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cvt Centroidal Voronoi (Dirichlet) tessellation.

Description

Calculates the centroidal Voronoi (Dirichlet) tessellation using Lloyd’s algorithm.

Usage

cvt(object, stopcrit = c("change", "maxit"), tol = NULL,
maxit = 100, verbose = FALSE)

Arguments

object An object of class either "deldir" (as returned by deldir()) or "tile.list"
(as returned by tile.list()).

stopcrit Text string specifying the stopping criterion for the algorithm. If this is "change"
then the algorithm halts when the maximum change in in the distances between
corresponding centroids, between iterations, is less than tol (see below). It
stopcrit is "maxit" then the algorithm halts after a specified number of itera-
tions (maxit; see below) have been completed. This argument may be abbrevi-
ated, e.g. to "c" or "m".

tol The tolerance used when the stopping criterion is "change". Defaults to .Machine$double.eps.
maxit The maximum number of iterations to perform when the stopping criterion is

"maxit".
verbose Logical scalar. If verbose is TRUE then rudimentary “progress reports” are

printed out, every 10 iterations if the stopping criterion is "change" or every
iteration if the stopping criterion is "maxit".
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Details

The algorithm iteratively tessellates a set of points and then replaces the points with the centroids
of the tiles associated with those points. “Eventually” (at convergence) points and the centroids of
their associated tiles coincide.

Value

A list with components:

centroids A data frame with columns "x" and "y" specifying the coordinates of the limit-
ing locations of the tile centroids.

tiles An object of class "tile.list" specifying the Dirichlet (Voronoi) tiles in the
tessellation of the points whose coordinates are given in centroids. Note the
tile associated with the ith point has centroid equal to that point.

Note

This function was added to the deldir package at the suggestion of Dr. Micha\"el Aupetit, Senior
Scientist at the Qatar Computing Research Institute, Hamad Bin Khalifa University.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

https://en.wikipedia.org/wiki/Lloyd’s_algorithm

Lloyd, Stuart P. (1982). Least squares quantization in PCM. IEEE Transactions on Information
Theory 28 (2), pp. 129–137, doi:10.1109/TIT.1982.1056489.

See Also

deldir() tile.list()

Examples

# Takes too long.
set.seed(42)
x <- runif(20)
y <- runif(20)
dxy <- deldir(x,y,rw=c(0,1,0,1))
cxy1 <- cvt(dxy,verb=TRUE)
plot(cxy1$tiles)
with(cxy1$centroids,points(x,y,pch=20,col="red"))
cxy2 <- cvt(dxy,stopcrit="m",verb=TRUE)
plot(cxy2$tiles)
with(cxy2$centroids,points(x,y,pch=20,col="red"))

# Visually indistinguishable from the cxy1 plot.
# But ...

all.equal(cxy1$centroids,cxy2$centroids) # Not quite.

https://en.wikipedia.org/wiki/Lloyd's_algorithm
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cxy3 <- cvt(dxy,stopcrit="m",verb=TRUE,maxit=250)
all.equal(cxy1$centroids,cxy3$centroids) # Close, but no cigar.
cxy4 <- cvt(dxy,verb=TRUE,tol=1e-14)
cxy5 <- cvt(dxy,stopcrit="m",verb=TRUE,maxit=600)
all.equal(cxy4$centroids,cxy5$centroids) # TRUE

# Takes a lot of iterations or a really small tolerance
# to get "good" convergence. But this is almost surely
# of no practical importance.

txy <- tile.list(dxy)
cxy6 <- cvt(txy)
all.equal(cxy6$centroids,cxy1$centroids) # TRUE

deldir Delaunay triangulation and Dirichlet tessellation

Description

This function computes the Delaunay triangulation (and hence the Dirichlet or Voronoi tessella-
tion) of a planar point set according to the second (iterative) algorithm of Lee and Schacter — see
References. The triangulation is made to be with respect to the whole plane by “suspending” it
from so-called ideal points (-Inf,-Inf), (Inf,-Inf) (Inf,Inf), and (-Inf,Inf). The triangulation is also
enclosed in a finite rectangular window.

Usage

deldir(x, y, z=NULL, rw=NULL, eps=1e-09, sort=TRUE, plot=FALSE,
round=TRUE,digits=6, ...)

Arguments

x,y These arguments specify the coordinates of the point set being triangulated/tessellated.
Argument x may be a numeric vector or it may be a data structure consisting of
a matrix, a data frame, a generic list, or an object of class "ppp". (See package
spatstat.) Argument y, if specified, is always a numeric vector. The "x" and
"y" coordinates are extracted from arguments x and y according to (what can
be, in some instances) a rather complicated protocol. See Notes on extracting
the coordinates for details of this protocol.

z Optional argument specifying “auxiliary” values or “tags” associated with the
respective points. (See Notes on “tags”.) This argument may be a vector or
factor whose entries constitute these tags, or it may be a text string naming such
a vector or factor. If z, or the object named by z is a vector (rather than a
factor) it may be of any mode (numeric, character, logical, etc.). See Notes on
extracting z for how z is handled when argument x is a data structure (rather
than a numeric vector).

rw The coordinates of the corners of the rectangular window enclosing the trian-
gulation, in the order (xmin, xmax, ymin, ymax). Any data points outside this
window are discarded. If this argument is omitted, it defaults to values given by
the range of the data, plus and minus 10 percent.
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eps A value of epsilon used in testing whether a quantity is zero, mainly in the
context of whether points are collinear. If anomalous errors arise, it is possible
that these may averted by adjusting the value of eps upward or downward.

sort Logical argument; if TRUE (the default) the data are sorted into a sequence of
“bins” prior to triangulation; this makes the algorithm slightly more efficient.
Normally one would set sort equal to FALSE only if one wished to observe
some of the fine detail of the way in which adding a point to a data set affected
the triangulation, and therefore wished to make sure that the point in question
was added last. Essentially this argument would get used only in a debugging
process.

plot Logical argument; if TRUE a plot is produced. The nature of the plot may be con-
trolled by using the ... argument to pass appropriate arguments to plot.deldir().
Without “further instruction” a plot of the points being triangulated and of both
the triangulation and the tessellation is produced;

round Logical scalar. Should the data stored in the returned value be rounded to digits
decimal digits? This is essentially for cosmetic purposes. This argument is a
“new addition” to deldir(), as of version 0.1-26. Previously rounding was
done willy-nilly. The change was undertaken when Kodi Arfer pointed out that
the rounding might have unwanted effects upon “downstream” operations.

digits The number of decimal places to which all numeric values in the returned list
should be rounded. Defaults to 6. Ignored if round (see above) is set to FALSE.

... Auxiliary arguments add, wlines, number, nex, col, lty, pch, xlim, and ylim
(and possibly other plotting parameters) may be passed to plot.deldir() through
... if plot=TRUE.

Details

This package had its origins (way back in the mists of time!) as an Splus library section named
“delaunay”. That library section in turn was a re-write of a stand-alone Fortran program written
in 1987/88 while the author was with the Division of Mathematics and Statistics, CSIRO, Sydney,
Australia. This program was an implementation of the second (iterative) Lee-Schacter algorithm.
The stand-alone Fortran program was re-written as an Splus function (which called upon dynami-
cally loaded Fortran code) while the author was visiting the University of Western Australia, May,
1995.

Further revisions were made December 1996. The author gratefully acknowledges the contribu-
tions, assistance, and guidance of Mark Berman, of D.M.S., CSIRO, in collaboration with whom
this project was originally undertaken. The author also acknowledges much useful advice from
Adrian Baddeley, formerly of D.M.S., CSIRO (now Professor of Statistics at Curtin University).
Daryl Tingley of the Department of Mathematics and Statistics, University of New Brunswick, pro-
vided some helpful insight. Special thanks are extended to Alan Johnson, of the Alaska Fisheries
Science Centre, who supplied two data sets which were extremely valuable in tracking down some
errors in the code.

Don MacQueen, of Lawrence Livermore National Lab, wrote an Splus driver function for the old
stand-alone version of this software. That driver, which was available on Statlib, was deprecated
in favour of the Statlib package “delaunay”. Don also collaborated in the preparation of the latter
package. It is not clear to me whether the “delaunay” package, or indeed Statlib (or indeed Splus!)
still exist.
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See the ChangeLog for information about further revisions and bug-fixes.

Value

A list (of class deldir), invisible if plot=TRUE, with components:

delsgs A data frame with 6 columns. The first 4 entries of each row are the coor-
dinates of the points joined by an edge of a Delaunay triangle, in the order
(x1,y1,x2,y2). The last two entries are the indices of the two points which are
joined.

dirsgs A data frame with 10 columns. The first 4 entries of each row are the coordinates
of the endpoints of one the edges of a Dirichlet tile, in the order (x1,y1,x2,y2).
The fifth and sixth entries, in the columns named ind1 and ind2, are the indices
of the two points, in the set being triangulated, which are separated by that
edge. The seventh and eighth entries, in the columns named bp1 and bp2 are
logical values. The entry in column bp1 indicates whether the first endpoint of
the corresponding edge of a Dirichlet tile is a boundary point (a point on the
boundary of the rectangular window). Likewise for the entry in column bp2 and
the second endpoint of the edge.
The ninth and tenth entries, in columns named thirdv1 and thirdv2 are the
indices of the respective third vertices of the Delaunay triangles whose circum-
centres constitute the corresponding endpoints of the edge under consideration.
(The other two vertices of the triangle in question are indexed by the entries of
columns ind1 and ind2.)
The entries of columns thirdv1 and thirdv2 may (also) take the values $-1, -2,
-3$, and $-4$. This will be the case if the circumcentre in question lies outside
of the rectangular window rw. In these circumstances the corresponding end-
point of the tile edge is the intersection of the line joining the two circumcentres
with the boundary of rw, and the numeric value of the entry of column “thirdv1”
(respectively “thirdv2”) indicates which side. The numbering follows the con-
vention for numbering the sides of a plot region in R: 1 for the bottom side, 2 for
the left hand side, 3 for the top side and 4 for the right hand side.
Note that the entry in column thirdv1 will be negative if and only if the cor-
responding entry in column bp1 is TRUE. Similarly for columns thirdv2 and
bp2.

summary a data frame with 9, 10 or 11 columns and n.data + n.dum rows (see below).
The rows correspond to the points in the set being triangulated. Note that the
row names are the indices of the points in the original sequence of points being
triangulated/tessellated. Usually these will be the sequence 1, 2, ..., n. However
if there were duplicated points then the row name corresponding to a point is
the first of the indices of the set of duplicated points in which the given point
appears. The columns are:

• x (the x-coordinate of the point)
• y (the y-coordinate of the point)
• z (the auxiliary values or “tags”; present only if these were specified)
• n.tri (the number of Delaunay triangles emanating from the point)
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• del.area (1/3 of the total area of all the Delaunay triangles emanating from
the point)

• del.wts (the corresponding entry of the del.area column divided by the
sum of this column)

• n.tside (the number of sides — within the rectangular window — of the
Dirichlet tile surrounding the point)

• nbpt (the number of points in which the Dirichlet tile intersects the bound-
ary of the rectangular window)

• dir.area (the area of the Dirichlet tile surrounding the point)
• dir.wts (the corresponding entry of the dir.area column divided by the

sum of this column).

Note that the factor of 1/3 associated with the del.area column arises because
each triangle occurs three times — once for each corner.

n.data the number of points in the set which was triangulated, with any duplicate points
eliminated. It is the same as the number of rows of summary.

del.area the area of the convex hull of the set of points being triangulated, as formed by
summing the del.area column of summary.

dir.area the area of the rectangular window enclosing the points being triangulated, as
formed by summing the dir.area column of summary.

rw the specification of the corners of the rectangular window enclosing the data, in
the order (xmin, xmax, ymin, ymax).

ind.orig A vector of the indices of the points (x,y) in the set of coordinates initially sup-
plied to deldir() before duplicate points (if any) were removed. These indices
are used by triang.list().

Side Effects

If plot=TRUE a plot of the triangulation and/or tessellation is produced or added to an existing plot.

Notes on extracting the coordinates

The protocol for extracting the x and y coordinates from the arguments x and y is a bit complicated
and confusing. It is designed to handle a number of different desiderata and to accommodate various
feature-requests that users have made over the years. Basically the protocol is:

• If x is a numeric vector and y is a numeric vector then x is used as the x-coordinates and y is
used as the y-coordinates.

• If x is a matrix, a data frame, or a generic list), and y is a numeric vector, then the x-coordinates
are sought amongst the components of x and y is used as the y-coordinates.

• If x is a matrix, a data frame, or a generic list and y is not specified or cannot be found, then
both the x-coordinates and y-coordinates are sought amongst the components of x.

• If x an object of class "ppp" then both the x-coordinates and y-coordinates are taken from the
components of x. If y is specified, it is ignored (with a warning).

• If x is a numeric vector and y is not specified or cannot be found, then an error is thrown.

A few more details:
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• If x is of class "ppp" then it will definitely have components named "x" and "y".

• If x is a generic list, it must have a component named "x" (otherwise an error is thrown), and
the x-coordinates are set equal to this component. If y is not specified or cannot be found,
then a "y" component of x is sought. If such a component exists then the y-coordinates are
set equal to this component. Otherwise an error is thrown).

• If x is a matrix or a data frame, the protocol gets a bit more intricate.

– If x has a column named "x" then this column is taken to be the x-coordinates.
– Otherwise the x-coordinates are taken to be the first column of x that is not named "y"

or znm (where znm is the name of the object providing the “tags”, if “tags” have been
specified).

– If there is no such first column (e.g. if there are only two columns and these have names
"y" and znm) then an error is thrown.

– If y is not specified or cannot be found, and if x has a column named "y" then this column
is taken to be the y-coordinates.

– Otherwise, in this situation, the y-coordinates are taken to be the first column of x that
is not named "x" or znm and is not equal to the column previously selected to be the
x-coordinates.

– If there is no such first column (e.g. if there are only two columns and these have names
"x" and znm), then an error is thrown.

Got all that? :-) If these instructions seem rather bewildering (and indeed they are!) just keep
things simple and make calls like deldir(x,y) where x and y are numeric vectors that have been
previously assigned in the global environment.

Notes on extracting z

If argument x is a data structure (rather than a numeric vector) and is not an object of class "ppp"
then z, if specified and not found, is searched for in x. If x is of class "ppp" then what happens
depends on whether z was specified or left to take its default value of NULL. In the former case, z
takes the specified value. In the latter case the value of "z" is taken from the marks of x provided
that x is indeed a marked point pattern and that the marks are atomic (essentially provided that the
marks are not a data frame). Otherwise z is left NULL, i.e. there are no “tags” associated with the
points.

Notes on “tags”

The “tags” are simply values that are associated in some way with the data points and hence with
the tiles of the tessellation produced. They DO NOT affect the tessellation. In previous versions of
this package (0.2-10 and earlier) the entries of z were referred to as “weights”. This terminology
has been changed since it is misleading. The tessellation produced when a z argument is supplied
is the same as is it would be if there were no z argument (i.e. no “weights”). The deldir package
DOES NOT do weighted tessellation.

Notes on Memory Allocation

It is difficult-to-impossible to determine a priori how much memory needs to be allocated (in the
Fortran code) for storing the edges of the Delaunay triangles and Dirichlet tiles, and for storing the
“adjacency list” used by the Lee-Schacter algorithm. In the code, an attempt is made to allocate
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sufficient storage. If, during the course of running the algorithm, the amount of storage turns out
to be inadequate, the algorithm is halted, the storage is incremented, and the algorithm is restarted
(with an informative message). This message may be suppressed by wrapping the call to deldir()
in suppressMessages().

Notes on error messages

In previous versions of this package, error traps were set in the underlying Fortran code for 17
different errors. These were identified by an error number which was passed back up the call stack
and finally printed out by deldir() which then invisibly returned a NULL value. A glossary of the
meanings of the values of was provided in a file to be found in a file located in the inst directory
(“folder” if you are a Windoze weenie).

This was a pretty shaganappi system. Consequently, as of version 1.2-1, conversion to “proper”
error trapping was implemented. Such error trapping is effected via the rexit() subroutine which
is now available in R. (See “Writing R Extensions”, section 6.2.1.)

Note that when an error is detected, deldir() now exits with a genuine error, rather than returning
NULL. The glossary of the meanings of “error numbers” is now irrelevant and has been removed
from the inst directory.

An error trap that merits particular mention was introduced in version 0.1-16 of deldir. This
error trap relates to “triangle problems”. It was drawn to my attention by Adam Dadvar (on 18
December, 2018) that in some data sets collinearity problems may cause the “triangle finding”
procedure, used by the algorithm to successively add new points to a tessellation, to go into an
infinite loop. A symptom of the collinearity is that the vertices of a putative triangle appear not to
be in anticlockwise order irrespective of whether they are presented in the order i, j, k or k, j, i.
The result of this anomaly is that the procedure keeps alternating between moving to “triangle” i,
j, k and moving to “triangle” k, j, i, forever.

The error trap in question is set in trifnd, the triangle finding subroutine. It detects such occur-
rences of “clockwise in either orientation” vertices. The trap causes the deldir() function to throw
an error rather than disappearing into a black hole.

When an error of the “triangle problems” nature occurs, a possible remedy is to increase the value
of the eps argument of deldir(). (See the Examples.) There may conceivably be other problems
that lead to infinite loops and so I put in another error trap to detect whether the procedure has
inspected more triangles than actually exist, and if so to throw an error.

Note that the strategy of increasing the value of eps is probably the appropriate response in most
(if not all) of the cases where errors of this nature arise. Similarly this strategy is probably the
appropriate response to the errors

• Vertices of “triangle” are collinear and vertex 2 is not between 1 and 3. Error in circen.

• Vertices of triangle are collinear. Error in dirseg.

• Vertices of triangle are collinear. Error in dirout.

However it is impossible to be sure. The intricacy and numerical delicacy of triangulations is too
great for anyone to be able to foresee all the possibilities that could arise.

If there is any doubt as to the appropriateness of the “increase eps” strategy, users are advised to
do their best to explore the data set, graphically or by other means, and thereby determine what is
actually going on and why problems are occurring.
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Warnings

1. The process for determining if points are duplicated changed between versions 0.1-9 and 0.1-
10. Previously there was an argument frac for this function, which defaulted to 0.0001. Points
were deemed to be duplicates if the difference in x-coordinates was less than frac times the
width of rw and y-coordinates was less than frac times the height of rw. This process has
been changed to one which uses duplicated() on the data frame whose columns are x and y.
As a result it may happen that points which were previously eliminated as duplicates will no
longer be eliminated. (And possibly vice-versa.)

2. The components delsgs and summary of the value returned by deldir() are now data frames
rather than matrices. The component summary was changed to allow the “auxiliary” values
z to be of arbitrary mode (i.e. not necessarily numeric). The component delsgs was then
changed for consistency. Note that the other “matrix-like” component dirsgs has been a data
frame since time immemorial.
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See Also

plot.deldir(), tile.list(), triang.list()

Examples

x <- c(2.3,3.0,7.0,1.0,3.0,8.0)
y <- c(2.3,3.0,2.0,5.0,8.0,9.0)

# Let deldir() choose the rectangular window.
dxy1 <- deldir(x,y)

# User chooses the rectangular window.
dxy2 <- deldir(x,y,rw=c(0,10,0,10))

# Put "dummy" points at the corners of the rectangular
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# window, i.e. at (0,0), (10,0), (10,10), and (0,10)
xx <- c(x,0,10,10,0)
yy <- c(y,0,0,10,10)
dxy3 <- deldir(xx,yy,rw=c(0,10,0,10))

# Plot the triangulation created (but not the tessellation).
dxy2 <- deldir(x,y,rw=c(0,10,0,10),plot=TRUE,wl="tr")

# Example of collinearity error.
## Not run:

dniP <- deldir(niProperties) # Throws an error

## End(Not run)
dniP <- deldir(niProperties,eps=1e-8) # No error.

# Example of using data stored in a data frame.
dsw <- deldir(seaweed)
# Example where "data" is of class "ppp".
dtoy <- deldir(toyPattern)
# The "tags", in dtoy$summary$z, are the marks of the toy ppp
# object which consists of the letters "a","b","c" and "d".
#
# Artificial example of tags.
set.seed(42)
trees1 <- sample(c("spruce","birch","poplar","shoe"),20,TRUE)
trees2 <- sample(c("fir","maple","larch","palm"),20,TRUE)
egDat <- data.frame(x=runif(20),y=runif(20),species=trees1)
tagNm <- "species"
species <- trees2
dd1 <- deldir(egDat) # No tags.
dd2 <- deldir(egDat,z=species) # Uses trees1 as the tags.
dd3 <- deldir(egDat,z="species") # Same as dd2.
dd4 <- deldir(egDat,z=tagNm) # Same as dd2 and dd3.
spec <- species
dd5 <- deldir(egDat,z=spec) # Uses trees2 as the tags.

# Duncan Murdoch's examples. The deldir() function was not
# handling such examples correctly until Duncan kindly set
# me on the right path.
set.seed(123)
dd6 <- deldir(rnorm(32),rnorm(32),rnorm(32))
#
x <- cbind(x = 1:10, junk = 11:20)
y <- 21:30
z <- 31:40
d7 <- deldir(x=x, y=y, z=z)
#
# print(d7$summary) reveals that x is 1:10, y is 21:30
# and z is 31:40; x[,"junk"] is ignored as it should be.
x <- cbind(x = 1:10, "rnorm(10)" = 11:20)
y <- 21:30
z <- 41:50
d8 <- deldir(x=x, y=y, z=rnorm(10))
#
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# print(d8$summary) reveals that x is 1:10, y is 21:30 and z is a
# vector of standard normal values. Even though x has a column with
# the name of the z argument i.e. "rnorm(10)" (!!!) the specified
# value of z takes precedence over this column (and, as per the usual
# R syntax) over the object named "z" in the global environment.

divchain Dividing chain.

Description

Create the “dividing chain” of a Dirichlet tessellation. The tessellation must have been created from
a set of points having associated “tags”. The dividing chain consists of those edges of Dirichlet tiles
which separate points having different values of the given tags.

Usage

divchain(x, ...)
## Default S3 method:

divchain(x, y, z, ...)
## S3 method for class 'deldir'

divchain(x, ...)

Arguments

x Either an object specifying coordinates (in the case of the "default" method;
see deldir() for details) or an object of class “deldir”. In the latter case this
object must have been created in such a way that the points of the set being
tessellated have associate categorical “tags”. That is, deldir() must have been
called with a z argument or the x argument to deldir() must have had an ap-
propriate component which could be taken to be z. Note that if the value of z
that was used was not a factor, it is coerced to one.

y A numeric vector constituting the y-coordinates of the set of points being tes-
sellated. See deldir() for details. Not used by the "deldir" method.

z A vector or factor specifying “auxiliary” values or “tags”. If this argument is left
NULL then it is extracted, if possible, from the components of x. See deldir()
for further details. If z is not a factor it is coerced to one. See deldir() for
details. Not used by the "deldir" method.

... Arguments to be passed to deldir(). Not used by the "deldir" method.

Value

An object of class “divchain” consisting of a data frame with columns named “x0”, “y0”, “x1”,
“y1”, “v01”, “v02”, “v03”, “v11”, “v12” and “v13”.

The columns named “x0” and “y0” consist of the coordinates of one endpoint of an edge of a
Dirichlet tile and the columns named “x1” and “y1” consist of the coordinates of the other endpoint.
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The columns named “vij”, i = 0, 1, j = 1, 2, 3, consist of the indices of the vertices of the Delaunay
triangles whose circumcentres constitute the respective endpoints of the corresponding edge of a
Dirichlet tile. The entries of column “vi3” may (also) take the values $-1, -2, -3$, and $-4$. This will
be the case if the circumcentre in question lay outside of the rectangular window rw (see deldir())
enclosing the points being tessellated. In these circumstances the corresponding endpoint of the
tile edge is the intersection of the line joining the two circumcentres with the boundary of rw, and
the numeric value of the entry of column “vi3” indicates which side. The numbering follows the
convention for numbering the sides of a plot region in R: 1 for the bottom side, 2 for the left side, 3
for the top side and 4 for the right side.

Note that the triple of vertices uniquely identify the endpoint of the tile edge.

The object has an attribute rw which is equal to the specification of the rectangular window within
which the triangulation/tessellation in question was constructed. (See deldir().)

Note

This function was created in response to a question asked on stackoverflow.com by a user named
“Dan”.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir() plot.divchain()

Examples

set.seed(42)
x <- runif(50)
y <- runif(50)
z <- factor(kmeans(cbind(x,y),centers=4)$cluster)
dc1 <- divchain(x,y,z,rw=c(0,1,0,1))
dxy <- deldir(x,y,z=z,rw=c(0,1,0,1))
dc2 <- divchain(dxy)

duplicatedxy Determine duplicated points.

Description

Find which points among a given set are duplicates of others.

Usage

duplicatedxy(x, y)
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Arguments

x Either a vector of x coordinates of a set of (two dimensional) points, or a list (or
data frame) with columns x and y giving the coordinates of a set of such points.

y A vector of y coordinates of a set of (two dimensional) points. Ignored if x is a
list or data frame.

Details

Often it is of interest to associate each Dirichlet tile in a tessellation of a planar point set with the
point determining the tile. This becomes problematic if there are duplicate points in the set being
tessellated/triangulated. Duplicated points are automatically eliminated “internally” by deldir().
The association between tiles and the indices of the original set of points is now preserved by the
component ind.orig of the object returned by deldir(). However confusion could still arise.

If it is of interest to associate Dirichlet tiles with the points determining them, then it is better to
proceed by eliminating duplicate points to start with. This function (duplicatedxy()) provides a
convenient way of doing so.

Value

A logical vector of length equal to the (original) number of points being considered, with entries
TRUE if the corresponding point is a duplicate of a point with a smaller index, and FALSE otherwise.

Warning

Which indices will be considered to be indices of duplicated points (i.e. get TRUE values) will of
course depend on the order in which the points are presented.

Note

The real work is done by the base R function duplicated().

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

duplicated(), deldir()

Examples

set.seed(42)
xy <- data.frame(x=runif(20),y=runif(20))
# Lots of duplicated points.
xy <- rbind(xy,xy[sample(1:20,20,TRUE),])
# Scramble.
ii <- sample(1:40,40)
x <- xy$x[ii]
y <- xy$y[ii]
# Unduplicate!
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iii <- !duplicatedxy(x,y)
xu <- x[iii]
yu <- y[iii]
# The i-th tile is determined by (xu[i],yu[i]):
dxy <- deldir(xu,yu)

grapherXmpl grapherXmpl

Description

A data set taken from an example in the grapherator package. This data set demonstrates handling
a data set with duplicated points.

Usage

grapherXmpl

Format

A data frame with 250 observations on the following 2 variables.

x a numeric vector

y a numeric vector

Details

There are 25 duplicated points, so the net number of observations is 225. These data constitute a
structure (named coordinates) generated internally in the function addEdgesDelaunay. The call
is to be found in the examples in the help file for the plot.grapherator() in the grapherator
package. The relevant example initially threw an error, revealing a bug in deldir() that was trig-
gered when there were duplicated points in the data.

Source

The grapherator package, https://CRAN.R-project.org/package=grapherator

Examples

dgX <- deldir(grapherXmpl) # Now works!!!`

https://CRAN.R-project.org/package=grapherator
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lawSummary Produce a Lewis-Aboav-Weaire summary of a tessellation.

Description

Produce a summary of a Dirichlet (Voronoi) tessellation in terms of parameters relevant to Lewis’s
law and Aboav-Weaire’s law. Note that “law” in the function name corresponds to “Lewis-Aboav-
Weaire”.

Usage

lawSummary(object)

Arguments

object An object of class "deldir" as returned by the function deldir().

Details

Tiles are stripped away from the tessellation in “layers”. Layer 1 consists of “boundary” tiles,
i.e. tiles having at least one vertex on the enclosing rectangle (determined by the rw argument of
deldir()). Layer 2 consists of tiles which are neighbours of tiles in layer 1 (i.e. tiles determined
by points that are Delaunay neighbours of points determining the tiles in layer 1). Layer 3 consists
of tiles which are neighbours of tiles in layer 2.

The parameters of interest in respect of the Lewis-Aboav-Weaire summary are then calculated in
terms of the tiles that remain after the three layers have been stripped away, which will be referred
to as “interior” tiles. These parameters are:

• the areas of each of the interior tiles

• the number of edges of each of the interior tiles

• the number of edges of all neighbouring tiles of each of the interior tiles.

Note that the neighbouring tiles of the interior tiles may include tiles which are not themselves
interior tiles (i.e. tiles which are in layer 3).

This function was created at the request of Kai Xu (Fisheries College, Jimei University, Xiamen,
Fujian, China 361021).

Value

If no tiles remain after the three layers have been stripped away, then the returned value is NULL.
Otherwise the returned value is a list with components calculated in terms of the remaining (“inte-
rior”) tiles. These components are:

• tile.vertices A list whose entries are data frames giving the coordinates of the vertices of
the interior tiles.

• tile.areas A vector of the areas of the interior tiles in the tessellation in question.
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• tile.tags A vector or factor whose values are the “tags” of the interior tiles. The “original”
of this object (the “tags” associated with all of the tiles) is provided as the z argument to
deldir(). The tile.tags component of the value returned by lawSummary() is present
only if deldir() was called with a (non-NULL) value of the z argument.

• num.edges A vector of the number of edges of each such tile.

• num.nbr.edges A list with a component for each point, in the set being tessellated, whose
corresponding tile is an interior tile. Each component of this list is the vector of the number
of edges of the interior tiles determined by points which are Delaunay neighbours of the point
corresponding to the list component in question.

• totnum.nbr.edges A vector whose entries consist of the sums of the vectors in the foregoing
list.

The returned list also has attributes as follows:

• i1 An integer vector whose entries are in the indices of the tiles in layer 1.

• i2 An integer vector whose entries are in the indices of the tiles in layer 2.

• i3 An integer vector whose entries are in the indices of the tiles in layer 3.

• i.kept An integer vector whose entries are in the indices of the tiles that are kept, i.e. those
that remain after the three layers have been stripped away.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

tile.list() tile.centroids()

Examples

# A random pattern:
set.seed(42)
xy1 <- data.frame(x=runif(400,0,20),y=runif(400,0,20))
dxy1 <- deldir(xy1)
ldxy1 <- lawSummary(dxy1)
tl1 <- tile.list(dxy1)
plot(0,0,type="n",xlim=c(-2,35),ylim=c(0,20),asp=1,xlab="x",ylab="y",bty="l")
plot(tl1,showpoints=FALSE,add=TRUE)
points(xy1[attr(ldxy1,"i1"),],pch=20,col="yellow")
points(xy1[attr(ldxy1,"i2"),],pch=20,col="blue")
points(xy1[attr(ldxy1,"i3"),],pch=20,col="green")
points(xy1[attr(ldxy1,"i.kept"),],pch=20,col="red")
legend("right",pch=20,col=c("yellow","blue","green","red"),

legend=c("layer 1","layer 2","layer 3","interior"))

# A highly structured pattern (example due to Kai Xu):
set.seed(115)
x <- c(rep(1:20,10),rep((1:20)+0.5,10))
y <- c(rep(1:10,each=20),rep((1:10)+0.5,each=20))*sqrt(3)
a <- runif(400,0,2*pi)
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b <- runif(400,-1,1)
x <- x+0.1*cos(a)*b
y <- y+0.1*sin(a)*b
xy2 <- data.frame(x,y)
dxy2 <- deldir(xy2)
ldxy2 <- lawSummary(dxy2)
tl2 <- tile.list(dxy2)
plot(0,0,type="n",xlim=c(-2,35),ylim=c(0,20),asp=1,xlab="x",ylab="y",bty="l")
plot(tl2,showpoints=FALSE,add=TRUE)
points(xy2[attr(ldxy2,"i1"),],pch=20,col="yellow")
points(xy2[attr(ldxy2,"i2"),],pch=20,col="blue")
points(xy2[attr(ldxy2,"i3"),],pch=20,col="green")
points(xy2[attr(ldxy2,"i.kept"),],pch=20,col="red")
legend("right",pch=20,col=c("yellow","blue","green","red"),

legend=c("layer 1","layer 2","layer 3","interior"))

niProperties Northern Ireland properties.

Description

The locations (in longitude and latitude) of a number of properties (land holdings) in Northern
Ireland.

Usage

data("niProperties")

Format

A data frame with 240 observations on the following 2 variables.

x A numeric vector of longitudes.

y A numeric vector of latitudes.

Source

These data were kindly provided by Adam Dadvar of the Cartesian Limited consulting service.
URL: http://www.cartesian.com.

Examples

# data(niProperties)
# It is unnecessary to use \code{data} since \code{niProperties} is
# a "first class object". It is "lazily loaded".
plot(niProperties)
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plot.deldir Plot objects produced by deldir

Description

This is a method for plot.

Usage

## S3 method for class 'deldir'
plot(x,add=FALSE,wlines=c("both","triang","tess"),

showpoints=TRUE,number=FALSE,cex=1,nex=1,
cmpnt_col=NULL,cmpnt_lty=NULL,pch=1,xlim=NULL,
ylim=NULL,axes=FALSE,xlab=if(axes) "x" else "",
ylab=if(axes) "y" else"",showrect=FALSE,asp=1,...)

Arguments

x An object of class "deldir" as returned by the function deldir.

add logical argument; should the plot be added to an existing plot?

wlines "which lines?". I.e. should the Delaunay triangulation be plotted (wlines="triang"),
should the Dirichlet tessellation be plotted (wlines="tess"), or should both be
plotted (wlines="both", the default) ?

showpoints Logical scalar; should the points being triangulated/tessellated be plotted?

number Logical argument, defaulting to FALSE; if TRUE then the points plotted will be
labelled with their index numbers (corresponding to the row numbers of the
matrix "summary" in the output of deldir).

cex The value of the character expansion argument cex to be used with the plotting
symbols for plotting the points.

nex The value of the character expansion argument cex to be used by the text func-
tion when numbering the points with their indices. Used only if number=TRUE.

cmpnt_col A vector or list specifying the colours to be used for plotting the (up to five)
different components of the graphic, explicitly the triangulation, the tessella-
tion, the data points, the point numbers and the enclosing rectangle (x$rw)
in that order. The components of this vector or list may be named, with the
names chosen from "tri","tess","points","num","rect". The default is
c(tri=1,tess=1,points=1,num=1,rect=1). If the vector or list is not named,
the component names are assumed to be from the default list of names in the
given order.
Colours may be specified as positive integers, corresponding to the entries of the
current palette(), or as names of colours (from the list given by colors()),
or in terms of their RGB components with strings of the form "#RRGGBB". (See
Color Specification in par().)
If fewer than five colours are given, the missing components are filled in with
1 or palette()[1] as is appropriate. If cmpnt_col does not have names then
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the components are simply recycled. If more than five colours are given, the
redundant ones are ignored (i.e. only the first five are used).

cmpnt_lty A vector or list (of length two) of line types for plotting the two components
of the graphic that consist of lines, i.e. the triangulation and the tessellation.
The types may consist of integers between 1 and 6, or of approriate text strings
("solid", "dashed", "dotted", "dotdash", "longdash" or "twodash"; see the dis-
cussion of lty in par()). The components of cmpnt_lty (vector or list) may
have names ("tri","tess"). The default is c(tri=1,tess=2). If a single value is
given, the missing one is filled in as 1 or "solid" as is appropriate. If more than
two values are given, the redundant ones are ignored, i.e. only the first two are
used.

pch The plotting symbol for plotting the points. May be either integer or character.

xlim The limits on the x-axis. Defaults to rw[1:2] where rw is the rectangular win-
dow specification returned by deldir().

ylim The limits on the y-axis. Defaults to rw[3:4] where rw is the rectangular win-
dow specification returned by deldir().

axes Logical scalar. Should axes be drawn on the plot?

xlab Label for the x-axis. Defaults to x if axes is TRUE and to the empty string if
axes is FALSE. Ignored if add=TRUE.

ylab Label for the y-axis. Defaults to y if axes is TRUE and to the empty string if
axes is FALSE. Ignored if add=TRUE.

showrect Logical scalar; show the enclosing rectangle rw (see deldir()) be plotted?

asp The aspect ratio of the plot; integer scalar or NA. Set this argument equal to NA to
allow the data to determine the aspect ratio and hence to make the plot occupy
the complete plotting region in both x and y directions. This is inadvisable; see
the Warning. The asp argument is ignored if add is TRUE.

... Further plotting parameters (e.g. lw, col) to be passed to segments(). (Con-
ceivably one might also use ... to supply additional arguments to be passed to
points() or text() but this is unlikely.) Note that if col is specified as one of
the ... arguments then this is used as the col argument of segments (and the
values of cmpnt_col[1:2] are ignored.

Side Effects

A plot of the edges of the Delaunay triangles and/or of the Dirichlet tiles is produced or added to
an existing plot. By default the triangles are plotted with solid lines (lty=1) and the tiles with dotted
lines (lty=2). In addition the points being triangulated may be plotted.

Warning

In previous versions of the deldir package, the aspect ratio was not set. Instead, the shape of
the plotting region was set to be square (pty="s"). This practice was suboptimal. To reproduce
previous behaviour set asp=NA (and possibly pty="s") in the call to plot.deldir(). Users, unless
they really understand what they are doing and why they are doing it, are now strongly advised
not to set the value of asp but rather to leave asp equal to its default value of 1. Any other value
may distort the tessellation and destroy the perpendicular appearance of lines which are indeed
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perpendicular. (And conversely may cause lines which are not perpendicular to appear as if they
are.)

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir()

Examples

x <- c(2.3,3.0,7.0,1.0,3.0,8.0) + 0.5
y <- c(2.3,3.0,2.0,5.0,8.0,9.0) + 0.5
x <- c(x,1,10,10,1)
y <- c(y,1,1,10,10)
dxy <- deldir(x,y,rw=c(0,11,0,11))
plot(dxy)

# Plots the tessellation, but does not save the results:
deldir(x,y,rw=c(0,11,0,11),plot=TRUE,

wl="tess",cmpnt_col=c(1,1,2,3,4),num=TRUE)

# Plots the triangulation, but not the tessellation or the points,
# and saves the returned structure:

dxy <- deldir(x,y,rw=c(0,11,0,11),plot=TRUE,wl="triang",wp="none")

# Plot everything:
plot(dxy,cmpnt_col=c("orange","green","red","blue","black"),cmpnt_lty=1,

number=TRUE,nex=1.5,pch=c(19,9),showrect=TRUE,axes=TRUE)

# Complicated example from He Huang:
# "Linguistic distances".
vldm <- c(308.298557,592.555483,284.256926,141.421356,449.719913,

733.976839,591.141269,282.842712,1.414214,732.562625)
ldm <- matrix(nrow=5,ncol=5)
ldm[row(ldm) > col(ldm)] <- vldm
ldm[row(ldm) <= col(ldm)] <- 0
ldm <- (ldm + t(ldm))/2
rownames(ldm) <- LETTERS[1:5]
colnames(ldm) <- LETTERS[1:5]

# Data to be triangulated.
id <- c("A","B","C","D","E")
x <- c(0.5,1,1,1.5,2)
y <- c(5.5,3,7,6.5,5)
dat_Huang <- data.frame(id = id, x = x, y = y)

# Form the triangulation/tessellation.
dH <- deldir(dat_Huang)



22 plot.divchain

# Plot the triangulation with line widths proportional
# to "linguistic distances".
all_col <- rainbow(100)
i <- pmax(1,round(100*vldm/max(vldm)))
use_col <- all_col[i]
ind <- as.matrix(dH$delsgs[,c("ind1","ind2")])
lwv <- ldm[ind]
lwv <- 10*lwv/max(lwv)
plot(dH,wlines="triang",col=use_col,showpoints=FALSE,

lw=lwv,asp=NA)
with(dH,text(x,y,id,cex=1.5))

plot.divchain Plot a dividing chain.

Description

Plot the dividing chain of a Dirichlet tessellation. The tessellation must have been created from a
set of points having associated categorical “tags”. The dividing chain consists of those edges of
Dirichlet tiles which separate points having different values of the given tags.

Usage

## S3 method for class 'divchain'
plot(x, add = FALSE, ...)

Arguments

x An object of class “divchain”. See divchain.deldir() for details.

add Logical scalar. It add=TRUE the plot of the dividing chain is added to an existing
plot.

... Graphical parameters such as main, xlab, col.main, col.lab. In particular
if bty is supplied (as a value other than n) a “box” will be drawn around the
plot that is formed when add=FALSE. Also a non-standard graphical parameter
boxcol may be supplied which will be taken to be the colour with which the box
is drawn. If a col argument is supplied, this determines the colour for plotting
the segments constituting the dividing chain.

Value

None.

Note

This function was created in response to a question asked on stackoverflow.com by a user named
“Dan”.
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Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

divchain() divchain.default() divchain.deldir() deldir()

Examples

set.seed(42)
x <- runif(50)
y <- runif(50)
z <- factor(kmeans(cbind(x,y),centers=4)$cluster)
dc <- divchain(x,y,z,rw=c(0,1,0,1))
plot(dc,lwd=2,col="blue",bty="o")

plot.tile.list Plot Dirichlet (Voronoi) tiles

Description

A method for plot. Plots (sequentially) the tiles associated with each point in the set being tessel-
lated.

Usage

## S3 method for class 'tile.list'
plot(x, verbose = FALSE, close = FALSE, pch = 1,

fillcol = getCol(x,warn=warn), col.pts=NULL,
col.num=NULL,border=NULL, showpoints = !number,
add = FALSE, asp = 1, clipp=NULL, xlab = "x",
ylab = "y", main = "", warn=TRUE,
number=FALSE,adj=NULL,...)

Arguments

x A list of the tiles in a tessellation, as produced the function tile.list().

verbose Logical scalar; if TRUE the tiles are plotted one at a time (with a “Go?” prompt
after each) so that the process can be watched.

close Logical scalar; if TRUE the outer edges of of the tiles (i.e. the edges which are
contained in the enclosing rectangle) are drawn. Otherwise tiles on the periphery
of the tessellation are left “open”.

pch The plotting character (or vector of plotting characters) with which to plot the
points of the pattern which was tessellated. Ignored if showpoints is FALSE.
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fillcol Optional vector (possibly of length 1, i.e. a scalar) whose entries can be inter-
preted as colours by col2rgb(). The i-th entry indicates with which colour to
fill the i-th tile. Note that an NA entry cause the tile to be left unfilled. This
argument will be replicated to have length equal to the number of tiles. The de-
fault value is created (using the tile “tags”, if these exist) by the undocumented
function getCol().

col.pts Optional vector like unto fillcol whose entries can be interpreted as colours
by col2rgb(). The i-th entry indicates with which colour to plot the i-th point.
This argument will be replicated to have length equal to the number of tiles.
Ignored if showpoints is FALSE.

col.num Optional vector like unto col.pts. Determines the colours in which the point
numbers (see number below) are plotted. This argument will be replicated to
have length equal to the number of tiles. Ignored if number is FALSE.

border A scalar that can be interpreted as a colour by col2rgb(), indicating the colour
with which to plot the tile boundaries. Defaults to black unless all of the fill
colours specified by fillcol are black, in which case it defaults to white. If
length(border) > 1 then only its first entry is used.

showpoints Logical scalar; if TRUE the points of the pattern which was triangulated/tessellated
are plotted.

add Logical scalar; should the plot of the tiles be added to an existing plot?
asp The aspect ratio of the plot; integer scalar or NA. Set this argument equal to NA to

allow the data to determine the aspect ratio and hence to make the plot occupy
the complete plotting region in both x and y directions. This is inadvisable; see
the Warnings.

clipp An object specifying a polygon to which the tessellation being plotted should be
clipped. It should consist either of:

• a list containing two components x and y giving the coordinates of the ver-
tices of a single polygon. The last vertex should not repeat the first vertex.
Or:

• a list of list(x,y) structures giving the coordinates of the vertices of several
polygons.

If this argument is provided then the plot of the tessellation is “clipped” to the
polygon specified by clipp.

xlab Label for the x-axis (used only if add is FALSE).
ylab Label for the y-axis (used only if add is FALSE).
main A title for the plot (used only if add is FALSE).
warn Logical scalar passed to the internal function getCol(). Should a warning be

issued if the z components of the entries of x cannot all be interpreted as colours.
See Notes.

number Logical scalar; if TRUE the numbers of the points determining the tiles are plotted
in the tiles. Note that if number is TRUE then showpoints defaults to FALSE

adj The “adjustment” argument to text(). If number and showpoints are both
TRUE it defaults to -1 (so that the numbers and point symbols are not superim-
posed). If number is TRUE and showpoints is FALSE it defaults to 0. If number
is FALSE it is ignored.

... Optional arguments; may be passed to points() and text().
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Value

NULL; side effect is a plot.

Warnings

• The behaviour of this function with respect to “clipping” has changed substantially since the
previous release of deldir, i.e. 1.1-0. The argument clipwin has been re-named clipp
(“p” for “polygon”). Clipping is now effected via the new package polyclip. The spatstat
package is no longer used. The argument use.gpclib has been eliminated, since gpclib
(which used to be called upon by spatstat has been superseded by polyclip which has an
unrestrictive license.

• As of release 0.1-1 of the deldir package, the argument fillcol to this function replaces the
old argument polycol, but behaves somewhat differently.

• The argument showrect which was present in versions of this function prior to release 0.1-1
has been eliminated. It was redundant.

• As of release 0.1-1 the col.pts argument might behave somewhat differently from how it
behaved in the past.

• The arguments border, clipp, and warn are new as of release 0.1-1.

• Users, unless they really understand what they are doing and why they are doing it, are strongly
advised not to set the value of asp but rather to leave asp equal to its default value of 1. Any
other value distorts the tesselation and destroys the perpendicular appearance of lines which
are indeed perpendicular. (And conversely can cause lines which are not perpendicular to
appear as if they are.)

Notes

• If clipp is not NULL and showpoints is TRUE then it is possible that some of the points
“shown” will not fall inside any of the plotted tiles. (This will happen if the parts of the tiles
in which they fall have been “clipped” out.) If a tile is clipped out completely then the point
which determines that tile is not plotted irrespective of the value of showpoints.

• If the z components of the entries of x cannot all be interpreted as colours (e.g. if there
aren’t any z components, which will be the case if no such values were supplied in the call to
deldir()) then the internal function getCol() returns NA. This value of fillcol results (as
is indicated by the argument list entry for fillcol) in (all of) the tiles being left unfilled.

• The new behaviour in respect of the colours with which to fill the plotted tiles, and the argu-
ment clipp were added at the request of Chris Triggs.

• The argument asp was added at the request of Zubin Dowlaty (who presumably knows what
he’s doing!).

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir(), tile.list(), triang.list(), plot.triang.list()
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Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
z <- deldir(x,y,rw=c(0,1,0,1))
w <- tile.list(z)
plot(w)
ccc <- heat.colors(20) # Or topo.colors(20), or terrain.colors(20)

# or cm.colors(20), or rainbow(20).
plot(w,fillcol=ccc,close=TRUE)
if(require(polyclip)) {

CP <- list(x=c(0.49,0.35,0.15,0.20,0.35,0.42,
0.43,0.62,0.46,0.63,0.82,0.79),

y=c(0.78,0.86,0.79,0.54,0.58,0.70,
0.51,0.46,0.31,0.20,0.37,0.54))

cul <- rainbow(10)[c(1,7,3:6,2,8:10)] # Rearranging colours to improve
# the contrast between contiguous tiles.

plot(w,clipp=CP,showpoints=FALSE,fillcol=cul)
}
plot(w,number=TRUE,col.num="red")
plot(w,number=TRUE,col.num="red",cex=0.5)
plot(w,showpoints=TRUE,number=TRUE,col.pts="green",col.num="red")

plot.triang.list Plot Delaunay triangles

Description

A method for plot. Plots the triangles of a Delaunay triangulation of a set of points in the plane.

Usage

## S3 method for class 'triang.list'
plot(x, showrect = FALSE, add = FALSE,

xlab = "x", ylab = "y", main = "", asp = 1,
rectcol="black", ...)

Arguments

x An object of class “triang.list” as produced by triang.list().

showrect Logical scalar; show the enclosing rectangle rw (see deldir()) be plotted?

add Logical scalar; should the plot of the triangles be added to an existing plot?

xlab Label for the x-axis.

ylab Label for the y-axis.

main A title for the plot (used only if add is FALSE).
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asp The aspect ratio of the plot; integer scalar or NA. Set this argument equal to NA to
allow the data to determine the aspect ratio and hence to make the plot occupy
the complete plotting region in both x and y directions. This is inadvisable; see
the Warnings.

rectcol Text string or integer specifying the colour in which the enclosing rectangle
should be plotted. Ignored unless showrect is TRUE.

... Arguments passed to polygon() which does the actual plotting of the triangles.

Value

None. This function has the side effect of producing (or adding to) a plot.

Warnings

Users are strongly advised not to set the value of asp (unless they really know what they are doing)
but rather to leave asp equal to its default value of 1. Any other value distorts the tesselation and
destroys the perpendicular appearance of lines which are indeed perpendicular. (And conversely
can cause lines which are not perpendicular to appear as if they are.)

The argument asp was added at the request of Zubin Dowlaty (who presumably knows what he is
doing!).

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir(), plot.triang.list(), tile.list(), plot.tile.list()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
d <- deldir(x,y)
ttt <- triang.list(d)
plot(ttt,border="red",showrect=TRUE,rectcol="green")
sss <- tile.list(d)
plot(sss)
plot(ttt,add=TRUE,border="blue",showrect=TRUE,rectcol="red")
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print.deldir Print some information about a tessellation/triangulation.

Description

Prints a very brief description of an object of class "deldir" as returned by deldir().

Usage

## S3 method for class 'deldir'
print(x,digits=NULL,...)

Arguments

x A Delaunay triangulation and Dirichlet (Voronoi) tessellation of a set of points
(object of class "deldir").

digits Integer scalar. The number of digits to which to round the numeric information
before printing. Note this may be give negative values. (See round().)

... Not used.

Details

This is a method for the generic print() function.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

print()

Examples

set.seed(42)
x <- rnorm(200,0,4)
y <- rnorm(200,0,4)
dxy1 <- deldir(x,y)
dxy2 <- deldir(x,y,rw=c(-12,12,-11,11))
dxy1
dxy2
print(dxy1,digits=4)
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print.tileInfo Print a summary of tile information.

Description

Print a reasonably readable summary of an object of class tileInfo as produced by the tileInfo()
function.

Usage

## S3 method for class 'tileInfo'
print(x, digits = 4, ...)

Arguments

x An object of class tileInfo as produced by the tileInfo() function.

digits The (maximum) number of decimal digits to which the output is to be printed.

... Not used. Present for compatibility with the generic print() function.

Details

The list produced by tileInfo() is a bit messy and hard to comprehend, especially if there is
a large number of tiles. This print method produces a screen display which is somewhat more
perspicuous.

There are four components to the display:

• A matrix, each row of which is the vector of edge lengths of the tile. The number of columns
is the maximum of the lengths of the edge length vectors. Rows corresponding to shorter
vectors are filled in with blanks. The row names of the matrix indicate the number of the
point corresponding to the tile. Note that this number is the index of the point in the original
sequence of points that is being tessellated.

• A table of the edge counts of the tiles.

• A simple print out of the areas of the tiles (rounded to a maximum of digits decimal digits).

• A simple print out of the perimeters of the tiles (rounded to a maximum of digits decimal
digits).

This screen display is for “looking at” only. In order to do further calculations on the output of
tileInfo it is necessary to delve into the bowels of x and extract the relevant bits.

In order to get a decent looking display you may (if there are tiles with a large number of edges)
need to widen the window in which you are displaying the output and increase the value of the
width option. E.g. use options(width=120).

Value

None.
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Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

tileInfo()

Examples

set.seed(179)
x <- runif(100)
y <- runif(100)
dxy <- deldir(x,y,rw=c(0,1,0,1))
ixy1 <- tileInfo(dxy)
print(ixy1)
ixy2 <- tileInfo(dxy,bndry=TRUE)
print(ixy2)
if(require(polyclip)) {

CP <- list(x=c(0.49,0.35,0.15,0.20,0.35,0.42,
0.43,0.62,0.46,0.63,0.82,0.79),

y=c(0.78,0.86,0.79,0.54,0.58,0.70,
0.51,0.46,0.31,0.20,0.37,0.54))

ixy3 <- tileInfo(dxy,clipp=CP)
options(width=120) # And enlarge the console window.
print(ixy3) # 33 tiles are retained.
print(ixy3$perimeters$perComps) # The tiles for points 9 and 94 have

# been split into two components.
}

seaweed seaweed

Description

A data frame whose columns are the coordinates of the centroids of the cells in a seaweed frond.
The points are estimates-by-eye of where the centroids of the cells occur.

Usage

data("seaweed")

Format

A data frame with 266 observations on the following 2 variables.

x The x-coordinates of the cell centroids.

y The y-coordinates of the cell centroids.
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Source

These data were kindly supplied by Dr. John Bothwell of the Department of Biosciences, Durham
University. The data were collected by Kevin Yun and Georgia Campbell, members of Dr. Both-
well’s research group.

Examples

# data(seaweed)
# It is unnecessary to use \code{data} since \code{seaweed} is
# a "first class object". It is "lazily loaded".

dsw <- deldir(seaweed)
isw <- tileInfo(dsw)
# Expand the width of the terminal window.
options(width=120)
isw
tsw <- tile.list(dsw)
plot(tsw,number=TRUE,col.num="red",cex=0.5,adj=0.5)

tile.centroids Compute centroids of Dirichlet (Voronoi) tiles

Description

Given a list of Dirichlet tiles, as produced by tile.list(), produces a data frame consisting of the
centroids of those tiles.

Usage

tile.centroids(tl)

Arguments

tl A list of the tiles (produced by tile.list()) in a Dirichlet tessellation of a set
of planar points.

Value

A data frame with two columns named x and y. Each row of this data frame constitutes the centroid
of one of the Dirichlet tiles.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

URL http://en.wikipedia.org/wiki/Centroid
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See Also

tile.list()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
d <- deldir(x,y)
l <- tile.list(d)
g <- tile.centroids(l)
plot(l,close=TRUE)
points(g,pch=20,col="red")

tile.list Create a list of tiles in a tessellation

Description

For each point in the set being tessellated produces a list entry describing the Dirichlet/Voronoi tile
containing that point.

Usage

tile.list(object,minEdgeLength=NULL,clipp=NULL)

Arguments

object An object of class deldir as produced by the function deldir().

minEdgeLength Positive numeric scalar specifying the minimum length that an edge of a tile may
have. It is used to eliminate edges that are effectively of zero length, which can
cause tiles to be “invalid”. This argument defaults to sqrt(.Machine$double.eps)
time the diameter (length of the diagonal) of the “rectangular window” associ-
ated with the tessellation. This rectangular window is available as the rw com-
ponent of object.

clipp An object specifying a polygon to which the tessellation, whose tiles are being
determined, should be clipped. It should consist either of:

• a list containing two components x and y giving the coordinates of the ver-
tices of a single polygon. The last vertex should not repeat the first vertex.
Or:

• a list of list(x,y) structures giving the coordinates of the vertices of several
polygons.

If this argument is provided then the tiles in the list that is produced are “clipped”
to the polygon specified by clipp. Empty tiles (those which do not intersect the
polygon specified by clipp) are omitted. The clipping process may subdivide
some of the tiles into two or more discontiguous parts.
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Value

A list with one entry for each of the points in the set being tessellated, or for each of the tiles that are
retained after clipping if clipp is not NULL. Each entry is in turn a list with a number of components.
These components always include:

ptNum The index of the point in the original sequence of points that is being tessellated.
Note that if a point is one of a set of duplicated points then ptNum is the first of
the indices of the points in this set.

pt The coordinates of the point whose tile is being described.

area The area of the tile.

If the tile in question has not been subdivided by the clipping process then the list components also
include:

x The x coordinates of the vertices of the tile, in anticlockwise order.

y The y coordinates of the vertices of the tile, in anticlockwise order.

bp Vector of logicals indicating whether the tile vertex is a “real” vertex, or a bound-
ary point, i.e. a point where the tile edge intersects the boundary of the enclosing
rectangle.

If the tile in question has been subdivided then the list does not have the foregoing three components
but rather has a component tileParts which is in turn a list of length equal to the number of parts
into which the tile was subdivided. Each component of tileParts is yet another list with four
components x, y, bp and area as described above and as are appropriate for the part in question.

z The “auxiliary value” or “tag” associated with the pt; present only if such values
were supplied in the call to deldir().

Acknowledgement

The author expresses sincere thanks to Majid Yazdani who found and pointed out a serious bug in
tile.list in a previous version (0.0-5) of the deldir package.

Warning

The set of vertices of each tile may be “incomplete”. Only vertices which lie within the enclosing
rectangle, and “boundary points” are listed.

Note that the enclosing rectangle may be specified by the user in the call to deldir().

In contrast to some earlier versions of deldir, the corners of the enclosing rectangle are now in-
cluded as vertices of tiles. I.e. a tile which in fact extends beyond the rectangular window and
contains a corner of that window will have that corner added to its list of vertices. Thus the corre-
sponding polygon is the intersection of the tile with the enclosing rectangle.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>
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See Also

deldir(), plot.tile.list() triang.list() plot.triang.list()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
z <- deldir(x,y)
w <- tile.list(z)

z <- deldir(x,y,rw=c(0,1,0,1))
w <- tile.list(z)

z <- deldir(x,y,rw=c(0,1,0,1),dpl=list(ndx=2,ndy=2))
w <- tile.list(z)
if(require(polyclip)) {

CP <- list(x=c(0.49,0.35,0.15,0.20,0.35,0.42,
0.43,0.62,0.46,0.63,0.82,0.79),

y=c(0.78,0.86,0.79,0.54,0.58,0.70,
0.51,0.46,0.31,0.20,0.37,0.54))

wc <- tile.list(z,clipp=CP) # 10 tiles are retained; the third tile,
# corresponding to point 6, is
# subdivided into two parts.

}

tileArea Area of a Dirichlet tile.

Description

Calculates the area of a Dirichlet tile, applying a discrete version of Stoke’s theorem.

Usage

tileArea(x, y, rw)

Arguments

x The x-coordinates of the vertices of the tile, in anticlockwise direction. The last
coordinate should not repeat the first.

y The y-coordinates of the vertices of the tile, in anticlockwise direction. The last
coordinate should not repeat the first.

rw A vector of length 4 specifying the rectangular window in which the relevant
tessellation was constructed. See deldir() for more detail. Actually this can
be any rectangle containing the tile in question.
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Details

The heavy lifting is done by the Fortran subroutine stoke() which is called by the .Fortran()
function.

Value

A positive scalar.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir() tilePerim()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
z <- deldir(x,y,rw=c(0,1,0,1))
w <- tile.list(z)
with(w[[1]],tileArea(x,y,rw=z$rw))
sapply(w,function(x,rw){tileArea(x$x,x$y,attr(w,"rw"))})
x <- c(0.613102,0.429294,0.386023,0.271880,0.387249,0.455900,0.486101)
y <- c(0.531978,0.609665,0.597780,0.421738,0.270596,0.262953,0.271532)
# The vertices of the Dirichlet tile for point 6.
tileArea(x,y,rw=c(0,1,0,1))
tileArea(x,y,rw=c(-1,2,-3,4)) # Same as above.

tileInfo Extract information from a tile list.

Description

Produces a summary of information about the tiles in an object of class deldir as produced by the
function deldir().

Usage

tileInfo(object, bndry = FALSE, clipp=NULL)
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Arguments

object An object of class deldir as produced by the function deldir().
bndry Logical scalar. If TRUE then the “boundary” tiles (those tiles having edges form-

ing part of the “rectangular window” enclosing the tessellation) are included in
the summary. Otherwise they are not included.

clipp An object specifying a polygon to which the tiles of the tessellation should be
clipped. See link{tile.list}() for more information.

Value

An object of class "tileInfo" which consists of a list with components:

indivTiles This is itself a list. If clipp is NULL then this list has one entry for each tile in
“object”. If clipp is not NULL then tiles are retained only if they have non-empty
intersection with the polygon specified by clipp. The list indivTiles is in fact
a named list, the names being of form pt.n, where n is equal to the value of
ptNum (see below) corresponding to the tile.
The entries of indivTiles are themselves in turn lists with entries

• edges: a matrix whose rows consists of the x and y coordinates of the
endpoints of each edge of the tile

• edgeLengths: a vector of the lengths of the edges of the tile
• area: a positive number equal to the area of the tile
• ptNum an integer equal to the number of the point determining the tile. Note

that this is the number of the point in the original sequence of points that
were tessellated.

allEdgeCounts An integer vector of the number of edges for each of the tiles.
tabEdgeCounts A table of allEdgeCounts.
allEdgeLengths A vector of all of the tile edge lengths; a catenation of the edgeLengths com-

ponents of the entries of indivTiles. Note that there will be many duplicate
lengths since each tile edge is, in general, an edge of two tiles.

Areas A vector of the areas of the tiles.
uniqueEdgeLengths

A vector of the lengths of the tiles edges with the duplicates (which occur in
allEdgeLengths) being eliminated. Each tile edge is represented only once.

perimeters A list, as returned by tilePerim() containing the perimeters of the tiles, as
well as the total and the mean of these perimeters. In addition perimeters has a
component perComps giving the breakdown of the perimeters into the perimeters
of the parts into which tiles may have been subdivided by the clipping process.

Remark

There is a print() method for class "tileInfo" which produces a convenient display of the infor-
mation returned by this function.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>
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See Also

deldir() tile.list() print.tileInfo() tilePerim()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
dxy <- deldir(x,y,rw=c(0,1,0,1))
ixy1 <- tileInfo(dxy)
ixy2 <- tileInfo(dxy,bndry=TRUE)
if(require(polyclip)) {

CP <- list(x=c(0.49,0.35,0.15,0.20,0.35,0.42,
0.43,0.62,0.46,0.63,0.82,0.79),

y=c(0.78,0.86,0.79,0.54,0.58,0.70,
0.51,0.46,0.31,0.20,0.37,0.54))

ixy3 <- tileInfo(dxy,clipp=CP) # 10 tiles are retained; the third tile,
# corresponding to point 6, is
# subdivided into two parts.

}

tilePerim Calculate tile perimeters.

Description

Calculates the perimeters of all of the Dirichlet (Voronoi) tiles in a tessellation of a set of planar
points. Also calculates the sum and the mean of these perimeters.

Usage

tilePerim(object,inclbdry=TRUE)

Arguments

object An object of class tile.list (as produced by tile.list() specifying the
Dirichlet (Voronoi) tiles in a tessellation of a set of planar points.

inclbdry Logical scalar. Should boundary segments (edges of tiles at least one of whose
endpoints lies on the enclosing rectangle rw (see deldir()) be included in the
perimeter?

Value

A list with components

perimeters A vector consisting of the values of the perimeters of the Dirichlet tiles in the
tessellation.

totalPerim The sum of perimeters.
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meanPerim The mean of perimeters.

perComps A list whose entries are vectors consisting of the “components” of the perime-
ters of each tile. If/when the tiles are clipped, some tiles may be subdivided
by the clipping into discontiguous parts. The components referred to above are
the perimeters of this parts. If no subdivision has occurred then the vector in
question has a single entry equal to the perimeter of the corresponding tile. If
subdivision has occurred then the perimeter of the tile is the sum of the perime-
ters of the components.

Note

Function added at the request of Haozhe Zhang.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

tile.list(), plot.tile.list()

Examples

x <- runif(20)
y <- runif(20)
z <- deldir(x,y,rw=c(0,1,0,1))
w <- tile.list(z)
p1 <- tilePerim(w)
p0 <- tilePerim(w,inclbdry=FALSE)
p1$totalPerim - p0$totalPerim # Get 4 = the perimeter of rw.
ss <- apply(as.matrix(z$dirsgs[,1:4]),1,

function(x){(x[1]-x[3])^2 + (x[2]-x[4])^2})
2*sum(sqrt(ss)) - p0$totalPerim # Get 0; in tilePerim() each interior

# edge is counted twice.
if(require(polyclip)) {

CP <- list(x=c(0.49,0.35,0.15,0.20,0.35,0.42,
0.43,0.62,0.46,0.63,0.82,0.79),

y=c(0.78,0.86,0.79,0.54,0.58,0.70,
0.51,0.46,0.31,0.20,0.37,0.54))

wc <- tile.list(z,clipp=CP)
p2 <- tilePerim(wc) # Doesn't matter here if inclbdry is TRUE or FALSE.
p2$perComps[["pt.6"]] # The tile for point 6 has got subdivided into

# two parts, a tetrahedron and a triangle.
cul <- rainbow(10)[c(1,7,3:6,2,8:10)] # Rearranging colours to improve

# the contrast between contiguous tiles.
plot(wc,number=TRUE,fillcol=cul)

}
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toyPattern A toy marked point pattern object, with 59 points.

Description

A simulated object of class "ppp" provided for use in an example illustrating the application of
deldir() to point pattern objects.

Usage

toyPattern

Format

An object of class "ppp" consisting of a simulated marked point pattern. Entries include

x Cartesian x-coordinates
y Cartesian y-coordinates
marks factor with levels "a","b","c","d"

Source

Simulated.

Examples

dtoy <- deldir(toyPattern) # "Tags" are the marks of the pattern.
set.seed(42)
dtoy.nt <- deldir(toyPattern,z=round(runif(59),2)) # Tags are numeric.

triang.list Create a list of Delaunay triangles

Description

From an object of class “deldir” produces a list of the Delaunay triangles in the triangulation of a
set of points in the plane.

Usage

triang.list(object)

Arguments

object An object of class “deldir” as produced by deldir().
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Value

A list each of whose components is a 3×3 or 3×4 data frame corresponding to one of the Delaunay
triangles specified by “object”. The rows of each such data frame correspond to the vertices of the
corresponding Delaunay triangle. The columns are:

• ptNum (the index of the point in the original sequence of points that is being triangulated. Note
that if a point is one of a set of duplicated points then ptNum is the first of the indices of the
points in this set.)

• x (the x-coordinate of the vertex)

• y (the y-coordinate of the vertex)

• z (the “auxiliary value” or “tag” z associated with the vertex; present only if such values were
supplied in the call to deldir())

The returned value has an attribute “rw” consisting of the enclosing rectangle of the triangulation.

Warning

There may not actually be any triangles determined by object, in which case this function returns
an empty list with an "rw" attribute. See Examples.

Note

The code of this function was taken more-or-less directly from code written by Adrian Baddeley
for the “delaunay()” function in the “spatstat” package.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir(), plot.triang.list(), tile.list(), plot.tile.list()

Examples

set.seed(42)
x <- runif(20)
y <- runif(20)
z <- sample(1:100,20)
d1 <- deldir(x,y,z=z)
t1 <- triang.list(d1)
# A "triangulation" with no triangles!
d2 <- deldir(x=1:10,y=11:20)
plot(d2)
t2 <- triang.list(d2)
plot(t2,showrect=TRUE,rectcol="blue") # Pretty boring!
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triMat Produce matrix of triangle vertex indices.

Description

Lists the indices of the vertices of each Delaunay triangle in the triangulation of a planar point set.
The indices are listed (in increasing numeric order) as the rows of an n × 3 matrix where n is the
number of Delaunay triangles in the triangulation.

Usage

triMat(object)

Arguments

object An object of class deldir (as produced by the function deldir()) specifying
the Delaunay triangulation and Dirichlet (Voronoi) tessellation of a planar point
set.

Details

This function was suggested by Robin Hankin of the School of Mathematical and Computing Sci-
ences at Auckland University of Technology.

Value

An n × 3 matrix where n is the number of Delaunay triangles in the triangulation specified by
object. The ith row consists of the indices (in the original list of points being triangulated) of
vertices of the ith Delaunay triangle. The indices are listed in increasing numeric order in each row.

Note

Earlier versions of this function (prior to release 0.1-14 of deldir) could sometimes give incorrect
results. This happened if the union of three contiguous Delaunay triangles happened to constitute
another triangle. This latter triangle would appear in the list of triangles produced by triMat() but
is not itself a Delaunay triangle. The updated version of triMat() now checks for this possibility
and gives (I think!) correct results.

Many thanks to Jay Call, who pointed out this bug to me.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

deldir() triang.list() plot.triang.list()
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Examples

# These are the data used by Jay Call to illustrate the bug
# that appeared in a previous incarnation of triMat.
xy <- data.frame(

x = c(0.048,0.412,0.174,0.472,0.607,0.565,0.005,0.237,0.810,0.023),
y = c(0.512,0.928,0.955,0.739,0.946,0.134,0.468,0.965,0.631,0.782)

)
dxy <- deldir(xy)
M <- triMat(dxy)
plot(dxy,wlines="triang",num=TRUE,axes=FALSE,cmpnt_col=c(1,1,1,1,2,1))
# The triangle with vertices {4,5,8} was listed in the output of
# the previous (buggy) version of triMat(). It is NOT a Delaunay
# triangle and hence should NOT be listed.

volTriPoints Solute plume concentration data set.

Description

Example solute plume concentration data set associated with the GWSDAT (“GroundWater Spa-
tiotemporal Data Analysis Tool”) project https://protect-au.mimecast.com/s/demRC91WzLH6qo3TorzN7?
domain=gwsdat.net. The deldir package is used in this project as part of a numerical routine to
estimate plume quantities (mass, average concentration and centre of mass).

Usage

volTriPoints

Format

A data frame with 232 observations on the following 3 variables.

x The x-coordinates of the centres of mass of the plumes.

y The y-coordinates of the centres of mass of the plumes.

z The plume concentrations.

Details

This data set played a critical role in revealing a bug in the Fortran code underlying the deldir()
function.

Source

These data were kindly provided by Wayne W. Jones of the GWSDAT project. The data set was
originally named Vol.Tri.Points; the name was changed so as to be more consistent with my
usual naming conventions.

https://protect-au.mimecast.com/s/demRC91WzLH6qo3TorzN7?domain=gwsdat.net
https://protect-au.mimecast.com/s/demRC91WzLH6qo3TorzN7?domain=gwsdat.net
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References

Jones, W. R., Spence, M. J., Bowman, A. W., Evers, L. and Molinari, D. A. (2014). A software
tool for the spatiotemporal analysis and reporting of groundwater monitoring data. Environmental
Modelling & Software 55, pp. 242–249.

Examples

dvtp <- deldir(volTriPoints)
plot(dvtp)

which.tile Determine the tile containing a given point.

Description

Finds the Dirichlet/Voronoi tile, of a tessellation produced by deldir(), that contains a given point.

Usage

which.tile(x, y, tl)

Arguments

x The x coordinate of the point in question.

y The y coordinate of the point in question.

tl A tile list, as produced by the function tile.list() from a tessellation pro-
duced by deldir().

Details

Just minimises the distance from the point in question to the points of the pattern determining the
tiles.

Value

An integer equal to the index of the tile in which the given point lies.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

tile.list() deldir().
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Examples

set.seed(42)
x <- runif(20,0,100)
y <- runif(20,0,100)
dxy <- deldir(x,y)
txy <- tile.list(dxy)
i <- which.tile(30,50,txy) # The value of i here is 14.
plot(txy,showpoints=FALSE)
text(x,y,labels=1:length(txy),col="red")
points(30,50,pch=20,col="blue")
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col2rgb, 24
colors, 19
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32–35, 37, 39–41, 43

divchain, 12, 23
divchain.default, 23
divchain.deldir, 22, 23
duplicated, 10, 14
duplicatedxy, 13

grapherXmpl, 15

lawSummary, 16

niProperties, 18

palette, 19
par, 19, 20
plot.deldir, 5, 10, 19
plot.divchain, 13, 22
plot.tile.list, 23, 27, 34, 38, 40
plot.triang.list, 25, 26, 27, 34, 40, 41
polygon, 27
print, 28
print.deldir, 28
print.tileInfo, 29, 37

round, 28

seaweed, 30
suppressMessages, 9

tile.centroids, 17, 31
tile.list, 2, 3, 10, 17, 23, 25, 27, 32, 32, 37,

38, 40, 43
tileArea, 34
tileInfo, 30, 35
tilePerim, 35–37, 37
toyPattern, 39
triang.list, 7, 10, 25, 26, 34, 39, 41
triMat, 41

volTriPoints, 42

which.tile, 43
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