Dependency-free purrr-like apply/map/iterate functions
Install the development version from Github with:
## install remotes pkg if not already
if (!requireNamespace("remotes", quietly = TRUE)) {
install.packages("remotes")
}
## install from github
::install_github("mkearney/dapr") remotes
{dapr} provides the ease and consistency of {purrr}, (see
also: simple benchmark results plot below) including use of
~
and .x
, without all the dependencies. In
other words, use {dapr} when you want a purrr-like
experience but you need a lightweight solution.
Function names use the convention *ap()
where
*
is the first letter of output data
type.
vap
for
vectorslap
for
listsdap
for
data framesCommon inputs:
.data
Input object–numeric, character, list, data
frame, etc.–over which elements will be iterated. If matrix or data
frame, each column will be treated as the elements which are to be
iterated over..f
Function to apply to each element of input object.
This can be written as a single function name e.g., mean
, a
formula-like function call where .x
is assumed to be the
iterated over element of input data e.g., ~ mean(.x)
, or an
in-line function definition e.g., function(x) mean(x)
.Functions that apply expressions to input data objects and return atomic vectors e.g., numeric (double), character, logical.
vap_dbl()
Iterate and return
numeric vector.vap_int()
Iterate and return
integer vector.vap_lgl()
Iterate and return
logical vector.vap_chr()
Iterate and return
character vector.## create data
set.seed(2018)
<- replicate(5, rnorm(10), simplify = FALSE)
d <- replicate(5, sample(letters, 10), simplify = FALSE)
e
## numeric
vap_dbl(d, ~ mean(.x))
#> [1] 0.26934527 -0.55232322 0.05559290 -0.06253258 -0.11183760
## integer
vap_int(d, length)
#> [1] 10 10 10 10 10
## logical
vap_lgl(d, ~ max(.x) > 3)
#> [1] FALSE FALSE FALSE FALSE FALSE
## character
vap_chr(e, paste, collapse = "")
#> [1] "hizjpgcexk" "rbeovimtxh" "ujrimwgvzs" "euwrlytgbj" "qkrhylgmnx"
Function(s) that apply expressions to input data objects and return lists.
lap()
Iterate and return a
list vector.## list of strings
lap(e[1:2], ~ paste0(.x, "."))
#> [[1]]
#> [1] "h." "i." "z." "j." "p." "g." "c." "e." "x." "k."
#>
#> [[2]]
#> [1] "r." "b." "e." "o." "v." "i." "m." "t." "x." "h."
ilap()
Iterate over sequence length
.i
(instead of .x
) and return a
list vector.## list of strings
ilap(1:4, ~ paste0(letters[.i], rev(LETTERS)[.i]))
#> [[1]]
#> [1] "aZ"
#>
#> [[2]]
#> [1] "bY"
#>
#> [[3]]
#> [1] "cX"
#>
#> [[4]]
#> [1] "dW"
Functions that apply expressions to input data objects and return data frames.
dap*()
Iterate and return a
data frame
dapc()
Iterate over
columnsdapr()
Iterate over
rowsdap*_if()
Conditionally iterate
dapc_if()
Conditionally iterate over
columnsdapr_if()
Conditionally iterate over
rows## some data
<- data.frame(
d a = letters[1:3],
b = rnorm(3),
c = rnorm(3),
stringsAsFactors = FALSE
)
## column explicit (same as dap)
dapc(d[-1], ~ round(.x, 2))
#> b c
#> 1 -0.50 -0.09
#> 2 -1.87 1.08
#> 3 0.74 -1.36
## rows
dapr(d[-1], round, 3)
#> b c
#> 1 -0.499 -0.089
#> 2 -1.869 1.081
#> 3 0.743 -1.365
## conditional COLUMNS
dapc_if(d, is.numeric, ~ round(.x, 4))
#> a b c
#> 1 a -0.4994 -0.0892
#> 2 b -1.8686 1.0812
#> 3 c 0.7434 -1.3646
## conditional ROWS
dapr_if(d[-1], ~ sum(.x) >= -.7, ~ round(.x, 0))
#> b c
#> 1 0.000000 0.000000
#> 2 -1.868615 1.081164
#> 3 1.000000 -1.000000