
Package ‘dagHMM’
January 10, 2023

Type Package

Title Directed Acyclic Graph HMM with TAN Structured Emissions

Version 0.1.0

Maintainer Prajwal Bende <prajwal.bende@gmail.com>

Description Hidden Markov models (HMMs) are a formal foundation for making probabilistic mod-
els of linear sequence. They provide a conceptual toolkit for building complex mod-
els just by drawing an intuitive picture. They are at the heart of a diverse range of programs, in-
cluding genefinding, profile searches, multiple sequence alignment and regulatory site identifica-
tion. HMMs are the Legos of computational sequence analysis. In graph theory, a tree is an undi-
rected graph in which any two vertices are connected by exactly one path, or equivalently a con-
nected acyclic undirected graph. Tree represents the nodes connected by edges. It is a non-
linear data structure. A poly-tree is simply a directed acyclic graph whose underlying undi-
rected graph is a tree. The model proposed in this pack-
age is the same as an HMM but where the states are linked via a polytree struc-
ture rather than a simple path.

License GPL (>= 2.0.0)

Encoding UTF-8

Imports gtools, future, matrixStats, PRROC, bnlearn, bnclassify

RoxygenNote 7.2.3

NeedsCompilation no

Author Prajwal Bende [aut, cre],
Russ Greiner [ths],
Pouria Ramazi [ths]

Repository CRAN

Date/Publication 2023-01-10 18:40:05 UTC

R topics documented:
backward . 2
baumWelch . 3
baumWelchRecursion . 5
bwd_seq_gen . 6

1

2 backward

calc_emis . 7
forward . 7
fwd_seq_gen . 9
gen_emis . 10
initHMM . 10
noisy_or . 12

Index 13

backward Infer the backward probabilities for all the nodes of the dagHMM

Description

backward calculates the backward probabilities for all the nodes

Usage

backward(hmm, observation, bt_seq, kn_states = NULL)

Arguments

hmm hmm Object of class List given as output by initHMM

observation Dataframe containing the discritized character values of only covariates at each
node. Column names of dataframe should be same as the covariate names. Miss-
ing values should be denoted by "NA".

bt_seq A vector denoting the order of nodes in which the DAG should be traversed in
backward direction(from leaves to roots). Output of bwd_seq_gen function.

kn_states (Optional) A (L * 2) dataframe where L is the number of training nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

Details

The backward probability for state X and observation at node k is defined as the probability of
observing the sequence of observations e_k+1, ... ,e_n under the condition that the state at node k
is X. That is:
b[X,k] := Prob(E_k+1 = e_k+1, ... , E_n = e_n | X_k = X)
where E_1...E_n = e_1...e_n is the sequence of observed emissions and X_k is a random variable
that represents the state at node k

Value

(2 * N) matrix denoting the backward probabilites at each node of the dag, where "N" is the total
number of nodes in the dag

baumWelch 3

See Also

forward

Examples

library(bnlearn)

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped dag

states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while

#B, C and D are covariates
obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))
hmmA = initHMM(States=states, dagmat= tmat, net=bnet, observation=obsvA)
bt_sq = bwd_seq_gen(hmmA)
kn_st = data.frame(node=c(3),state=c("P"),stringsAsFactors = FALSE)

#state at node 3 is known to be "P"
BackwardProbs = backward(hmm=hmmA,observation=obsvA,bt_seq=bt_sq,kn_states=kn_st)

baumWelch Inferring the parameters of a dag Hidden Markov Model via the Baum-
Welch algorithm

Description

For an initial Hidden Markov Model (HMM) with some assumed initial parameters and a given set
of observations at all the nodes of the dag, the Baum-Welch algorithm infers optimal parameters
to the HMM. Since the Baum-Welch algorithm is a variant of the Expectation-Maximisation algo-
rithm, the algorithm converges to a local solution which might not be the global optimum. Note
that if you give the training and validation data, the function will message out AUC and AUPR
values after every iteration. Also, validation data must contain more than one instance of either of
the possible states

Usage

baumWelch(
hmm,
observation,
kn_states = NULL,
kn_verify = NULL,
maxIterations = 50,
delta = 1e-05,
pseudoCount = 1e-100

)

4 baumWelch

Arguments

hmm hmm Object of class List given as output by initHMM

observation Dataframe containing the discritized character values of only covariates at each
node. Column names of dataframe should be same as the covariate names. Miss-
ing values should be denoted by "NA".

kn_states (Optional) A (L * 2) dataframe where L is the number of training nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

kn_verify (Optional) A (L * 2) dataframe where L is the number of validation nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

maxIterations (Optional) The maximum number of iterations in the Baum-Welch algorithm.
Default is 50

delta (Optional) Additional termination condition, if the transition and emission ma-
trices converge, before reaching the maximum number of iterations (maxIterations).
The difference of transition and emission parameters in consecutive iterations
must be smaller than delta to terminate the algorithm. Default is 1e-5

pseudoCount (Optional) Adding this amount of pseudo counts in the estimation-step of the
Baum-Welch algorithm. Default is 1e-100 (Don’t keep it zero to avoid numerical
errors)

Value

List of three elements, first being the infered HMM whose representation is equivalent to the rep-
resentation in initHMM, second being a list of statistics of algorithm and third being the final state
probability distribution at all nodes.

See Also

baumWelchRecursion

Examples

library(bnlearn)

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped dag

states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while

#B, C and D are covariates.
obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))
hmmA = initHMM(States=states, dagmat= tmat, net=bnet, observation=obsvA)
kn_st = data.frame(node=c(2),state=c("P"),stringsAsFactors = FALSE)

#state at node 2 is known to be "P"
kn_vr = data.frame(node=c(3,4,5),state=c("P","N","P"),stringsAsFactors = FALSE)

#state at node 3,4,5 are "P","N","P" respectively
learntHMM= baumWelch(hmm=hmmA,observation=obsvA,kn_states=kn_st, kn_verify=kn_vr)

baumWelchRecursion 5

baumWelchRecursion Implementation of the Baum Welch Algorithm as a special case of EM
algorithm

Description

baumWelch recursively calls this function to give a final estimate of parameters for dag HMM Uses
Parallel Processing to speed up calculations for large data. Should not be used directly.

Usage

baumWelchRecursion(hmm, observation, t_seq, kn_states = NULL, kn_verify = NULL)

Arguments

hmm hmm Object of class List given as output by initHMM

observation Dataframe containing the discritized character values of only covariates at each
node. Column names of dataframe should be same as the covariate names. Miss-
ing values should be denoted by "NA".

t_seq list of forward and backward DAG traversal sequence (in that order) as given
output by fwd_seq_gen and bwd_seq_gen function

kn_states (Optional) A (L * 2) dataframe where L is the number of training nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

kn_verify (Optional) A (L * 2) dataframe where L is the number of validation nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

Value

List containing estimated Transition and Emission probability matrices

See Also

baumWelch

Examples

library(bnlearn)

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped dag

states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while

#B, C and D are covariates
obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))

6 bwd_seq_gen

hmmA = initHMM(States=states, dagmat= tmat, net=bnet, observation=obsvA)
kn_st = data.frame(node=c(2),state=c("P"),stringsAsFactors = FALSE)

#state at node 2 is known to be "P"
kn_vr = data.frame(node=c(3,4,5),state=c("P","N","P"),stringsAsFactors = FALSE)

#state at node 3,4,5 are "P","N","P" respectively
t_seq=list(fwd_seq_gen(hmmA),bwd_seq_gen(hmmA))
newparam= baumWelchRecursion(hmm=hmmA,observation=obsvA,t_seq=t_seq,

kn_states=kn_st, kn_verify=kn_vr)

bwd_seq_gen Calculate the order in which nodes in the dag should be traversed
during the backward pass(leaves to roots)

Description

dag is a complex graphical model where we can have multiple parents and multiple children for
a node. Hence the order in which the dag should be tranversed becomes significant. Backward
algorithm is a dynamic programming problem where to calculate the values at a node, we need
the values of the children nodes beforehand, which need to be traversed before this node. This
algorithm outputs a possible(not unique) order of the traversal of nodes ensuring that the childrens
are traversed first before the parents

Usage

bwd_seq_gen(hmm, nlevel = 100)

Arguments

hmm hmm Object of class List given as output by initHMM

nlevel No. of levels in the dag, if known. Default is 100

Value

Vector of length "D", where "D" is the number of nodes in the dag

See Also

backward

Examples

library(bnlearn)

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped dag

states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while

#B, C and D are covariates
obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))

calc_emis 7

hmmA = initHMM(States=states, dagmat= tmat, net=bnet, observation=obsvA)
bt_sq = bwd_seq_gen(hmmA)

calc_emis Calculating the probability of occurance of particular values of co-
variates at a node given the value of target.

Description

Calculating the probability of occurance of particular values of covariates at a node given the value
of target.

Usage

calc_emis(state, obsv, probs, pars)

Arguments

state character value of state variable at a particular node.

obsv character vector of values of covariates at that node.

probs emission probability distribution of the covariates in TAN structure.

pars integer vector denoting the parents of the nodes(other than root) in the TAN
structure.

Value

probability of occurance of particular values of covariates at a node given the value of target.

forward Infer the forward probabilities for all the nodes of the dagHMM

Description

forward calculates the forward probabilities for all the nodes

Usage

forward(hmm, observation, ft_seq, kn_states = NULL)

8 forward

Arguments

hmm hmm Object of class List given as output by initHMM

observation Dataframe containing the discritized character values of only covariates at each
node. Column names of dataframe should be same as the covariate names. Miss-
ing values should be denoted by "NA".

ft_seq A vector denoting the order of nodes in which the DAG should be traversed in
forward direction(from roots to leaves). Output of fwd_seq_gen function.

kn_states (Optional) A (L * 2) dataframe where L is the number of training nodes where
state values are known. First column should be the node number and the second
column being the corresponding known state values of the nodes

Details

The forward probability for state X up to observation at node k is defined as the probability of
observing the sequence of observations e_1,..,e_k given that the state at node k is X. That is:
f[X,k] := Prob(X_k = X | E_1 = e_1,.., E_k = e_k)
where E_1...E_n = e_1...e_n is the sequence of observed emissions and X_k is a random variable
that represents the state at node k

Value

(2 * N) matrix denoting the forward probabilites at each node of the dag, where "N" is the total
number of nodes in the dag

See Also

backward

Examples

library(bnlearn)

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped dag

states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while

#B, C and D are covariates
obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))
hmmA = initHMM(States=states, dagmat= tmat, net=bnet, observation=obsvA)
ft_sq = fwd_seq_gen(hmmA)
kn_st = data.frame(node=c(3),state=c("P"),stringsAsFactors = FALSE)

#state at node 3 is known to be "P"
ForwardProbs = forward(hmm=hmmA,observation=obsvA,ft_seq=ft_sq,kn_states=kn_st)

fwd_seq_gen 9

fwd_seq_gen Calculate the order in which nodes in the dag should be traversed
during the forward pass(roots to leaves)

Description

dag is a complex graphical model where we can have multiple parents and multiple children for
a node. Hence the order in which the dag should be tranversed becomes significant. Forward
algorithm is a dynamic programming problem where to calculate the values at a node, we need the
values of the parent nodes beforehand, which need to be traversed before this node. This algorithm
outputs a possible(not unique) order of the traversal of nodes ensuring that the parents are traversed
first before the children.

Usage

fwd_seq_gen(hmm, nlevel = 100)

Arguments

hmm hmm Object of class List given as output by initHMM

nlevel No. of levels in the dag, if known. Default is 100

Value

Vector of length "D", where "D" is the number of nodes in the dag

See Also

forward

Examples

library(bnlearn)

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped dag

states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while

#B, C and D are covariates
obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))
hmmA = initHMM(States=states, dagmat= tmat, net=bnet, observation=obsvA)
ft_sq = fwd_seq_gen(hmmA)

10 initHMM

gen_emis Generating the inital emission probability distribution of the covari-
ates in TAN structure.

Description

Generating the inital emission probability distribution of the covariates in TAN structure.

Usage

gen_emis(net, observation, sym)

Arguments

net Object of type ’bn’ provided as output by bnlearnmodel2network showing the
TAN structure between target variable and covariates.

observation Dataframe containing the discritized character values of only covariates at each
node. Column names of dataframe should be same as the covariate names. Miss-
ing values should be denoted by "NA".

sym Character vector of possible values of target variable

Value

Inital emission probability distribution of the covariates in TAN structure

Examples

library(bnlearn)

bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while
#B, C and D are covariates

obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))
target_value= c("P","N")
prob= gen_emis(net=bnet,observation=obsvA,sym=target_value)

initHMM Initializing dagHMM with given parameters

Description

Initializing dagHMM with given parameters

initHMM 11

Usage

initHMM(
States,
dagmat,
net = NULL,
observation,
startProbs = NULL,
transProbs = NULL,
leak_param = 0

)

Arguments

States A (2 * 1) vector with first element being discrete state value for the cases(or pos-
itive) and second element being discrete state value for the controls(or negative)
for given dagHMM

dagmat Adjacent Symmetry Matrix that describes the topology of the dag
net Object of type ’bn’ provided as output by bnlearnmodel2network showing the

TAN structure between target variable and covariates.
observation Dataframe containing the discritized character values of covariates at each node.

If "net" is not given, dataframe should also contain the column for target variable
(as the last column) so as to learn the structure. Column names of dataframe
should be same as the covariate names. Missing values should be denoted by
"NA".

startProbs (Optional) (2 * 1) vector containing starting probabilities for the states. Default
is equally probable states

transProbs (Optional) (2 * 2) matrix containing transition probabilities for the states.
leak_param (Optional) Leak parameter used in Noisy-OR algorithm used in forward and

noisy_or.Default is 0

Value

List describing the parameters of dagHMM(pi, alpha, beta, dagmat, net)

Examples

library(bnlearn)

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped dag

states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while

#B, C and D are covariates.
obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))
hmmA = initHMM(States=states, dagmat= tmat, net=bnet, observation=obsvA)
obsvB=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")),

A=c("P","N","P","P","N"))
hmmB = initHMM(States=states, dagmat= tmat, net=NULL, observation=obsvB)

12 noisy_or

noisy_or Calculating the probability of transition from multiple nodes to given
node in the dag

Description

Calculating the probability of transition from multiple nodes to given node in the dag

Usage

noisy_or(hmm, prev_state, cur_state)

Arguments

hmm Object of class List given as output by initHMM,

prev_state vector containing state variable values for the previous nodes

cur_state character denoting the state variable value for current node

Value

The Noisy_OR probability for the transition

Examples

library(bnlearn)

tmat = matrix(c(0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0),
5,5, byrow= TRUE) #for "X" (5 nodes) shaped dag

states = c("P","N") #"P" represent cases(or positive) and "N" represent controls(or negative)
bnet = model2network("[A][C|A:B][D|A:C][B|A]") #A is the target variable while

#B, C and D are covariates.
obsvA=data.frame(list(B=c("L","H","H","L","L"),C=c("H","H","L","L","H"),D=c("L","L","L","H","H")))
hmmA = initHMM(States=states, dagmat= tmat, net=bnet, observation=obsvA)
Transprob = noisy_or(hmm=hmmA,prev_state=c("P","N"),cur_state="P") #for transition from P & N

#simultaneously to P

Index

backward, 2, 6, 8
baumWelch, 3, 5
baumWelchRecursion, 4, 5
bnlearn, 10, 11
bwd_seq_gen, 2, 5, 6

calc_emis, 7

forward, 3, 7, 9, 11
fwd_seq_gen, 5, 8, 9

gen_emis, 10

initHMM, 2, 4–6, 8, 9, 10, 12

noisy_or, 11, 12

13

	backward
	baumWelch
	baumWelchRecursion
	bwd_seq_gen
	calc_emis
	forward
	fwd_seq_gen
	gen_emis
	initHMM
	noisy_or
	Index

