R package dbscan - Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Related Algorithms

CRAN version stream r-universe status CRAN RStudio mirror downloads

This R package provides a fast C++ (re)implementation of several density-based algorithms with a focus on the DBSCAN family for clustering spatial data. The package includes:

Clustering

Outlier Detection

Fast Nearest-Neighbor Search (using kd-trees)

The implementations use the kd-tree data structure (from library ANN) for faster k-nearest neighbor search, and are typically faster than the native R implementations (e.g., dbscan in package fpc), or the implementations in WEKA, ELKI and Python’s scikit-learn.

Installation

Stable CRAN version: Install from within R with

install.packages("dbscan")

Current development version: Install from r-universe.

install.packages("dbscan", repos = "https://mhahsler.r-universe.dev")

Usage

Load the package and use the numeric variables in the iris dataset

library("dbscan")

data("iris")
x <- as.matrix(iris[, 1:4])

DBSCAN

db <- dbscan(x, eps = 0.4, minPts = 4)
db
## DBSCAN clustering for 150 objects.
## Parameters: eps = 0.4, minPts = 4
## Using euclidean distances and borderpoints = TRUE
## The clustering contains 4 cluster(s) and 25 noise points.
## 
##  0  1  2  3  4 
## 25 47 38 36  4 
## 
## Available fields: cluster, eps, minPts, dist, borderPoints

Visualize the resulting clustering (noise points are shown in black).

pairs(x, col = db$cluster + 1L)

OPTICS

opt <- optics(x, eps = 1, minPts = 4)
opt
## OPTICS ordering/clustering for 150 objects.
## Parameters: minPts = 4, eps = 1, eps_cl = NA, xi = NA
## Available fields: order, reachdist, coredist, predecessor, minPts, eps,
##                   eps_cl, xi

Extract DBSCAN-like clustering from OPTICS and create a reachability plot (extracted DBSCAN clusters at eps_cl=.4 are colored)

opt <- extractDBSCAN(opt, eps_cl = 0.4)
plot(opt)

HDBSCAN

hdb <- hdbscan(x, minPts = 4)
hdb
## HDBSCAN clustering for 150 objects.
## Parameters: minPts = 4
## The clustering contains 2 cluster(s) and 0 noise points.
## 
##   1   2 
## 100  50 
## 
## Available fields: cluster, minPts, coredist, cluster_scores,
##                   membership_prob, outlier_scores, hc

Visualize the hierarchical clustering as a simplified tree. HDBSCAN finds 2 stable clusters.

plot(hdb, show_flat = TRUE)

License

The dbscan package is licensed under the GNU General Public License (GPL) Version 3. The OPTICSXi R implementation was directly ported from the ELKI framework’s Java implementation (GNU AGPLv3), with explicit permission granted by the original author, Erich Schubert.

Changes

References