Urban", "Rural", "Urban".

IN_YY: "logical", whether the record is used in the Yip and Yau (2005) paper.

Source

de Silva, H. N., Hall, A. J., Tustin, D. S. and Gandar, P. W. (1999). Analysis of distribution of root
length density of apple trees on different dwarfing rootstocks. Annals of Botany, 83: 335-345.

Dunn, P.K. and Smyth, G.K. (2005). Series evaluation of Tweedie exponential dispersionmodels
densities. Statistics and Computing, 15, 267-280.

Peters G. W., Shevchenko P. V. and Wuthrich M. V. (2009). Model Uncertainty in Claims Reserving
within Tweedie’s Compound Poisson Models. Astin Bulletin, 39(1), 1-33.

Yip, K. C. H. and Yau, K. K. W. (2005). On Modeling Claim Frequency Data In General Insurance
With Extra Zeros. Insurance: Mathematics and Economics, 36(2), 153-163.
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getF Get and plot the smoothing function values

Description

Get and plot the estimated smoothing function values

Usage

getF(object, which, n=100, newdata, interval=c("NONE", "MCMC",
"RW"), addConst=TRUE, varying=1, level=0.9, sims=1000)

plotF(object, which, n=100, interval="RW", addConst=TRUE,
trans=I, level=0.9, sims=1000, auto.layout=TRUE, rug=TRUE,
legendPos="topright", ...)

Arguments

object a fitted cpglmm object.

which (optional) an integer vector or a character vector of names giving the smooths
for which fitted values are desired. Defaults to all.

n if no newdata is given, fitted values for a regular grid with n values in the range
of the respective covariates are returned

newdata An optional data frame in which to look for variables with which to predict

interval what mehod should be used to compute pointwise confidence/HPD intervals:
RW= bias-adjusted empirical bayes

addConst boolean should the global intercept and intercepts for the levels of the by-variable
be included in the fitted values (and their CIs) can also be a vector of the same
length as which

varying value of thevarying-covariate (see tp) to be used if no newdata is supplied.
Defaults to 1.

level level for the confidence/HPD intervals

sims how many iterates should be generated for the MCMC-based HPD-intervals

trans a function that should be applied to the fitted values and ci’s before plotting (e.g.
the inverse link function to get plots on the scale of the reponse)

auto.layout automagically set plot layout via par()$mfrow

rug add rug-plots of the observed covariate locations

legendPos a (vector of) keyword(s) where to put labels of by-variables (see legend). "none"
if you don’t want a legend.

... arguments passed on to the low-level plot functions (plot, matlines), legend,
and title
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Value

a list with one data.frame for each function, giving newdata or the values of the generated grid
plus the fitted values (and confidence/HPD intervals).

Note

These are from the amer package that has retired from CRAN. The formula used for the pointwise
bias-adjusted CIs is taken from Ruppert and Wand’s ’Semiparametric Regression’ (2003), p. 140.
These leave out the uncertainty associated with the variance component estimates.

Author(s)

Fabian Scheipl <fabian.scheipl@googlemail.com>

See Also

See the vignette for examples

gini The Gini index

Description

Compute Gini indices and their standard errors.

Usage

gini(loss, score, base = NULL, data, ...)

Arguments

loss a character that contains the name of the response variable.

score a character vector that contains the list of the scores, which are the predictions
from the set of models to be compared.

base a character that contains the name of a baseline statistic. If NULL (the default),
each score will be successively used as the base.

data a data frame containing the variables listed in the above arguments.

... not used.
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Details

For model comparison involving the compound Poisson distribution, the usual mean squared loss
function is not quite informative for capturing the differences between predictions and observations,
due to the high proportions of zeros and the skewed heavy-tailed distribution of the positive losses.
For this reason, Frees et al. (2011) develop an ordered version of the Lorenz curve and the associated
Gini index as a statistical measure of the association between distributions, through which different
predictive models can be compared. The idea is that a score (model) with a greater Gini index
produces a greater separation among the observations. In the insurance context, a higher Gini index
indicates greater ability to distinguish good risks from bad risks. Therefore, the model with the
highest Gini index is preferred.

This function computes the Gini indices and their asymptotic standard errors based on the ordered
Lorenz curve. These metrics are mainly used for model comparison. Depending on the problem,
there are generally two ways to do this. Take insurance predictive modeling as an example. First,
when there is a baseline premium, we can compute the Gini index for each score (predictions from
the model), and select the model with the highest Gini index. Second, when there is no baseline
premium (base = NULL), we successively specify the prediction from each model as the baseline
premium and use the remaining models as the scores. This results in a matrix of Gini indices, and
we select the model that is least vulnerable to alternative models using a "mini-max" argument -
we select the score that provides the smallest of the maximal Gini indices, taken over competing
scores.

Value

gini returns an object of class "gini". See gini-class for details of the return values as well as
various methods available for this class.

Author(s)

Yanwei (Wayne) Zhang <actuary_zhang@hotmail.com>

References

Frees, E. W., Meyers, G. and Cummings, D. A. (2011). Summarizing Insurance Scores Using a
Gini Index. Journal of the American Statistical Association, 495, 1085 - 1098.

See Also

The users are recommended to see the documentation for gini-class for related information.

Examples

## Not run:

# Let's fit a series of models and compare them using the Gini index
da <- subset(AutoClaim, IN_YY == 1)
da <- transform(da, CLM_AMT = CLM_AMT / 1000)

P1 <- cpglm(CLM_AMT ~ 1, data = da, offset = log(NPOLICY))



22 sp2d

P2 <- cpglm(CLM_AMT ~ factor(CAR_USE) + factor(REVOLKED) +
factor(GENDER) + factor(AREA) +
factor(MARRIED) + factor(CAR_TYPE),

data = da, offset = log(NPOLICY))

P3 <- cpglm(CLM_AMT ~ factor(CAR_USE) + factor(REVOLKED) +
factor(GENDER) + factor(AREA) +
factor(MARRIED) + factor(CAR_TYPE) +
TRAVTIME + MVR_PTS + INCOME,

data = da, offset = log(NPOLICY))

da <- transform(da, P1 = fitted(P1), P2 = fitted(P2), P3 = fitted(P3))

# compute the Gini indices
gg <- gini(loss = "CLM_AMT", score = paste("P", 1:3, sep = ""),

data = da)
gg

# plot the Lorenz curves
theme_set(theme_bw())
plot(gg)
plot(gg, overlay = FALSE)

## End(Not run)

sp2d 2-dimentional Radial Spline

Description

2-dimentional radial spline generator used in cpglmm

Usage

sp2d(x1, x2, k = max(20, min(length(x1)/4, 150)), by = NULL,
allPen = FALSE, varying = NULL, diag = FALSE,
knots1 = quantile(x1, probs = 1:k/(k + 1)),
knots2 = quantile(x1, probs = 1:k/(k + 1)))

Arguments

x1 the first covariate in the coordinate

x2 the second covariate in the coordinate

k number of knots

by not used. This is just for compatibility with amer.

allPen not used. This is just for compatibility with amer.
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varying not used. This is just for compatibility with amer.

diag not used. This is just for compatibility with amer.

knots1 vector of knot locations for the first covariate in the coordinate

knots2 vector of knot locations for the second covariate in the coordinate

Author(s)

Fabian Scheipl <fabian.scheipl@googlemail.com>

tp Generate basis functions for penalized spline smoothing.

Description

tp generates a truncated power basis and bsp generates a reparameterized b-spline basis for penal-
ized spline smoothing.

Usage

tp(x, degree=1, k=15, by=NULL, allPen=FALSE, varying=NULL, diag=FALSE,
knots=quantile(x, probs = (1:(k - degree))/(k - degree + 1)),
centerscale=NULL, scaledknots=FALSE)

bsp(x, k=15, spline.degree=3, diff.ord=2, knots, by,
allPen=FALSE, varying, diag=FALSE)

Arguments

x covariate for the smooth function

degree integer: degree of truncated polynomials (0: piecewise constant, 1: piecewise
linear etc..)

k integer: dimensionality of the basis (i.e.: number of knots + degree)

by factor variable: estimate separate functions for each level - this assumes standard
treatment contrasts for the supplied factor.

allPen boolean: if TRUE, make design for group-specific curves with common smooth-
ing parameter: all parameters (including the normally unpenalized basis func-
tions in X) are penalized, every level of "by" has the same amount of smoothing
if FALSE, make design for separate curves for each by-level: separate smooth-
ing parameters for every level of "by", unpenalized estimates for the coefficients
associated with X

varying numeric: if not NULL, a varying coefficient model is fit: f(x,varying) = f(x)*varying

diag logical: force a diagonal covariance-matrix for the random effects for X if
allPen=TRUE?
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knots vector of knot locations (optional). Defaults to quantile-based knots at the i/(k+
1−degree)-quantiles for i = 1, . . . , k−degree.

centerscale numeric(2): center&scale x by these values if not NULL

scaledknots boolean: are knot locations given for the rescaled x-values?

spline.degree integer: degree of B-splines (defaults to cubic)

diff.ord integer: order of the difference penalty on the un-reparamerized spline coeffi-
cients. Defaults to 2, that is, penalized deviations from linearity.

Details

tp generates truncated power bases which have degree unpenalized basis functions, namely x1, . . . , xdegree

and k−degree penalized basis functions that contain the positive part (x − κj)
degree for knots

κj , j = 1, dots, k−degree. This function can be used as a reference when implementing other
basisGenerators that can be used for additive models through cpglmm.

bsp generate a b-spline basis with equidistant knots in mixed model reparameterization.

Value

list with entries: "X": For tp, it is an n x degree design matrix for unpenalized part (without
intercept) (or a list of those for every level of by if allPen=F); and for bsp, it is an n x (diff.ord -
1) design matrix for unpenalized part (without intercept).

"Z": For tp, it is an n x (k-degree) design matrix for penalized part (or a list of those for every
level of by if allPen=F); and for bsp, it is an n x (k - diff.ord+1) design matrix for penalized part.

Note

These are from the amer package that has retired from CRAN.

Author(s)

Fabian Scheipl <fabian.scheipl@googlemail.com>
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