
Package ‘dendextend’
October 13, 2022

Type Package

Title Extending 'dendrogram' Functionality in R

Version 1.16.0

Date 2022-07-04

Description Offers a set of functions for extending
'dendrogram' objects in R, letting you visualize and compare trees of
'hierarchical clusterings'. You can (1) Adjust a tree's graphical parameters
- the color, size, type, etc of its branches, nodes and labels. (2)
Visually and statistically compare different 'dendrograms' to one another.

Depends R (>= 3.0.0)

Imports utils, stats, datasets, magrittr (>= 1.0.1), ggplot2, viridis

Suggests knitr, rmarkdown, testthat, seriation, colorspace, ape,
microbenchmark, gplots, heatmaply, dynamicTreeCut, pvclust,
corrplot, DendSer, MASS, cluster, fpc, circlize (>= 0.2.5),
covr

Enhances ggdendro, dendroextras, Hmisc, data.table, rpart, WGCNA,
moduleColor, distory, phangorn, zoo

VignetteBuilder knitr

LazyData true

License GPL-2 | GPL-3

URL http://talgalili.github.io/dendextend/,

https://github.com/talgalili/dendextend/,

https://cran.r-project.org/package=dendextend,

https://www.r-statistics.com/tag/dendextend/,

https://academic.oup.com/bioinformatics/article/31/22/3718/240978/
dendextend-an-R-package-for-visualizing-adjusting

BugReports https://github.com/talgalili/dendextend/issues

RoxygenNote 7.1.1

Encoding UTF-8

1

http://talgalili.github.io/dendextend/
https://github.com/talgalili/dendextend/
https://cran.r-project.org/package=dendextend
https://www.r-statistics.com/tag/dendextend/
https://academic.oup.com/bioinformatics/article/31/22/3718/240978/dendextend-an-R-package-for-visualizing-adjusting
https://academic.oup.com/bioinformatics/article/31/22/3718/240978/dendextend-an-R-package-for-visualizing-adjusting
https://github.com/talgalili/dendextend/issues

2 R topics documented:

NeedsCompilation no

Author Tal Galili [aut, cre, cph] (https://www.r-statistics.com),
Yoav Benjamini [ths],
Gavin Simpson [ctb],
Gregory Jefferis [aut, ctb] (imported code from his dendroextras
package),

Marco Gallotta [ctb] (a.k.a: marcog),
Johan Renaudie [ctb] (https://github.com/plannapus),
The R Core Team [ctb] (Thanks for the Infastructure, and code in the

examples),
Kurt Hornik [ctb],
Uwe Ligges [ctb],
Andrej-Nikolai Spiess [ctb],
Steve Horvath [ctb],
Peter Langfelder [ctb],
skullkey [ctb],
Mark Van Der Loo [ctb] (https://github.com/markvanderloo d3dendrogram),
Andrie de Vries [ctb] (ggdendro author),
Zuguang Gu [ctb] (circlize author),
Cath [ctb] (https://github.com/CathG),
John Ma [ctb] (https://github.com/JohnMCMa),
Krzysiek G [ctb] (https://github.com/storaged),
Manuela Hummel [ctb] (https://github.com/hummelma),
Chase Clark [ctb] (https://github.com/chasemc),
Lucas Graybuck [ctb] (https://github.com/hypercompetent),
jdetribol [ctb] (https://github.com/jdetribol),
Ben Ho [ctb] (https://github.com/SplitInf),
Samuel Perreault [ctb] (https://github.com/samperochkin),
Christian Hennig [ctb] (http://www.homepages.ucl.ac.uk/~ucakche/),
David Bradley [ctb] (https://github.com/DBradley27),
Houyun Huang [ctb] (https://github.com/houyunhuang),
Patrick Schupp [ctb] (https://github.com/pschupp)

Maintainer Tal Galili <tal.galili@gmail.com>

Repository CRAN

Date/Publication 2022-07-04 18:10:02 UTC

R topics documented:
dendextend-package . 5
all.equal.dendrogram . 6
all_couple_rotations_at_k . 7
all_unique . 9
as.dendlist . 10
as.phylo.dendrogram . 11
assign_dendextend_options . 12
assign_values_to_branches_edgePar . 12
assign_values_to_leaves_edgePar . 14

R topics documented: 3

assign_values_to_leaves_nodePar . 15
assign_values_to_nodes_nodePar . 17
as_hclust_fixed . 18
bakers_gamma_for_2_k_matrix . 19
Bk . 20
Bk_permutations . 21
Bk_plot . 23
branches_attr_by_clusters . 26
branches_attr_by_labels . 29
branches_attr_by_lists . 31
circlize_dendrogram . 32
click_rotate . 34
collapse_branch . 36
colored_bars . 37
colored_dots . 41
color_branches . 45
color_labels . 49
color_unique_labels . 51
common_subtrees_clusters . 52
cor.dendlist . 53
cor_bakers_gamma . 54
cor_common_nodes . 57
cor_cophenetic . 58
cor_FM_index . 60
count_terminal_nodes . 61
cutree . 62
cutree_1h.dendrogram . 66
cutree_1k.dendrogram . 68
cut_lower_fun . 70
dendextend_options . 71
dendlist . 72
DendSer.dendrogram . 73
dend_diff . 74
dend_expend . 75
dist.dendlist . 76
distinct_edges . 78
dist_long . 79
duplicate_leaf . 79
entanglement . 81
fac2num . 83
find_dendrogram . 84
find_k . 85
fix_members_attr.dendrogram . 86
flatten.dendrogram . 87
flip_leaves . 88
FM_index . 89
FM_index_permutation . 91
FM_index_R . 93

4 R topics documented:

get_branches_heights . 95
get_childrens_heights . 96
get_leaves_attr . 97
get_leaves_branches_attr . 98
get_leaves_branches_col . 99
get_leaves_edgePar . 100
get_leaves_nodePar . 101
get_nodes_attr . 102
get_nodes_xy . 104
get_root_branches_attr . 105
get_subdendrograms . 106
ggdend . 108
hang.dendrogram . 111
has_component_in_attribute . 112
heights_per_k.dendrogram . 114
highlight_branches_col . 115
highlight_distinct_edges . 117
identify.dendrogram . 119
intersect_trees . 121
is.natural.number . 122
is_null_list . 123
is_some_class . 124
khan . 124
labels<- . 126
labels_cex . 128
labels_colors . 129
ladderize . 130
leaf_Colors . 131
lowest_common_branch . 132
match_order_by_labels . 133
match_order_dendrogram_by_old_order . 134
min_depth . 136
na_locf . 136
nleaves . 138
nnodes . 139
noded_with_condition . 140
order.dendrogram<- . 141
order.hclust . 142
partition_leaves . 143
plot_horiz.dendrogram . 144
prune . 146
prune_common_subtrees.dendlist . 148
prune_leaf . 149
pvclust_edges . 149
pvclust_show_signif . 150
pvclust_show_signif_gradient . 152
pvrect2 . 153
raise.dendrogram . 155

dendextend-package 5

rank_branches . 156
rank_order.dendrogram . 157
rank_values_with_clusters . 158
rect.dendrogram . 158
reindex_dend . 161
remove_branches_edgePar . 162
remove_leaves_nodePar . 163
remove_nodes_nodePar . 164
rllply . 165
rotate . 166
rotate_DendSer . 169
sample.dendrogram . 170
seriate_dendrogram . 171
set . 172
set_labels . 179
shuffle . 180
sort_2_clusters_vectors . 182
sort_dist_mat . 183
sort_levels_values . 184
tanglegram . 185
theme_dendro . 192
unbranch . 193
unclass_dend . 194
untangle . 195
untangle_DendSer . 197
untangle_random_search . 198
untangle_step_rotate_1side . 200
untangle_step_rotate_2side . 201
which_leaf . 203
which_node . 204

Index 206

dendextend-package Functions for extending dendrogram objects

Description

Offers a set of functions for extending ’dendrogram’ objects in R, letting you visualize and compare
trees of ’hierarchical clusterings’. You can (1) Adjust a tree’s graphical parameters - the color,
size, type, etc of its branches, nodes and labels. (2) Visually and statistically compare different
’dendrograms’ to one another.

See Also

dendrogram, hclust in stats package.

6 all.equal.dendrogram

all.equal.dendrogram Global Comparison of two (or more) dendrograms

Description

This function makes a global comparison of two or more dendrograms trees.

The function can get two dendlist objects and compare them using all.equal.list. If a dendlist is in
only "target" (and not "current"), it will go through the dendlist and compare all of the dendrograms
within it to one another.

Usage

S3 method for class 'equal.dendrogram'
all(
target,
current,
use.edge.length = TRUE,
use.tip.label.order = FALSE,
use.tip.label = TRUE,
use.topology = TRUE,
tolerance = .Machine$double.eps^0.5,
scale = NULL,
...

)

Arguments

target an object of type dendrogram or dendlist

current an object of type dendrogram
use.edge.length

logical (TRUE). If to check branches’ heights.
use.tip.label.order

logical (FALSE). If to check labels are in the same and in identical order

use.tip.label logical (TRUE). If to check that labels are the same (regardless of order)

use.topology logical (TRUE). If to check teh existence of distinct edges

tolerance the numeric tolerance used to compare the branch lengths.

scale a positive number (NULL as default), comparison of branch height is made after
scaling (i.e., dividing) them by this number.

... Ignored.

Value

Either TRUE (NULL for attr.all.equal) or a vector of mode "character" describing the differences
between target and current.

all_couple_rotations_at_k 7

See Also

all.equal, all.equal.phylo, identical

Examples

Not run:

set.seed(23235)
ss <- sample(1:150, 10)
dend1 <- iris[ss, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[ss, -5] %>%
dist() %>%
hclust("single") %>%
as.dendrogram()

dend3 <- iris[ss, -5] %>%
dist() %>%
hclust("ave") %>%
as.dendrogram()

dend4 <- iris[ss, -5] %>%
dist() %>%
hclust("centroid") %>%
as.dendrogram()

cutree(dend1)

all.equal(dend1, dend1)
all.equal(dend1, dend2)
all.equal(dend1, dend2, use.edge.length = FALSE)
all.equal(dend1, dend2, use.edge.length = FALSE, use.topology = FALSE)

all.equal(dend2, dend4, use.edge.length = TRUE)
all.equal(dend2, dend4, use.edge.length = FALSE)

all.equal(dendlist(dend1, dend2, dend3, dend4))
all.equal(dendlist(dend1, dend2, dend3, dend4), use.edge.length = FALSE)
all.equal(dendlist(dend1, dend1, dend1))

End(Not run)

all_couple_rotations_at_k

Rotate tree branches for k

Description

Given a tree and a k number of clusters, the tree is rotated so that the extra clusters added from k-1
to k clusters are flipped.

8 all_couple_rotations_at_k

This is useful for finding good trees for a tanglegram.

Usage

all_couple_rotations_at_k(dend, k, dend_heights_per_k, ...)

Arguments

dend a dendrogram object

k integer scalar with the number of clusters the tree should be cut into.

dend_heights_per_k

a named vector that resulted from running heights_per_k.dendrogram. When
running the function many times, supplying this object will help improve the
running time if using the cutree.dendrogram method..

... not used

Value

A list with dendrogram objects with all the possible rotations for k clusters (beyond the k-1 clus-
ters!).

See Also

tanglegram, match_order_by_labels, entanglement, flip_leaves.

Examples

Not run:
dend1 <- USArrests[1:5,] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- all_couple_rotations_at_k(dend1, k = 2)[[2]]
tanglegram(dend1, dend2)
entanglement(dend1, dend2, L = 2) # 0.5

dend2 <- all_couple_rotations_at_k(dend1, k = 3)[[2]]
tanglegram(dend1, dend2)
entanglement(dend1, dend2, L = 2) # 0.4

dend2 <- all_couple_rotations_at_k(dend1, k = 4)[[2]]
tanglegram(dend1, dend2)
entanglement(dend1, dend2, L = 2) # 0.05

End(Not run)

all_unique 9

all_unique Check if all the elements in a vector are unique

Description

Checks if all the elements in a vector are unique

Usage

all_unique(x, ...)

Arguments

x a vector

... ignored.

Value

logical (are all the elements in the vector unique)

Source

https://www.mail-archive.com/r-help@r-project.org/msg77592.html OLD (no longer work-
ing): https://r.789695.n4.nabble.com/Is-there-a-function-to-test-if-all-the-elements-in-a-vector-are-
unique-td931833.html

See Also

unique

Examples

all_unique(c(1:5, 1, 1))
all_unique(c(1, 1, 2))
all_unique(c(1, 1, 2, 3, 3, 3, 3))
all_unique(c(1, 3, 2))
all_unique(c(1:10))

https://www.mail-archive.com/r-help@r-project.org/msg77592.html

10 as.dendlist

as.dendlist Try to coerce something into a dendlist

Description

It removes stuff that are not dendgrogram/dendlist and turns what is left into a dendlist

Usage

as.dendlist(x, ...)

Arguments

x a list with several dendrogram/hclust/phylo or dendlist objects and other junk
that should be omitted.

... NOT USED

Value

A list of class dendlist where each item is a dendrogram

Examples

Not run:

dend <- iris[, -5] %>%
dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- iris[, -5] %>%
dist() %>%
hclust(method = "single") %>%
as.dendrogram()

x <- list(dend, 1, dend2)
as.dendlist(x)

End(Not run)

as.phylo.dendrogram 11

as.phylo.dendrogram Convert a dendrogram into phylo

Description

Based on as.hclust.dendrogram with as.phylo.hclust

In the future I hope a more direct link will be made.

Usage

as.phylo.dendrogram(x, ...)

Arguments

x a dendrogram

... ignored.

Value

A phylo class object

See Also

as.dendrogram, as.hclust, as.phylo

Examples

Not run:

library(dendextend)
library(ape)
dend <- iris[1:30, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- as.phylo(dend)
plot(dend2, type = "fan")

library(dendextend)
library(ggplot2)
no longer needed: library(ggdendro)
dend <- iris[1:30, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

there is a bug in the location of the labels
If you want to solve it - please send a Pull Request to:
https://github.com/talgalili/dendextend/
ggplot(dend) +

12 assign_values_to_branches_edgePar

scale_y_reverse(expand = c(0.2, 0)) + coord_polar(start = 1, theta="x")

End(Not run)

see: https://github.com/klutometis/roxygen/issues/796
#

assign_dendextend_options

Populates dendextend functions into dendextend_options

Description

Populates dendextend functions into dendextend_options

Usage

assign_dendextend_options()

assign_values_to_branches_edgePar

Assign values to edgePar of dendrogram’s branches

Description

Go through the dendrogram branches and updates the values inside its edgePar

If the value has Inf then the value in edgePar will not be changed.

Usage

assign_values_to_branches_edgePar(
dend,
value,
edgePar,
skip_leaves = FALSE,
warn = dendextend_options("warn"),
...

)

assign_values_to_branches_edgePar 13

Arguments

dend a dendrogram object

value a new value scalar for the edgePar attribute.

edgePar a character indicating the value inside edgePar to adjust. Can be either "col",
"lty", or "lwd".

skip_leaves logical (FALSE) - should the leaves be skipped/ignored?

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... not used

Value

A dendrogram, after adjusting the edgePar attribute in all of its branches,

See Also

get_root_branches_attr

Examples

This failed before - now it works fine. (thanks to Martin Maechler)
dend <- 1:2 %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend %>%
set("branches_lty", 1:2) %>%
set("branches_col", c("topbranch_never_plots", "black", "orange")) %>%
plot()

Not run:

dend <- USArrests[1:5,] %>%
dist() %>%
hclust() %>%
as.dendrogram()

plot(dend)
dend <- assign_values_to_branches_edgePar(dend = dend, value = 2, edgePar = "lwd")
plot(dend)
dend <- assign_values_to_branches_edgePar(dend = dend, value = 2, edgePar = "col")
plot(dend)
dend <- assign_values_to_branches_edgePar(dend = dend, value = "orange", edgePar = "col")
plot(dend)
dend2 <- assign_values_to_branches_edgePar(dend = dend, value = 2, edgePar = "lty")
plot(dend2)

dend2 %>%
unclass() %>%

14 assign_values_to_leaves_edgePar

str()

End(Not run)

assign_values_to_leaves_edgePar

Assign values to edgePar of dendrogram’s leaves

Description

Go through the dendrogram leaves and updates the values inside its edgePar

If the value has Inf then the value in edgePar will not be changed.

Usage

assign_values_to_leaves_edgePar(
dend,
value,
edgePar,
warn = dendextend_options("warn"),
...

)

Arguments

dend a dendrogram object

value a new value vector for the edgePar attribute. It should be the same length as the
number of leaves in the tree. If not, it will recycle the value and issue a warning.

edgePar the value inside edgePar to adjust.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... not used

Value

A dendrogram, after adjusting the edgePar attribute in all of its leaves,

See Also

get_leaves_attr, linkassign_values_to_leaves_nodePar

assign_values_to_leaves_nodePar 15

Examples

Not run:

dend <- USArrests[1:5,] %>%
dist() %>%
hclust("ave") %>%
as.dendrogram()

plot(dend)
dend <- assign_values_to_leaves_edgePar(dend = dend, value = c(3, 2), edgePar = "col")
plot(dend)
dend <- assign_values_to_leaves_edgePar(dend = dend, value = c(3, 2), edgePar = "lwd")
plot(dend)
dend <- assign_values_to_leaves_edgePar(dend = dend, value = c(3, 2), edgePar = "lty")
plot(dend)

get_leaves_attr(dend, "edgePar", simplify = FALSE)

End(Not run)

assign_values_to_leaves_nodePar

Assign values to nodePar of dendrogram’s leaves

Description

Go through the dendrogram leaves and updates the values inside its nodePar

If the value has Inf then the value in edgePar will not be changed.

Usage

assign_values_to_leaves_nodePar(
dend,
value,
nodePar,
warn = dendextend_options("warn"),
...

)

Arguments

dend a dendrogram object

value a new value vector for the nodePar attribute. It should be the same length as the
number of leaves in the tree. If not, it will recycle the value and issue a warning.

nodePar the value inside nodePar to adjust.

16 assign_values_to_leaves_nodePar

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... not used

Value

A dendrogram, after adjusting the nodePar attribute in all of its leaves,

See Also

get_leaves_attr

Examples

Not run:

dend <- USArrests[1:5,] %>%
dist() %>%
hclust("ave") %>%
as.dendrogram()

reproduces "labels_colors<-"
although it does force us to run through the tree twice,
hence "labels_colors<-" is better...
plot(dend)
dend <- assign_values_to_leaves_nodePar(dend = dend, value = c(3, 2), nodePar = "lab.col")
plot(dend)

dend <- assign_values_to_leaves_nodePar(dend, 1, "pch")
plot(dend)
fix the annoying pch=1:
dend <- assign_values_to_leaves_nodePar(dend, NA, "pch")
plot(dend)
adjust the cex:
dend <- assign_values_to_leaves_nodePar(dend, 19, "pch")
dend <- assign_values_to_leaves_nodePar(dend, 2, "lab.cex")
plot(dend)

str(unclass(dend))

get_leaves_attr(dend, "nodePar", simplify = FALSE)

End(Not run)

assign_values_to_nodes_nodePar 17

assign_values_to_nodes_nodePar

Assign values to nodePar of dendrogram’s nodes

Description

Go through the dendrogram nodes and updates the values inside its nodePar

If the value has Inf then the value in edgePar will not be changed.

Usage

assign_values_to_nodes_nodePar(
dend,
value,
nodePar = c("pch", "cex", "col", "xpd", "bg"),
warn = dendextend_options("warn"),
...

)

Arguments

dend a dendrogram object

value a new value vector for the nodePar attribute. It should be the same length as the
number of nodes in the tree. If not, it will recycle the value and issue a warning.

nodePar the value inside nodePar to adjust. This may contain components named pch,
cex, col, xpd, and/or bg.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... not used

Value

A dendrogram, after adjusting the nodePar attribute in all of its nodes,

See Also

get_leaves_attr, assign_values_to_leaves_nodePar

Examples

Not run:

dend <- USArrests[1:5,] %>%
dist() %>%

18 as_hclust_fixed

hclust("ave") %>%
as.dendrogram()

reproduces "labels_colors<-"
although it does force us to run through the tree twice,
hence "labels_colors<-" is better...
plot(dend)
dend2 <- dend %>%

assign_values_to_nodes_nodePar(value = 19, nodePar = "pch") %>%
assign_values_to_nodes_nodePar(value = c(1, 2), nodePar = "cex") %>%
assign_values_to_nodes_nodePar(value = c(2, 1), nodePar = "col")

plot(dend2)

Making sure this works for NA with character.
dend %>%

assign_values_to_nodes_nodePar(value = 19, nodePar = "pch") %>%
assign_values_to_nodes_nodePar(value = c("red", NA), nodePar = "col") -> dend2

plot(dend2)

End(Not run)

as_hclust_fixed Convert dendrogram Objects to Class hclust

Description

Convert dendrogram Objects to Class hclust while preserving the call/method/dist.method values
of the original hclust object (hc)

Usage

as_hclust_fixed(x, hc, ...)

Arguments

x any object which has an as.hclust method. (mostly used for dendrogram)

hc an old hclust object from which to re-use the call/method/dist.method values

... passed to as.hclust

Value

An hclust object (from a dendrogram) with the original hclust call/method/dist.method values

See Also

as.hclust

bakers_gamma_for_2_k_matrix 19

Examples

hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

as.hclust(dend)
as_hclust_fixed(dend, hc)

bakers_gamma_for_2_k_matrix

Bakers Gamma for two k matrices

Description

Bakers Gamma for two k matrices

Usage

bakers_gamma_for_2_k_matrix(
k_matrix_dend1,
k_matrix_dend2,
to_plot = FALSE,
...

)

Arguments

k_matrix_dend1 a matrix of k cluster groupings from a dendrogram

k_matrix_dend2 a (second) matrix of k cluster groupings from a dendrogram

to_plot logical (FALSE). Should a scaterplot be plotted, showing the correlation be-
tween the lowest shared branch between two items in the two compared trees.

... not used

Value

Baker’s Gamma coefficient.

See Also

cor_bakers_gamma

20 Bk

Bk Bk - Calculating Fowlkes-Mallows Index for two dendrogram

Description

Bk is the calculation of Fowlkes-Mallows index for a series of k cuts for two dendrograms.

Usage

Bk(tree1, tree2, k, warn = dendextend_options("warn"), ...)

Arguments

tree1 a dendrogram/hclust/phylo object.

tree2 a dendrogram/hclust/phylo object.

k an integer scalar or vector with the desired number of cluster groups. If missing
- the Bk will be calculated for a default k range of 2:(nleaves-1). No point in
checking k=1/k=n, since both will give Bk=1.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... Ignored (passed to FM_index_R).

Details

From Wikipedia:

Fowlkes-Mallows index (see references) is an external evaluation method that is used to determine
the similarity between two clusterings (clusters obtained after a clustering algorithm). This measure
of similarity could be either between two hierarchical clusterings or a clustering and a benchmark
classification. A higher the value for the Fowlkes-Mallows index indicates a greater similarity
between the clusters and the benchmark classifications.

Value

A list (of k’s length) of Fowlkes-Mallows index between two dendrogram for a scalar/vector of k
values. The names of the lists’ items is the k for which it was calculated.

References

Fowlkes, E. B.; Mallows, C. L. (1 September 1983). "A Method for Comparing Two Hierarchical
Clusterings". Journal of the American Statistical Association 78 (383): 553.

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

See Also

FM_index, cor_bakers_gamma, Bk_plot

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

Bk_permutations 21

Examples

Not run:

set.seed(23235)
ss <- TRUE # sample(1:150, 10)
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
tree1 <- as.dendrogram(hc1)
tree2 <- as.dendrogram(hc2)
cutree(tree1)

Bk(hc1, hc2, k = 3)
Bk(hc1, hc2, k = 2:10)
Bk(hc1, hc2)

Bk(tree1, tree2, k = 3)
Bk(tree1, tree2, k = 2:5)

system.time(Bk(hc1, hc2, k = 2:5)) # 0.01
system.time(Bk(hc1, hc2)) # 1.28
system.time(Bk(tree1, tree2, k = 2:5)) # 0.24 # after fixes.
system.time(Bk(tree1, tree2, k = 2:10)) # 0.31 # after fixes.
system.time(Bk(tree1, tree2)) # 7.85
Bk(tree1, tree2, k = 99:101)

y <- Bk(hc1, hc2, k = 2:10)
plot(unlist(y) ~ c(2:10), type = "b", ylim = c(0, 1))

can take a few seconds
y <- Bk(hc1, hc2)
plot(unlist(y) ~ as.numeric(names(y)),

main = "Bk plot", pch = 20,
xlab = "k", ylab = "FM Index",
type = "b", ylim = c(0, 1)

)
we are still missing some hypothesis testing here.
for this we'll have the Bk_plot function.

End(Not run)

Bk_permutations Bk permutation - Calculating Fowlkes-Mallows Index for two dendro-
gram

Description

Bk is the calculation of Fowlkes-Mallows index for a series of k cuts for two dendrograms.

Bk permutation calculates the Bk under the null hypothesis of no similarirty between the two trees
by randomally shuffling the labels of the two trees and calculating their Bk.

22 Bk_permutations

Usage

Bk_permutations(
tree1,
tree2,
k,
R = 1000,
warn = dendextend_options("warn"),
...

)

Arguments

tree1 a dendrogram/hclust/phylo object.

tree2 a dendrogram/hclust/phylo object.

k an integer scalar or vector with the desired number of cluster groups. If missing
- the Bk will be calculated for a default k range of 2:(nleaves-1). No point in
checking k=1/k=n, since both will give Bk=1.

R integer (Default is 1000). The number of Bk permutation to perform for each k.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. If set to TRUE, extra checks are made to varify that the two
clusters have the same size and the same labels.

... Ignored (passed to FM_index_R).

Details

From Wikipedia:

Fowlkes-Mallows index (see references) is an external evaluation method that is used to determine
the similarity between two clusterings (clusters obtained after a clustering algorithm). This measure
of similarity could be either between two hierarchical clusterings or a clustering and a benchmark
classification. A higher the value for the Fowlkes-Mallows index indicates a greater similarity
between the clusters and the benchmark classifications.

Value

A list (of the length of k’s), where each element of the list has R (number of permutations) calcula-
tions of Fowlkes-Mallows index between two dendrogram after having their labels shuffled.

The names of the lists’ items is the k for which it was calculated.

References

Fowlkes, E. B.; Mallows, C. L. (1 September 1983). "A Method for Comparing Two Hierarchical
Clusterings". Journal of the American Statistical Association 78 (383): 553.

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

Bk_plot 23

See Also

FM_index, Bk

Examples

Not run:

set.seed(23235)
ss <- TRUE # sample(1:150, 10)
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
tree1 <- as.treerogram(hc1)
tree2 <- as.treerogram(hc2)
cutree(tree1)

some_Bk <- Bk(hc1, hc2, k = 20)
some_Bk_permu <- Bk_permutations(hc1, hc2, k = 20)

we can see that the Bk is much higher than the permutation Bks:
plot(

x = rep(1, 1000), y = some_Bk_permu[[1]],
main = "Bk distribution under H0",
ylim = c(0, 1)

)
points(1, y = some_Bk, pch = 19, col = 2)

End(Not run)

Bk_plot Bk plot - ploting the Fowlkes-Mallows Index of two dendrogram for
various k’s

Description

Bk is the calculation of Fowlkes-Mallows index for a series of k cuts for two dendrograms. A Bk
plot is simply a scatter plot of Bk versus k. This plot helps in identifiying the similarity between
two dendrograms in different levels of k (number of clusters).

Usage

Bk_plot(
tree1,
tree2,
k,
add_E = TRUE,
rejection_line_asymptotic = TRUE,
rejection_line_permutation = FALSE,
R = 1000,

24 Bk_plot

k_permutation,
conf.level = 0.95,
p.adjust.methods = c("none", "bonferroni"),
col_line_Bk = 1,
col_line_asymptotic = 2,
col_line_permutation = 4,
warn = dendextend_options("warn"),
main = "Bk plot",
xlab = "k (number of clusters)",
ylab = "Bk (Fowlkes-Mallows Index)",
xlim,
ylim = c(0, 1),
try_cutree_hclust = TRUE,
...

)

Arguments

tree1 a dendrogram/hclust/phylo object.

tree2 a dendrogram/hclust/phylo object.

k an integer scalar or vector with the desired number of cluster groups. If missing
- the Bk will be calculated for a default k range of 2:(nleaves-1). No point in
checking k=1/k=n, since both will give Bk=1.

add_E logical (TRUE). Should we add a line of the Expected Bk value for each k, under
the null hypothesis of no relation between the clusterings?

rejection_line_asymptotic

logical (TRUE). Should we add a line of the one sided rejection region based on
the asymptotic distribution of Bk values, for each k, under the null hypothesis
of no relation between the clusterings?

rejection_line_permutation

logical (FALSE). Should we add a line of the one sided rejection region based
on the asymptotic distribution of Bk values, for each k, under the null hypothesis
of no relation between the clusterings?

R integer (Default is 1000). The number of Bk permutation to perform for each k.
Applicable only if rejection_line_permutation is TRUE.

k_permutation the k’s to be used for permutation (sometimes we might be only interested in
some k’s and it is not important to run the simulation for all possible ks). If
missing - k itself will be used.

conf.level the level of one sided confidence interval used for creation of the rejection lines.
p.adjust.methods

a character scalar of either "none" (default), or "bonferroni". This controls the
multiple correction method to use for the critical rejection values. Currently
only the Bonferroni method is implemented (based on the number of different k
values).

col_line_Bk the color of the Bk line.

Bk_plot 25

col_line_asymptotic

the color of the rejection asymptotic Bk line.
col_line_permutation

the color of the rejection asymptotic Bk line.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. If set to TRUE, extra checks are made to varify that the two
clusters have the same size and the same labels.

main passed to plot.

xlab passed to plot.

ylab passed to plot.

xlim passed to plot. If missign, xlim is from 2 to nleaves-1

ylim passed to plot.
try_cutree_hclust

logical (TRUE). Since cutree for hclust is MUCH faster than for dendrogram -
Bk_plot will first try to change the dendrogram into an hclust object. If it will fail
(for example, with unbranched trees), it will continue using the cutree.dendrogram
functions. If try_cutree_hclust=FALSE, it will force to use cutree.dendrogram
and not cutree.hclust.

... Ignored.

Details

From Wikipedia:

Fowlkes-Mallows index (see references) is an external evaluation method that is used to determine
the similarity between two clusterings (clusters obtained after a clustering algorithm). This measure
of similarity could be either between two hierarchical clusterings or a clustering and a benchmark
classification. A higher the value for the Fowlkes-Mallows index indicates a greater similarity
between the clusters and the benchmark classifications.

The default Bk plot comes with a line with dots (type "b") of the Bk values. Also with a fragmented
(lty=2) line (of the same color) of the expected Bk line under H0, And a solid red line of the upper
critical Bk values for rejection

Value

After plotting the Bk plot. Returns (invisible) the output of the elements used for constructing the
plot: The Bk values, Bk permutations (if used), Bk theoratical values, etc.

References

Fowlkes, E. B.; Mallows, C. L. (1 September 1983). "A Method for Comparing Two Hierarchical
Clusterings". Journal of the American Statistical Association 78 (383): 553.

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

See Also

FM_index, Bk, Bk_permutations

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

26 branches_attr_by_clusters

Examples

Not run:

set.seed(23235)
ss <- TRUE # sample(1:150, 10)
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
tree1 <- as.treerogram(hc1)
tree2 <- as.treerogram(hc2)
cutree(tree1)

Bk_plot(hc1, hc2, k = 2:20, xlim = c(2, 149))
Bk_plot(hc1, hc2)

Bk_plot(hc1, hc2, k = 3)
Bk_plot(hc1, hc2, k = 3:10)
Bk_plot(hc1, hc2)
Bk_plot(hc1, hc2, p.adjust.methods = "bonferroni") # higher rejection lines

this one can take a bit of time:
Bk_plot(hc1, hc2,

rejection_line_permutation = TRUE,
k_permutation = c(2, 4, 6, 8, 10, 20, 30, 40, 50), R = 100

)
we can see that the permutation line is VERY close to the asymptotic line.
This is great since it means one can often use the asymptotic results
Without having to do many simulations.

works just as well for dendrograms:
dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)
Bk_plot(dend1, dend2, k = 2:3, try_cutree_hclust = FALSE) # slower than hclust, but works...
Bk_plot(hc1, dend2, k = 2:3, try_cutree_hclust = FALSE) # slower than hclust, but works...
Bk_plot(dend1, dend1, k = 2:3, try_cutree_hclust = TRUE) # slower than hclust, but works...
Bk_plot(hc1, hc1, k = 2:3) # slower than hclust, but works...
for some reason it can't turn dend2 back to hclust :(
a <- Bk_plot(hc1, hc2, k = 2:3, try_cutree_hclust = TRUE) # slower than hclust, but works...

hc1_mixed <- as.hclust(sample(as.dendrogram(hc1)))
Bk_plot(

tree1 = hc1, tree2 = hc1_mixed,
add_E = FALSE,
rejection_line_permutation = TRUE, k_permutation = c(2, 4, 6, 8, 10, 20, 30, 40, 50), R = 100

)

End(Not run)

branches_attr_by_clusters

Change col/lwd/lty of branches based on clusters

branches_attr_by_clusters 27

Description

The user supplies a dend, a vector of clusters, and what to modify (and how).

And the function returns a dendrogram with branches col/lwd/lty accordingly. (the function assumes
unique labels)

Usage

branches_attr_by_clusters(
dend,
clusters,
values,
attr = c("col", "lwd", "lty"),
branches_changed_have_which_labels = c("any", "all"),
...

)

Arguments

dend a dendrogram dend

clusters an integer vector of clusters. This HAS to be of the same length as the number
of leaves. Items that belong to no cluster should get the value 0. The vector
should be of the same order as that of the labels in the dendrogram. If you
create the clusters from something like cutree you would first need to use or-
der.dendrogram on it, before using it in the function.

values the attributes to use for non 0 values. This should be of the same length as the
number of unique non-0 clusters. If it is shorter, it is recycled.
OR, this can also be of the same length as the number of leaves in the tree In
which case, the values will be aggreagted (i.e.: tapply), to match the number of
clusters. The first value of each cluster will be used as the main value.
TODO: So far, the function doesn’t deal well with NA values. (this might be
changed in the future)

attr a character with one of the following values: col/lwd/lty
branches_changed_have_which_labels

character with either "any" (default) or "all". Inidicates how the branches should
be updated.

... ignored.

Details

This is probably NOT a very fast implementation of the function, but it works.

This function was designed to enable the manipulation (mainly coloring) of branches, based on the
results from the cutreeDynamic function.

Value

A dendrogram with modified branches (col/lwd/lty).

28 branches_attr_by_clusters

See Also

branches_attr_by_labels, get_leaves_attr, nnodes, nleaves cutreeDynamic, plotDendroAndColors

Examples

Not run:

Getting the hc object
iris_dist <- iris[, -5] %>% dist()
hc <- iris_dist %>% hclust()
This is how it looks without any colors:
dend <- as.dendrogram(hc)
plot(dend)

Both functions give the same outcome
options 1:
dend %>%

set("branches_k_color", k = 4) %>%
plot()

options 2:
clusters <- cutree(dend, 4)[order.dendrogram(dend)]
dend %>%

branches_attr_by_clusters(clusters) %>%
plot()

and the second option is much slower:
system.time(set(dend, "branches_k_color", k = 4)) # 0.26 sec
system.time(branches_attr_by_clusters(dend, clusters)) # 1.61 sec
BUT, it also allows us to do more flaxible things!

#--------------------------
Plotting dynamicTreeCut
#--------------------------

let's get the clusters
library(dynamicTreeCut)
clusters <- cutreeDynamic(hc, distM = as.matrix(iris_dist))
we need to sort them to the order of the dendrogram:
clusters <- clusters[order.dendrogram(dend)]

get some functions:
library(colorspace)
no0_unique <- function(x) {

u_x <- unique(x)
u_x[u_x != 0]

}

clusters_numbers <- no0_unique(clusters)
n_clusters <- length(clusters_numbers)
cols <- rainbow_hcl(n_clusters)
dend2 <- branches_attr_by_clusters(dend, clusters, values = cols)

branches_attr_by_labels 29

dend2 <- branches_attr_by_clusters(dend, clusters)
plot(dend2)
add colored bars:
ord_cols <- rainbow_hcl(n_clusters)[order(clusters_numbers)]
tmp_cols <- rep(1, length(clusters))
tmp_cols[clusters != 0] <- ord_cols[clusters != 0][clusters]
colored_bars(tmp_cols, y_shift = -1.1, rowLabels = "")
all of the ordering is to handle the fact that the cluster numbers are not ascending...

How is this compared with the usual cutree?
dend3 <- color_branches(dend, k = n_clusters)
labels(dend2) <- as.character(labels(dend2))
this needs fixing, since the labels are not character!
Well, both cluster solutions are not perfect, but at least they are interesting...
tanglegram(dend2, dend3,

main_left = "cutreeDynamic", main_right = "cutree",
columns_width = c(5, .5, 5),
color_lines = cols[iris[order.dendrogram(dend2), 5]]

)
(Notice how the color_lines is of the true Species of each Iris)
The main difference is at the bottom,

End(Not run)

branches_attr_by_labels

Change col/lwd/lty of branches matching labels condition

Description

The user supplies a dend, labels, and type of condition (all/any), and TF_values And the function
returns a dendrogram with branches col/lwd/lty accordingly

Usage

branches_attr_by_labels(
dend,
labels,
TF_values = c(2, Inf),
attr = c("col", "lwd", "lty"),
type = c("all", "any"),
...

)

Arguments

dend a dendrogram dend

labels a character vector of labels from the tree

30 branches_attr_by_labels

TF_values a two dimensional vector with the TF_values to use in case a branch fulfills the
condition (TRUE) and in the case that it does not (FALSE). Defaults are 2/Inf
for col, lwd and lty. (so it will insert the first value, and will not change all the
FALSE cases)

attr a character with one of the following values: col/lwd/lty

type a character vector of either "all" or "any", indicating which of the branches
should be painted: ones that all of their labels belong to the supplied labels,
or also ones that even some of their labels are included in the labels vector.

... ignored.

Value

A dendrogram with modified branches (col/lwd/lty).

See Also

noded_with_condition, get_leaves_attr, nnodes, nleaves

Examples

Not run:

library(dendextend)

set.seed(23235)
ss <- sample(1:150, 10)

Getting the dend dend
dend <- iris[ss, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend %>% plot()

dend %>%
branches_attr_by_labels(c("123", "126", "23", "29")) %>%
plot()

dend %>%
branches_attr_by_labels(c("123", "126", "23", "29"), "all") %>%
plot() # the same as above

dend %>%
branches_attr_by_labels(c("123", "126", "23", "29"), "any") %>%
plot()

dend %>%
branches_attr_by_labels(

c("123", "126", "23", "29"),
"any", "col", c("blue", "red")

) %>%
plot()

dend %>%

branches_attr_by_lists 31

branches_attr_by_labels(
c("123", "126", "23", "29"),
"any", "lwd", c(4, 1)

) %>%
plot()

dend %>%
branches_attr_by_labels(

c("123", "126", "23", "29"),
"any", "lty", c(2, 1)

) %>%
plot()

End(Not run)

branches_attr_by_lists

Change col/lwd/lty of branches from the root down to clusters defined
by list of labels of respective members

Description

The user supplies a dend, lists, and type of condition (all/any), and TF_values And the function
returns a dendrogram with branches col/lwd/lty accordingly

Usage

branches_attr_by_lists(
dend,
lists,
TF_values = c(2, 1),
attr = c("col", "lwd", "lty"),
...

)

Arguments

dend a dendrogram dend

lists a list where each element contains the labels of members in selected nodes down
to which the branches shall be adapted

TF_values a two dimensional vector with the TF_values to use in case a branch fulfills the
condition (TRUE) and in the case that it does not (FALSE). Defaults are 2/1
for col, lwd and lty. (so it will insert the first value, and will not change all the
FALSE cases)

attr a character with one of the following values: col/lwd/lty

... ignored.

32 circlize_dendrogram

Value

A dendrogram with modified branches (col/lwd/lty).

See Also

branches_attr_by_labels

Examples

Not run:

library(dendextend)

set.seed(23235)
ss <- sample(1:150, 10)

Getting the dend dend
dend <- iris[ss, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend %>% plot()

define a list of nodes
L <- list(c("109", "123", "126", "145"), "29", c("59", "67", "97"))
dend %>%

branches_attr_by_lists(L) %>%
plot()

choose different color, and also change lwd and lty
dend %>%

branches_attr_by_lists(L, TF_value = "blue") %>%
branches_attr_by_lists(L, attr = "lwd", TF_value = 4) %>%
branches_attr_by_lists(L, attr = "lty", TF_value = 3) %>%
plot()

End(Not run)

circlize_dendrogram Plot a circlized dendrograms

Description

Plot a circlized dendrograms using the circlize package (must be installed for the function to work).

This type of plot is also sometimes called fan tree plot (although the name fan-plot is also used for a
different plot in time series analysis), radial tree plot, polar tree plot, circular tree plot, and probably
other names as well.

An advantage for using the circlize package directly is for plotting a circular dendrogram so that
you can add more graphics for the elements in the tree just by adding more tracks using circos.track.

circlize_dendrogram 33

Usage

circlize_dendrogram(
dend,
facing = c("outside", "inside"),
labels = TRUE,
labels_track_height = 0.1,
dend_track_height = 0.5,
...

)

Arguments

dend a dendrogram object

facing Is the dendromgrams facing inside to the circle or outside.

labels logical (TRUE) - should the labels be plotted as well.
labels_track_height

a value for adjusting the room for the labels. It is 0.2 by default, but if NULL or
NA, it will adjust automatically based on the max width of the labels. However,
if this is too long, the plot will give an error: Error in check.track.position(track.index,
track.start, track.height) : not enough space for cells at track index ’2’.

dend_track_height

a value for adjusting the room for the dendrogram.

... Ignored.

Value

The dend that was used for plotting.

Author(s)

Zuguang Gu, Tal Galili

Source

This code is based on the work of Zuguang Gu. If you use the function, please cite both dendextend
(see: citation("dendextend")), as well as the circlize package (see: citation("circlize")).

See Also

circos.dendrogram

Examples

Not run:

dend <- iris[1:40, -5] %>%
dist() %>%

34 click_rotate

hclust() %>%
as.dendrogram() %>%
set("branches_k_color", k = 3) %>%
set("branches_lwd", c(5, 2, 1.5)) %>%
set("branches_lty", c(1, 1, 3, 1, 1, 2)) %>%
set("labels_colors") %>%
set("labels_cex", c(.9, 1.2)) %>%
set("nodes_pch", 19) %>%
set("nodes_col", c("orange", "black", "plum", NA))

circlize_dendrogram(dend)
circlize_dendrogram(dend, labels = FALSE)
circlize_dendrogram(dend, facing = "inside", labels = FALSE)

In the following we get the dendrogram but can also get extra information on top of it
circos.initialize("foo", xlim = c(0, 40))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {
circos.rect(1:40 - 0.8, rep(0, 40), 1:40 - 0.2, runif(40), col = rand_color(40), border = NA)

}, bg.border = NA)
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

circos.text(1:40 - 0.5, rep(0, 40), labels(dend),
col = labels_colors(dend),
facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.5)

)
}, bg.border = NA, track.height = 0.1)
max_height <- attr(dend, "height")
circos.track(ylim = c(0, max_height), panel.fun = function(x, y) {

circos.dendrogram(dend, max_height = max_height)
}, track.height = 0.5, bg.border = NA)
circos.clear()

End(Not run)

click_rotate Interactively rotate a tree object

Description

Lets te user click a plot of dendrogram and rotates the tree based on the location of the click.

Code for mouse selection of (sub-)cluster to be rotated

Usage

click_rotate(x, ...)

Default S3 method:
click_rotate(x, ...)

click_rotate 35

S3 method for class 'dendrogram'
click_rotate(
x,
plot = TRUE,
plot_after = plot,
horiz = FALSE,
continue = FALSE,
...

)

Arguments

x a tree object (either a dendrogram or hclust)

... parameters passed to the plot

plot (logical) should the dendrogram first be plotted.

plot_after (logical) should the dendrogram be plotted after the rotation?

horiz logical. Should the plot be normal or horizontal?

continue logical. If TRUE, allows the user to keep clicking the plot until a click is made
on the labels.

Value

A rotated tree object

Author(s)

Andrej-Nikolai Spiess, Tal Galili

See Also

rotate.dendrogram

Examples

create the dend:
dend <- USArrests %>%

dist() %>%
hclust("ave") %>%
as.dendrogram() %>%
color_labels()

Not run:
play with the rotation once
dend <- click_rotate(dend)
dend <- click_rotate(dend, horiz = TRUE)
keep playing with the rotation:
while (TRUE) dend <- click_rotate(dend)
the same as
dend <- click_rotate(dend, continue = TRUE)

36 collapse_branch

End(Not run)

collapse_branch Collapse branches under a tolerance level

Description

Collapse branches under a tolerance level

Usage

collapse_branch(dend, tol = 1e-08, lower = TRUE, ...)

Arguments

dend dendrogram object

tol a numeric value giving the tolerance to consider a branch length significantly
greater than zero

lower logical (TRUE). collapse branches which are lower than tol?

... passed on (not used)

Value

A dendrogram with both of the root’s branches of the same height

See Also

multi2di

Examples

ladderize is like sort(..., type = "node")
dend <- iris[1:5, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

par(mfrow = c(1, 3))
dend %>%

ladderize() %>%
plot(horiz = TRUE)

abline(v = .2, col = 2, lty = 2)
dend %>%

collapse_branch(tol = 0.2) %>%
ladderize() %>%
plot(horiz = TRUE)

dend %>%

colored_bars 37

collapse_branch(tol = 0.2) %>%
ladderize() %>%
hang.dendrogram(hang = 0) %>%
plot(horiz = TRUE)

par(mfrow = c(1, 2))
dend %>%

collapse_branch(tol = 0.2, lower = FALSE) %>%
plot(horiz = TRUE, main = "dendrogram")

library(ape)
dend %>%

as.phylo() %>%
di2multi(tol = 0.2) %>%
plot(main = "phylo")

colored_bars Add colored bars to a dendrogram

Description

Add colored bars to a dendrogram, usually corresponding to either clusters or some outside catego-
rization.

Usage

colored_bars(
colors,
dend,
rowLabels = NULL,
cex.rowLabels = 0.9,
add = TRUE,
y_scale,
y_shift,
text_shift = 1,
sort_by_labels_order = TRUE,
horiz = FALSE,
...

)

Arguments

colors Coloring of objects on the dendrogram. Either a vector (one color per object)
or a matrix (can also be an array or a data frame) with each column giving
one group with color per object. Each column will be plotted as a horizon-
tal row of colors (when horiz = FALSE) under the dendrogram. As long as
the sort_by_labels_order paramter is TRUE (default), the colors vector/matrix
should be provided in the order of the original data order (and it will be re-
ordered automaticall to the order of the dendrogram)

38 colored_bars

dend a dendrogram object. If missing, the colors are plotted without and re-ordering
(this assumes that the colors are already ordered based on the dend’s labels) This
is also important in order to get the correct height/location of the colored bars
(i.e.: adjusting the y_scale and y_shift)

rowLabels Labels for the colorings given in colors. The labels will be printed to the left of
the color rows in the plot. If the argument is given, it must be a vector of length
equal to the number of columns in colors. If not given, names(colors) will
be used if available. If not, sequential numbers starting from 1 will be used.

cex.rowLabels Font size scale factor for the row labels. See par.
add logical(TRUE), should the colored bars be added to an existing dendrogram

plot?
y_scale how much should the bars be stretched on the y axis? If no dend is supplied -

the default will be 1
y_shift where should the bars be plotted underneath the x axis? By default it will try

to locate the bars underneath the labels (it may miss, in which case you would
need to enter a number manually) If no dend is supplied - the default will be 0

text_shift a dendrogram object
sort_by_labels_order

logical(TRUE) - if TRUE (default), then the order of the colored bars will be
sorted based on the order needed to change the original order of the observations
to the current order of the labels in the dendrogram. If FALSE the colored bars
are plotted as-is, based on the order of the colors vector.

horiz logical (FALSE by default). Set to TRUE when using plot(dend, horiz = TRUE)
... ignored at this point.

Details

You will often needs to adjust the y_scale, y_shift and the text_shift parameters, in order to get the
bars in the location you would want.

(this can probably be done automatically, but will require more work. since it has to do with the
current mar settings, the number of groups, and each computer’s specific graphic device. patches
for smarter defaults will be appreciated)

Value

An invisible vector/matrix with the ordered colors.

Author(s)

Steve Horvath <SHorvath@mednet.ucla.edu>, Peter Langfelder <Peter.Langfelder@gmail.com>,
Tal Galili <Tal.Galili@gmail.com>

Source

This function is based on the plotHclustColors from the moduleColor R package. It was modified so
that it would work with dendrograms (and not just hclust objects), as well allow to add the colored
bars on top of an existing plot (and not only as a seperate plot).

See: https://cran.r-project.org/package=moduleColor For more details.

https://cran.r-project.org/package=moduleColor

colored_bars 39

See Also

branches_attr_by_clusters, plotDendroAndColors

Examples

rows_picking <- c(1:5, 25:30)
dend <- (iris[rows_picking, -5] * 10) %>%

dist() %>%
hclust() %>%
as.dendrogram()

odd_numbers <- rows_picking %% 2
cols <- c("gold", "grey")[odd_numbers + 1]
scale is off
plot(dend)
colored_bars(cols, dend)
move and scale a bit
plot(dend)
colored_bars(cols, dend,

y_shift = -1,
rowLabels = "Odd\n numbers"

)
Now let's cut the tree and add that info to the plot:
k2 <- cutree(dend, k = 2)
cols2 <- c("#0082CE", "#CC476B")[k2]
plot(dend)
colored_bars(cbind(cols2, cols), dend,

rowLabels = c("2 clusters", "Odd numbers")
)

The same, but with an horizontal plot!
par(mar = c(6, 2, 2, 4))
plot(dend, horiz = TRUE)
colored_bars(cbind(cols2, cols), dend,

rowLabels = c("2 clusters", "Odd numbers"),
horiz = TRUE

)

let's add clusters color
notice how we need to play with the colors a bit
this is because color_branches places colors from
left to right. Which means we need to give colored_bars
the colors of the items so that ofter sorting they would be
from left to right. Here is how it can be done:
the_k <- 3
library(colorspace)
cols3 <- rainbow_hcl(the_k, c = 90, l = 50)
dend %>%

set("branches_k_color", k = the_k, with = cols3) %>%

40 colored_bars

plot()

kx <- cutree(dend, k = the_k)
ord <- order.dendrogram(dend)
kx <- sort_levels_values(kx[ord])
kx <- kx[match(seq_along(ord), ord)]

par(mar = c(5, 5, 2, 2))
plot(dend)
colored_bars(cbind(cols3[kx], cols2, cols), dend,

rowLabels = c("3 clusters", "2 clusters", "Odd numbers")
)

mtcars example

Create the dend:
dend <- as.dendrogram(hclust(dist(mtcars)))

Create a vector giving a color for each car to which company it belongs to
car_type <- rep("Other", length(rownames(mtcars)))
is_x <- grepl("Merc", rownames(mtcars))
car_type[is_x] <- "Mercedes"
is_x <- grepl("Mazda", rownames(mtcars))
car_type[is_x] <- "Mazda"
is_x <- grepl("Toyota", rownames(mtcars))
car_type[is_x] <- "Toyota"
car_type <- factor(car_type)
n_car_types <- length(unique(car_type))
col_car_type <- colorspace::rainbow_hcl(n_car_types, c = 70, l = 50)[car_type]

extra: showing the various clusters cuts
k234 <- cutree(dend, k = 2:4)

color labels by car company:
labels_colors(dend) <- col_car_type[order.dendrogram(dend)]
color branches based on cutting the tree into 4 clusters:
dend <- color_branches(dend, k = 4)

plots
par(mar = c(12, 4, 1, 1))
plot(dend)
colored_bars(cbind(k234[, 3:1], col_car_type), dend,

rowLabels = c(paste0("k = ", 4:2), "Car Type")
)

horiz version:
par(mar = c(4, 1, 1, 12))
plot(dend, horiz = TRUE)
colored_bars(cbind(k234[, 3:1], col_car_type), dend,

rowLabels = c(paste0("k = ", 4:2), "Car Type"), horiz = TRUE
)

colored_dots 41

colored_dots Add colored dots beside a dendrogram

Description

Add colored dots next to a dendrogram, usually corresponding to either clusters or some outside
categorization.

Usage

colored_dots(
colors,
dend,
rowLabels = NULL,
cex.rowLabels = 0.9,
add = TRUE,
y_scale,
y_shift,
text_shift = 1,
sort_by_labels_order = TRUE,
horiz = FALSE,
dot_size = 1,
...

)

Arguments

colors Coloring of the dots beside the dendrogram. Either a vector (one color per
object) or a matrix (can also be an array or a data frame) with each column
giving one group with color per object. Each column will be plotted as a
colored point (when horiz = FALSE) under the dendrogram. As long as the
sort_by_labels_order paramter is TRUE (default), the colors vector/matrix should
be provided in the order of the original data order (and it will be re-ordered au-
tomatically to the order of the dendrogram)

dend a dendrogram object. If missing, the colors are plotted without and re-ordering
(this assumes that the colors are already ordered based on the dend’s labels) This
is also important in order to get the correct height/location of the colored dots
(i.e.: adjusting the y_scale and y_shift)

rowLabels Labels for the colorings given in colors. The labels will be printed to the left of
the color rows in the plot. If the argument is given, it must be a vector of length
equal to the number of columns in colors. If not given, names(colors) will
be used if available. If not, sequential numbers starting from 1 will be used.

cex.rowLabels Font size scale factor for the row labels. See par.

add logical(TRUE), should the colored dots be added to an existing dendrogram
plot?

42 colored_dots

y_scale how much should the dots be stretched on the y axis? If no dend is supplied -
the default will be 1

y_shift where should the dots be plotted underneath the x axis? By default it will try
to locate the dots underneath the labels (it may miss, in which case you would
need to enter a number manually) If no dend is supplied - the default will be 0

text_shift a dendrogram object
sort_by_labels_order

logical(TRUE) - if TRUE (default), then the order of the colored dots will be
sorted based on the order needed to change the original order of the observations
to the current order of the labels in the dendrogram. If FALSE the colored dots
are plotted as-is, based on the order of the colors vector.

horiz logical (FALSE by default). Set to TRUE when using plot(dend, horiz = TRUE)

dot_size numeric (1 by default). Passed to cex argument in points

... ignored at this point.

Details

The reason you might choose colored_dots over colored_bars is when you have a lot of group types
and/or a really large dendrogram. Hint: Make a group for each categorical factor and color it one
color when true, and assign a fully transparent color when false.

You will often need to adjust the y_scale, y_shift and the text_shift parameters, in order to get the
dots in the location you would want.

(This can probably be done automatically, but will require more work. since it has to do with the
current mar settings, the number of groups, and each computer’s specific graphic device. patches
for smarter defaults will be appreciated)

Value

An invisible vector/matrix with the ordered colors.

Author(s)

Steve Horvath <SHorvath@mednet.ucla.edu>, Tal Galili <Tal.Galili@gmail.com>, Peter Langfelder
<Peter.Langfelder@gmail.com>, Chase Clark <chasec288@gmail.com>

Source

This function is based on the plotHclustColors from the moduleColor R package. It was modified so
that it would work with dendrograms (and not just hclust objects), as well allow to add the colored
dots on top of an existing plot (and not only as a seperate plot).

See: https://cran.r-project.org/package=moduleColor For more details.

See Also

branches_attr_by_clusters, plotDendroAndColors

https://cran.r-project.org/package=moduleColor

colored_dots 43

Examples

rows_picking <- c(1:5, 25:30)
dend <- (iris[rows_picking, -5] * 10) %>%

dist() %>%
hclust() %>%
as.dendrogram()

odd_numbers <- rows_picking %% 2
cols <- c("red", "white")[odd_numbers + 1]
plot(dend)
colored_dots(cols, dend)
Example of adjusting postion of dots
plot(dend)
colored_dots(cols, dend,

y_shift = -1,
rowLabels = "Odd\n numbers"

)

rows_picking <- c(1:5, 25:30)
dend <- (iris[rows_picking, -5] * 10) %>%

dist() %>%
hclust() %>%
as.dendrogram()

odd_numbers <- rows_picking %% 2
For leaves that shouldn't have dots, make them the same color as the background,
or set the alpha value to fully transparant
cols <- c("black", "white")[odd_numbers + 1]
scale is off
plot(dend)
colored_dots(cols, dend)
move and scale a bit
plot(dend)
colored_dots(cols, dend,

y_shift = -1,
rowLabels = "Odd\n numbers"

)
Now let's cut the tree and add that info to the plot:
k2 <- cutree(dend, k = 2)
cols2 <- c("#1b9e77", "#d95f02")[k2]

par(mar = c(5, 6, 1, 1))
plot(dend)
colored_dots(cbind(cols2, cols), dend,

rowLabels = c("2 clusters", "Even numbers")
)

The same, but with an horizontal plot!
par(mar = c(6, 2, 2, 4))
plot(dend, horiz = TRUE)
colored_dots(cbind(cols2, cols), dend,

44 colored_dots

rowLabels = c("2 clusters", "Even numbers"),
horiz = TRUE

)

==============================
==============================

mtcars example

Create the dend:
dend <- as.dendrogram(hclust(dist(mtcars)))

Get all company names
comp_names <- unlist(lapply(rownames(mtcars), function(x) strsplit(x, " ")[[1]][[1]]))
Get the top three occurring companies
top_three <- sort(table(comp_names), decreasing = TRUE)[1:3]
Match the top three companies to where they are found in the dendrogram labels
top_three <- sapply(names(top_three), function(x) grepl(x, labels(dend)))
top_three <- as.data.frame(top_three)
"top_three" is now a data frame of the top three companies as columns.
Each column represents a vector (rows) which is the length of labels(dend).
The vector has values TRUE and FALSE, for whether the company name matched
labels(dend)[i]

Colorblind friendly vector of HEX colors
colorblind_friendly <- c("#1b9e77", "#d95f02", "#7570b3")

If we run the for-loop on "top_three" we will turn the vectors into a character-type too early,
so make a copy to "colored_dataframe" which we will work on
colored_dataframe <- top_three

for (i in 1:3) {
This replaces TRUE values with a color from our vector of colors
colored_dataframe[top_three[, i], i] <- colorblind_friendly[[i]]
This replaces FALSE values with black HEX, but fully transparent (invisible on plot)
colored_dataframe[!top_three[, i], i] <- "#00000000"

}

Color branches and labels by "cutting" the dendrogram at an arbitrary height
dend <- color_branches(dend, h = 170)
dend <- color_labels(dend, h = 170)

plots
par(mar = c(12, 4, 1, 1))
plot(dend)
colored_dots(colored_dataframe, dend,

rowLabels = colnames(colored_dataframe), horiz = FALSE, sort_by_labels_order = FALSE
)
Show a dotted line where tree was "cut"
abline(h = 170, lty = 3)

horiz version:
par(mar = c(4, 1, 1, 12))

color_branches 45

plot(dend, horiz = TRUE)
colored_dots(colored_dataframe, dend,

rowLabels = colnames(colored_dataframe), horiz = TRUE, sort_by_labels_order = FALSE
)
Show a dotted line where the tree was "cut"
abline(v = 170, lty = 3)

color_branches Color tree’s branches according to sub-clusters

Description

This function is for dendrogram and hclust objects. This function colors both the terminal leaves
of a dend’s cluster and the edges leading to those leaves. The edgePar attribute of nodes will be
augmented by a new list item col. The groups will be defined by a call to cutree using the k or h
parameters.

If col is a color vector with a different length than the number of clusters (k) - then a recycled color
vector will be used.

Usage

color_branches(
dend,
k = NULL,
h = NULL,
col,
groupLabels = NULL,
clusters,
warn = dendextend_options("warn"),
...

)

Arguments

dend A dendrogram or hclust tree object
k number of groups (passed to cutree)
h height at which to cut tree (passed to cutree)
col Function or vector of Colors. By default it tries to use rainbow_hcl from the

colorspace package. (with parameters c=90 and l=50). If colorspace is not
available, It will fall back on the rainbow function.

groupLabels If TRUE add numeric group label - see Details for options
clusters an integer vector of clusters. This is passed to branches_attr_by_clusters. This

HAS to be of the same length as the number of leaves. Items that belong to no
cluster should get the value 0. The vector should be of the same order as that
of the labels in the dendrogram. If you create the clusters from something like
cutree you would first need to use order.dendrogram on it, before using it in the
function.

46 color_branches

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... ignored.

Details

If groupLabels=TRUE then numeric group labels will be added to each cluster. If a vector is supplied
then these entries will be used as the group labels. If a function is supplied then it will be passed a
numeric vector of groups (e.g. 1:5) and must return the formatted group labels.

If the labels of the dendrogram are NOT character (but, for example integers) - they are coerced
into character. This step is essential for the proper operation of the function. A dendrogram labels
might happen to be integers if they are based on an hclust performed on a dist of an object without
rownames.

Value

a tree object of class dendrogram.

Author(s)

Tal Galili, extensively based on code by Gregory Jefferis

Source

This function is a derived work from the color_clusters function, with some ideas from the
slice function - both are from the dendroextras package by jefferis.

It extends it by using cutree.dendrogram - allowing the function to work for trees that hclust can
not handle (unbranched and non-ultrametric trees). Also, it allows REPEATED cluster color as-
signments to branches on to the same tree. Something which the original function was not able to
handle.

See Also

cutree,dendrogram, hclust, labels_colors, branches_attr_by_clusters, get_leaves_branches_col,
color_labels

Examples

Not run:
par(mfrow = c(1, 2))
dend <- USArrests %>%

dist() %>%
hclust(method = "ave") %>%
as.dendrogram()

d1 <- color_branches(dend, k = 5, col = c(3, 1, 1, 4, 1))
plot(d1) # selective coloring of branches :)
d2 <- color_branches(dend, 5)
plot(d2)

color_branches 47

par(mfrow = c(1, 2))
d1 <- color_branches(dend, 5, col = c(3, 1, 1, 4, 1), groupLabels = TRUE)
plot(d1) # selective coloring of branches :)
d2 <- color_branches(dend, 5, groupLabels = TRUE)
plot(d2)

par(mfrow = c(1, 3))
d5 <- color_branches(dend, 5)
plot(d5)
d5g <- color_branches(dend, 5, groupLabels = TRUE)
plot(d5g)
d5gr <- color_branches(dend, 5, groupLabels = as.roman)
plot(d5gr)

par(mfrow = c(1, 1))

messy - but interesting:
dend_override <- color_branches(dend, 2, groupLabels = as.roman)
dend_override <- color_branches(dend_override, 4, groupLabels = as.roman)
dend_override <- color_branches(dend_override, 7, groupLabels = as.roman)
plot(dend_override)

d5 <- color_branches(dend = dend[[1]], k = 5)

library(dendextend)
data(iris, envir = environment())
d_iris <- dist(iris[, -5])
hc_iris <- hclust(d_iris)
dend_iris <- as.dendrogram(hc_iris)
dend_iris <- color_branches(dend_iris, k = 3)

library(colorspace)
labels_colors(dend_iris) <-

rainbow_hcl(3)[sort_levels_values(
as.numeric(iris[, 5])[order.dendrogram(dend_iris)]

)]

plot(dend_iris,
main = "Clustered Iris dataset",
sub = "labels are colored based on the true cluster"

)

cutree(dend_iris,k=3, order_clusters_as_data=FALSE,
try_cutree_hclust=FALSE)
cutree(dend_iris,k=3, order_clusters_as_data=FALSE)

library(colorspace)

data(iris, envir = environment())

48 color_branches

d_iris <- dist(iris[, -5])
hc_iris <- hclust(d_iris)
labels(hc_iris) # no labels, because "iris" has no row names
dend_iris <- as.dendrogram(hc_iris)
is.integer(labels(dend_iris)) # this could cause problems...

iris_species <- rev(levels(iris[, 5]))
dend_iris <- color_branches(dend_iris, k = 3, groupLabels = iris_species)
is.character(labels(dend_iris)) # labels are no longer "integer"

have the labels match the real classification of the flowers:
labels_colors(dend_iris) <-

rainbow_hcl(3)[sort_levels_values(
as.numeric(iris[, 5])[order.dendrogram(dend_iris)]

)]

We'll add the flower type
labels(dend_iris) <- paste(as.character(iris[, 5])[order.dendrogram(dend_iris)],

"(", labels(dend_iris), ")",
sep = ""

)

dend_iris <- hang.dendrogram(dend_iris, hang_height = 0.1)

reduce the size of the labels:
dend_iris <- assign_values_to_leaves_nodePar(dend_iris, 0.5, "lab.cex")

par(mar = c(3, 3, 3, 7))
plot(dend_iris,

main = "Clustered Iris dataset
(the labels give the true flower species)",

horiz = TRUE, nodePar = list(cex = .007)
)
legend("topleft", legend = iris_species, fill = rainbow_hcl(3))
a <- dend_iris[[1]]
dend_iris1 <- color_branches(a, k = 3)
plot(dend_iris1)

str(dendrapply(d2, unclass))
unclass(d1)

c(1:5) %>% # take some data
dist() %>% # calculate a distance matrix,
on it compute hierarchical clustering using the "average" method,
hclust(method = "single") %>%
as.dendrogram() %>%
color_branches(k = 3) %>%
plot() # nice, returns the tree as is...

Example of the "clusters" parameter
par(mfrow = c(1, 2))
dend <- c(1:5) %>%

color_labels 49

dist() %>%
hclust() %>%
as.dendrogram()

dend %>%
color_branches(k = 3) %>%
plot()

dend %>%
color_branches(clusters = c(1, 1, 2, 2, 3)) %>%
plot()

another example, based on the question here:
https://stackoverflow.com/q/45432271/256662

library(cluster)
set.seed(999)
iris2 <- iris[sample(x = 1:150, size = 50, replace = F),]
clust <- diana(iris2)
dend <- as.dendrogram(clust)

temp_col <- c("red", "blue", "green")[as.numeric(iris2$Species)]
temp_col <- temp_col[order.dendrogram(dend)]
temp_col <- factor(temp_col, unique(temp_col))

library(dendextend)
dend %>%

color_branches(clusters = as.numeric(temp_col), col = levels(temp_col)) %>%
set("labels_colors", as.character(temp_col)) %>%
plot()

End(Not run)

color_labels Color dend’s labels according to sub-clusters

Description

This function is for dendrogram and hclust objects. This function colors tree’s labels.

The groups will be defined by a call to cutree using the k or h parameters.

If col is a color vector with a different length than the number of clusters (k) - then a recycled color
vector will be used.

Usage

color_labels(
dend,
k = NULL,

50 color_labels

h = NULL,
labels,
col,
warn = dendextend_options("warn"),
...

)

Arguments

dend A dendrogram or hclust tree object

k number of groups (passed to cutree)

h height at which to cut tree (passed to cutree)

labels character vecotor. If not missing, it overrides k and h, and simply colors these
labels in the tree based on "col" parameter.

col Function or vector of Colors. By default it tries to use rainbow_hcl from the
colorspace package. (with parameters c=90 and l=50). If colorspace is not
available, It will fall back on the rainbow function.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. (in case h/k/labels are not supplied, or if col is too short)

... ignored.

Value

a tree object of class dendrogram.

Source

This function is in the style of color_branches, and based on labels_colors.

See Also

cutree,dendrogram, hclust, labels_colors, color_branches, assign_values_to_leaves_edgePar

Examples

Not run:
hc <- hclust(dist(USArrests), "ave")
dend <- as.dendrogram(hc)
dend <- color_labels(dend, 5, col = c(3, 1, 1, 4, 1))
dend <- color_branches(dend, 5, col = c(3, 1, 1, 4, 1))
plot(dend) # selective coloring of branches AND labels :)

coloring some labels, based on label names:
dend <- color_labels(dend, col = "red", labels = labels(dend)[c(4, 16)])
plot(dend) # selective coloring of branches AND labels :)

d5 <- color_branches(dend, 5)

color_unique_labels 51

plot(d5)
d5g <- color_branches(dend, 5, groupLabels = TRUE)
plot(d5g)
d5gr <- color_branches(dend, 5, groupLabels = as.roman)
plot(d5gr)

End(Not run)

color_unique_labels Color unique labels in a dendrogram

Description

Color unique labels in a dendrogram

Usage

color_unique_labels(dend, ...)

Arguments

dend a dend object

... NOT USED

Value

A dendrogram after the colors of its labels have been updated (a different color for each unique
label).

Examples

x <- c(2011, 2011, 2012, 2012, 2015, 2015, 2015)
names(x) <- x
dend <- as.dendrogram(hclust(dist(x)))

par(mfrow = c(1, 2))
plot(dend)
dend2 <- color_unique_labels(dend)
plot(dend2)

52 common_subtrees_clusters

common_subtrees_clusters

Find clusters of common subtrees

Description

Gets a dend and the output from "nodes_with_shared_labels" and returns a vector (length of labels),
indicating the clusters forming shared subtrees

Usage

common_subtrees_clusters(dend1, dend2, leaves_get_0_cluster = TRUE, ...)

Arguments

dend1 a dendrogram.
dend2 a dendrogram.
leaves_get_0_cluster

logical (TRUE). Should the leaves which are not part of a larger common subtree
get a unique cluster number, or the value 0.

... not used.

Value

An integer vector, with values indicating which leaves in dend1 form a common subtree cluster,
with ones available in dend2

See Also

color_branches, tanglegram

Examples

library(dendextend)
dend1 <- 1:6 %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- dend1 %>% set("labels", c(1:4, 6:5))
tanglegram(dend1, dend2)

clusters1 <- common_subtrees_clusters(dend1, dend2)
dend1_2 <- color_branches(dend1, clusters = clusters1)
plot(dend1_2)
plot(dend1_2, horiz = TRUE)
tanglegram(dend1_2, dend2, highlight_distinct_edges = FALSE)
tanglegram(dend1_2, dend2)

cor.dendlist 53

cor.dendlist Correlation matrix between a list of trees.

Description

A correlation matrix between a list of trees.

Assumes the labels in the two trees fully match. If they do not please first use intersect_trees to
have them matched.

Usage

cor.dendlist(
dend,
method = c("cophenetic", "baker", "common_nodes", "FM_index"),
...

)

Arguments

dend a dendlist of trees

method a character string indicating which correlation coefficient is to be computed.
One of "cophenetic" (default), "baker", "common_nodes", or "FM_index". It
can be abbreviated.

... passed to cor functions.

Value

A correlation matrix between the different trees

See Also

cophenetic, cor_cophenetic, cor_bakers_gamma, cor_common_nodes, cor_FM_index

Examples

Not run:

set.seed(23235)
ss <- sample(1:150, 10)
dend1 <- iris[ss, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[ss, -5] %>%
dist() %>%
hclust("single") %>%
as.dendrogram()

54 cor_bakers_gamma

dend3 <- iris[ss, -5] %>%
dist() %>%
hclust("ave") %>%
as.dendrogram()

dend4 <- iris[ss, -5] %>%
dist() %>%
hclust("centroid") %>%
as.dendrogram()

cutree(dend1)
cors <- cor.dendlist(dendlist(d1 = dend1, d2 = dend2, d3 = dend3, d4 = dend4))

cors

a nice plot for them:
library(corrplot)
corrplot(cor.dendlist(dend1234), "pie", "lower")

End(Not run)

cor_bakers_gamma Baker’s Gamma correlation coefficient

Description

Calculate Baker’s Gamma correlation coefficient for two trees (also known as Goodman-Kruskal-
gamma index).

Assumes the labels in the two trees fully match. If they do not please first use intersect_trees to
have them matched.

WARNING: this can be quite slow for medium/large trees.

Usage

cor_bakers_gamma(dend1, ...)

Default S3 method:
cor_bakers_gamma(dend1, dend2, ...)

S3 method for class 'dendrogram'
cor_bakers_gamma(
dend1,
dend2,
use_labels_not_values = TRUE,
to_plot = FALSE,
warn = dendextend_options("warn"),
...

)

S3 method for class 'hclust'

cor_bakers_gamma 55

cor_bakers_gamma(
dend1,
dend2,
use_labels_not_values = TRUE,
to_plot = FALSE,
warn = dendextend_options("warn"),
...

)

S3 method for class 'dendlist'
cor_bakers_gamma(dend1, which = c(1L, 2L), ...)

Arguments

dend1 a tree (dendrogram/hclust/phylo)

... Passed to cutree.

dend2 a tree (dendrogram/hclust/phylo)
use_labels_not_values

logical (TRUE). Should labels be used in the k matrix when using cutree? Set
to FALSE will make the function a bit faster BUT, it assumes the two trees have
the exact same leaves order values for each labels. This can be assured by using
match_order_by_labels.

to_plot logical (FALSE). Passed to bakers_gamma_for_2_k_matrix

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. should a warning be issued when using cutree?

which an integer vector of length 2, indicating which of the trees in the dendlist object
should be plotted (relevant for dendlist)

Details

Baker’s Gamma (see reference) is a measure of accosiation (similarity) between two trees of heirar-
chical clustering (dendrograms).

It is calculated by taking two items, and see what is the heighst possible level of k (number of
cluster groups created when cutting the tree) for which the two item still belongs to the same tree.
That k is returned, and the same is done for these two items for the second tree. There are n over
2 combinations of such pairs of items from the items in the tree, and all of these numbers are
calculated for each of the two trees. Then, these two sets of numbers (a set for the items in each
tree) are paired according to the pairs of items compared, and a spearman correlation is calculated.

The value can range between -1 to 1. With near 0 values meaning that the two trees are not statis-
tically similar. For exact p-value one should result to a permutation test. One such option will be
to permute over the labels of one tree many times, and calculating the distriubtion under the null
hypothesis (keeping the trees topologies constant).

Notice that this measure is not affected by the height of a branch but only of its relative position
compared with other branches.

56 cor_bakers_gamma

Value

Baker’s Gamma association Index between two trees (a number between -1 to 1)

References

Baker, F. B., Stability of Two Hierarchical Grouping Techniques Case 1: Sensitivity to Data Errors.
Journal of the American Statistical Association, 69(346), 440 (1974).

See Also

cor_cophenetic

Examples

Not run:

set.seed(23235)
ss <- sample(1:150, 10)
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)
cutree(dend1)

cor_bakers_gamma(hc1, hc2)
cor_bakers_gamma(dend1, dend2)

dend1 <- match_order_by_labels(dend1, dend2) # if you are not sure
cor_bakers_gamma(dend1, dend2, use_labels_not_values = FALSE)

library(microbenchmark)
microbenchmark(

with_labels = cor_bakers_gamma(dend1, dend2, try_cutree_hclust = FALSE),
with_values = cor_bakers_gamma(dend1, dend2,
use_labels_not_values = FALSE, try_cutree_hclust = FALSE

),
times = 10

)

cor_bakers_gamma(dend1, dend1, use_labels_not_values = FALSE)
cor_bakers_gamma(dend1, dend1, use_labels_not_values = TRUE)

End(Not run)

cor_common_nodes 57

cor_common_nodes Proportion of commong nodes between two trees

Description

Calculates the number of nodes, in each tree, that are common (i.e.: that have the same exact list
of labels). The correlation is between 0 (actually, 2*(nnodes-1)/(2*nnodes), for two trees with the
same list of labels - since the top node will always be identical for them). Where 1 means that every
node in the one tree, has a node in the other tree with the exact same list of labels. Notice this
measure is non-parameteric (it ignores the heights and relative position of the nodes).

Usage

cor_common_nodes(dend1, dend2, ...)

Arguments

dend1 a dendrogram.

dend2 a dendrogram.

... not used.

Value

A correlation value between 0 to 1 (almost identical trees)

See Also

distinct_edges, cor.dendlist

Examples

set.seed(23235)
ss <- sample(1:150, 10)
hc1 <- iris[ss, -5] %>%

dist() %>%
hclust("com")

hc2 <- iris[ss, -5] %>%
dist() %>%
hclust("single")

dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)

cor_cophenetic(dend1, dend2)
cor_common_nodes(dend1, dend2)
tanglegram(dend1, dend2)
we can see we have only two nodes which are different...

58 cor_cophenetic

cor_cophenetic Cophenetic correlation between two trees

Description

Cophenetic correlation coefficient for two trees.

Assumes the labels in the two trees fully match. If they do not please first use intersect_trees to
have them matched.

Usage

cor_cophenetic(dend1, ...)

Default S3 method:
cor_cophenetic(

dend1,
dend2,
method_coef = c("pearson", "kendall", "spearman"),
...

)

S3 method for class 'dendlist'
cor_cophenetic(
dend1,
which = c(1L, 2L),
method_coef = c("pearson", "kendall", "spearman"),
...

)

Arguments

dend1 a tree (dendrogram/hclust/phylo, or dendlist)

... Ignored.

dend2 Either a tree (dendrogram/hclust/phylo), or a dist object (for example, from the
original data matrix).

method_coef a character string indicating which correlation coefficient is to be computed.
One of "pearson" (default), "kendall", or "spearman", can be abbreviated. Passed
to cor.

which an integer vector of length 2, indicating which of the trees in a dendlist object
should have their cor_cophenetic calculated.

Details

From cophenetic: The cophenetic distance between two observations that have been clustered is
defined to be the intergroup dissimilarity at which the two observations are first combined into a
single cluster. Note that this distance has many ties and restrictions.

cor_cophenetic 59

cor_cophenetic calculates the correlation between two cophenetic distance matrices of the two trees.

The value can range between -1 to 1. With near 0 values meaning that the two trees are not statis-
tically similar. For exact p-value one should result to a permutation test. One such option will be
to permute over the labels of one tree many times, and calculating the distriubtion under the null
hypothesis (keeping the trees topologies constant).

Notice that this measure IS affected by the height of a branch.

Value

The correlation between cophenetic

References

Sokal, R. R. and F. J. Rohlf. 1962. The comparison of dendrograms by objective methods. Taxon,
11:33-40

Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy: The Principles and Practice of Nu-
merical Classification, p. 278 ff; Freeman, San Francisco.

https://en.wikipedia.org/wiki/Cophenetic_correlation

See Also

cophenetic, cor_bakers_gamma

Examples

Not run:

set.seed(23235)
ss <- sample(1:150, 10)
hc1 <- iris[ss, -5] %>%

dist() %>%
hclust("com")

hc2 <- iris[ss, -5] %>%
dist() %>%
hclust("single")

dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)
cutree(dend1)

cophenetic(hc1)
cophenetic(hc2)
notice how the dist matrix for the dendrograms have different orders:
cophenetic(dend1)
cophenetic(dend2)

cor(cophenetic(hc1), cophenetic(hc2)) # 0.874
cor(cophenetic(dend1), cophenetic(dend2)) # 0.16
the difference is becasue the order of the distance table in the case of
stats:::cophenetic.dendrogram will change between dendrograms!

https://en.wikipedia.org/wiki/Cophenetic_correlation

60 cor_FM_index

however, this is consistant (since I force-sort the rows/columns):
cor_cophenetic(hc1, hc2)
cor_cophenetic(dend1, dend2)

cor_cophenetic(dendlist(dend1, dend2))

we can also use different cor methods (almost the same result though):
cor_cophenetic(hc1, hc2, method = "spearman") # 0.8456014
cor_cophenetic(dend1, dend2, method = "spearman") #

cophenetic correlation is about 10 times (!) faster than bakers_gamma cor:
library(microbenchmark)
microbenchmark(

cor_bakers_gamma = cor_bakers_gamma(dend1, dend2, try_cutree_hclust = FALSE),
cor_cophenetic = cor_cophenetic(dend1, dend2),
times = 10

)

but only because of the cutree for dendrogram. When allowing hclust cutree
it is only about twice as fast:
microbenchmark(

cor_bakers_gamma = cor_bakers_gamma(dend1, dend2, try_cutree_hclust = TRUE),
cor_cophenetic = cor_cophenetic(dend1, dend2),
times = 10

)

End(Not run)

cor_FM_index Correlation of FM_index for some k

Description

Calculates the FM_index Correlation for some k.

Usage

cor_FM_index(dend1, dend2, k, ...)

Arguments

dend1 a dendrogram.

dend2 a dendrogram.

k an integer (number of clusters to cut the tree)

... not used.

count_terminal_nodes 61

Value

A correlation value between 0 to 1 (almost identical clusters for some k)

See Also

FM_index, cor.dendlist, Bk

Examples

set.seed(23235)
ss <- sample(1:150, 10)
hc1 <- iris[ss, -5] %>%

dist() %>%
hclust("com")

hc2 <- iris[ss, -5] %>%
dist() %>%
hclust("single")

dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)

cor_FM_index(dend1, dend2, k = 2)
cor_FM_index(dend1, dend2, k = 3)
cor_FM_index(dend1, dend2, k = 4)

count_terminal_nodes Counts the number of terminal nodes (merging 0 nodes!)

Description

This function counts the number of "practical" terminal nodes (nodes which are not leaves, but has
0 height to them are considered "terminal" nodes). If the tree is standard, that would simply be the
number of leaves (only the leaves will have height 0). However, in cases where the tree has several
nodes (before the leaves) with 0 height, the count_terminal_nodes counts such nodes as terminal
nodes

The function is recursive in that it either returns 1 if it reached a terminal node (either a leaf or a 0
height node), else: it will count the number of terminal nodes in each of its sub-nodes, sum them
up, and return them.

Usage

count_terminal_nodes(dend_node, ...)

Arguments

dend_node a dendrogram object for which to count its number of terminal nodes (leaves or
0 height nodes).

... not used

62 cutree

Value

The number of terminal nodes (excluding the leaves of nodes of height 0)

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

###
Trivial case
count_terminal_nodes(dend) # 3 terminal nodes
length(labels(dend)) # 3 - the same number
plot(dend,

main = "This is considered a tree \n with THREE terminal nodes (leaves)"
)

###
NON-Trivial case
str(dend)
attr(dend[[2]], "height") <- 0
count_terminal_nodes(dend) # 2 terminal nodes, why? see this plot:
plot(dend,

main = "This is considered a tree \n with TWO terminal nodes only"
)
while we have 3 leaves, in practice we have only 2 terminal nodes
(this is a feature, not a bug.)

cutree Cut a Tree (Dendrogram/hclust/phylo) into Groups of Data

Description

Cuts a dendrogram tree into several groups by specifying the desired number of clusters k(s), or cut
height(s).

For hclust.dendrogram - In case there exists no such k for which exists a relevant split of the
dendrogram, a warning is issued to the user, and NA is returned.

Usage

cutree(tree, k = NULL, h = NULL, ...)

Default S3 method:
cutree(tree, k = NULL, h = NULL, ...)

S3 method for class 'hclust'
cutree(
tree,

cutree 63

k = NULL,
h = NULL,
use_labels_not_values = TRUE,
order_clusters_as_data = TRUE,
warn = dendextend_options("warn"),
NA_to_0L = TRUE,
...

)

S3 method for class 'phylo'
cutree(tree, k = NULL, h = NULL, ...)

S3 method for class 'phylo'
cutree(tree, k = NULL, h = NULL, ...)

S3 method for class 'agnes'
cutree(tree, k = NULL, h = NULL, ...)

S3 method for class 'diana'
cutree(tree, k = NULL, h = NULL, ...)

S3 method for class 'dendrogram'
cutree(
tree,
k = NULL,
h = NULL,
dend_heights_per_k = NULL,
use_labels_not_values = TRUE,
order_clusters_as_data = TRUE,
warn = dendextend_options("warn"),
try_cutree_hclust = TRUE,
NA_to_0L = TRUE,
...

)

Arguments

tree a dendrogram object

k numeric scalar (OR a vector) with the number of clusters the tree should be cut
into.

h numeric scalar (OR a vector) with a height where the tree should be cut.

... (not currently in use)
use_labels_not_values

logical, defaults to TRUE. If the actual labels of the clusters do not matter - and
we want to gain speed (say, 10 times faster) - then use FALSE (gives the "leaves
order" instead of their labels.). This is passed to cutree_1h.dendrogram.

order_clusters_as_data

logical, defaults to TRUE. There are two ways by which to order the clusters: 1)

64 cutree

By the order of the original data. 2) by the order of the labels in the dendrogram.
In order to be consistent with cutree, this is set to TRUE. This is passed to
cutree_1h.dendrogram.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. Should the function send a warning in case the desried k is
not available?

NA_to_0L logical. default is TRUE. When no clusters are possible, Should the function
return 0 (TRUE, default), or NA (when set to FALSE).

dend_heights_per_k

a named vector that resulted from running. heights_per_k.dendrogram. When
running the function many times, supplying this object will help improve the
running time if using k!=NULL .

try_cutree_hclust

logical. default is TRUE. Since cutree for hclust is MUCH faster than for den-
drogram - cutree.dendrogram will first try to change the dendrogram into an
hclust object. If it will fail (for example, with unbranched trees), it will continue
using the cutree.dendrogram function. If try_cutree_hclust=FALSE, it will force
to use cutree.dendrogram and not cutree.hclust.

Details

At least one of k or h must be specified, k overrides h if both are given.

as opposed to cutree for hclust, cutree.dendrogram allows the cutting of trees at a given height
also for non-ultrametric trees (ultrametric tree == a tree with monotone clustering heights).

Value

If k or h are scalar - cutree.dendrogram returns an integer vector with group memberships. Other-
wise a matrix with group memberships is returned where each column corresponds to the elements
of k or h, respectively (which are also used as column names).

In case there exists no such k for which exists a relevant split of the dendrogram, a warning is issued
to the user, and NA is returned.

Author(s)

cutree.dendrogram was written by Tal Galili. cutree.hclust is redirecting the function to cutree
from base R.

See Also

hclust, cutree, cutree_1h.dendrogram, cutree_1k.dendrogram,

Examples

Not run:
hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23),]), "ave")

cutree 65

dend <- as.dendrogram(hc)
unbranch_dend <- unbranch(dend, 2)

cutree(hc, k = 2:4) # on hclust
cutree(dend, k = 2:4) # on dendrogram

cutree(hc, k = 2) # on hclust
cutree(dend, k = 2) # on dendrogram

cutree(dend, h = c(20, 25.5, 50, 170))
cutree(hc, h = c(20, 25.5, 50, 170))

the default (ordered by original data's order)
cutree(dend, k = 2:3, order_clusters_as_data = FALSE)
labels(dend)

as.hclust(unbranch_dend) # ERROR - can not do this...
cutree(unbranch_dend, k = 2) # all NA's
cutree(unbranch_dend, k = 1:4)
cutree(unbranch_dend, h = c(20, 25.5, 50, 170))
cutree(dend, h = c(20, 25.5, 50, 170))

library(microbenchmark)
this shows how as.hclust is expensive - but still worth it if possible
microbenchmark(

cutree(hc, k = 2:4),
cutree(as.hclust(dend), k = 2:4),
cutree(dend, k = 2:4),
cutree(dend, k = 2:4, try_cutree_hclust = FALSE)

)
the dendrogram is MUCH slower...

Unit: microseconds
expr min lq median uq max neval
cutree(hc, k = 2:4) 91.270 96.589 99.3885 107.5075 338.758 100
tree(as.hclust(dend),
k = 2:4) 1701.629 1767.700 1854.4895 2029.1875 8736.591 100
cutree(dend, k = 2:4) 1807.456 1869.887 1963.3960 2125.2155 5579.705 100
cutree(dend, k = 2:4,
try_cutree_hclust = FALSE) 8393.914 8570.852 8755.3490 9686.7930 14194.790 100

and trying to "hclust" is not expensive (which is nice...)
microbenchmark(

cutree_unbranch_dend = cutree(unbranch_dend, k = 2:4),
cutree_unbranch_dend_not_trying_to_hclust =
cutree(unbranch_dend, k = 2:4, try_cutree_hclust = FALSE)

)

Unit: milliseconds
expr min lq median uq max neval
cutree_unbranch_dend 7.309329 7.428314 7.494107 7.752234 17.59581 100

66 cutree_1h.dendrogram

cutree_unbranch_dend_not
_trying_to_hclust 6.945375 7.079198 7.148629 7.577536 16.99780 100
There were 50 or more warnings (use warnings() to see the first 50)

notice that if cutree can't find clusters for the desired k/h, it will produce 0's instead!
(It will produce a warning though...)
This is a different behaviout than stats::cutree
For example:
cutree(as.dendrogram(hclust(dist(c(1, 1, 1, 2, 2)))),

k = 5
)

End(Not run)

cutree_1h.dendrogram cutree for dendrogram (by 1 height only!)

Description

Cuts a dendrogram tree into several groups by specifying the desired cut height (only a single
height!).

Usage

cutree_1h.dendrogram(
dend,
h,
order_clusters_as_data = TRUE,
use_labels_not_values = TRUE,
warn = dendextend_options("warn"),
...

)

Arguments

dend a dendrogram object

h numeric scalar (NOT a vector) with a height where the dend should be cut.
order_clusters_as_data

logical, defaults to TRUE. There are two ways by which to order the clusters: 1)
By the order of the original data. 2) by the order of the labels in the dendrogram.
In order to be consistent with cutree, this is set to TRUE.

use_labels_not_values

logical, defaults to TRUE. If the actual labels of the clusters do not matter - and
we want to gain speed (say, 10 times faster) - then use FALSE (gives the "leaves
order" instead of their labels.).

cutree_1h.dendrogram 67

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... (not currently in use)

Value

cutree_1h.dendrogram returns an integer vector with group memberships

Author(s)

Tal Galili

See Also

hclust, cutree

Examples

hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23),]), "ave")
dend <- as.dendrogram(hc)
cutree(hc, h = 50) # on hclust
cutree_1h.dendrogram(dend, h = 50) # on a dendrogram

labels(dend)

the default (ordered by original data's order)
cutree_1h.dendrogram(dend, h = 50, order_clusters_as_data = TRUE)

A different order of labels - order by their order in the tree
cutree_1h.dendrogram(dend, h = 50, order_clusters_as_data = FALSE)

make it faster
Not run:
library(microbenchmark)
microbenchmark(

cutree_1h.dendrogram(dend, h = 50),
cutree_1h.dendrogram(dend, h = 50, use_labels_not_values = FALSE)

)
0.8 vs 0.6 sec - for 100 runs

End(Not run)

68 cutree_1k.dendrogram

cutree_1k.dendrogram cutree for dendrogram (by 1 k value only!)

Description

Cuts a dendrogram tree into several groups by specifying the desired number of clusters k (only a
single k value!).

In case there exists no such k for which exists a relevant split of the dendrogram, a warning is issued
to the user, and NA is returned.

Usage

cutree_1k.dendrogram(
dend,
k,
dend_heights_per_k = NULL,
use_labels_not_values = TRUE,
order_clusters_as_data = TRUE,
warn = dendextend_options("warn"),
...

)

Arguments

dend a dendrogram object

k numeric scalar (not a vector!) with the number of clusters the tree should be cut
into.

dend_heights_per_k

a named vector that resulted from running. heights_per_k.dendrogram. When
running the function many times, supplying this object will help improve the
running time.

use_labels_not_values

logical, defaults to TRUE. If the actual labels of the clusters do not matter - and
we want to gain speed (say, 10 times faster) - then use FALSE (gives the "leaves
order" instead of their labels.). This is passed to cutree_1h.dendrogram.

order_clusters_as_data

logical, defaults to TRUE. There are two ways by which to order the clusters: 1)
By the order of the original data. 2) by the order of the labels in the dendrogram.
In order to be consistent with cutree, this is set to TRUE. This is passed to
cutree_1h.dendrogram.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. Should the function send a warning in case the desried k is
not available?

... (not currently in use)

cutree_1k.dendrogram 69

Value

cutree_1k.dendrogram returns an integer vector with group memberships.

In case there exists no such k for which exists a relevant split of the dendrogram, a warning is issued
to the user, and NA is returned.

Author(s)

Tal Galili

See Also

hclust, cutree, cutree_1h.dendrogram

Examples

hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23),]), "ave")
dend <- as.dendrogram(hc)
cutree(hc, k = 3) # on hclust
cutree_1k.dendrogram(dend, k = 3) # on a dendrogram

labels(dend)

the default (ordered by original data's order)
cutree_1k.dendrogram(dend, k = 3, order_clusters_as_data = TRUE)

A different order of labels - order by their order in the tree
cutree_1k.dendrogram(dend, k = 3, order_clusters_as_data = FALSE)

make it faster
Not run:
library(microbenchmark)
dend_ks <- heights_per_k.dendrogram
microbenchmark(

cutree_1k.dendrogram = cutree_1k.dendrogram(dend, k = 4),
cutree_1k.dendrogram_no_labels = cutree_1k.dendrogram(dend,
k = 4, use_labels_not_values = FALSE

),
cutree_1k.dendrogram_no_labels_per_k = cutree_1k.dendrogram(dend,

k = 4, use_labels_not_values = FALSE,
dend_heights_per_k = dend_ks

)
)
the last one is the fastest...

End(Not run)

70 cut_lower_fun

cut_lower_fun Cut a dendrogram - and run a function on the output

Description

Cuts the dend at height h and returns a list with the FUN function implemented on all the sub trees
created by cut at height h. This is used for creating a cutree.dendrogram function, by using the
labels function as FUN.

This is the Rcpp version of the function, offering a 10-60 times improvement in speed (depending
on the tree size it is used on).

Usage

cut_lower_fun(dend, h, FUN = labels, warn = dendextend_options("warn"), ...)

Arguments

dend a dendrogram object.

h a scalar of height to cut the dend by.

FUN a function to run. (default is "labels")

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. Should the user be warned if reverting to default?

... passed to FUN.

Value

A list with the output of running FUN on each of the sub dends derived from cutting "dend"

Author(s)

Tal Galili

See Also

labels, dendrogram, cutree.dendrogram

Examples

dend <- as.dendrogram(hclust(dist(iris[1:4, -5])))
this is really cool!
cut_lower_fun(dend, .4, labels)
lapply(cut(dend, h = .4)$lower, labels)
cut_lower_fun(dend, .4, order.dendrogram)

dendextend_options 71

dendextend_options Access to dendextend_options

Description

This is a function inside its own environment. This enables a bunch of functions to be manipulated
outside the package, even when they are called from function within the dendextend package.

TODO: describe options.

A new "warn" dendextend_options parameter. logical (FALSE). Should warning be issued?

Usage

dendextend_options(option, value)

Arguments

option a character scalar of the value of the options we would like to access or update.

value any value that we would like to update into the "option" element in dendex-
tend_options

Value

a list with functions

Author(s)

Kurt Hornik

Examples

dendextend_options("a")
dendextend_options("a", 1)
dendextend_options("a")
dendextend_options("a", NULL)
dendextend_options("a")
dendextend_options()

72 dendlist

dendlist Creating a dendlist object from several dendrograms

Description

It accepts several dendrograms and or dendlist objects and chain them all together. This function
aim to help with the usability of comparing two or more dendrograms.

Usage

dendlist(..., which)

S3 method for class 'dendlist'
plot(x, which = c(1L, 2L), ...)

Arguments

... several dendrogram/hclust/phylo or dendlist objects If an object is hclust or
phylo - it will be converted into a dendrogram.

which an integer vector of length 2, indicating which of the trees in the dendlist object
should be plotted (relevant for dendlist)
When used inside dendlist, which is still an integer, but it can be of any length,
and it can be used to create a smaller dendlist.

x a dendlist object

Details

It there are list() in the ..., they are omitted. If ... is missing, it returns an empty dendlist.

Value

A list of class dendlist where each item is a dendrogram

Examples

Not run:

dend <- iris[, -5] %>%
dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- iris[, -5] %>%
dist() %>%
hclust(method = "single") %>%
as.dendrogram()

dendlist(1:4, 5, a = dend) # Error
dendlist <- function (...) list(...)

DendSer.dendrogram 73

dendlist(dend)
dendlist(dend, dend)
dendlist(dend, dend, dendlist(dend))
notice how the order of
dendlist(dend, dend2)
dendlist(dend) %>% dendlist(dend2)
dendlist(dend) %>%

dendlist(dend2) %>%
dendlist(dend)

dendlist(dend, dend2) %>% tanglegram()
tanglegram(tree1 = dendlist(dend, dend2))

dend <- iris[1:20, -5] %>%
dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- iris[1:20, -5] %>%
dist() %>%
hclust(method = "single") %>%
as.dendrogram()

x <- dendlist(dend, dend2)
plot(x)

End(Not run)

DendSer.dendrogram Tries to run DendSer on a dendrogram

Description

Implements dendrogram seriation. The function tries to turn the dend into hclust, on which it runs
DendSer.

Also, if a distance matrix is missing, it will try to use the cophenetic distance.

Usage

DendSer.dendrogram(dend, ser_weight, ...)

Arguments

dend An object of class dendrogram

ser_weight Used by cost function to evaluate ordering. For cost=costLS, this is a vector of
object weights. Otherwise is a dist or symmetric matrix. passed to DendSer. If
it is missing, the cophenetic distance is used instead.

... parameters passed to DendSer

74 dend_diff

Value

Numeric vector giving an optimal dendrogram order

See Also

DendSer, DendSer.dendrogram , untangle_DendSer, rotate_DendSer

Examples

Not run:
library(DendSer) # already used from within the function
hc <- hclust(dist(USArrests[1:4,]), "ave")
dend <- as.dendrogram(hc)
DendSer.dendrogram(dend)

End(Not run)

dend_diff Plots two trees side by side, highlighting edges unique to each tree in
red.

Description

Plots two trees side by side, highlighting edges unique to each tree in red.

Usage

dend_diff(dend, ...)

S3 method for class 'dendrogram'
dend_diff(dend, dend2, horiz = TRUE, ...)

S3 method for class 'dendlist'
dend_diff(dend, ..., which = c(1L, 2L))

Arguments

dend a dendrogram or dendlist to compre with

... passed to plot.dendrogram

dend2 a dendrogram to compare with

horiz logical (TRUE) indicating if the dendrogram should be drawn horizontally or
not.

which an integer vector indicating, in the case "dend" is a dendlist, on which of the
trees should the modification be performed. If missing - the change will be
performed on all of objects in the dendlist.

dend_expend 75

Value

Invisible dendlist of both trees.

Source

A dendrogram implementation for phylo.diff from the distory package

See Also

distinct_edges, highlight_distinct_edges, dist.dendlist, tanglegram assign_values_to_branches_edgePar,
distinct.edges,

Examples

x <- 1:5 %>%
dist() %>%
hclust() %>%
as.dendrogram()

y <- set(x, "labels", 5:1)

dend_diff(x, y)
dend_diff(dendlist(x, y))
dend_diff(dendlist(y, x))

dend1 <- 1:10 %>%
dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- dend1 %>% set("labels", c(1, 3, 2, 4, 5:10))
dend_diff(dend1, dend2)

dend_expend Finds a "good" dendrogram for a dist

Description

There are many options for choosing distance and linkage functions for hclust. This function goes
through various combinations of the two and helps find the one that is most "similar" to the original
distance matrix.

Usage

dend_expend(
x,
dist_methods = c("euclidean", "maximum", "manhattan", "canberra", "binary",
"minkowski"),

hclust_methods = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",

76 dist.dendlist

"median", "centroid"),
hclust_fun = hclust,
optim_fun = cor_cophenetic,
...

)

find_dend(x, ...)

Arguments

x A matrix or a data.frame. Can also be a dist object.

dist_methods A vector of possible dist methods.

hclust_methods A vector of possible hclust methods.

hclust_fun By default hclust.

optim_fun A function that accepts a dend and a dist and returns how the two are in agree-
ment. Default is cor_cophenetic.

... options passed from find_dend to dend_expend.

Value

dend_expend: A list with three items. The first item is called "dends" and includes a dendlist with
all the possible dendrogram combinations. The second is "dists" and includes a list with all the
possible distance matrix combination. The third. "performance", is data.frame with three columns:
dist_methods, hclust_methods, and optim. optim is calculated (by default) as the cophenetic corre-
lation (see: cor_cophenetic) between the distance matrix and the cophenetic distance of the hclust
object.

find_dend: A dendrogram which is "optimal" based on the output from dend_expend.

Examples

x <- datasets::mtcars
out <- dend_expend(x, dist_methods = c("euclidean", "manhattan"))
out$performance

dend_expend(dist(x))$performance

best_dend <- find_dend(x, dist_methods = c("euclidean", "manhattan"))
plot(best_dend)

dist.dendlist Topological Distances Between Two dendrograms

dist.dendlist 77

Description

This function seems to bring different results than ape - checking this out is still an open issue:
github issue

This function computes the Robinson-Foulds distance (also known as symmetric difference) be-
tween two dendrograms. This is the number of edges (branches) in tree_1 with a combination
of labels that exist in it but not in any subtree of tree2, plus the same calculation of tree2 when
compared to tree1. This is the sum of length of distinct_edges(x,y) with distinct_edges(y,x).

This function might implement other topological distances in the future.

Usage

dist.dendlist(dend, method = c("edgeset"), ...)

Arguments

dend a dendlist

method currently only ’edgeset’ is implemented.

... Ignored.

Value

A dist object with topological distances between all trees

See Also

distinct_edges, dist.topo, dist.multiPhylo, treedist,

Examples

x <- 1:5 %>%
dist() %>%
hclust() %>%
as.dendrogram()

y <- set(x, "labels", 5:1)

dist.dendlist(dendlist(x1 = x, x2 = x, y1 = y))
dend_diff(x, y)

Larger trees
x <- 1:6 %>%

dist() %>%
hclust() %>%
as.dendrogram()

y <- set(x, "labels", c(1:3, 6, 4, 5))

dend_diff(x, y)
dist.dendlist(dendlist(x, y))
distinct_edges(x, y)
distinct_edges(y, x)

https://github.com/talgalili/dendextend/issues/97
https://en.wikipedia.org/wiki/Robinson\T1\textendash Foulds_metric

78 distinct_edges

length(distinct_edges(x, y)) + length(distinct_edges(y, x)) # dist.dendlist

distinct_edges Finds distinct edges in one tree compared to another

Description

Finds the edges present in the first tree but not in the second

Usage

distinct_edges(dend, dend2, ...)

Arguments

dend a dendrogram to find unique edges in

dend2 a dendrogram to compare with

... Ignored.

Value

A numeric vector of edge ids for the first tree (dend) that are not present in the second tree (dend2).

Source

A dendrogram implementation for distinct.edges from the distory package

See Also

distinct_edges, highlight_distinct_edges, dist.dendlist, tanglegram distinct.edges

Examples

x <- 1:5 %>%
dist() %>%
hclust() %>%
as.dendrogram()

y <- set(x, "labels", 5:1)
distinct_edges(x, y)
distinct_edges(y, x)
dend_diff(x, y)
tanglegram(x, y)

dist_long 79

dist_long Turns a dist object to a "long" table

Description

Turns a dist object from a "wide" to a "long" table

Usage

dist_long(d, ...)

Arguments

d a distance object

... not used

Value

A data.frame with two columns of rows and column names of the dist object and a third column
(distance) with the distance between the two.

Examples

data(iris)
iris[2:6, -5] %>%

dist() %>%
data.matrix()

iris[2:6, -5] %>%
dist() %>%
as.vector()

iris[2:6, -5] %>%
dist() %>%
dist_long()

This can later be used to making a network plot based on the distances.

duplicate_leaf Duplicate a leaf X times

Description

Duplicates a leaf in a tree. Useful for non-parametric bootstraping trees since it emulates what
would have happened if the tree was constructed based on a row-sample with replacments from the
original data matrix.

80 duplicate_leaf

Usage

duplicate_leaf(
dend,
leaf_label,
times,
fix_members = TRUE,
fix_order = TRUE,
fix_midpoint = TRUE,
...

)

Arguments

dend a dendrogram object

leaf_label the label of the laef to replicate.

times the number of times we will have this leaf after replication

fix_members logical (TRUE). Fix the number of members in attr using fix_members_attr.dendrogram

fix_order logical (TRUE). Fix the leaves order

fix_midpoint logical (TRUE). Fix the midpoint value. If TRUE, it overrides "fix_members"
and turns it into TRUE (since it must have a correct number of members in order
to work). values using rank_order.dendrogram

... not used

Value

A dendrogram, after duplicating one of its leaves.

Examples

Not run:
define dendrogram object to play with:
dend <- USArrests[1:3,] %>%

dist() %>%
hclust(method = "ave") %>%
as.dendrogram()

plot(dend)
duplicate_leaf(dend, "Alaska", 3)
duplicate_leaf(dend, "Arizona", 2, fix_members = FALSE, fix_order = FALSE)
plot(duplicate_leaf(dend, "Alaska", 2))
plot(duplicate_leaf(dend, "Alaska", 4))
plot(duplicate_leaf(dend, "Arizona", 2))
plot(duplicate_leaf(dend, "Arizona", 4))

End(Not run)

entanglement 81

entanglement Measures entanglement between two trees

Description

Measures the entanglement between two trees. Entanglement is a measure between 1 (full entan-
glement) and 0 (no entanglement). The exact behavior of the number depends on the L norm which
is chosen.

Usage

entanglement(dend1, ...)

S3 method for class 'hclust'
entanglement(dend1, dend2, ...)

S3 method for class 'phylo'
entanglement(dend1, dend2, ...)

S3 method for class 'dendlist'
entanglement(dend1, which = c(1L, 2L), ...)

S3 method for class 'dendrogram'
entanglement(
dend1,
dend2,
L = 1.5,
leaves_matching_method = c("labels", "order"),
...

)

Arguments

dend1 a tree object (of class dendrogram/hclust/phylo).

... not used

dend2 a tree object (of class dendrogram/hclust/phylo).

which an integer vector of length 2, indicating which of the trees in a dendlist object
should have their entanglement calculated

L the distance norm to use for measuring the distance between the two trees. It
can be any positive number, often one will want to use 0, 1, 1.5, 2 (see ’details’
for more).

leaves_matching_method

a character scalar, either "order" or "labels" (default) . If using "labels", then we
use the labels for matching the leaves order value (safer).
And if "order" then we use the old leaves order value for matching the leaves
order value.

82 entanglement

Using "order" is faster, but "labels" is safer. "order" will assume that the original
two trees had their labels and order values MATCHED.
Hence, it is best to make sure that the trees used here have the same labels and
the SAME values matched to these values - and then use "order" (for fastest
results).

Details

Entanglement is measured by giving the left tree’s labels the values of 1 till tree size, and than
match these numbers with the right tree. Now, entanglement is the L norm distance between these
two vectors. That is, we take the sum of the absolute difference (each one in the power of L). e.g:
sum(abs(x-y)^L). And this is devided by the "worst case" entanglement level (e.g: when the right
tree is the complete reverse of the left tree).

L tells us which panelty level we are at (L0, L1, L2, partial L’s etc). L>1 means that we give a big
panelty for sharp angles. While L->0 means that any time something is not a streight horizontal
line, it gets a large penalty If L=0.1 it means that we much prefer streight lines over non streight
lines

Value

The number of leaves in the tree

See Also

tanglegram, match_order_by_labels.

Examples

Not run:
dend1 <- iris[, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[, -5] %>%
dist() %>%
hclust("sin") %>%
as.dendrogram()

dend12 <- dendlist(dend1, dend2)
tanglegram(dend12)

entanglement(dend12)
entanglement(dend12, L = 0)
entanglement(dend12, L = 0.25)
entanglement(dend1, dend2, L = 0) # 1
entanglement(dend1, dend2, L = 0.25) # 0.97
entanglement(dend1, dend2, L = 1) # 0.93
entanglement(dend1, dend2, L = 2) # 0.88

a somewhat better tanglegram
tanglegram(sort(dend1), sort(dend2))

fac2num 83

and alos a MUCH better entanglement
entanglement(sort(dend1), sort(dend2), L = 1.5) # 0.0811
but not that much, for L=0.25
entanglement(sort(dend1), sort(dend2), L = .25) # 0.579

##################
##################
##################
massing up the order of leaves is dangerous:
entanglement(dend1, dend2, 1.5, "order") # 0.91
order.dendrogram(dend2) <- seq_len(nleaves(dend2))
this 0.95 number is NO LONGER correct!!
entanglement(dend1, dend2, 1.5, "order") # 0.95
but if we use the "labels" method - we still get the correct number:
entanglement(dend1, dend2, 1.5, "labels") # 0.91

however, we can fix our dend2, as follows:
dend2 <- match_order_by_labels(dend2, dend1)
Now that labels and order are matched - entanglement is back at working fine:
entanglement(dend1, dend2, 1.5, "order") # 0.91

End(Not run)

fac2num Turns a factor into a number

Description

Turning a factor into a number is not trivial. Using as.numeric would only return to us the indicator
numbers and NOT the factor levels turned into a number. fac2num simply turns a factor into a
number, as we often need.

Usage

fac2num(x, force_integer = FALSE, keep_names = TRUE, ...)

Arguments

x an object.

force_integer logical (FALSE). Should the values returned be integers?

keep_names logical (TRUE). Should the values returned keep the names of the original vec-
tor?

... ignored.

Value

if x is an object - it returns logical - is the object of class dendrogram.

84 find_dendrogram

Examples

x <- factor(3:5)
as.numeric(x) # 1 2 3
fac2num(x) # 3 4 5

find_dendrogram Search for the sub-dendrogram structure composed of selected labels

Description

Given a dendrogram object, the function performs a recursive DFS algorithm to determine the sub-
dendrogram which is composed of (exactly) all ’selected_labels’.

Usage

find_dendrogram(dend, selected_labels)

Arguments

dend a dendrogram object
selected_labels

A character vector with the labels we expect to have in the sub-dendrogram.
This doesn’t have to be in the same order as in the dendrogram.

Value

Either a sub-dendrogram composed of only members of selected_labels. If such a sub-dendrogram
doesn’t exist, the function returns NULL.

Examples

Not run:
define dendrogram object to play with:
dend <- iris[, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram() %>%
set("labels_to_character") %>%
color_branches(k = 5)

first.subdend.only <- names(cutree(dend, 4)[cutree(dend, 4) == 1])
sub.dend <- find_dendrogram(dend, first.subdend.only)
Plotting the result
par(mfrow = c(1, 2))
plot(dend, main = "Original dendrogram")
plot(sub.dend, main = "First subdendrogram")

dend <- 1:10 %>%

find_k 85

dist() %>%
hclust() %>%
as.dendrogram() %>%
set("labels_to_character") %>%
color_branches(k = 5)

selected_labels <- as.character(1:4)
sub_dend <- find_dendrogram(dend, selected_labels)
plot(dend, main = "Original dendrogram")
plot(sub_dend, main = "First subdendrogram")

End(Not run)

find_k Find the (estimated) number of clusters for a dendrogram using aver-
age silhouette width

Description

This function estimates the number of clusters based on the maximal average silhouette width de-
rived from running pam on the cophenetic distance matrix of the dendrogram. The output is based
on the pamk output.

Usage

find_k(dend, krange = 2:min(10, (nleaves(dend) - 1)), ...)

S3 method for class 'find_k'
plot(
x,
xlab = "Number of clusters (k)",
ylab = "Average silhouette width",
main = "Estimating the number of clusters using\n average silhouette width",
...

)

Arguments

dend A dendrogram (or hclust) tree object

krange integer vector. Numbers of clusters which are to be compared by the average sil-
houette width criterion. Note: average silhouette width and Calinski-Harabasz
can’t estimate number of clusters nc=1. If 1 is included, a Duda-Hart test is
applied and 1 is estimated if this is not significant.

... passed to pamk (the current defaults criterion="asw" and usepam=TRUE can
not be changes).

86 fix_members_attr.dendrogram

x An object of class "find_k" (has its own S3 plot method).
xlab, ylab, main

parameters passed to plot.

Value

A pamk output. This is a list with the following components: 1) pamobject - The output of the
optimal run of the pam-function. 2) nc - the optimal number of clusters. 3) crit - vector of criterion
values for numbers of clusters. crit[1] is the p-value of the Duda-Hart test if 1 is in krange and
diss=FALSE. 4) k - a copy of nc (just to make it easier to extract - since k is often used in other
functions)

See Also

pamk, pam, silhouette.

Examples

dend <- iris[, -5] %>%
dist() %>%
hclust() %>%
as.dendrogram()

dend_k <- find_k(dend)
plot(dend_k)
plot(color_branches(dend, k = dend_k$nc))

library(cluster)
sil <- silhouette(dend_k$pamobject)
plot(sil)

dend <- USArrests %>%
dist() %>%
hclust(method = "ave") %>%
as.dendrogram()

dend_k <- find_k(dend)
plot(dend_k)
plot(color_branches(dend, k = dend_k$nc))

fix_members_attr.dendrogram

Fix members attr in a dendrogram

Description

Fix members attr in a dendrogram after (for example), the tree was pruned or manipulated.

Usage

fix_members_attr.dendrogram(dend, ...)

flatten.dendrogram 87

Arguments

dend a dendrogram object

... not used

Value

A dendrogram, after adjusting the members attr in all of its nodes.

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)
plot(dend)
prune one leaf
dend[[2]] <- dend[[2]][[1]]
plot(dend)
dend # but it is NO LONGER true that it has 3 members total!
fix_members_attr.dendrogram(dend) # it now knows it has only 2 members :)

hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

identical(prune_leaf(dend, "Alaska"), fix_members_attr.dendrogram(prune_leaf(dend, "Alaska")))
str(unclass(prune_leaf(dend, "Alaska")))
str(unclass(fix_members_attr.dendrogram(prune_leaf(dend, "Alaska"))))

flatten.dendrogram Flatten the branches of a dendrogram’s root

Description

The function makes sure the two branches of the root of a dendrogram will have the same height.
The user can choose how to decide which height to use.

Usage

flatten.dendrogram(dend, FUN = max, new_height, ...)

Arguments

dend dendrogram object

FUN how to choose the new height of both branches (defaults to taking the max be-
tween the two)

new_height overrides FUN, and sets the new height of the two branches manually

... passed on (not used)

88 flip_leaves

Value

A dendrogram with both of the root’s branches of the same height

Examples

hc <- hclust(dist(USArrests[2:9,]), "com")
dend <- as.dendrogram(hc)
attr(dend[[1]], "height") <- 150 # make the height un-equal

par(mfrow = c(1, 2))
plot(dend, main = "original tree")
plot(flatten.dendrogram(dend), main = "Raised tree")

flip_leaves Flip leaves

Description

Rotate a branch in a tree so that the locations of two bundles of leaves are flipped.

Usage

flip_leaves(dend, leaves1, leaves2, ...)

Arguments

dend a dendrogram object

leaves1 a vector of leaves order value to flip.

leaves2 a (second) vector of leaves order value to flip.

... not used

Details

This function is based on a bunch of string manipulation functions. There may be a smarter/better
way for doing it...

Value

A dendrogram object with flipped leaves.

See Also

tanglegram, match_order_by_labels, entanglement.

FM_index 89

Examples

Not run:
dend1 <- USArrests[1:5,] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- flip_leaves(dend1, c(3, 5), c(1, 2))
tanglegram(dend1, dend2)
entanglement(dend1, dend2, L = 2) # 0.4

End(Not run)

FM_index Calculating Fowlkes-Mallows Index

Description

Calculating Fowlkes-Mallows index.

The FM_index_R function calculates the expectancy and variance of the FM Index under the null
hypothesis of no relation.

Usage

FM_index(
A1_clusters,
A2_clusters,
assume_sorted_vectors = FALSE,
warn = dendextend_options("warn"),
...

)

Arguments

A1_clusters a numeric vector of cluster grouping (numeric) of items, with a name attribute of
item name for each element from group A1. These are often obtained by using
some k cut on a dendrogram.

A2_clusters a numeric vector of cluster grouping (numeric) of items, with a name attribute of
item name for each element from group A2. These are often obtained by using
some k cut on a dendrogram.

assume_sorted_vectors

logical (FALSE). Can we assume to two group vectors are sorter so that they
have the same order of items? IF FALSE (default), then the vectors will be
sorted based on their name attribute.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... Ignored

90 FM_index

Details

From Wikipedia:

Fowlkes-Mallows index (see references) is an external evaluation method that is used to determine
the similarity between two clusterings (clusters obtained after a clustering algorithm). This measure
of similarity could be either between two hierarchical clusterings or a clustering and a benchmark
classification. A higher the value for the Fowlkes-Mallows index indicates a greater similarity
between the clusters and the benchmark classifications.

Value

The Fowlkes-Mallows index between two vectors of clustering groups.

Includes the attributes E_FM and V_FM for the relevant expectancy and variance under the null
hypothesis of no-relation.

References

Fowlkes, E. B.; Mallows, C. L. (1 September 1983). "A Method for Comparing Two Hierarchical
Clusterings". Journal of the American Statistical Association 78 (383): 553.

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

See Also

cor_bakers_gamma

Examples

Not run:

set.seed(23235)
ss <- TRUE # sample(1:150, 10)
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)
cutree(dend1)

FM_index(cutree(hc1, k = 3), cutree(hc1, k = 3)) # 1 with EV

checking speed gains
library(microbenchmark)
microbenchmark(

FM_index(cutree(hc1, k = 3), cutree(hc1, k = 3)),
FM_index(cutree(hc1, k = 3), cutree(hc1, k = 3),
assume_sorted_vectors = TRUE

),
FM_index(cutree(hc1, k = 3), cutree(hc1, k = 3),

assume_sorted_vectors = TRUE
)

)

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

FM_index_permutation 91

C code is 1.2-1.3 times faster.

set.seed(1341)
FM_index(cutree(hc1, k = 3), sample(cutree(hc1, k = 3)),

assume_sorted_vectors = TRUE
) # 0.38037
FM_index(cutree(hc1, k = 3), sample(cutree(hc1, k = 3)),

assume_sorted_vectors = FALSE
) # 1 again :)
FM_index(cutree(hc1, k = 3), cutree(hc2, k = 3)) # 0.8059
FM_index(cutree(hc1, k = 30), cutree(hc2, k = 30)) # 0.4529

fo <- function(k) FM_index(cutree(hc1, k), cutree(hc2, k))
lapply(1:4, fo)
ks <- 1:150
plot(sapply(ks, fo) ~ ks, type = "b", main = "Bk plot for the iris dataset")

End(Not run)

FM_index_permutation Calculating Fowlkes-Mallows Index under H0

Description

Calculating Fowlkes-Mallows index under the null hypothesis of no relation between the clusterings
(random order of the items labels).

Usage

FM_index_permutation(
A1_clusters,
A2_clusters,
warn = dendextend_options("warn"),
...

)

Arguments

A1_clusters a numeric vector of cluster grouping (numeric) of items, with a name attribute of
item name for each element from group A1. These are often obtained by using
some k cut on a dendrogram.

A2_clusters a numeric vector of cluster grouping (numeric) of items, with a name attribute of
item name for each element from group A2. These are often obtained by using
some k cut on a dendrogram.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... Ignored

92 FM_index_permutation

Value

The Fowlkes-Mallows index between two vectors of clustering groups. Under H0. (a double with-
out attr)

References

Fowlkes, E. B.; Mallows, C. L. (1 September 1983). "A Method for Comparing Two Hierarchical
Clusterings". Journal of the American Statistical Association 78 (383): 553.

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

See Also

cor_bakers_gamma, FM_index_R, FM_index

Examples

Not run:

set.seed(23235)
ss <- TRUE # sample(1:150, 10)
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)
cutree(dend1)

small k
A1_clusters <- cutree(hc1, k = 3) # will give a right tailed distribution
large k
A1_clusters <- cutree(hc1, k = 50) # will give a discrete distribution
"medium" k
A1_clusters <- cutree(hc1, k = 25) # gives almost the normal distribution!
A2_clusters <- A1_clusters

R <- 10000
set.seed(414130)
FM_index_H0 <- replicate(R, FM_index_permutation(A1_clusters, A2_clusters)) # can take 10 sec
plot(density(FM_index_H0), main = "FM Index distribution under H0\n (10000 permutation)")
abline(v = mean(FM_index_H0), col = 1, lty = 2)

The permutation distribution is with a heavy right tail:
Source of the skew functions is based on: library(psych)

skew <- function (x, na.rm = TRUE) {
x <- na.omit(x)
sum((x - mean(x))^3)/(length(x) * sd(x)^3)

}
skew(FM_index_H0) # 1.254

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

FM_index_R 93

mean(FM_index_H0)
var(FM_index_H0)
the_FM_index <- FM_index(A1_clusters, A2_clusters)
the_FM_index
our_dnorm <- function(x) {

dnorm(x,
mean = attr(the_FM_index, "E_FM"),
sd = sqrt(attr(the_FM_index, "V_FM"))

)
}
our_dnorm(0.35)
curve(our_dnorm,

col = 4,
from = -1, to = 1, n = R, add = TRUE

)
abline(v = attr(the_FM_index, "E_FM"), col = 4, lty = 2)

legend("topright", legend = c("asymptotic", "permutation"), fill = c(4, 1))

End(Not run)

FM_index_R Calculating Fowlkes-Mallows index in R

Description

Calculating Fowlkes-Mallows index.

The FM_index_R function also calculates the expectancy and variance of the FM Index under the
null hypothesis of no relation.

Usage

FM_index_R(
A1_clusters,
A2_clusters,
assume_sorted_vectors = FALSE,
warn = dendextend_options("warn"),
...

)

Arguments

A1_clusters a numeric vector of cluster grouping (numeric) of items, with a name attribute of
item name for each element from group A1. These are often obtained by using
some k cut on a dendrogram.

A2_clusters a numeric vector of cluster grouping (numeric) of items, with a name attribute of
item name for each element from group A2. These are often obtained by using
some k cut on a dendrogram.

94 FM_index_R

assume_sorted_vectors

logical (FALSE). Can we assume to two group vectors are sorter so that they
have the same order of items? IF FALSE (default), then the vectors will be
sorted based on their name attribute.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... Ignored.

Details

From Wikipedia:

Fowlkes-Mallows index (see references) is an external evaluation method that is used to determine
the similarity between two clusterings (clusters obtained after a clustering algorithm). This measure
of similarity could be either between two hierarchical clusterings or a clustering and a benchmark
classification. A higher the value for the Fowlkes-Mallows index indicates a greater similarity
between the clusters and the benchmark classifications.

Value

The Fowlkes-Mallows index between two vectors of clustering groups.

Includes the attributes E_FM and V_FM for the relevant expectancy and variance under the null
hypothesis of no-relation.

References

Fowlkes, E. B.; Mallows, C. L. (1 September 1983). "A Method for Comparing Two Hierarchical
Clusterings". Journal of the American Statistical Association 78 (383): 553.

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

See Also

cor_bakers_gamma

Examples

Not run:

set.seed(23235)
ss <- TRUE # sample(1:150, 10)
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)
cutree(dend1)

FM_index_R(cutree(hc1, k = 3), cutree(hc1, k = 3)) # 1
set.seed(1341)

https://en.wikipedia.org/wiki/Fowlkes-Mallows_index

get_branches_heights 95

FM_index_R(cutree(hc1, k = 3),
sample(cutree(hc1, k = 3)),
assume_sorted_vectors = TRUE) # 0.38037

FM_index_R(cutree(hc1, k = 3),
sample(cutree(hc1, k = 3)),
assume_sorted_vectors = FALSE) # 1 again :)

FM_index_R(cutree(hc1, k = 3),
cutree(hc2, k = 3)) # 0.8059

FM_index_R(cutree(hc1, k = 30),
cutree(hc2, k = 30)) # 0.4529

fo <- function(k) FM_index_R(cutree(hc1, k), cutree(hc2, k))
lapply(1:4, fo)
ks <- 1:150
plot(sapply(ks, fo) ~ ks, type = "b", main = "Bk plot for the iris dataset")

clu_1 <- cutree(hc2, k = 100) # this is a lie - since this one is NOT well defined!
clu_2 <- cutree(as.dendrogram(hc2), k = 100) # We see that we get a vector of NAs for this...

FM_index_R(clu_1, clu_2) # NA

End(Not run)

get_branches_heights Get height attributes from a dendrogram

Description

Get height attributes of a dendrogram’s branches

Usage

get_branches_heights(
dend,
sort = TRUE,
decreasing = FALSE,
include_leaves = FALSE,
...

)

Arguments

dend a dendrogram.

sort logical. Should the heights be sorted?

decreasing logical. Should the sort be increasing or decreasing? Not available for partial
sorting.

include_leaves logical (FALSE). Should the output include the leaves value (0’s).

... not used.

96 get_childrens_heights

Value

a vector of the dendrogram’s nodes heights (excluding leaves).

Examples

hc <- hclust(dist(USArrests[1:4,]), "ave")
dend <- as.dendrogram(hc)
get_branches_heights(dend)

get_childrens_heights Get height attributes from a dendrogram’s children

Description

Get height attributes from a dendrogram’s children nodes

Usage

get_childrens_heights(dend, ...)

Arguments

dend a dendrogram.

... not used.

Value

a vector of the heights of a dendrogram’s current node’s (first level) children.

See Also

get_branches_heights

Examples

hc <- hclust(dist(USArrests[1:4,]), "ave")
dend <- as.dendrogram(hc)
get_childrens_heights(dend)

get_leaves_attr 97

get_leaves_attr Get/set attributes of dendrogram’s leaves

Description

Get/set attributes of dendrogram’s leaves

Usage

get_leaves_attr(dend, attribute, simplify = TRUE, ...)

Arguments

dend a dendrogram object

attribute character scalar of the attribute (attr) we wish to get/set from the leaves

simplify logical. If TRUE (default), then the return vector is after using unlist on it.

... not used

Value

A vector (or a list) with the dendrogram’s leaves attribute

Source

Heavily inspired by the code in the function labels.dendrogram, so credit should go to Martin
Maechler.

See Also

get_nodes_attr, nnodes, nleaves, assign_values_to_leaves_nodePar

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

get_leaves_attr(dend) # error :)
get_leaves_attr(dend, "label")
labels(dend, "label")
get_leaves_attr(dend, "height") # should be 0's
get_nodes_attr(dend, "height")

get_leaves_attr(dend, "nodePar")

get_leaves_attr(dend, "leaf") # should be TRUE's
get_nodes_attr(dend, "leaf") # conatins NA's

98 get_leaves_branches_attr

get_leaves_attr(dend, "members") # should be 1's
get_nodes_attr(dend, "members") #

get_leaves_attr(dend, "members", simplify = FALSE) # should be 1's

get_leaves_branches_attr

Get an attribute of the branches of a dendrogram’s leaves

Description

This is helpful to get the attributes of branches of the leaves. For example, after we use color_branches,
to get the colors of the labels to match (since getting the colors of branches to match those of the
labels can be tricky). This is based on get_leaves_edgePar.

Usage

get_leaves_branches_attr(dend, attr = c("col", "lwd", "lty"), ...)

Arguments

dend a dendrogram object

attr character, the attr to get. Can be either "col", "lwd", or "lty".

... not used

Value

A vector with the dendrogram’s leaves nodePar attribute

See Also

get_nodes_attr, assign_values_to_leaves_nodePar, labels_colors get_leaves_nodePar, get_leaves_edgePar

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

dend <- dend %>%
color_branches(k = 3) %>%
set("branches_lwd", c(2, 1, 2)) %>%
set("branches_lty", c(1, 2, 1))

plot(dend)

get_leaves_branches_col 99

get_leaves_branches_attr(dend, "col")
get_leaves_branches_attr(dend, "lwd")
get_leaves_branches_attr(dend, "lty")

labels_colors(dend) <- get_leaves_branches_attr(dend, "col")
plot(dend)

get_leaves_branches_col

Get the colors of the branches of a dendrogram’s leaves

Description

It is useful to get the colors of branches of the leaves, after we use color_branches, so to then
match the colors of the labels to that of the branches (since getting the colors of branches to match
those of the labels can be tricky). This is based on get_leaves_branches_attr which is based on
get_leaves_edgePar.

TODO: The function get_leaves_branches_col may behave oddly when extracting colors with miss-
ing col attributes when the lwd attribute is available. This may resolt in a vector with the wrong
length (with omitted NA values). This might need to be fixed in the future, and attention should be
given to this case.

Usage

get_leaves_branches_col(dend, ...)

Arguments

dend a dendrogram object

... not used

Value

A vector with the dendrogram’s leaves’ branches’ colors

See Also

get_nodes_attr, assign_values_to_leaves_nodePar, labels_colors get_leaves_nodePar, get_leaves_edgePar,
get_leaves_branches_attr

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

par(mfrow = c(1, 2), mar = c(5, 2, 1, 0))
dend <- dend %>%

100 get_leaves_edgePar

color_branches(k = 3) %>%
set("branches_lwd", c(2, 1, 2)) %>%
set("branches_lty", c(1, 2, 1))

plot(dend)

labels_colors(dend) <- get_leaves_branches_col(dend)
plot(dend)

get_leaves_edgePar Get edgePar of dendrogram’s leaves

Description

This is helpful to get the attributes of branches of the leaves. For example, after we use color_branches,
to get the colors of the labels to match (since getting the colors of branches to match those of the
labels can be tricky).

Usage

get_leaves_edgePar(dend, simplify = FALSE, ...)

Arguments

dend a dendrogram object

simplify logical (default is FALSE). If TRUE, then the return vector is after using unlist
on it.

... not used

Value

A list (or a vector) with the dendrogram’s leaves edgePar attribute

See Also

get_nodes_attr, assign_values_to_leaves_nodePar, labels_colors get_leaves_nodePar

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

get_leaves_edgePar(dend) # error :)
get_leaves_edgePar(dend)
dend <- color_branches(dend, k = 3)
get_leaves_edgePar(dend)
get_leaves_edgePar(dend, TRUE)

get_leaves_nodePar 101

dend <- dend %>% set("branches_lwd", c(2, 1, 2))
get_leaves_edgePar(dend)

plot(dend)

get_leaves_nodePar Get nodePar of dendrogram’s leaves

Description

Get the nodePar attributes of dendrogram’s leaves (includes pch, color, and cex)

Usage

get_leaves_nodePar(dend, simplify = FALSE, ...)

Arguments

dend a dendrogram object

simplify logical (default is FALSE). If TRUE, then the return vector is after using unlist
on it.

... not used

Value

A list (or a vector) with the dendrogram’s leaves nodePar attribute

See Also

get_nodes_attr, assign_values_to_leaves_nodePar, labels_colors get_leaves_edgePar

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

get_leaves_attr(dend) # error :)
get_leaves_nodePar(dend)
labels_colors(dend) <- 1:3
get_leaves_nodePar(dend)

dend <- assign_values_to_leaves_nodePar(dend, 2, "lab.cex")
get_leaves_nodePar(dend)

plot(dend)

102 get_nodes_attr

get_nodes_attr Get attributes of dendrogram’s nodes

Description

Allows easy access to attributes of branches and/or leaves, with option of returning a vector with/withough
NA’s (for marking the missing attr value)

Usage

get_nodes_attr(
dend,
attribute,
id,
include_leaves = TRUE,
include_branches = TRUE,
simplify = TRUE,
na.rm = FALSE,
...

)

Arguments

dend a dendrogram object

attribute character scalar of the attribute (attr) we wish to get from the nodes

id integer vector. If given - only the attr of these nodes id will be returned (via
depth first search)

include_leaves logical. Should leaves attributes be included as well?
include_branches

logical. Should non-leaf (branch node) attributes be included as well?

simplify logical (default is TRUE). should the result be simplified to a vector (using sim-
plify2array) if possible? If it is not possible it will return a matrix. When
FALSE, a list is returned.

na.rm logical. Should NA attributes be REMOVED from the resulting vector?

... not used

Value

A vector with the dendrogram’s nodes attribute. If an attribute is missing from some nodes, it will
return NA in that vector.

Source

Heavily inspired by the code in the function labels.dendrogram, so credit should go to Martin
Maechler.

get_nodes_attr 103

See Also

get_leaves_attr, nnodes, nleaves

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

get_leaves_attr(dend) # error :)
get_leaves_attr(dend, "label")
labels(dend, "label")
get_leaves_attr(dend, "height") # should be 0's
get_nodes_attr(dend, "height")

get_leaves_attr(dend, "leaf") # should be TRUE's
get_nodes_attr(dend, "leaf") # conatins NA's

get_leaves_attr(dend, "members") # should be 1's
get_nodes_attr(dend, "members", include_branches = FALSE, na.rm = TRUE) #
get_nodes_attr(dend, "members") #
get_nodes_attr(dend, "members", simplify = FALSE)
get_nodes_attr(dend, "members", include_leaves = FALSE, na.rm = TRUE) #

get_nodes_attr(dend, "members", id = c(1, 3), simplify = FALSE)
get_nodes_attr(dend, "members", id = c(1, 3)) #

hang_dend <- hang.dendrogram(dend)
get_leaves_attr(hang_dend, "height") # no longer 0!
get_nodes_attr(hang_dend, "height") # does not include any 0s!

does not include leaves values:
get_nodes_attr(hang_dend, "height", include_leaves = FALSE)
remove leaves values all together:
get_nodes_attr(hang_dend, "height", include_leaves = FALSE, na.rm = TRUE)
Not run:
library(microbenchmark)
get_leaves_attr is twice faster than get_nodes_attr
microbenchmark(

get_leaves_attr(dend, "members"), # should be 1's
get_nodes_attr(dend, "members", include_branches = FALSE, na.rm = TRUE)

)

End(Not run)

104 get_nodes_xy

get_nodes_xy Get the x-y coordinates of a dendrogram’s nodes

Description

Get the x-y coordinates of a dendrogram’s nodes. Can be used to add text or images on the tree.

Usage

get_nodes_xy(
dend,
type = c("rectangle", "triangle"),
center = FALSE,
horiz = FALSE,
...

)

Arguments

dend a dendrogram object

type type of plot.

center logical; if TRUE, nodes are plotted centered with respect to the leaves in the
branch. Otherwise (default), plot them in the middle of all direct child nodes.

horiz logical indicating if the dendrogram should be drawn horizontally or not.

... not used

Value

A 2-dimensional matrix, with rows as the number of nodes, and the first column is the x location,
while the second is the y location.

Source

This is a striped down version of the function plot.dendrogram. It performs (almost) the same
task, only it does not do any plotting but it does save the x-y coordiantes of the nodes.

See Also

get_nodes_attr, nnodes, nleaves

Examples

Not run:

If we would like to see the numbers from plot:
?getOption("verbose")
options(verbose=TRUE)

get_root_branches_attr 105

options(verbose=FALSE)

Draw a depth first search illustration

dend <- 1:5 %>%
dist() %>%
hclust() %>%
as.dendrogram()

get_nodes_xy(dend)

polygon(get_nodes_xy(dend), col = 2)
plot(dend,

leaflab = "none",
main = "Depth-first search in a dendrogram"

)
xy <- get_nodes_xy(dend)
for (i in 1:(nrow(xy) - 1)) {

arrows(xy[i, 1], xy[i, 2],
angle = 17,
length = .5,
xy[i + 1, 1], xy[i + 1, 2],
lty = 1, col = 3, lwd = 1.5

)
}
points(xy, pch = 19, cex = 4)
text(xy, labels = 1:nnodes(dend), cex = 1.2, col = "white", adj = c(0.4, 0.4))

End(Not run)

get_root_branches_attr

get attributes from the dendrogram’s root(!) branches

Description

get attributes from the dendrogram’s root(!) branches

Usage

get_root_branches_attr(dend, the_attr, warn = dendextend_options("warn"), ...)

Arguments

dend dendrogram object

the_attr the attribute to get from the branches (for example "height")

106 get_subdendrograms

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. Should a warning be printed when the function is used on an
object which is NOT a dendrogram.

... passed on to attr

Value

The attributes of the branches (often two) of the dendrogram’s root

See Also

attr

Examples

hc <- hclust(dist(USArrests[2:9,]), "com")
dend <- as.dendrogram(hc)

get_root_branches_attr(dend, "height") # 0.00000 71.96247
plot(dend)
str(dend, 2)

get_subdendrograms Extract a list of k subdendrograms from a given dendrogram object

Description

Extracts a list (dendlist) of subdendrogram structures based on the cutree cutree.dendrogram
function from a given dendrogram object. It can be useful in case we’re interested in a visual
investigation of specific clustering results.

Usage

get_subdendrograms(dend, k, order_clusters_as_data = FALSE, ...)

Arguments

dend a dendrogram object

k the number of subdendrograms that should be extracted
order_clusters_as_data

passed to cutree, default is FALSE (while the cutree default is TRUE). The rea-
son is since it’s easier to look at the dendrogram plot and then get subtrees that
are in the same order is in the plot/dendrogram object. This is in contrast to
more traditional use of cutree, where it is used with the original order or rows
from the data.

... parameters that should be passed to the cutree cutree.dendrogram

get_subdendrograms 107

Value

A list of k subdendrograms, based on the cutree cutree.dendrogram clustering clusters.

Examples

needed packages:
install.packages(gplots)
install.packages(viridis)
install.packages(devtools)
devtools::install_github('talgalili/dendextend') #' dendextend from github

define dendrogram object to play with:
dend <- iris[1:20, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram() %>%
set("labels_to_character") %>%
color_branches(k = 5)

labels(dend) <- letters[1:20]
plot(dend)
dend_list <- get_subdendrograms(dend, 5)
lapply(dend_list, labels)
[[1]]
[1] "a" "b"
#
[[2]]
[1] "c" "d" "e" "f" "g"
#
[[3]]
[1] "h" "i"
#
[[4]]
[1] "j" "k" "l" "m"
#
[[5]]
[1] "n" "o" "p" "q" "r" "s" "t"

define dendrogram object to play with:
dend <- iris[, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram() %>%
set("labels_to_character") %>%
color_branches(k = 5)

dend_list <- get_subdendrograms(dend, 5)

Plotting the result
par(mfrow = c(2, 3))
plot(dend, main = "Original dendrogram")
sapply(dend_list, plot)

108 ggdend

plot a heatmap of only one of the sub dendrograms
par(mfrow = c(1, 1))
library(gplots)
sub_dend <- dend_list[[1]] #' get the sub dendrogram
make sure of the size of the dend
nleaves(sub_dend)
length(order.dendrogram(sub_dend))
get the subset of the data
subset_iris <- as.matrix(iris[order.dendrogram(sub_dend), -5])
update the dendrogram's internal order so to not cause an error in heatmap.2
order.dendrogram(sub_dend) <- as.integer(rank(order.dendrogram(sub_dend)))
heatmap.2(subset_iris, Rowv = sub_dend, trace = "none", col = viridis::viridis(100))

ggdend Creates dendrogram plot using ggplot.

Description

Several functions for creating a dendrogram plot using ggplot2. The core process is to transform a
dendrogram into a ggdend object using as.ggdend, and then plot it using ggplot. These two steps
can be done in one command with either the function ggplot or ggdend.

The reason we want to have as.ggdend (and not only ggplot.dendrogram), is (1) so that you could
create your own mapping of ggdend and, (2) since as.ggdend might be slow for large trees, it is
probably better to be able to run it only once for such cases.

A ggdend class object is a list with 3 componants: segments, labels, nodes. Each one contains
the graphical parameters from the original dendrogram, but in a tabular form that can be used by
ggplot2+geom_segment+geom_text to create a dendrogram plot.

Usage

ggdend(...)

as.ggdend(dend, ...)

S3 method for class 'dendrogram'
as.ggdend(dend, type = c("rectangle", "triangle"), edge.root = FALSE, ...)

prepare.ggdend(data, ...)

S3 method for class 'ggdend'
ggplot(
data,
segments = TRUE,
labels = TRUE,
nodes = TRUE,
horiz = FALSE,
theme = theme_dendro(),

ggdend 109

offset_labels = 0,
na.rm = TRUE,
...

)

S3 method for class 'dendrogram'
ggplot(data, ...)

S3 method for class 'ggdend'
print(x, ...)

Arguments

... mostly ignored.
dend a dendrogram tree (to be turned into a ggdend object)
type The type of plot, indicating the shape of the dendrogram. "rectangle" will draw

rectangular lines, while "triangle" will draw triangular lines.
edge.root currently ignored. One day it might do the following: logical; if true, draw an

edge to the root node.
data, x a ggdend class object (passed to ggplot.dendrogram or print.ggdend).
segments a logical (TRUE) if to plot the segments (branches).
labels a logical (TRUE) if to plot the labels.
nodes a logical (TRUE) if to plot the nodes (points).
horiz a logical (TRUE) indicating if the dendrogram should be drawn horizontally or

not.
theme the ggplot2 theme to use (default is theme_dendro, can also be NULL for the

default ggplot2 theme)
offset_labels a numeric value to offset the labels from the leaves
na.rm A logical (TRUE) to control removal of missing values. Passed to geom_line

and geom_point

Details

prepare.ggdend is used by plot.ggdend to take the ggdend object and prepare it for plotting.
This is because the defaults of various parameters in dendrogram’s are not always stored in the
object itself, but are built-in into the plot.dendrogram function. For example, the color of the labels
is not (by default) specified in the dendrogram (only if we change it from black to something else).
Hence, when taking the object into a different plotting engine (say ggplot2), we want to prepare the
object by filling-in various defaults. This function is autmatically invoked within the plot.ggdend
function. You would probably use it only if you’d wish to build your own ggplot2 mapping.

Value

• as.ggdend - returns an object of class ggdend which is a list with 3 componants: segments,
labels, nodes. Each one contains the graphical parameters from the original dendrogram, but in
a tabular form that can be used by ggplot2+geom_segment+geom_text to create a dendrogram
plot.

110 ggdend

• prepare.ggdend - a ggdend object (after filling it with various default values)

• ggplot.ggdend - a ggplot object

Author(s)

Tal Galili, using code modified from Andrie de Vries

Source

These are extended versions of the functions ggdendrogram, dendro_data (and the hidden dendro-
gram_data) from Andrie de Vries’s ggdendro package. The motivation for this fork is the need to
add more graphical parameters to the plotted tree. This required a strong mixter of functions from
ggdendro and dendextend (to the point that it seemed better to just fork the code into its current
form)

See Also

dendrogram, get_nodes_attr, get_leaves_nodePar, ggplot, ggdendrogram, dendro_data,

Examples

Not run:

library(dendextend)
library(ggdendro)
Create a complex dend:
dend <- iris[1:30, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram() %>%
set("branches_k_color", k = 3) %>%
set("branches_lwd", c(1.5, 1, 1.5)) %>%
set("branches_lty", c(1, 1, 3, 1, 1, 2)) %>%
set("labels_colors") %>%
set("labels_cex", c(.9, 1.2))

plot the dend in usual "base" plotting engine:
plot(dend)
Now let's do it in ggplot2 :)
ggd1 <- as.ggdend(dend)
library(ggplot2)
ggplot(ggd1) # reproducing the above plot in ggplot2 :)

Triangle version:
plot(dend, type = "triangle")
ggd2 <- as.ggdend(dend, type = "triangle")
ggplot(ggd2)

More modifications:
labels(dend) <- paste0(labels(dend), "00000")
ggd1 <- as.ggdend(dend)

hang.dendrogram 111

Use ylim to deal with long labels in ggplot2
ggplot(ggd1) + ylim(-.4, max(get_branches_heights(dend)))

ggplot(ggd1, horiz = TRUE) # horiz plot in ggplot2
Adding some extra spice to it...
creating a radial plot:
ggplot(ggd1) + scale_y_reverse(expand = c(0.2, 0)) + coord_polar(theta = "x")
The text doesn't look so great, so let's remove it:
ggplot(ggd1, labels = FALSE) + scale_y_reverse(expand = c(0.2, 0)) + coord_polar(theta = "x")

This can now be sent to plot.ly - which adds zoom-in abilities, and more.
Here is how it might look like: https://plot.ly/~talgalili/6/y-vs-x/

Quick guide:
install.packages("devtools")
library("devtools")
devtools::install_github("ropensci/plotly")
library(plotly)
set_credentials_file(...)
you'll need to get it from here: https://plot.ly/ggplot2/getting-started/

ggplot(ggd1)
py <- plotly()
py$ggplotly()

And you'll get something like this: https://plot.ly/~talgalili/6/y-vs-x/

Another example: https://plot.ly/ggplot2/

End(Not run)

hang.dendrogram Hang dendrogram leaves

Description

Adjust the height attr in all of the dendrogram leaves so that the tree will hang. This is similar to
as.dendrogram(hclust, hang=0.1) Only that it now works on other object than hclust turned into a
dendrogram. For example, this allows us to hang non-binary trees.

Usage

hang.dendrogram(dend, hang = 0.1, hang_height, ...)

Arguments

dend a dendrogram object

hang The fraction of the plot height by which labels should hang below the rest of the
plot. A negative value will cause the labels to hang down from 0.

112 has_component_in_attribute

hang_height is missing, then using "hang". If a number is given, it overrides "hang" (except
if "hang" is negative)

... not used

Value

A dendrogram, after adjusting the height attr in all of its leaves, so that the tree will hang.

Source

Noticing that as.dendrogram has a "hang" parameter was thanks to Enrique Ramos’s answer here::
https://stackoverflow.com/questions/17088136/plot-horizontal-dendrogram-with-hanging-leaves-r

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

par(mfrow = c(1, 2))
plot(hang.dendrogram(dend))
plot(hc)
identical(as.dendrogram(hc, hang = 0.1), hang.dendrogram(dend, hang = 0.1))
TRUE!!

par(mfrow = c(1, 4))

plot(dend)
plot(hang.dendrogram(dend, hang = 0.1))
plot(hang.dendrogram(dend, hang = 0))
plot(hang.dendrogram(dend, hang = -0.1))

par(mfrow = c(1, 1))
plot(hang.dendrogram(dend), horiz = TRUE)

has_component_in_attribute

Does a dendrogram has an edgePar/nodePar component?

Description

Does a dendrogram has an edgePar/nodePar component?

Usage

has_component_in_attribute(dend, component, the_attrib = "edgePar", ...)

https://stackoverflow.com/questions/17088136/plot-horizontal-dendrogram-with-hanging-leaves-r

has_component_in_attribute 113

Arguments

dend a dendrogram object.

component a character value to be checked if exists in the tree. For edgePar the list: "col",
"lty" and "lwd" (for the segments), "p.col", "p.lwd", and "p.lty" (for the polygon
around the text) and "t.col" for the text color. For edgePar "pch", "cex", "col",
"xpd", and/or "bg".

the_attrib A character of the attribute for which to check the existence of the component.
Often either "edgePar" or "nodePar".

... ignored

Value

Logical. TRUE if such a component is defined somewhere in the tree, FALSE otherwise. If dend is
not a dendrogram, the function will return FALSE.

See Also

get_nodes_attr, set

Examples

dat <- iris[1:20, -5]
hca <- hclust(dist(dat))
hca2 <- hclust(dist(dat), method = "single")
dend <- as.dendrogram(hca)
dend2 <- as.dendrogram(hca2)

dend %>%
set("branches_lwd", 2) %>%
set("branches_lty", 2) %>%
plot()

dend %>%
set("branches_lwd", 2) %>%
set("branches_lty", 2) %>%
has_edgePar("lty")

dend %>%
set("branches_lwd", 2) %>%
has_edgePar("lty")

dend %>%
set("branches_lwd", 2) %>%
has_edgePar("lwd")

dend %>%
set("branches_lwd", 2) %>%
set("clear_branches") %>%
has_edgePar("lwd")

114 heights_per_k.dendrogram

heights_per_k.dendrogram

Which height will result in which k for a dendrogram

Description

Which height will result in which k for a dendrogram. This helps with speeding up the cutree.dendrogram
function.

Usage

heights_per_k.dendrogram(dend, ...)

Arguments

dend a dendrogram.

... not used.

Value

a vector of heights, with its names being the k clusters that will result for cutting the dendrogram at
each height.

Examples

Not run:
hc <- hclust(dist(USArrests[1:4,]), "ave")
dend <- as.dendrogram(hc)
heights_per_k.dendrogram(dend)
1 2 3 4
86.47086 68.84745 45.98871 28.36531

cutree(hc, h = 68.8) # and indeed we get 2 clusters

unbranch_dend <- unbranch(dend, 2)
plot(unbranch_dend)
heights_per_k.dendrogram(unbranch_dend)
1 3 4
97.90023 57.41808 16.93594
we do NOT have a height for k=2 because of the tree's structure.

End(Not run)

highlight_branches_col 115

highlight_branches_col

Highlight a dendrogram’s branches heights via color and line-width

Description

Highlights (update) the color (col) and/or line width (lwd) of each branch in a dendrogram based
on it’s node’s height. This is a powerful pre-processing for a tanglegram plot of two dendrograms,
as it emphasizes the toplogical structure of each tree (and hence, their similarity and differences).

The colors are based on the viridis pallette, and the line width is on the range of 1 to 10. These can
be manually changed when using highlight_branches_col and highlight_branches_lwd respectively.

Usage

highlight_branches_col(dend, values = rev(viridis(1000, end = 0.9)), ...)

highlight_branches_lwd(dend, values = seq(1, 10, length.out = 1000), ...)

highlight_branches(dend, type = c("col", "lwd"), ...)

Arguments

dend a dendrogram tree (to be turned into a ggdend object)

values the gradient of values to be used for each branch. The colors are based on the
viridis pallette, and the line width is on the range of 1 to 10. These can be man-
ually changed when using highlight_branches_col and highlight_branches_lwd
respectively.

... Currently ignored.

type a character vector. Either "col", "lwd", or both. Based on whichever is chosen
the dendrogram’s branches will be updated.

Value

A modified dendrogram, with colors/line-width in the branches that are proportional to each branche’s
height (measured by its lower tip).

See Also

set, color_branches, get_branches_heights, viridis

Examples

dat <- iris[1:20, -5]
hca <- hclust(dist(dat))
hca2 <- hclust(dist(dat), method = "single")

116 highlight_branches_col

dend <- as.dendrogram(hca)
dend2 <- as.dendrogram(hca2)

par(mfrow = c(1, 3))
dend %>%

highlight_branches_col() %>%
plot(main = "Coloring branches")

dend %>%
highlight_branches_lwd() %>%
plot(main = "Emphasizing line-width")

dend %>%
highlight_branches() %>%
plot(main = "Emphasizing color\n and line-width")

library(viridis)
par(mfrow = c(1, 3))
dend %>%

highlight_branches_col() %>%
plot(main = "Coloring branches \n(default is reversed viridis)")

dend %>%
highlight_branches_col(viridis(100)) %>%
plot(main = "It is better to use\nlighter colors in the leaves")

dend %>%
highlight_branches_col(rev(magma(1000))) %>%
plot(main = "The magma color pallatte\n is also good")

dl <- dendlist(dend, dend2)
tanglegram(dl,

sort = TRUE, common_subtrees_color_lines = FALSE,
highlight_distinct_edges = FALSE, highlight_branches_lwd = FALSE

)
tanglegram(dl)
tanglegram(dl, fast = TRUE)

dl <- dendlist(highlight_branches(dend), highlight_branches(dend2))
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE)

dend %>%
set("highlight_branches_col") %>%
plot()

dl <- dendlist(dend, dend2) %>% set("highlight_branches_col")
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE)

This is also useful for heatmaps

library(dendextend)

x <- as.matrix(datasets::mtcars)

Rowv <- x %>%
dist() %>%

highlight_distinct_edges 117

hclust() %>%
as.dendrogram() %>%
set("branches_k_color", k = 3) %>%
set("highlight_branches_lwd") %>%
ladderize()

rotate_DendSer(ser_weight = dist(x))
Colv <- x %>%

t() %>%
dist() %>%
hclust() %>%
as.dendrogram() %>%
set("branches_k_color", k = 2) %>%
set("highlight_branches_lwd") %>%
ladderize()

rotate_DendSer(ser_weight = dist(t(x)))

library(gplots)
heatmap.2(x, Rowv = Rowv, Colv = Colv)

highlight_distinct_edges

Highlight distint edges in a tree (compared to another one)

Description

Highlight distint edges in a tree (compared to another one) by changing the branches’ color, line
width, or line type.

This function enables this feature in dend_diff and tanglegram

Usage

highlight_distinct_edges(dend, ...)

S3 method for class 'dendrogram'
highlight_distinct_edges(
dend,
dend2,
value = 2,
edgePar = c("col", "lty", "lwd"),
...

)

S3 method for class 'dendlist'
highlight_distinct_edges(dend, ..., which = c(1L, 2L))

118 highlight_distinct_edges

Arguments

dend a dendrogram or dendlist to find unique edges in (to highlight)

... Ignored.

dend2 a dendrogram to compare with

value a new value scalar for the edgePar attribute.

edgePar a character indicating the value inside edgePar to adjust. Can be either "col",
"lty", or "lwd".

which an integer vector indicating, in the case "dend" is a dendlist, on which of the
trees should the modification be performed. If missing - the change will be
performed on all of objects in the dendlist.

Value

A dendrogram with modified edges - the distinct ones are changed (color, line width, or line type)

See Also

distinct_edges, highlight_distinct_edges, dist.dendlist, tanglegram assign_values_to_branches_edgePar,
distinct.edges,

Examples

x <- 1:5 %>%
dist() %>%
hclust() %>%
as.dendrogram()

y <- set(x, "labels", 5:1)
distinct_edges(x, y)
distinct_edges(y, x)

par(mfrow = c(1, 2))
plot(highlight_distinct_edges(x, y))
plot(y)

tanglegram(highlight_distinct_edges(x, y),y)
dend_diff(x, y)
Not run:

using highlight_distinct_edges combined with dendlist and set
to clearly highlight "stable" branches.
data(iris)
ss <- c(1:5, 51:55, 101:105)
iris1 <- iris[ss, -5] %>%

dist() %>%
hclust(method = "single") %>%
as.dendrogram()

iris2 <- iris[ss, -5] %>%
dist() %>%

identify.dendrogram 119

hclust(method = "complete") %>%
as.dendrogram()

iris12 <- dendlist(iris1, iris2) %>%
set("branches_k_color", k = 3) %>%
set("branches_lwd", 3) %>%
highlight_distinct_edges(value = 1, edgePar = "lwd")

iris12 %>%
untangle(method = "step2side") %>%
tanglegram(

sub = "Iris dataset", main_left = "'single' clustering",
main_right = "'complete' clustering"

)

End(Not run)

identify.dendrogram Identify Clusters in a Dendrogram (not hclust)

Description

Just like identify.hclust: reads the position of the graphics pointer when the (first) mouse button
is pressed. It then cuts the tree at the vertical position of the pointer and highlights the cluster
containing the horizontal position of the pointer. Optionally a function is applied to the index of
data points contained in the cluster.

Usage

S3 method for class 'dendrogram'
identify(
x,
FUN = NULL,
N = 20,
MAXCLUSTER,
DEV.FUN = NULL,
horiz = FALSE,
stop_if_out = FALSE,
...

)

Arguments

x a dendrogram object.

FUN (optional) function to be applied to the index numbers of the data points in a
cluster (see ’Details’ below).

N the maximum number of clusters to be identified.

MAXCLUSTER the maximum number of clusters that can be produced by a cut (limits the effec-
tive vertical range of the pointer).

120 identify.dendrogram

DEV.FUN (optional) integer scalar. If specified, the corresponding graphics device is made
active before FUN is applied.

horiz logical (FALSE), indicating if the rectangles should be drawn horizontally or
not (for when using plot(dend, horiz = TRUE)) .

stop_if_out logical (default is FALSE). This default makes the function NOT stop if k of
the locator is outside the range (this default is different than the behavior of the
identify.hclust function - but it is nicer for the user.).

... further arguments to FUN.

Details

By default clusters can be identified using the mouse and an invisible list of indices of the respective
data points is returned. If FUN is not NULL, then the index vector of data points is passed to this
function as first argument, see the examples below. The active graphics device for FUN can be
specified using DEV.FUN. The identification process is terminated by pressing any mouse button
other than the first, see also identify.

Value

(Invisibly) returns a list where each element contains a vector of data points contained in the re-
spective cluster.

Source

This function is based on identify.hclust, with slight modifications to have it work with a dendro-
gram, as well as adding "horiz"

See Also

identify.hclust, rect.hclust, order.dendrogram, cutree.dendrogram

Examples

Not run:
set.seed(23235)
ss <- sample(1:150, 10)
hc <- iris[ss, -5] %>%

dist() %>%
hclust()

dend <- hc %>% as.dendrogram()

plot(dend)
identify(dend)

plot(dend, horiz = TRUE)
identify(dend, horiz = TRUE)

End(Not run)

intersect_trees 121

intersect_trees Intersect trees

Description

Return two trees after pruning them so that the only leaves left are the intersection of their labels.

Usage

intersect_trees(dend1, dend2, warn = dendextend_options("warn"), ...)

Arguments

dend1 tree object (dendrogram/hclust/phylo)

dend2 tree object (dendrogram/hclust/phylo)

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down,
the default is FALSE. Should a warning be issued if there was a need to perform
intersaction.

... passed on

Value

A dendlist with two pruned trees

See Also

prune, intersect, labels

Examples

hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)
labels(dend) <- 1:5
dend1 <- prune(dend, 1)
dend2 <- prune(dend, 5)
intersect_dend <- intersect_trees(dend1, dend2)

layout(matrix(c(1, 1, 2, 3, 4, 5), 3, 2, byrow = TRUE))
plot(dend, main = "Original tree")
plot(dend1, main = "Tree 1:\n original with label 1 pruned")
plot(dend2, main = "Tree 2:\n original with label 2 pruned")
plot(intersect_dend[[1]],

main = "Tree 1 pruned
with the labels that intersected with those of Tree 2"

)
plot(intersect_dend[[2]],

main = "Tree 2 pruned

122 is.natural.number

with the labels that intersected with those of Tree 1"
)

is.natural.number Check if numbers are natural

Description

Vectorized function for checking if numbers are natural or not. Helps in checking if a vector is of
type "order".

Usage

is.natural.number(x, tol = .Machine$double.eps^0.5, ...)

Arguments

x a vector of numbers

tol tolerence to floating point issues.

... (not currently in use)

Value

logical - is the entered number natural or not.

Author(s)

Marco Gallotta (a.k.a: marcog), Tal Galili

Source

This function was written by marcog, as an answer to my question here: https://stackoverflow.
com/questions/4562257/what-is-the-fastest-way-to-check-if-a-number-is-a-positive-natural-number-in-r

See Also

is.numeric, is.double, is.integer

Examples

is.natural.number(1) # is TRUE
(x <- seq(-1, 5, by = 0.5))
is.natural.number(x)
is.natural.number("a")
all(is.natural.number(x))

https://stackoverflow.com/questions/4562257/what-is-the-fastest-way-to-check-if-a-number-is-a-positive-natural-number-in-r
https://stackoverflow.com/questions/4562257/what-is-the-fastest-way-to-check-if-a-number-is-a-positive-natural-number-in-r

is_null_list 123

is_null_list Checks if the value is and empty list()

Description

Checks if the value is and empty list(). Can be useful.

Usage

is_null_list(x)

Arguments

x whatever object to check

Value

logical

Examples

I can run this only if I'd make is_null_list exported
Not run:
TRUE:
is_null_list(list())
FALSE
is_null_list(list(1))
is_null_list(1)

x <- list(1, list(), 123)
ss_list <- sapply(x, is_null_list)
x <- x[!ss_list]
x

x <- list(1, list(), 123)
ss_list <- sapply(x, is_null_list)
x <- list(list())
x

End(Not run)

Not run:
error
is_null_list()

End(Not run)

124 khan

is_some_class Is the object of some class

Description

Returns TRUE if some class (based on the name of the function).

Usage

is.hclust(x)

is.dendrogram(x)

is.phylo(x)

is.dendlist(x)

is.dist(x)

Arguments

x an object.

Value

Returns TRUE if some class (based on the name of the function).

Examples

TRUE:
is.dendlist(dendlist())
FALSE
is.dendlist(1)
TRUE:
is.dist(dist(mtcars))
FALSE
is.dist(mtcars)

khan Microarray gene expression dataset from Khan et al., 2001. Subset of
306 genes.

Description

Khan contains gene expression profiles of four types of small round blue cell tumours of childhood
(SRBCT) published by Khan et al. (2001). It also contains further gene annotation retrieved from
SOURCE at http://source.stanford.edu/.

http://source.stanford.edu/

khan 125

Usage

khan

Format

Khan is dataset containing the following:

• train:data.frame of 306 rows and 64 columns. The training dataset of 64 arrays and 306 gene
expression values

• test:data.frame, of 306 rows and 25 columns. The test dataset of 25 arrays and 306 genes
expression values

• gene.labels.imagesID:vector of 306 Image clone identifiers corresponding to the rownames
of train and test.

• train.classes:factor with 4 levels "EWS", "BL-NHL", "NB" and "RMS", which correspond
to the four groups in the train dataset

• test.classes:factor with 5 levels "EWS", "BL-NHL", "NB", "RMS" and "Norm" which cor-
respond to the five groups in the test dataset

• annotation:data.frame of 306 rows and 8 columns. This table contains further gene annota-
tion retrieved from SOURCE http://SOURCE.stanford.edu in May 2004. For each of the
306 genes, it contains:

– CloneIDImage Clone ID
– UGClusterThe Unigene cluster to which the gene is assigned
– SymbolThe HUGO gene symbol
– LLIDThe locus ID
– UGRepAccNucleotide sequence accession number
– LLRepProtAccProtein sequence accession number
– Chromosomechromosome location
– Cytobandcytoband location

Details

Khan et al., 2001 used cDNA microarrays containing 6567 clones of which 3789 were known
genes and 2778 were ESTs to study the expression of genes in of four types of small round blue
cell tumours of childhood (SRBCT). These were neuroblastoma (NB), rhabdomyosarcoma (RMS),
Burkitt lymphoma, a subset of non-Hodgkin lymphoma (BL), and the Ewing family of tumours
(EWS). Gene expression profiles from both tumour biopsy and cell line samples were obtained and
are contained in this dataset. The dataset downloaded from the website contained the filtered dataset
of 2308 gene expression profiles as described by Khan et al., 2001. This dataset is available from
the http://bioinf.ucd.ie/people/aedin/R/.

In order to reduce the size of the MADE4 package, and produce small example datasets, the top 50
genes from the ends of 3 axes following bga were selected. This produced a reduced datasets of
306 genes.

http://SOURCE.stanford.edu
http://bioinf.ucd.ie/people/aedin/R/

126 labels<-

Source

khan contains a filtered data of 2308 gene expression profiles as published and provided by Khan
et al. (2001) on the supplementary web site to their publication OLD (site no longer found):
https://research.nhgri.nih.gov/microarray/

The data was copied from the made4 package (https://www.bioconductor.org/packages/release/
bioc/html/made4.html)

References

Culhane AC, et al., 2002 Between-group analysis of microarray data. Bioinformatics. 18(12):1600-
8.

Khan,J., Wei,J.S., Ringner,M., Saal,L.H., Ladanyi,M., Westermann,F., Berthold,F., Schwab,M., An-
tonescu,C.R., Peterson,C. et al. (2001) Classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks. Nat. Med., 7, 673-679.

Examples

data(khan)
summary(khan)

labels<- "label" assignment operator

Description

"label" assignment operator for vectors, dendrogram, and hclust classes.

Usage

labels(object, ...) <- value

Default S3 replacement method:
labels(object, ...) <- value

S3 replacement method for class 'dendrogram'
labels(object, ...) <- value

S3 method for class 'hclust'
labels(object, order = TRUE, ...)

S3 replacement method for class 'hclust'
labels(object, ...) <- value

S3 method for class 'phylo'
labels(object, ...)

https://www.bioconductor.org/packages/release/bioc/html/made4.html
https://www.bioconductor.org/packages/release/bioc/html/made4.html

labels<- 127

S3 replacement method for class 'phylo'
labels(object, ...) <- value

Arguments

object a variable name (possibly quoted) who’s label are to be updated

... parameters passed (not currently in use)

value a value to be assigned to object’s label

order default is FALSE. Only relevant for extracting labels from an hclust object (with
labels.hclust). Setting order=TRUE will return labels in their order in the den-
drogram, instead of the riginal labels order retained from object$labels - which
ususally corresponding to the row or column names of the dist object provided
to the hclust function.

Details

###################

Value

The updated object

Author(s)

Gavin Simpson, Tal Galili (with some ideas from Gregory Jefferis’s dendroextras package)

Source

The functions here are based on code by Gavin and kohske from (adopted to dendrogram by Tal
Galili): https://stackoverflow.com/questions/4614223/how-to-have-the-following-work-labelsx-some-value-r-question
Also with some ideas from Gregory Jefferis’s dendroextras package.

See Also

labels

Examples

x <- 1:3
labels(x)
labels(x) <- letters[1:3]
labels(x) # [1] "a" "b" "c"
x
a b c
1 2 3

get("labels<-")

https://stackoverflow.com/questions/4614223/how-to-have-the-following-work-labelsx-some-value-r-question

128 labels_cex

################
Example for using the assignment with dendrogram and hclust objects:
hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

labels(hc) # "Arizona" "Alabama" "Alaska"
labels(hc) <- letters[1:3]
labels(hc) # "a" "b" "c"
labels(dend) # "Arizona" "Alabama" "Alaska"
labels(dend) <- letters[1:3]
labels(dend) # "a" "b" "c"
suppressWarnings(labels(dend) <- LETTERS[1:2]) # will produce a warning
labels(dend) # "A" "B" "A"
labels(dend) <- LETTERS[4:6] # will replace the labels correctly
(the fact the tree had duplicate labels will not cause a problem)
labels(dend) # "D" "E" "F"

labels_cex Retrieve/assign cex to the labels of a dendrogram

Description

Retrieve/assign cex to the labels of a dendrogram

Usage

labels_cex(dend, ...)

labels_cex(dend, ...) <- value

Arguments

dend a dendrogram object

... not used

value a vector of cex to be used as new label’s size for the dendrogram

Value

A vector with the dendrogram’s labels sizes (NULL if none are supplied).

Examples

define dendrogram object to play with:
dend <- as.dendrogram(hclust(dist(USArrests[1:3,]), "ave"))

Defaults:
labels_cex(dend)
plot(dend)

labels_colors 129

let's add some color:
labels_cex(dend) <- 1:3
labels_cex(dend)
plot(dend)

labels_cex(dend) <- 1
labels_cex(dend)
plot(dend)

labels_colors Retrieve/assign colors to the labels of a dendrogram

Description

Retrieve/assign colors to the labels of a dendrogram. Note that usually dend objects come without
any color assignment (and the output will be NULL, until colors are assigned).

Usage

labels_colors(dend, labels = TRUE, ...)

labels_col(dend, labels = TRUE, ...)

labels_colors(dend, ...) <- value

Arguments

dend a dendrogram object

labels Boolean (default is TRUE), should the returned vector of colors return with the
leaves labels as names.

... not used

value a vector of colors to be used as new label’s colors for the dendrogram

Value

A vector with the dendrogram’s labels colors (or a colored dendrogram, in case assignment is used).
The colors are labeled.

Source

Heavily inspired by the code in the example of dendrapply, so credit should go to Martin Maechler.
I also implemented some ideas from Gregory Jefferis’s dendroextras package (having the "names"
of the returned vector be the labels).

See Also

cutree,dendrogram, hclust, color_labels, color_branches, assign_values_to_leaves_edgePar,
get_leaves_branches_col

130 ladderize

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

Defaults:
labels_colors(dend)
plot(dend)

let's add some color:
labels_colors(dend) <- 2:4
labels_colors(dend)
plot(dend)

doesn't work...
get_nodes_attr(dend, "nodePar", include_branches = FALSE)

changing color to black
labels_colors(dend) <- 1
labels_colors(dend)
plot(dend)

removing color (and the nodePar completely - if it has no other attributed but lab.col)
suppressWarnings(labels_colors(dend) <- NULL)
labels_colors(dend)
plot(dend)

ladderize Ladderize a Tree

Description

This function reorganizes the internal structure of the tree to get the ladderized effect when plotted.

Usage

ladderize(x, right = TRUE, ...)

S3 method for class 'dendrogram'
ladderize(x, right = TRUE, ...)

S3 method for class 'phylo'
ladderize(x, right = TRUE, phy, ...)

S3 method for class 'dendlist'
ladderize(x, right = TRUE, which, ...)

leaf_Colors 131

Arguments

x a tree object (either a dendrogram, dendlist, or phylo)

right a logical (TRUE) specifying whether the smallest clade is on the right-hand side
(when the tree is plotted upwards), or the opposite (if FALSE).

... Currently ignored.

phy a placeholder in case the user uses "phy ="

which an integer (can have any number of elements). It indicates the elements in the
dendlist to ladderize. If missing, it will ladderize all the dendrograms in the
dendlist.

Value

A rotated tree object

See Also

ladderize, rev.dendrogram, rotate (dendextend), rotate (ape)

Examples

dend <- USArrests[1:8,] %>%
dist() %>%
hclust() %>%
as.dendrogram() %>%
set("labels_colors") %>%
set("branches_k_color", k = 5)

set.seed(123)
dend <- shuffle(dend)

par(mfrow = c(1, 3))
dend %>% plot(main = "Original")
dend %>%

ladderize(TRUE) %>%
plot(main = "Right (default)")

dend %>%
ladderize(FALSE) %>%
plot(main = "Left (rev of right)")

leaf_Colors Return the leaf Colors of a dendrogram

Description

The returned Colors will be in dendrogram order.

132 lowest_common_branch

Usage

leaf_Colors(d, col_to_return = c("edge", "node", "label"))

Arguments

d the dendrogram

col_to_return Character scalar - kind of Color attribute to return

Value

named character vector of Colors, NA_character_ where missing

Author(s)

jefferis

See Also

slice,color_branches

Examples

dend <- USArrests %>%
dist() %>%
hclust(method = "ave") %>%
as.dendrogram()

d5 <- color_branches(dend, 5)
leaf_Colors(d5)

lowest_common_branch Find lowest common branch were the two items are shared

Description

Given two vectors, for two items, of cluster belonging - the function finds the lowest branch (e.g:
largest number of k clusters) for which the two items are in the same cluster for the two trees.

Usage

lowest_common_branch(item1, item2, ...)

Arguments

item1 a named numeric vector (of cluster group with names of k level)

item2 a named numeric vector (of cluster group with names of k level)

... not used

match_order_by_labels 133

Value

The first location (from left) where the two vectors have the same A dendrogram, after adjusting
the members attr in all of its nodes.

See Also

cor_bakers_gamma

Examples

item1 <- structure(c(1L, 1L, 1L, 1L), .Names = c("1", "2", "3", "4"))
item2 <- structure(c(1L, 1L, 2L, 2L), .Names = c("1", "2", "3", "4"))
lowest_common_branch(item1, item2)

match_order_by_labels Adjust the order of one dendrogram based on another (using labels)

Description

Takes one dendrogram and adjusts its order leaves valeus based on the order of another dendrogram.
The values are matached based on the labels of the two dendrograms.

This allows for faster entanglement running time, since we can be sure that the leaves order is just
as using their labels.

Usage

match_order_by_labels(
dend_change,
dend_template,
check_that_labels_match = TRUE

)

Arguments

dend_change tree object (dendrogram)

dend_template tree object (dendrogram)
check_that_labels_match

logical (TRUE). If to check that the labels in the two dendrogram match. (if they
do not, the function aborts)

Value

Returns dend_change after adjusting its order values to be like dend_template.

See Also

entanglement , tanglegram

134 match_order_dendrogram_by_old_order

Examples

Not run:

dend <- USArrests[1:4,] %>%
dist() %>%
hclust() %>%
as.dendrogram()

order.dendrogram(dend) # c(4L, 3L, 1L, 2L)

dend_changed <- dend
order.dendrogram(dend_changed) <- 1:4
order.dendrogram(dend_changed) # c(1:4)

now let's fix the order of the new object to be as it was:
dend_changed <- match_order_by_labels(dend_changed, dend)
these two are now the same:
order.dendrogram(dend_changed)
order.dendrogram(dend)

End(Not run)

match_order_dendrogram_by_old_order

Adjust the order of one dendrogram based on another (using order)

Description

Takes one dendrogram and adjusts its order leaves valeus based on the order of another dendrogram.
The values are matached based on the order of the two dendrograms.

This allows for faster entanglement running time, since we can be sure that the leaves order is just
as using their labels.

This is a function is FASTER than match_order_by_labels, but it assumes that the order and the
labels of the two trees are matching!!

This will allow for a faster calculation of entanglement.

Usage

match_order_dendrogram_by_old_order(
dend_change,
dend_template,
dend_change_old_order,
check_that_labels_match = FALSE,
check_that_leaves_order_match = FALSE

)

match_order_dendrogram_by_old_order 135

Arguments

dend_change tree object (dendrogram)
dend_template tree object (dendrogram)
dend_change_old_order

a numeric vector with the order of leaves in dend_change (at least before it was
changes for some reason). This is the vector based on which we adjust the new
values of dend_change.

check_that_labels_match

logical (FALSE). If to check that the labels in the two dendrogram match. (if
they do not, the function aborts)

check_that_leaves_order_match

logical (FALSE). If to check that the order in the two dendrogram match. (if
they do not, the function aborts)

Value

Returns dend_change after adjusting its order values to be like dend_template.

See Also

entanglement , tanglegram, match_order_by_labels

Examples

Not run:

dend <- USArrests[1:4,] %>%
dist() %>%
hclust() %>%
as.dendrogram()

order.dendrogram(dend) # c(4L, 3L, 1L, 2L)

Watch this!
dend_changed <- dend
dend_changed <- rev(dend_changed)
expect_false(identical(order.dendrogram(dend_changed), order.dendrogram(dend)))
we keep the order of dend_change, so that the leaves order are synced
with their labels JUST LIKE dend:
old_dend_changed_order <- order.dendrogram(dend_changed)
now we change dend_changed leaves order values:
order.dendrogram(dend_changed) <- 1:4
and we can fix them again, based on their old kept leaves order:
dend_changed <- match_order_dendrogram_by_old_order(

dend_changed, dend,
old_dend_changed_order

)
expect_identical(order.dendrogram(dend_changed), order.dendrogram(dend))

End(Not run)

136 na_locf

min_depth Find minimum/maximum depth of a dendrogram

Description

As the name implies. This can also work for non-dendrogram nested lists.

Usage

min_depth(dend, ...)

max_depth(dend, ...)

Arguments

dend Any nested list object (including dendrogram).

... unused at the moment.

Value

Integer, the (min/max) number of nodes from the root to the leafs

Examples

hc <- hclust(dist(USArrests), "ave")
(dend1 <- as.dendrogram(hc)) # "print()" method
is.list(dend1)
is.list(dend1[[1]][[1]][[1]])
dend1[[1]][[1]][[1]]
plot(dend1)
min_depth(dend1)
max_depth(dend1)

na_locf Last Observation Carried Forward

Description

A function for replacing each NA with the most recent non-NA prior to it.

Usage

na_locf(x, first_na_value = 0, recursive = TRUE, ...)

na_locf 137

Arguments

x some vector

first_na_value If the first observation is NA, fill it with "first_na_value"

recursive logical (TRUE). Should na_locf be re-run until all NA values are filled?

... ignored.

Value

The original vector, but with all the missing values filled by the value before them.

Source

https://stat.ethz.ch/pipermail/r-help/2003-November/042126.html https://stackoverflow.
com/questions/5302049/last-observation-carried-forward-na-locf-on-panel-cross-section-time-series

This could probably be solved MUCH faster using Rcpp.

See Also

na.locf

Examples

na_locf(c(NA, NA))
na_locf(c(1, NA))
na_locf(c(1, NA, NA, NA))
na_locf(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4))
na_locf(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4), recursive = FALSE)
Not run:

library(microbenchmark)
library(zoo)

microbenchmark(
na_locf = na_locf(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4)),
na.locf = na.locf(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4))
#) # my implementation is 6 times faster :)

#microbenchmark(
na_locf = na_locf(rep(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4), 1000)),
na.locf = na.locf(rep(c(1, NA, NA, NA, 2, 2, NA, 3, NA, 4), 1000))
) # my implementation is 3 times faster

End(Not run)

https://stat.ethz.ch/pipermail/r-help/2003-November/042126.html
https://stackoverflow.com/questions/5302049/last-observation-carried-forward-na-locf-on-panel-cross-section-time-series
https://stackoverflow.com/questions/5302049/last-observation-carried-forward-na-locf-on-panel-cross-section-time-series

138 nleaves

nleaves Counts the number of leaves in a tree

Description

Counts the number of leaves in a tree (dendrogram or hclust).

Usage

nleaves(x, ...)

Default S3 method:
nleaves(x, ...)

S3 method for class 'dendrogram'
nleaves(x, method = c("members", "order"), ...)

S3 method for class 'dendlist'
nleaves(x, ...)

S3 method for class 'hclust'
nleaves(x, ...)

S3 method for class 'phylo'
nleaves(x, ...)

Arguments

x tree object (dendrogram/hclust/phylo,dendlist)

... not used

method a character scalar (default is "members"). If "order" than nleaves is based on
length of order.dendrogram. If "members", than length is trusting what is written
in the dendrogram’s root attr. "members" is about 4 times faster than "order".

Details

The idea for the name is from functions like ncol, and nrow.

Also, it is worth noting that the nleaves.dendrogram is based on order.dendrogram instead of la-
bels.dendrogram since the first is MUCH faster than the later.

The phylo method is based on turning the phylo to hclust and than to dendrogram. It may not work
for complex phylo trees.

Value

The number of leaves in the tree

nnodes 139

See Also

nrow, count_terminal_nodes

Examples

hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

nleaves(dend) # 5
nleaves(hc) # 5

nnodes Counts the number of nodes (Vertices) in a tree

Description

Counts the number of nodes in a tree (dendrogram, hclust, phylo).

Usage

nnodes(x, ...)

Default S3 method:
nnodes(x, ...)

S3 method for class 'dendrogram'
nnodes(x, ...)

S3 method for class 'hclust'
nnodes(x, ...)

S3 method for class 'phylo'
nnodes(x, ...)

Arguments

x tree object (dendrogram or hclust)

... not used

Details

The idea for the name is from functions like ncol, and nrow.

The phylo method is based on turning the phylo to hclust and than to dendrogram. It may not work
for complex phylo trees.

Value

The number of leaves in the tree

140 noded_with_condition

See Also

nrow, count_terminal_nodes, nleaves

Examples

hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

nnodes(dend) # 9
nnodes(hc) # 9

noded_with_condition Find which nodes satisfies a condition

Description

Goes through a tree’s nodes in order to return a vector with whether (TRUE/FALSE) each node
satisies some condition (function)

Usage

noded_with_condition(
dend,
condition,
include_leaves = TRUE,
include_branches = TRUE,
na.rm = FALSE,
...

)

Arguments

dend a dendrogram dend

condition a function that gets a node and return TRUE or FALSE (based on whether or not
that node/tree fulfills the "condition")

include_leaves logical. Should leaves attributes be included as well?
include_branches

logical. Should non-leaf (branch node) attributes be included as well?

na.rm logical. Should NA attributes be REMOVED from the resulting vector?

... passed to the condition function

Value

A logical vector with TRUE/FALSE, specifying for each of the dendrogram’s nodes if it fulfills the
condition or not.

order.dendrogram<- 141

See Also

branches_attr_by_labels, get_leaves_attr, nnodes, nleaves

Examples

Not run:

library(dendextend)

set.seed(23235)
ss <- sample(1:150, 10)

Getting the dend dend
dend <- iris[ss, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend %>% plot()

this is the basis for branches_attr_by_labels
has_any_labels <- function(sub_dend, the_labels) any(labels(sub_dend) %in% the_labels)
cols <- noded_with_condition(dend, has_any_labels,

the_labels = c("126", "109", "59")
) %>%

ifelse(2, 1)
set(dend, "branches_col", cols) %>% plot()

Similar to branches_attr_by_labels - but for heights!
high_enough <- function(sub_dend, height) attr(sub_dend, "height") > height
cols <- noded_with_condition(dend, high_enough, height = 1) %>% ifelse(2, 1)
set(dend, "branches_col", cols) %>% plot()

End(Not run)

order.dendrogram<- order.dendrogram<- assignment operator

Description

order.dendrogram<- assignment operator. This is useful in cases where some object is turned into a
dendrogram but its leaves values (the order) are all mixed up.

Usage

order.dendrogram(object, ...) <- value

142 order.hclust

Arguments

object a variable name (possibly quoted) who’s label are to be updated

... parameters passed (not currently in use)

value a value to be assigned to object’s leaves value (their "order")

Value

dendrogram with updated order leaves values

See Also

order.dendrogram, labels<-

Examples

################
Example for using the assignment with dendrogram and hclust objects:
hc <- hclust(dist(USArrests[1:4,]), "ave")
dend <- as.dendrogram(hc)

str(dend)
order.dendrogram(dend) # 4 3 1 2
order.dendrogram(dend) <- 1:4
order.dendrogram(dend) # 1 2 3 4
str(dend) # the structure is still fine.

This function is very useful if we try playing with subtrees
For example:
hc <- hclust(dist(USArrests[1:6,]), "ave")
dend <- as.dendrogram(hc)
sub_dend <- dend[[1]]
order.dendrogram(sub_dend) # 4 6
now using as.hclust(sub_dend) will cause trouble:
labels(as.hclust(sub_dend)) # As of R 3.1.1-patched - this will produce an Error (as it should) :)
let's fix it:

order.dendrogram(sub_dend) <- rank(order.dendrogram(sub_dend), ties.method = "first")
labels(as.hclust(sub_dend)) # We now have labels :)

order.hclust Ordering of the Leaves in a hclust Dendrogram

Description

Ordering of the Leaves in a hclust Dendrogram. Like order.dendrogram.

Usage

order.hclust(x, ...)

partition_leaves 143

Arguments

x ab hclust object a distance matrix.

... Ignored.

Value

A vector with length equal to the number of leaves in the hclust dendrogram is returned. From
r <- order.hclust(), each element is the index into the original data (from which the hclust was
computed).

See Also

order.dendrogram

Examples

set.seed(23235)
ss <- sample(1:150, 10)
hc <- iris[ss, -5] %>%

dist() %>%
hclust()

dend <- hc %>% as.dendrogram
order.hclust(hc)

partition_leaves A list with labels for each subtree (edge)

Description

Returns the set of all bipartitions from all edges, that is: a list with the labels for each of the nodes
in the dendrogram.

Usage

partition_leaves(dend, ...)

Arguments

dend a dendrogram

... Ignored.

Value

A list with the labels for each of the nodes in the dendrogram.

144 plot_horiz.dendrogram

Source

A dendrogram implementation for partition.leaves from the distory package

See Also

distinct_edges, highlight_distinct_edges, dist.dendlist, tanglegram, partition.leaves

Examples

x <- 1:3 %>%
dist() %>%
hclust() %>%
as.dendrogram()

plot(x)
partition_leaves(x)
Not run:
set.seed(23235)
ss <- sample(1:150, 10)
dend1 <- iris[ss, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[ss, -5] %>%
dist() %>%
hclust("single") %>%
as.dendrogram()

partition_leaves(dend1)
partition_leaves(dend2)

End(Not run)

plot_horiz.dendrogram Plotting a left-tip-adjusted horizontal dendrogram

Description

The default plot(dend, horiz = TRUE), gives us a dendrogram tree plot with the tips turned right.
The current function enables the creation of the same tree, but with the tips turned left. The main
challange in doing this is finding the distance of the labels from the leaves tips - which is solved
with this function.

Usage

plot_horiz.dendrogram(
x,
type = c("rectangle", "triangle"),

plot_horiz.dendrogram 145

center = FALSE,
edge.root = is.leaf(x) || !is.null(attr(x, "edgetext")),
dLeaf = NULL,
horiz = TRUE,
xaxt = "n",
yaxt = "s",
xlim = NULL,
ylim = NULL,
nodePar = NULL,
edgePar = list(),
leaflab = c("perpendicular", "textlike", "none"),
side = TRUE,
text_pos = 2,
...

)

Arguments

x tree object (dendrogram)

type a character vector with either "rectangle" or "triangle" (passed to plot.dendrogram)

center logical; if TRUE, nodes are plotted centered with respect to the leaves in the
branch. Otherwise (default), plot them in the middle of all direct child nodes.

edge.root logical; if true, draw an edge to the root node.

dLeaf a number specifying the distance in user coordinates between the tip of a leaf
and its label. If NULL as per default, 3/4 of a letter width is used.

horiz logical indicating if the dendrogram should be drawn horizontally or not. In this
function it MUST be TRUE!

xaxt graphical parameters, or arguments for other methods.

yaxt graphical parameters, or arguments for other methods.

xlim (NULL) optional x- and y-limits of the plot, passed to plot.default. The defaults
for these show the full dendrogram.

ylim (NULL) optional x- and y-limits of the plot, passed to plot.default. The defaults
for these show the full dendrogram.

nodePar NULL.

edgePar list()

leaflab c("perpendicular", "textlike", "none")

side logical (TRUE). Should the tips of the drawn tree be facing the left side. This is
the important feature of this function.

text_pos integer from either 1 to 4 (2). Two relevant values are 2 and 4. 2 (default) means
that the labels are alligned to the tips of the tree leaves. 4 will have the labels
allign to the left, making them look like they were when the tree was on the left
side (with leaves tips facing to the right).

... passed to plot.

146 prune

Value

The invisiable dLeaf value.

Source

This function is based on replicating plot.dendrogram. In fact, I’d be happy if in the future, some
tweaks could be make to plot.dendrogram, so that it would replace the need for this function.

See Also

plot.dendrogram, tanglegram

Examples

Not run:
dend <- USArrests[1:10,] %>%

dist() %>%
hclust() %>%
as.dendrogram()

par(mfrow = c(1, 2), mar = rep(6, 4))
plot_horiz.dendrogram(dend, side = FALSE)
plot_horiz.dendrogram(dend, side = TRUE)
plot_horiz.dendrogram(dend, side=TRUE, dLeaf= 0)
plot_horiz.dendrogram(dend, side=TRUE, nodePar = list(pos = 1))
sadly, lab.pos is not implemented yet,
so the labels can not be right aligned...

plot_horiz.dendrogram(dend, side = F)
plot_horiz.dendrogram(dend, side = TRUE, dLeaf = 0, xlim = c(100, -10)) # bad
plot_horiz.dendrogram(dend, side = TRUE, text_offset = 0)
plot_horiz.dendrogram(dend, side = TRUE, text_offset = 0, text_pos = 4)

End(Not run)

prune Prunes a tree (using leaves’ labels)

Description

Trimms a tree (dendrogram, hclust) from a set of leaves based on their labels.

Usage

prune(dend, ...)

Default S3 method:
prune(dend, ...)

prune 147

S3 method for class 'dendrogram'
prune(dend, leaves, reindex_dend = TRUE, ...)

S3 method for class 'hclust'
prune(dend, leaves, ...)

S3 method for class 'phylo'
prune(dend, ...)

S3 method for class 'rpart'
prune(dend, ...)

Arguments

dend tree object (dendrogram/hclust/phylo)

... passed on

leaves a character vector of the label(S) of the tip(s) (leaves) we wish to prune off the
tree.

reindex_dend logical (default is TRUE). If TRUE, the leaves of the new dendrograms include
the rank of the old order.dendrogram. This insures that their values are just
like the number of leaves. When FALSE, the values in the leaves is that of the
original dendrogram. Thie is useful if prunning a dendrogram but then wanting
to use order.dendrogram with the original values. When using prune.hclust, then
reindex_dend is used by default since otherwise the as.hclust function would
return an error.

Details

I was not sure if to call this function drop.tip (from ape), snip/prune (from rpart) or just remove.leaves.
I ended up deciding on prune.

Value

A pruned tree

See Also

prune_leaf, drop.tip ape

Examples

hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

par(mfrow = c(1, 2))
plot(dend, main = "original tree")
plot(prune(dend, c("Alaska", "California")), main = "tree without Alaska and California")

148 prune_common_subtrees.dendlist

this works because prune uses reindex_dend = TRUE by default
as.hclust(prune(dend, c("Alaska", "California")))
prune(hc, c("Alaska", "California"))

prune_common_subtrees.dendlist

Prune trees to their common subtrees

Description

Prune trees to their common subtrees

Usage

prune_common_subtrees.dendlist(dend, ...)

Arguments

dend a dendlist of length two

... ignored

Value

A dendlist after prunning the labels to only include those that are part of common subtrees in both
dendrograms.

See Also

common_subtrees_clusters

Examples

NULL

prune_leaf 149

prune_leaf Trims one leaf from a dendrogram

Description

Trims (prunes) one leaf from a dendrogram.

Usage

prune_leaf(dend, leaf_name, ...)

Arguments

dend dendrogram object

leaf_name a character string as the label of the tip we wish to prune

... passed on

Details

Used through prune

Value

A dendrogram with a leaf pruned

Examples

hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

par(mfrow = c(1, 2))
plot(dend, main = "original tree")
plot(prune_leaf(dend, "Alaska"), main = "tree without Alaska")

pvclust_edges Get Pvclust Edges Information

Description

Get pvclust edges information such as au and bp and return dataframe with proper sample labels.
This function is useful when there are a lot of samples involved.

Usage

pvclust_edges(pvclust_obj)

150 pvclust_show_signif

Arguments

pvclust_obj pvclust object

Value

data.frame with leaves on column 1 and 2, followed by the rest of the information from edge

References

hclust object descriptions https://stat.ethz.ch/R-manual/R-patched/library/stats/html/
hclust.html

Examples

Not run:

library(pvclust)
data(lung) # 916 genes for 73 subjects
set.seed(13134)
result <- pvclust(lung[, 1:20], method.dist = "cor", method.hclust = "average", nboot = 100)
pvclust_edges(result)

End(Not run)

pvclust_show_signif The significant branches in a dendrogram, based on a pvclust object

Description

Shows the significant branches in a dendrogram, based on a pvclust object

Usage

pvclust_show_signif(
dend,
pvclust_obj,
signif_type = c("bp", "au"),
alpha = 0.05,
signif_value = c(5, 1),
show_type = c("lwd", "col"),
...

)

https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html

pvclust_show_signif 151

Arguments

dend a dendrogram object

pvclust_obj a pvclust object

signif_type a character scalar (either "bp" or "au"), indicating which of the two should be
used to update the dendrogram.

alpha a number between 0 to 1, default is .05. Indicates what is the cutoff from which
branches will be updated.

signif_value a 2d vector (deafult: c(5,1)), with the first element tells us what the signifi-
cant branches will get, and the second element which value the non-significant
branches will get.

show_type a character scalar (either "lwd" or "col"), indicating which parameter of the
branches should be updated based on significance.

... not used

Value

A dendrogram with updated branches

See Also

pvclust_show_signif, pvclust_show_signif_gradient

Examples

Not run:
library(pvclust)
data(lung) # 916 genes for 73 subjects
set.seed(13134)
result <- pvclust(lung[, 1:20], method.dist = "cor", method.hclust = "average", nboot = 100)

dend <- as.dendrogram(result)
result %>%

as.dendrogram() %>%
hang.dendrogram() %>%
plot(main = "Cluster dendrogram with AU/BP values (%)")

result %>% text()
result %>% pvrect(alpha = 0.95)

dend %>%
pvclust_show_signif(result) %>%
plot()

dend %>%
pvclust_show_signif(result, show_type = "lwd") %>%
plot()

result %>% text()
result %>% pvrect(alpha = 0.95)

dend %>%
pvclust_show_signif_gradient(result) %>%

152 pvclust_show_signif_gradient

plot()

dend %>%
pvclust_show_signif_gradient(result) %>%
pvclust_show_signif(result) %>%
plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are highlighted by signif")

result %>% text()
result %>% pvrect(alpha = 0.95)

End(Not run)

pvclust_show_signif_gradient

Significance gradient of branches in a dendrogram (via pvclust)

Description

Shows the gradient of significance of branches in a dendrogram, based on a pvclust object

Usage

pvclust_show_signif_gradient(
dend,
pvclust_obj,
signif_type = c("bp", "au"),
signif_col_fun = colorRampPalette(c("black", "darkred", "red")),
...

)

Arguments

dend a dendrogram object

pvclust_obj a pvclust object

signif_type a character scalar (either "bp" or "au"), indicating which of the two should be
used to update the dendrogram.

signif_col_fun a function to create colors for the significant gradient. Default is: colorRamp-
Palette(c("black", "darkred", "red"))

... not used

Value

A dendrogram with updated branches

See Also

pvclust_show_signif, pvclust_show_signif_gradient

pvrect2 153

Examples

Not run:
library(pvclust)
data(lung) # 916 genes for 73 subjects
set.seed(13134)
result <- pvclust(lung[, 1:20], method.dist = "cor", method.hclust = "average", nboot = 100)

dend <- as.dendrogram(result)
result %>%

as.dendrogram() %>%
hang.dendrogram() %>%
plot(main = "Cluster dendrogram with AU/BP values (%)")

result %>% text()
result %>% pvrect(alpha = 0.95)

dend %>%
pvclust_show_signif(result) %>%
plot()

dend %>%
pvclust_show_signif(result, show_type = "lwd") %>%
plot()

result %>% text()
result %>% pvrect(alpha = 0.95)

dend %>%
pvclust_show_signif_gradient(result) %>%
plot()

dend %>%
pvclust_show_signif_gradient(result) %>%
pvclust_show_signif(result) %>%
plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are highlighted by signif")

result %>% text()
result %>% pvrect(alpha = 0.95)

End(Not run)

pvrect2 Draw Rectangles Around a Dendrogram’s Clusters with High/Low P-
values

Description

Draws rectangles around the branches of a dendrogram highlighting the corresponding clusters with
low p-values. This is based on pvrect, allowing to draw the rects till the bottom of the labels.

Usage

pvrect2(

154 pvrect2

x,
alpha = 0.95,
pv = "au",
type = "geq",
max.only = TRUE,
border = 2,
xpd = TRUE,
lower_rect,
...

)

Arguments

x object of class pvclust.

alpha threshold value for p-values., Default: 0.95

pv character string which specifies the p-value to be used. It should be either of "au"
or "bp", corresponding to AU p-value or BP value, respectively. See plot.pvclust
for details. , Default: ’au’

type one of "geq", "leq", "gt" or "lt". If "geq" is specified, clusters with p-value
greater than or equals the threshold given by "alpha" are returned or displayed.
Likewise "leq" stands for lower than or equals, "gt" for greater than and "lt" for
lower than the threshold value. The default is "geq"., Default: ’geq’

max.only logical. If some of clusters with high/low p-values have inclusion relation, only
the largest cluster is returned (or displayed) when max.only=TRUE., Default:
TRUE

border numeric value which specifies the color of borders of rectangles., Default: 2

xpd A logical value (or NA.), passed to par. Default is TRUE, in order to allow the
rect to be below the labels. If FALSE, all plotting is clipped to the plot region,
if TRUE, all plotting is clipped to the figure region, and if NA, all plotting is
clipped to the device region. See also clip., Default: TRUE

lower_rect a (scalar) value of how low should the lower part of the rect be. If missing, it will
take the value of par("usr")[3L] (or par("usr")[2L], depending if horiz = TRUE
or not), with also the width of the labels. (notice that we would like to keep xpd
= TRUE if we want the rect to be after the labels!) You can use a value such as
0, to get the rect above the labels.

... passed to rect

See Also

pvrect, pvclust_show_signif

Examples

Not run:

library(dendextend)

raise.dendrogram 155

library(pvclust)
data(lung) # 916 genes for 73 subjects
set.seed(13134)
result <- pvclust(lung[, 1:20], method.dist = "cor", method.hclust = "average", nboot = 10)

par(mar = c(9, 2.5, 2, 0))
dend <- as.dendrogram(result)
dend %>%

pvclust_show_signif(result, signif_value = c(3, .5)) %>%
pvclust_show_signif(result, signif_value = c("black", "grey"), show_type = "col") %>%
plot(main = "Cluster dendrogram with AU/BP values (%)")

pvrect2(result, alpha = 0.95)
getting the rects to the tips / above the labels
pvrect2(result, lower_rect = .15, border = 4, alpha = 0.95, lty = 2)
Original function
pvrect(result, alpha=0.95)
text(result, alpha = 0.95)

End(Not run)

raise.dendrogram Raise the height of a dendrogram tree

Description

Raise the height of nodes in a dendrogram tree.

Usage

raise.dendrogram(dend, heiget_to_add, ...)

Arguments

dend dendrogram object
heiget_to_add how much height to add to all the branches (not leaves) in the dendrogram
... passed on (not used)

Value

A raised dendrogram

Examples

hc <- hclust(dist(USArrests[2:9,]), "com")
dend <- as.dendrogram(hc)

par(mfrow = c(1, 2))
plot(dend, main = "original tree")
plot(raise.dendrogram(dend, 100), main = "Raised tree")

156 rank_branches

rank_branches Rank branches’ heights

Description

Adjust the height attr in all of the dendrogram nodes so that the tree will have a distance of 1 unit
between each parent/child nodes. It can be thought of as ranking the branches between themselves.

This is intended for easier comparison of the topology of two trees.

Notice that this function changes the height of all the leaves into 0, thus erasing the effect of
hang.dendrogram (which should be run again, if that is the visualization you are intereted in).

Usage

rank_branches(dend, diff_height = 1, ...)

Arguments

dend a dendrogram object

diff_height Numeric scalar (1). Affects the difference in height between two branches.

... not used

Value

A dendrogram, after adjusting the height attr in all of its branches.

See Also

get_branches_heights, get_childrens_heights, hang.dendrogram, tanglegram

Examples

define dendrogram object to play with:
dend <- USArrests[1:5,] %>%

dist() %>%
hclust() %>%
as.dendrogram()

par(mfrow = c(1, 3))

plot(dend)
plot(rank_branches(dend))
plot(hang.dendrogram(rank_branches(dend)))

rank_order.dendrogram 157

rank_order.dendrogram Fix rank of leaves order values in a dendrogram

Description

Generally, leaves order value should be a sequence of integer values. From 1 to nleaves(dend). This
function fixes trees by using rank on existing leaves order values.

Usage

rank_order.dendrogram(dend, ...)

Arguments

dend a dendrogram object

... not used

Value

A dendrogram, after fixing its leaves order values.

See Also

prune

Examples

define dendrogram object to play with:
dend <- USArrests[1:4,] %>%

dist() %>%
hclust(method = "ave") %>%
as.dendrogram()

plot(dend)
order.dendrogram(dend)
dend2 <- prune(dend, "Alaska")
order.dendrogram(dend2)
order.dendrogram(rank_order.dendrogram(dend2))

158 rect.dendrogram

rank_values_with_clusters

Rank a vector based on clusters

Description

Rank a vector based on clusters

Usage

rank_values_with_clusters(x, ignore0 = FALSE, ...)

Arguments

x numeric vector

ignore0 logical (FALSE). If TRUE, will ignore the 0’s in the vector

... not used

Value

an integer vector with the number of unique values as the number of uniques in the original vector.
And the values are ranked from 1 (in the beginning of the vector) to the number of unique clusters.

Examples

rank_values_with_clusters(c(1, 2, 3))
rank_values_with_clusters(c(1, 1, 3))
rank_values_with_clusters(c(0.1, 0.1, 3000))
rank_values_with_clusters(c(3, 1, 2))
rank_values_with_clusters(c(1, 3, 3, 3, 3, 3, 3, 4, 2, 2))

rank_values_with_clusters(c(3, 1, 2), ignore0 = TRUE)
rank_values_with_clusters(c(3, 1, 2), ignore0 = FALSE)
rank_values_with_clusters(c(3, 1, 0, 2), ignore0 = TRUE)
rank_values_with_clusters(c(3, 1, 0, 2), ignore0 = FALSE)

rect.dendrogram Draw Rectangles Around a Dendrogram’s Clusters

Description

Draws rectangles around the branches of a dendrogram highlighting the corresponding clusters.
First the dendrogram is cut at a certain level, then a rectangle is drawn around selected branches.

rect.dendrogram 159

Usage

rect.dendrogram(
tree,
k = NULL,
which = NULL,
x = NULL,
h = NULL,
border = 2,
cluster = NULL,
horiz = FALSE,
density = NULL,
angle = 45,
text = NULL,
text_cex = 1,
text_col = 1,
xpd = TRUE,
lower_rect,
upper_rect = 0,
prop_k_height = 0.5,
stop_if_out = FALSE,
...

)

Arguments

tree a dendrogram object.
k Scalar. Cut the dendrogram such that exactly k clusters (if possible) are pro-

duced.
which A vector selecting the clusters around which a rectangle should be drawn. which

selects clusters by number (from left to right in the tree), Default is which = 1:k.
x A vector selecting the clusters around which a rectangle should be drawn. x

selects clusters containing the respective horizontal coordinates.
h Scalar. Cut the dendrogram by cutting at height h. (k overrides h)
border Vector with border colors for the rectangles.
cluster Optional vector with cluster memberships as returned by cutree(dend_obj, k =

k), can be specified for efficiency if already computed.
horiz logical (FALSE), indicating if the rectangles should be drawn horizontally or

not (for when using plot(dend, horiz = TRUE)) .
density Passed to rect: the density of shading lines, in lines per inch. The default value

of NULL means that no shading lines are drawn. A zero value of density means
no shading lines whereas negative values (and NA) suppress shading (and so
allow color filling). If border is a vector of colors, the color of density will
default to 1.

angle Passed to rect: angle (in degrees) of the shading lines. (default is 45)
text a character vector of labels to plot underneath the clusters. When NULL (de-

fault), no text is displayed.

160 rect.dendrogram

text_cex a numeric (scalar) value of the text’s cex value.

text_col a (scalar) value of the text’s col(or) value.

xpd A logical value (or NA.), passed to par. Default is TRUE, in order to allow the
rect to be below the labels. If FALSE, all plotting is clipped to the plot region,
if TRUE, all plotting is clipped to the figure region, and if NA, all plotting is
clipped to the device region. See also clip.

lower_rect a (scalar) value of how low should the lower part of the rect be. If missing, it will
take the value of par("usr")[3L] (or par("usr")[2L], depending if horiz = TRUE
or not), with also the width of the labels. (notice that we would like to keep xpd
= TRUE if we want the rect to be after the labels!) You can use a value such as
0, to get the rect above the labels.
Notice that for a plot with small margins, it would be better to set this parameter
manually.

upper_rect a (scalar) value to add (default is 0) to how high should the upper part of the rect
be.

prop_k_height a (scalar) value (should be between 0 to 1), indicating what proportion of the
height our rect will be between the height needed for k and k+1 clustering.

stop_if_out logical (default is TRUE). This makes the function stop if k of the locator is out-
side the range (this default reproduces the behavior of the rect.hclust function).

... parameters passed to rect (such as lwd, lty, etc.)

Value

(Invisibly) returns a list where each element contains a vector of data points contained in the re-
spective cluster.

Source

This function is based on rect.hclust, with slight modifications to have it work with a dendrogram,
as well as a few added features (e.g: ... to rect, and horiz)

The idea of adding text and shading lines under the clusters comes from skullkey from here: https:
//stackoverflow.com/questions/4720307/change-dendrogram-leaves

See Also

rect.hclust, order.dendrogram, cutree.dendrogram

Examples

set.seed(23235)
ss <- sample(1:150, 10)
hc <- iris[ss, -5] %>%

dist() %>%
hclust()

dend <- hc %>% as.dendrogram()

https://stackoverflow.com/questions/4720307/change-dendrogram-leaves
https://stackoverflow.com/questions/4720307/change-dendrogram-leaves

reindex_dend 161

plot(dend)
rect.dendrogram(dend, 2, border = 2)
rect.dendrogram(dend, 3, border = 4)
Vectorize(rect.dendrogram, "k")(dend, 4:5, border = 6)

plot(dend)
rect.dendrogram(dend, 3,

border = 1:3,
density = 2, text = c("1", "b", "miao"), text_cex = 3

)

plot(dend)
rect.dendrogram(dend, 4, which = c(1, 3), border = c(2, 3))
rect.dendrogram(dend, 4, x = 5, border = c(4))
rect.dendrogram(dend, 3, border = 3, lwd = 2, lty = 2)
now THIS, you can not do with the old rect.hclust
plot(dend, horiz = TRUE)
rect.dendrogram(dend, 2, border = 2, horiz = TRUE)
rect.dendrogram(dend, 4, border = 4, lty = 2, lwd = 3, horiz = TRUE)

This had previously failed since it worked with a wrong k.

dend15 <- c(1:5) %>%
dist() %>%
hclust(method = "average") %>%
as.dendrogram()

dend15 <- c(1:25) %>% dist %>% hclust(method = "average") %>% as.dendrogram
dend15 %>%

set("branches_k_color") %>%
plot()

dend15 %>% rect.dendrogram(
k = 3,
border = 8, lty = 5, lwd = 2

)

reindex_dend Reindexing a pruned dendrogram

Description

prune_leaf does not update leaf indices as it prune leaves. As a result, some leaves of the pruned
dendrogram may have leaf indeices larger than the number of leaves in the pruned dendrogram,
which may cause errors in downstream functions such as as.hclust.

This function re-indexes the leaves such that the leaf indices are no larger than the total number of
leaves.

Usage

reindex_dend(dend)

162 remove_branches_edgePar

Arguments

dend dendrogram object

Value

A dendrogram object with the leaf reindexed

Examples

hc <- hclust(dist(USArrests[1:5,]), "ave")
dend <- as.dendrogram(hc)

dend_pruned <- prune(dend, c("Alaska", "California"), reindex_dend = FALSE)

A leave have an index larger than the number of leaves:
unlist(dend_pruned)
[1] 4 3 1
#'
dend_pruned_reindexed <- reindex_dend(dend_pruned)

All leaf indices are no larger than the number of leaves:
unlist(dend_pruned_reindexed)
[1] 3 2 1

The dendrograms are equal:
all.equal(dend_pruned, dend_pruned_reindexed)
TRUE

remove_branches_edgePar

Remove all edgePar values from a dendrogram’s branches

Description

Go through the dendrogram branches and remove its edgePar.

Usage

remove_branches_edgePar(dend, ...)

Arguments

dend a dendrogram object

... not used

Value

A dendrogram, after removing the edgePar attribute in all of its branches,

remove_leaves_nodePar 163

See Also

get_root_branches_attr, assign_values_to_branches_edgePar

Examples

Not run:

dend <- USArrests[1:5,] %>%
dist() %>%
hclust() %>%
as.dendrogram()

dend <- color_branches(dend, 3)
par(mfrow = c(1, 2))
plot(dend)
plot(remove_branches_edgePar(dend))

End(Not run)

remove_leaves_nodePar Remove all nodePar values from a dendrogram’s leaves

Description

Go through the dendrogram leaves and remove its nodePar.

Usage

remove_leaves_nodePar(dend, ...)

Arguments

dend a dendrogram object

... not used

Value

A dendrogram, after removing the nodePar attribute in all of its leaves,

See Also

get_leaves_attr, assign_values_to_leaves_nodePar

164 remove_nodes_nodePar

Examples

Not run:

dend <- USArrests[1:5,] %>%
dist() %>%
hclust() %>%
as.dendrogram()

dend <- color_labels(dend, 3)
par(mfrow = c(1, 2))
plot(dend)
plot(remove_leaves_nodePar(dend))

get_leaves_attr(dend, "nodePar")
get_leaves_attr(remove_leaves_nodePar(dend), "nodePar")

End(Not run)

remove_nodes_nodePar Remove all nodePar values from a dendrogram’s nodes

Description

Go through the dendrogram nodes and remove its nodePar

Usage

remove_nodes_nodePar(dend, ...)

Arguments

dend a dendrogram object

... not used

Value

A dendrogram, after removing the nodePar attribute in all of its nodes,

See Also

get_root_branches_attr, assign_values_to_branches_edgePar

rllply 165

Examples

Not run:

dend <- USArrests[1:5,] %>%
dist() %>%
hclust() %>%
as.dendrogram()

dend <- color_branches(dend, 3)
par(mfrow = c(1, 2))
plot(dend)
plot(remove_branches_edgePar(dend))

End(Not run)

rllply recursivly apply a function on a list

Description

recursivly apply a function on a list - and returns the output as a list, following the naming con-
vention in the plyr package the big difference between this and rapply is that this will also apply
the function on EACH element of the list, even if it’s not a "terminal node" inside the list tree. An
attribute is added to indicate if the value returned is from a branch or a leaf.

Usage

rllply(x, FUN, add_notation = FALSE, ...)

Arguments

x a list.

FUN a function to apply on each element of the list

add_notation logical. Should each node be added a "position_type" attribute, stating if it is a
"Branch" or a "Leaf".

... not used.

Value

a list with ALL of the nodes (from the original "x" list), that FUN was applied on.

166 rotate

Examples

Not run:
x <- list(1)
x
rllply(x, function(x) {

x
}, add_notation = TRUE)

x <- list(1, 2, list(31))
x
rllply(x, function(x) {

x
}, add_notation = TRUE)
the first element is the entire tree
after FUN was applied to its root element.

hc <- hclust(dist(USArrests[1:4,]), "ave")
dend <- as.dendrogram(hc)
rllply(dend, function(x) {

attr(x, "height")
})
rllply(dend, function(x) {

attr(x, "members")
})

End(Not run)

rotate Rotate a tree object

Description

Rotates, rev and sort the branches of a tree object (dendrogram, hclust) based on a vector - eithor of
labels order (numbers) or the labels in their new order (character).

Usage

rotate(x, ...)

Default S3 method:
rotate(x, order, ...)

S3 method for class 'dendrogram'
rotate(x, order, ...)

S3 method for class 'hclust'
rotate(x, order, ...)

rotate 167

S3 method for class 'phylo'
rotate(x, ..., phy)

S3 method for class 'dendrogram'
sort(x, decreasing = FALSE, type = c("labels", "nodes"), ...)

S3 method for class 'hclust'
sort(x, decreasing = FALSE, ...)

S3 method for class 'dendlist'
sort(x, ...)

S3 method for class 'hclust'
rev(x, ...)

Arguments

x a tree object (either a dendrogram or hclust)

... parameters passed (for example, in case of sort)

order Either numeric or character vector. Is numeric: it is a numeric vector with the
order of the value to be assigned to object’s label. The numbers say are just like
when you use order: which of the items on the tree-plot should be "first" (e.g:
most left), second etc. (this is relevant only to rotate) Is character: it must be a
vector with the content of labels(x), in the order we’d like to have the new tree.

phy a placeholder in case the user uses "phy ="

decreasing logical. Should the sort be increasing or decreasing? Not available for partial
sorting. (relevant only to sort)

type a character indicating how to sort. If "labels" then by lexicographic order of the
labels. If "nodes", then by using ladderize (order so that recursively, the leftmost
branch will be the smallest)

Details

The motivation for this function came from the function order.dendrogram NOT being very intu-
itive. What rotate aims to do is give a simple tree rotation function which is based on the order
which the user would like to see the tree rotated by (just as order works for numeric vectors).

rev.dendrogram is part of base R, and returns the tree object after rotating it so that the order of
the labels is reversed. Here we added an S3 method for hclust objects.

The sort methods sort the labels of the tree (using order) and then attempts to rotate the tree to fit
that order.

The hclust method of "rotate" works by first changing the object into dendrogram, performing
the rotation, and then changing it back to hclust. Special care is taken in preserving some of the
properties of the hclust object.

The ape package has its own rotate(ape) function (Which is sadly not S3, so cannot be easily con-
nected with the current implementation). Still, there is an S3 plug that makes sure people loading
first ape and then dendextend will still be able to use rotate without a problem. Notice that if

168 rotate

you will first load ape and only then dendextend, using "rotate" will fail with the error: "Error in
rotate(dend, ____) : object "phy" is not of class "phylo"" - this is because rotate in ape is not S3 and
will fail to find the rotate.dendrogram function. In such a case simply run unloadNamespace(ape).
Or, you can run: unloadNamespace("dendextend"); attachNamespace("dendextend") The
solution for this is that if you have ape installed on your machine, It will be loaded when you
load dendextend (but after it). This way, rotate will work fine for both dendrogram AND phylo
objects.

Value

A rotated tree object

See Also

order.dendrogram, order, rev.dendrogram, rotate (ape), ladderize

Examples

hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23),]), "ave")
dend <- as.dendrogram(hc)

For dendrogram objects:
labels_colors(dend) <- rainbow(nleaves(dend))
let's color the labels to make the followup of the rotation easier
par(mfrow = c(1, 2))
plot(dend, main = "Original tree")
plot(rotate(dend, c(2:5, 1)),

main =
"Rotates the left most leaf \n into the right side of the tree"

)
par(mfrow = c(1, 2))
plot(dend, main = "Original tree")
plot(sort(dend), main = "Sorts the labels by alphabetical order \n
and rotates the tree to give the best fit possible")
par(mfrow = c(1, 2))
plot(dend, main = "Original tree")
plot(rev(dend), main = "Reverses the order of the tree labels")

For hclust objects:
plot(hc)
plot(rotate(hc, c(2:5, 1)), main = "Rotates the left most leaf \n
into the right side of the tree")

par(mfrow = c(1, 3))
dend %>% plot(main = "Original tree")
dend %>%

sort() %>%
plot(main = "labels sort")

dend %>%
sort(type = "nodes") %>%
plot(main = "nodes (ladderize) sort")

rotate_DendSer 169

rotate_DendSer Rotates dend based on DendSer

Description

Rotates a dendrogram based on its seriation

The function tries to turn the dend into hclust using DendSer.dendrogram (based on DendSer)

Also, if a distance matrix is missing, it will try to use the cophenetic distance.

Usage

rotate_DendSer(dend, ser_weight, ...)

Arguments

dend An object of class dendrogram

ser_weight Used by cost function to evaluate ordering. For cost=costLS, this is a vec-
tor of object weights. Otherwise is a dist or symmetric matrix. passed to
DendSer.dendrogram and from there to DendSer.
If it is missing, the cophenetic distance is used instead.

... parameters passed to DendSer

Value

Numeric vector giving an optimal dendrogram order

See Also

DendSer, DendSer.dendrogram , untangle_DendSer, rotate_DendSer

Examples

Not run:
library(DendSer) # already used from within the function

dend <- USArrests[1:4,] %>%
dist() %>%
hclust("ave") %>%
as.dendrogram()

DendSer.dendrogram(dend)

tanglegram(dend, rotate_DendSer(dend))

End(Not run)

170 sample.dendrogram

sample.dendrogram Sample a tree

Description

Samples a tree, either by permuting the labels (which is usefull for a permutation test), or by re-
peated sampling of the same labels (essential for bootstraping when we don’t have access to the
original data which produced the tree).

Duplicates a leaf in a tree. Useful for non-parametric bootstraping trees since it emulates what
would have happened if the tree was constructed based on a row-sample with replacments from the
original data matrix.

Usage

sample.dendrogram(
dend,
replace = FALSE,
dend_labels,
sampled_labels,
fix_members = TRUE,
fix_order = TRUE,
fix_midpoint = TRUE,
...

)

Arguments

dend a dendrogram object

replace logical (FALSE). Should we shuffle the labels (if FALSE), or should we replicate
the same leaf over and over, while omitting other leaves? (this is when set to
TRUE).

dend_labels a character vector of the tree’s labels. This can save the time it takes for getting
the tree labels (in case we run a simulating, computing this once might save
some running time). If missing, it uses labels in order to get the labels.

sampled_labels a character vector of the tree’s sampled labels. This can help us if we wish to
compare two trees. In such a case we’d like to be able to have the same sample of
labels used on both trees. If missing, it uses sample in order to get the sampled
labels.
Only works when replace=TRUE!

fix_members logical (TRUE). Fix the number of members in attr using fix_members_attr.dendrogram

fix_order logical (TRUE). Fix the leaves order

fix_midpoint logical (TRUE). Fix the midpoint value. If TRUE, it overrides "fix_members"
and turns it into TRUE (since it must have a correct number of members in order
to work). values using rank_order.dendrogram

... not used

seriate_dendrogram 171

Value

A dendrogram, after "sampling" its leaves.

See Also

sample, duplicate_leaf

Examples

Not run:
define dendrogram object to play with:
dend <- USArrests[1:5,] %>%

dist() %>%
hclust(method = "ave") %>%
as.dendrogram()

plot(dend)

same tree, with different order of labels
plot(sample.dendrogram(dend, replace = FALSE))

A different tree (!), with some labels duplicated,
while others are pruned
plot(sample.dendrogram(dend, replace = TRUE))

End(Not run)

seriate_dendrogram Rotates a dendrogram based on a seriation of a distance matrix

Description

Rotates a dendrogram so it confirms to an order of a provided distance object. The seriation al-
gorithm is based on seriate, which tries to find a linear order for objects using data in form of a
dissimilarity matrix (one mode data).

This is useful for heatmap visualization.

Usage

seriate_dendrogram(dend, x, method = c("OLO", "GW"), ...)

Arguments

dend An object of class dendrogram or hclust

x a dist object.

172 set

method a character vector of either "OLO" or "GW": "OLO" - Optimal leaf ordering,
optimzes the Hamiltonian path length that is restricted by the dendrogram struc-
ture - works in O(n^4) "GW" - Gruvaeus and Wainer heuristic to optimze the
Hamiltonian path length that is restricted by the dendrogram structure

... parameters passed to seriate

Value

A dendrogram that is rotated based on the optimal ordering of the distance matrix

See Also

rotate, seriate

Examples

Not run:
library(dendextend)
d <- dist(USArrests)
hc <- hclust(d, "ave")
dend <- as.dendrogram(hc)

heatmap(as.matrix(USArrests))

dend2 <- seriate_dendrogram(dend, d)
heatmap(as.matrix(USArrests), Rowv = dend)

End(Not run)

set Set (/update) features to a dendrogram

Description

a master function for updating various attributes and features of dendrogram objects.

Usage

set(dend, ...)

S3 method for class 'dendrogram'
set(
dend,
what = c("labels", "labels_colors", "labels_cex", "labels_to_character",
"leaves_pch", "leaves_cex", "leaves_col", "leaves_bg", "nodes_pch", "nodes_cex",
"nodes_col", "nodes_bg", "hang_leaves", "rank_branches", "branches_k_color",
"branches_k_lty", "branches_col", "branches_lwd", "branches_lty",

"by_labels_branches_col", "by_labels_branches_lwd", "by_labels_branches_lty",

set 173

"by_lists_branches_col", "by_lists_branches_lwd", "by_lists_branches_lty",
"highlight_branches_col", "highlight_branches_lwd", "clear_branches",
"clear_leaves"),

value,
order_value = FALSE,
...

)

S3 method for class 'dendlist'
set(dend, ..., which)

S3 method for class 'data.table'
set(...)

Arguments

dend a tree (dendrogram, or dendlist)

... passed to the specific function for more options.

what a character indicating what is the property of the tree that should be set/updated.
(see the usage and the example section for the different options)

value an object with the value to set in the dendrogram tree. (the type of the value
depends on the "what")

order_value logical. Default is FALSE. If TRUE, it means the order of the value is in the
order of the data which produced the hclust or dendrogram - and will reorder the
value to conform with the order of the labels in the dendrogram.

which an integer vector indicating, in the case "dend" is a dendlist, on which of the
trees should the modification be performed. If missing - the change will be
performed on all of dends in the dendlist.

Details

This is a wrapper function for many of the main tasks we might wish to perform on a dendrogram
before plotting.

The options of by_labels_branches_col, by_labels_branches_lwd, by_labels_branches_lty have ex-
tra parameters: type, attr, TF_value, and by_lists_branches_col, by_lists_branches_lwd, by_lists_branches_lty
have extra parameters: attr, TF_value. You can read more about them here: branches_attr_by_labels
and branches_attr_by_lists

The "what" parameter" can accept the following options:

• labels - set the labels (labels<-.dendrogram)

• labels_colors - set the labels’ colors (color_labels)

• labels_cex - set the labels’ size (assign_values_to_leaves_nodePar)

• labels_to_character - set the labels’ to be characters

• leaves_pch - set the leaves’ point type (assign_values_to_leaves_nodePar). A leave is the
terminal node of the tree.

174 set

• leaves_cex - set the leaves’ point size (assign_values_to_leaves_nodePar). For using this you
MUST also set leaves_pch, a good value to use is 19.

• leaves_col - set the leaves’ point color (assign_values_to_leaves_nodePar). For using this you
MUST also set leaves_pch, a good value to use is 19.

• leaves_bg - set the leaves’ point fill color (assign_values_to_leaves_nodePar). For using this
you MUST also set leaves_pch with values from 21-25.

• nodes_pch - set the nodes’ point type (assign_values_to_nodes_nodePar)

• nodes_cex - set the nodes’ point size (assign_values_to_nodes_nodePar)

• nodes_col - set the nodes’ point color (assign_values_to_nodes_nodePar)

• nodes_bg - set the nodes’ point fill color (assign_values_to_nodes_nodePar). For using this
you MUST also set leaves_pch with values from 21-25.

• hang_leaves - hang the leaves (hang.dendrogram)

• branches_k_color - color the branches (color_branches), a k parameter needs to be supplied.

• branches_k_lty - updates the lwd of the branches (similar to branches_k_color), a k parameter
needs to be supplied.

• branches_col - set the color of branches (assign_values_to_branches_edgePar)

• branches_lwd - set the line width of branches (assign_values_to_branches_edgePar)

• branches_lty - set the line type of branches (assign_values_to_branches_edgePar)

• by_labels_branches_col - set the color of branches with specific labels (branches_attr_by_labels)

• by_labels_branches_lwd - set the line width of branches with specific labels (branches_attr_by_labels)

• by_labels_branches_lty - set the line type of branches with specific labels (branches_attr_by_labels)

• by_lists_branches_col - set the color of branches from the root of the tree down to (possibly
inner) nodes with specified members (branches_attr_by_lists)

• by_lists_branches_lwd - set the line width of branches from the root of the tree down to (pos-
sibly inner) nodes with specified members (branches_attr_by_lists)

• by_lists_branches_lty - set the line type of branches from the root of the tree down to (possibly
inner) nodes with specified members (branches_attr_by_lists)

• highlight_branches_col - highlight branches color based on branches’ heights (highlight_branches_col)

• highlight_branches_lwd - highlight branches line-width based on branches’ heights (high-
light_branches_lwd)

• clear_branches - clear branches’ attributes (remove_branches_edgePar)

• clear_leaves - clear leaves’ attributes (remove_branches_edgePar)

Value

An updated dendrogram (or dendlist), with some change to the parameters of it

See Also

labels<-.dendrogram, labels_colors<-, hang.dendrogram, color_branches, assign_values_to_leaves_nodePar,
assign_values_to_branches_edgePar, remove_branches_edgePar, remove_leaves_nodePar, noded_with_condition,
branches_attr_by_labels, branches_attr_by_lists, dendrogram

set 175

Examples

Not run:

set.seed(23235)
ss <- sample(1:150, 10)

Getting the dend object
dend <- iris[ss, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend %>% plot()

dend %>% labels()
dend %>%

set("labels", 1:10) %>%
labels()

dend %>%
set("labels", 1:10) %>%
plot()

dend %>%
set("labels_color") %>%
plot()

dend %>%
set("labels_col", c(1, 2)) %>%
plot() # Works also with partial matching :)

dend %>%
set("labels_cex", c(1, 1.2)) %>%
plot()

dend %>%
set("leaves_pch", NA) %>%
plot()

dend %>%
set("leaves_pch", c(1:5)) %>%
plot()

dend %>%
set("leaves_pch", c(19, 19, NA)) %>%
set("leaves_cex", c(1, 2)) %>%
plot()

dend %>%
set("leaves_pch", c(19, 19, NA)) %>%
set("leaves_cex", c(1, 2)) %>%
set("leaves_col", c(1, 1, 2, 2)) %>%
plot()

dend %>%
set("hang") %>%
plot()

using bg for leaves and nodes

set.seed(23235)

176 set

ss <- sample(1:150, 25)

Getting the dend object
dend25 <- iris[ss, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend25 %>%
set("labels", 1:25) %>%
set("nodes_pch", 21) %>% # set all nodes to be pch 21
set("nodes_col", "darkred") %>%
set("nodes_bg", "gold") %>%
set("leaves_pch", 1:25) %>% # Change the leaves pch to move from 1 to 25
set("leaves_col", "darkred") %>%
set("leaves_bg", "gold") %>%
plot(main = "pch 21 to 25 supports the\nnodes_bg and leaves_bg parameters")

dend %>%
set("branches_k_col") %>%
plot()

dend %>%
set("branches_k_col", c(1, 2)) %>%
plot()

dend %>%
set("branches_k_col", c(1, 2, 3), k = 3) %>%
plot()

dend %>%
set("branches_k_col", k = 3) %>%
plot()

dend %>%
set("branches_k_lty", k = 3) %>%
plot()

dend %>%
set("branches_k_col", k = 3) %>%
set("branches_k_lty", k = 3) %>%
plot()

dend %>%
set("branches_col", c(1, 2, 1, 2, NA)) %>%
plot()

dend %>%
set("branches_lwd", c(2, 1, 2)) %>%
plot()

dend %>%
set("branches_lty", c(1, 2, 1)) %>%
plot()

clears all of the things added to the leaves
dend %>%

set("labels_color", c(19, 19, NA)) %>%

set 177

set("leaves_pch", c(19, 19, NA)) %>% # plot
set("clear_leaves") %>% # remove all of what was done until this point
plot()

Different order
dend %>%

set("leaves_pch", c(19, 19, NA)) %>%
set("labels_color", c(19, 19, NA)) %>%
set("clear_leaves") %>%
plot()

doing this without chaining (%>%) will NOT be fun:
dend %>%

set("labels", 1:10) %>%
set("labels_color") %>%
set("branches_col", c(1, 2, 1, 2, NA)) %>%
set("branches_lwd", c(2, 1, 2)) %>%
set("branches_lty", c(1, 2, 1)) %>%
set("hang") %>%
plot()

par(mfrow = c(1, 3))
dend %>%

set("highlight_branches_col") %>%
plot()

dend %>%
set("highlight_branches_lwd") %>%
plot()

dend %>%
set("highlight_branches_col") %>%
set("highlight_branches_lwd") %>%
plot()

par(mfrow = c(1, 1))

#----------------------------
Examples for: by_labels_branches_col, by_labels_branches_lwd, by_labels_branches_lty

old_labels <- labels(dend)
dend %>%

set("labels", seq_len(nleaves(dend))) %>%
set("by_labels_branches_col", c(1:4, 7)) %>%
set("by_labels_branches_lwd", c(1:4, 7)) %>%
set("by_labels_branches_lty", c(1:4, 7)) %>%
set("labels", old_labels) %>%
plot()

dend %>%
set("labels", seq_len(nleaves(dend))) %>%
set("by_labels_branches_col", c(1:4, 7), type = "any", TF_values = c(4, 2)) %>%
set("by_labels_branches_lwd", c(1:4, 7), type = "all", TF_values = c(4, 1)) %>%
set("by_labels_branches_lty", c(1:4, 7), TF_values = c(4, 1)) %>%
plot()

178 set

#---- using order_value
This is probably not what you want, since cutree
returns clusters in the order of the original data:
dend %>%

set("labels_colors", cutree(dend, k = 3)) %>%
plot()

The way to fix it, is to use order_value = TRUE
so that value is assumed to be in the order of the data:
dend %>%

set("labels_colors", cutree(dend, k = 3), order_value = TRUE) %>%
plot()

#----------------------------
Example for: by_lists_branches_col, by_lists_branches_lwd, by_lists_branches_lty

L <- list(c("109", "123", "126", "145"), "29", c("59", "67", "97"))
dend %>%

set("by_lists_branches_col", L, TF_value = "blue") %>%
set("by_lists_branches_lwd", L, TF_value = 4) %>%
set("by_lists_branches_lty", L, TF_value = 3) %>%
plot()

#----------------------------
A few dendlist examples:
dendlist(dend, dend) %>%

set("hang") %>%
plot()

dendlist(dend, dend) %>%
set("branches_k_col", k = 3) %>%
plot()

dendlist(dend, dend) %>%
set("labels_col", c(1, 2)) %>%
plot()

dendlist(dend, dend) %>%
set("hang") %>%
set("labels_col", c(1, 2), which = 1) %>%
set("branches_k_col", k = 3, which = 2) %>%
set("labels_cex", 1.2) %>%
plot()

#----------------------------
example of modifying the dendrogram in a heatmap:

library(gplots)
data(mtcars)
x <- as.matrix(mtcars)
rc <- rainbow(nrow(x), start = 0, end = .3)
cc <- rainbow(ncol(x), start = 0, end = .3)

set_labels 179

##
##' demonstrate the effect of row and column dendrogram options
##
Rowv_dend <- x %>%

dist() %>%
hclust() %>%
as.dendrogram() %>%
set("branches_k", k = 3) %>%
set("branches_lwd", 2) %>%
ladderize() # rotate_DendSer

Colv_dend <- t(x) %>%
dist() %>%
hclust() %>%
as.dendrogram() %>%
set("branches_k", k = 3) %>%
set("branches_lwd", 2) %>%
ladderize() # rotate_DendSer

heatmap.2(x, Rowv = Rowv_dend, Colv = Colv_dend)

End(Not run)

set_labels Set/place new labels in a dendrogram

Description

Convenience functions for updating the labels of a dendrogram. set_labels and place_labels differs
in their assumption about the order of the labels. * set_labels assumes the labels are in the same
order as that of the labels in the dendrogram. * place_labels assumes the labels has the same order
as that of the items in the original data matrix. This is useful for renaming labels based on some
other columns in the data matrix.

Usage

set_labels(dend, labels, ...)

Arguments

dend a dendrogram object

labels A vector of values to insert in the labels of a dendrogram.

... Currently ignored.

Value

The updated dendrogram object

Author(s)

Tal Galili, Garrett Grolemund

180 shuffle

See Also

labels, set

Examples

ss <- c(
50, 114, 17, 102, 76, 10, 107, 84, 31, 37, 49, 106, 44, 119,
104, 145, 67, 85, 12, 77, 22, 136, 38, 135, 70

)

small_iris <- iris[ss,]

small_iris[, -5] %>%
dist() %>%
hclust(method = "complete") %>%
as.dendrogram() %>%
color_branches(k = 3) %>%
color_labels(k = 3) %>%
plot()

example for using place_labels
small_iris[, -5] %>%

dist() %>%
hclust(method = "complete") %>%
as.dendrogram() %>%
color_branches(k = 3) %>%
color_labels(k = 3) %>%
place_labels(paste(small_iris$Species, 1:25, sep = "_")) %>%
plot()

example for using set_labels
small_iris[, -5] %>%

dist() %>%
hclust(method = "complete") %>%
as.dendrogram() %>%
color_branches(k = 3) %>%
color_labels(k = 3) %>%
set_labels(1:25) %>%
plot()

shuffle Random rotation of trees

Description

’shuffle’ randomilly rotates ("shuffles") a tree, changing its presentation while preserving its topol-
goy. ’shuffle’ is based on rotate and through its methods can work for any of the major tree objects
in R (dendrogram/hclust/phylo).

This function is useful in combination with tanglegram and entanglement.

shuffle 181

Usage

shuffle(dend, ...)

Default S3 method:
shuffle(dend, ...)

S3 method for class 'dendrogram'
shuffle(dend, ...)

S3 method for class 'dendlist'
shuffle(dend, which, ...)

S3 method for class 'hclust'
shuffle(dend, ...)

S3 method for class 'phylo'
shuffle(dend, ...)

Arguments

dend a tree object (dendrogram/hclust/phylo)

... Ignored.

which an integer vector for indicating which of the trees in the dendlist object should be
plotted default is missing, in which case all the dends in dendlist will be shuffled

Details

’shuffle’ is a function that randomilly rotates ("shuffles") a tree. a dendrogram leaves order (by
means of rotation)

Value

A randomlly rotated tree object

See Also

tanglegram, entanglement, rotate

Examples

dend <- USArrests %>%
dist() %>%
hclust() %>%
as.dendrogram()

set.seed(234238)
dend2 <- shuffle(dend)

tanglegram(dend, dend2, margin_inner = 7)
entanglement(dend, dend2) # 0.3983

182 sort_2_clusters_vectors

although these ARE the SAME tree:
tanglegram(sort(dend), sort(dend2), margin_inner = 7)

sort_2_clusters_vectors

Sorts two clusters vector by their names

Description

Sorts two clusters vector by their names and returns a list with the sorted vectors.

Usage

sort_2_clusters_vectors(
A1_clusters,
A2_clusters,
assume_sorted_vectors = FALSE,
warn = dendextend_options("warn"),
...

)

Arguments

A1_clusters a numeric vector of cluster grouping (numeric) of items, with a name attribute of
item name for each element from group A1. These are often obtained by using
some k cut on a dendrogram.

A2_clusters a numeric vector of cluster grouping (numeric) of items, with a name attribute of
item name for each element from group A2. These are often obtained by using
some k cut on a dendrogram.

assume_sorted_vectors

logical (FALSE). Can we assume to two group vectors are sorter so that they
have the same order of items? IF FALSE (default), then the vectors will be
sorted based on their name attribute.

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE.

... Ignored.

Value

A list with two elements, corresponding to the two clustering vectors.

sort_dist_mat 183

Examples

Not run:

set.seed(23235)
ss <- sample(1:150, 4)
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
dend1 <- as.dendrogram(hc1)
dend2 <- as.dendrogram(hc2)
cutree(dend1)

A1_clusters <- cutree(hc1, k = 3)
A2_clusters <- sample(cutree(hc1, k = 3))

sort_2_clusters_vectors(A1_clusters, A2_clusters, assume_sorted_vectors = TRUE) # no sorting
sort_2_clusters_vectors(A1_clusters, A2_clusters, assume_sorted_vectors = FALSE) # Sorted

End(Not run)

sort_dist_mat Sorts a distance matrix by rows and columns names

Description

Sorts a distance matrix by the names of the rows and columns.

Usage

sort_dist_mat(dist_mat, by_rows = TRUE, by_cols = TRUE, ...)

Arguments

dist_mat a distance matrix.

by_rows logical (TRUE). Sort the distance matrix by rows?

by_cols logical (TRUE). Sort the distance matrix by columns?

... Ignored.

Value

A distance matrix (after sorting)

See Also

dist, cor_cophenetic

184 sort_levels_values

sort_levels_values Sort the values level in a vector

Description

Takes a numeric vector and sort its values so that they would be increasing from left to right. It is
different from sort in that the function will only "sort" the values levels, and not the vector itself.

This function is useful for cutree - making the sort_cluster_numbers parameter possible. Using that
parameter with TRUE makes the clusters id’s from cutree to be ordered from left to right. e.g: the
left most cluster in the tree will be numbered "1", the one after it will be "2" etc...).

Usage

sort_levels_values(
x,
MARGIN = 2,
decreasing = FALSE,
force_integer = FALSE,
warn = dendextend_options("warn"),
...

)

Arguments

x a numeric vector.

MARGIN passed to apply. It is a vector giving the subscripts which the function will
be applied over. E.g., for a matrix 1 indicates rows, 2 indicates columns, c(1,
2) indicates rows and columns. Where X has named dimnames, it can be a
character vector selecting dimension names.

decreasing logical (FALSE). Should the sort be increasing or decreasing?

force_integer logical (FALSE). Should the values returned be integers?

warn logical (default from dendextend_options("warn") is FALSE). Set if warning are
to be issued, it is safer to keep this at TRUE, but for keeping the noise down, the
default is FALSE. (for example when x had NA values in it)

... ignored.

Value

if x is an object - it returns logical - is the object of class dendrogram.

See Also

sort, fac2num, cutree

tanglegram 185

Examples

x <- 1:4
sort_levels_values(x) # 1 2 3 4

x <- c(4:1)
names(x) <- letters[x]
attr(x, "keep_me") <- "a cat"
sort_levels_values(x) # 1 2 3 4

x <- c(4:1, 4, 2)
sort_levels_values(x) # 1 2 3 4 1 3

x <- c(2, 2, 3, 2, 1)
sort_levels_values(x) # 1 1 2 1 3

x <- matrix(16:1, 4, 4)
rownames(x) <- letters[1:4]
x
apply(x, 2, sort_levels_values)

tanglegram Tanglegram plot

Description

Plots a tanglegram plot of a side by side trees.

Usage

tanglegram(dend1, ...)

Default S3 method:
tanglegram(dend1, ...)

S3 method for class 'hclust'
tanglegram(dend1, ...)

S3 method for class 'phylo'
tanglegram(dend1, ...)

S3 method for class 'dendlist'
tanglegram(
dend1,
which = c(1L, 2L),
main_left,
main_right,
just_one = TRUE,

186 tanglegram

...
)

S3 method for class 'dendrogram'
tanglegram(
dend1,
dend2,
sort = FALSE,
color_lines,
lwd = 3.5,
edge.lwd = NULL,
columns_width = c(5, 3, 5),
margin_top = 3,
margin_bottom = 2.5,
margin_inner = 3,
margin_outer = 0.5,
left_dendo_mar = c(margin_bottom, margin_outer, margin_top, margin_inner),
right_dendo_mar = c(margin_bottom, margin_inner, margin_top, margin_outer),
intersecting = TRUE,
dLeaf = NULL,
dLeaf_left = dLeaf,
dLeaf_right = dLeaf,
axes = TRUE,
type = "r",
lab.cex = NULL,
remove_nodePar = FALSE,
main = "",
main_left = "",
main_right = "",
sub = "",
k_labels = NULL,
k_branches = NULL,
rank_branches = FALSE,
hang = FALSE,
match_order_by_labels = TRUE,
cex_main = 2,
cex_main_left = cex_main,
cex_main_right = cex_main,
cex_sub = cex_main,
highlight_distinct_edges = TRUE,
common_subtrees_color_lines = TRUE,
common_subtrees_color_lines_default_single_leaf_color = "grey",
common_subtrees_color_branches = FALSE,
highlight_branches_col = FALSE,
highlight_branches_lwd = TRUE,
faster = FALSE,
just_one = TRUE,
...

tanglegram 187

)

dendbackback(
dend1,
dend2,
sort = FALSE,
color_lines,
lwd = 3.5,
edge.lwd = NULL,
columns_width = c(5, 3, 5),
margin_top = 3,
margin_bottom = 2.5,
margin_inner = 3,
margin_outer = 0.5,
left_dendo_mar = c(margin_bottom, margin_outer, margin_top, margin_inner),
right_dendo_mar = c(margin_bottom, margin_inner, margin_top, margin_outer),
intersecting = TRUE,
dLeaf = NULL,
dLeaf_left = dLeaf,
dLeaf_right = dLeaf,
axes = TRUE,
type = "r",
lab.cex = NULL,
remove_nodePar = FALSE,
main = "",
main_left = "",
main_right = "",
sub = "",
k_labels = NULL,
k_branches = NULL,
rank_branches = FALSE,
hang = FALSE,
match_order_by_labels = TRUE,
cex_main = 2,
cex_main_left = cex_main,
cex_main_right = cex_main,
cex_sub = cex_main,
highlight_distinct_edges = TRUE,
common_subtrees_color_lines = TRUE,
common_subtrees_color_lines_default_single_leaf_color = "grey",
common_subtrees_color_branches = FALSE,
highlight_branches_col = FALSE,
highlight_branches_lwd = TRUE,
faster = FALSE,
just_one = TRUE,
...

)

188 tanglegram

Arguments

dend1 tree object (dendrogram/dendlist/hclust/phylo), plotted on the left

... not used.

which an integer vector of length 2, indicating which of the trees in the dendlist object
should be plotted

main_left Character. Title of the left dendrogram.

main_right Character. Title of the right dendrogram.

just_one logical (TRUE). If FALSE, it means at least two tanglegrams will be plotted on
the same page and so layout is not passed. See: https://stackoverflow.com/
q/39784746/4137985

dend2 tree object (dendrogram/hclust/phylo), plotted on the right

sort logical (FALSE). Should the dendrogram’s labels be "sorted"? (might give a
better tree in some cases).

color_lines a vector of colors for the lines connected the labels. If the colors are shorter than
the number of labels, they are recycled (and a warning is issued). The colors in
the vector are applied on the lines from the bottom up.

lwd width of the lines connecting the labels. (default is 3.5)

edge.lwd width of the dendrograms lines. Default is NULL. If set, then it switches ‘high-
light_branches_lwd‘ to FALSE. If you want thicker lines which reflect the height,
please use highlight_branches_lwd on the dendrograms/dendlist.

columns_width a vector with three elements, giving the relative sizes of the the three plots (left
dendrogram, connecting lines, right dendrogram). This is passed to layout if
parameter just_one is TRUE. The default is: c(5,3,5)

margin_top the number of lines of margin to be specified on the top of the plots.

margin_bottom the number of lines of margin to be specified on the bottom of the plots.

margin_inner margin_bottom the number of lines of margin to be specified on the inner dis-
tence between the dendrograms and the connecting lines.

margin_outer margin_bottom the number of lines of margin to be specified on the outer dis-
tence between the dendrograms and the connecting lines.

left_dendo_mar mar parameters of the left dendrgoram.
right_dendo_mar

mar parameters of the right dendrgoram.

intersecting logical (TRUE). Should the leaves of the two dendrograms be pruned so that the
two trees will have the same labels?

dLeaf a number specifying the distance in user coordinates between the tip of a leaf
and its label. If NULL, as per default, 3/4 of a letter width or height is used.
Notice that if we are comparing two dendrograms with different heights, manu-
ally changing dLeaf will affect both trees differently. In such a case, it is recom-
manded to manually change dLeaf_left and dLeaf_right. This can be especially
important when changing the lab.cex of the dendrogram’s labels. Alternatively,
one could manually set the xlim parameter for both trees, which will force the
proportion of distances of the labels from the trees to remain the same.

https://stackoverflow.com/q/39784746/4137985
https://stackoverflow.com/q/39784746/4137985

tanglegram 189

dLeaf_left dLeaf of the left dendrogram, by default it is equal to dLeaf (often negative).

dLeaf_right dLeaf of the right dendrogram, by default it is equal to minus dLeaf (often pos-
itive).

axes logical (TRUE). Should plot axes be plotted?

type type of plot ("t"/"r" = triangle or rectangle)

lab.cex numeric scalar, influanicing the cex size of the labels.

remove_nodePar logical (FALSE). Should the nodePar of the leaves be removed? (useful when
the trees’ leaves has too many parameters on them)

main Character. Title above the connecting lines.

sub Character. Title below the connecting lines.

k_labels integer. Number of groups by which to color the leaves.

k_branches integer. Number of groups by which to color the branches.

rank_branches logical (FALSE). Should the branches heights be adjusted? (setting this to
TRUE - can make it easier for comparing topological differences)

hang logical (FALSE). Should we hang the leaves of the trees?
match_order_by_labels

logical (TRUE). Should the leaves value order be matched between the two trees
based on labels? This is a MUST in order to have the lines connect the correct
labels. Set this to FALSE if you want to make the plotting a bit faster, and only
after you are sure the labels and orders are correctly aligned.

cex_main A numerical value giving the amount by which plotting title should be magnified
relative to the default.

cex_main_left see cex_main.

cex_main_right see cex_main.

cex_sub see cex_main.
highlight_distinct_edges

logical (default is TRUE). If to highlight distinct edges in each tree (by changing
their line types to 2). (notice that this can be slow on large trees)
This parameter will automatically be turned off if the tree already comes with a
"lty" edgePar (this is checked using has_edgePar). A "lty" can be removed by
using set("clear_branches"), by removing all of the edgePar parameters of the
dendrogram.

common_subtrees_color_lines

logical (default is TRUE). color the connecting line based on the common sub-
trees of both dends. This only works if (notice that this can be slow on large
trees)

common_subtrees_color_lines_default_single_leaf_color

When representing edges between common subtrees (i.e. common_subtrees_color_branches
= TRUE), this parameter sets the color of edges for subtrees that are NOT com-
mon. Default is "grey"

common_subtrees_color_branches

logical (default is FALSE). Color the branches of both dends based on the com-
mon subtrees. (notice that this can be slow on large trees) This is FALSE by
default since it will override the colors of the existing tree.

190 tanglegram

highlight_branches_col

logical (default is FALSE). Should highlight_branches_col be used on the den-
drograms.
This parameter will automatically be turned off if the tree already comes with a
"col" edgePar (this is checked using has_edgePar). A "lty" can be removed by
using set("clear_branches"), by removing all of the edgePar parameters of the
dendrogram.

highlight_branches_lwd

logical (default is TRUE). Should highlight_branches_lwd be used on the den-
drograms.
This parameter will automatically be turned off if the tree already comes with a
"lwd" edgePar (this is checked using has_edgePar). A "lty" can be removed by
using set("clear_branches"), by removing all of the edgePar parameters of the
dendrogram.

faster logical (FALSE). If TRUE, it overrides some other parameters to have them
turned off so that the plotting will go a tiny bit faster.

Details

Notice that tanglegram does not "resize" well. In case you are resizing your window you would
need to re-run the function.

Value

An invisible dendlist, with two trees after being modified during the creation of the tanglegram.

Author(s)

Tal Galili, Johan Renaudie

Source

The function is based on code from Johan Renaudie (plannapus), after major revisions. See: https:
//stackoverflow.com/questions/12456768/duelling-dendrograms-in-r-placing-dendrograms-back-to-back-in-r

As far as I could tell, this code was originally inspired by Dylan Beaudette function dueling.dendrograms
from the sharpshootR package: https://CRAN.R-project.org/package=sharpshootR tangle-
gram

See Also

remove_leaves_nodePar, plot_horiz.dendrogram, rank_branches, hang.dendrogram

Examples

Not run:
set.seed(23235)
ss <- sample(1:150, 10)
dend1 <- iris[ss, -5] %>%

dist() %>%

https://stackoverflow.com/questions/12456768/duelling-dendrograms-in-r-placing-dendrograms-back-to-back-in-r
https://stackoverflow.com/questions/12456768/duelling-dendrograms-in-r-placing-dendrograms-back-to-back-in-r
https://CRAN.R-project.org/package=sharpshootR

tanglegram 191

hclust("com") %>%
as.dendrogram()

dend2 <- iris[ss, -5] %>%
dist() %>%
hclust("sin") %>%
as.dendrogram()

dend12 <- dendlist(dend1, dend2)

dend12 %>% tanglegram()

tanglegram(dend1, dend2)
tanglegram(dend1, dend2, sort = TRUE)
tanglegram(dend1, dend2, remove_nodePar = TRUE)
tanglegram(dend1, dend2, k_labels = 6, k_branches = 4)

tanglegram(dend1, dend2,
lab.cex = 2, edge.lwd = 3,
margin_inner = 5, type = "t", center = TRUE

)

works nicely:
tanglegram(dend1, dend2,

lab.cex = 2, edge.lwd = 3,
margin_inner = 3.5, type = "t", center = TRUE,
dLeaf = -0.1, xlim = c(7, 0),
k_branches = 3

)

using rank_branches can make the comparison even easier
tanglegram(rank_branches(dend1), rank_branches(dend2),

lab.cex = 2, edge.lwd = 3,
margin_inner = 3.5, type = "t", center = TRUE,
dLeaf = -0.1, xlim = c(5.1, 0), columns_width = c(5, 1, 5),
k_branches = 3

)

########
Nice example of some colored trees

see the coloring of common sub trees:
set.seed(23235)
ss <- sample(1:150, 10)
dend1 <- iris[ss, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[ss, -5] %>%
dist() %>%
hclust("sin") %>%

192 theme_dendro

as.dendrogram()
dend12 <- dendlist(dend1, dend2)
dend12 %>% untangle %>% tanglegram
dend12 %>% tanglegram(common_subtrees_color_branches = TRUE)

set.seed(22133513)
ss <- sample(1:150, 10)
dend1 <- iris[ss, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[ss, -5] %>%
dist() %>%
hclust("sin") %>%
as.dendrogram()

dend12 <- dendlist(dend1, dend2)
dend12 %>% untangle %>% tanglegram
dend12 %>% tanglegram(common_subtrees_color_branches = TRUE)
dend12 %>% tanglegram()

End(Not run)

theme_dendro Creates completely blank theme in ggplot

Description

Sets most of the ggplot options to blank, by returning blank theme elements for the panel grid, panel
background, axis title, axis text, axis line and axis ticks.

Usage

theme_dendro()

Author(s)

Andrie de Vries

Source

This function is from Andrie de Vries’s ggdendro package.

The motivation for this fork is the need to add more graphical parameters to the plotted tree. This
required a strong mixter of functions from ggdendro and dendextend (to the point that it seemed
better to just fork the code into its current form)

See Also

ggdend

unbranch 193

unbranch unbranch trees

Description

unbranch trees and merges the subtree to the parent node.

Usage

unbranch(dend, ...)

Default S3 method:
unbranch(dend, ...)

S3 method for class 'dendrogram'
unbranch(dend, branch_becoming_root = 1, new_root_height, ...)

S3 method for class 'hclust'
unbranch(dend, branch_becoming_root = 1, new_root_height, ...)

S3 method for class 'phylo'
unbranch(dend, ...)

Arguments

dend a dendrogram (or hclust) object

... passed on
branch_becoming_root

a numeric choosing the branch of the root which will become the new root (from
left to right)

new_root_height

the new height of the branch which will become the new root. If the parameter
is not given - the height of the original root is used.

Value

An unbranched dendrogram

See Also

unroot ape

Examples

hc <- hclust(dist(USArrests[2:9,]), "com")
dend <- as.dendrogram(hc)

194 unclass_dend

par(mfrow = c(1, 3))
plot(dend, main = "original tree")
plot(unbranch(dend, 1), main = "unbranched tree (left branch)")
plot(unbranch(dend, 2), main = "tree without (right branch)")

unclass_dend unclass an entire dendrogram tree

Description

unclass all the nodes in a dendrogram tree. (Helps in cases when a dendrapply function was used
wrongly)

Usage

unclass_dend(dend, ...)

Arguments

dend a dendrogram object

... not used

Value

The list which was the dendrogram (but without a class)

See Also

nleaves

Examples

define dendrogram object to play with:
hc <- hclust(dist(USArrests[1:3,]), "ave")
dend <- as.dendrogram(hc)

itself <- function(x) x
dend <- dendrapply(dend, itself)
unclass(dend) # this only returns a list with
two dendrogram objects inside it.
str(dend) # this is a great way to show a dendrogram,
but it doesn't help us understand how the R object is built.
str(unclass(dend)) # this is a great way to show a dendrogram,
but it doesn't help us understand how the R object is built.
unclass_dend(dend) # this only returns a list
with two dendrogram objects inside it.
str(unclass_dend(dend)) # NOW we can more easily understand
how the dendrogram object is structured...

untangle 195

untangle untangle dendrograms

Description

One untangle function to rule them all.

This function untangles dendrogram lists (dendlist), Using various heuristics.

Usage

untangle(dend1, ...)

Default S3 method:
untangle(dend1, ...)

untangle_labels(dend1, dend2, ...)

S3 method for class 'dendrogram'
untangle(
dend1,
dend2,
method = c("labels", "ladderize", "random", "step1side", "step2side", "DendSer"),
...

)

S3 method for class 'dendlist'
untangle(
dend1,
method = c("labels", "ladderize", "random", "step1side", "step2side", "DendSer"),
which = c(1L, 2L),
...

)

Arguments

dend1 a dednrogram or a dendlist object

... passed to the releavnt untangle function

dend2 A second dednrogram (to untangle against)

method a character indicating the type of untangle heuristic to use.

which an integer vector of length 2, indicating which of the trees in the dendlist object
should be plotted

Details

This function wraps all of the untagnle functions, in order to make it easier to find our about (and
use) them.

196 untangle

Value

A dendlist, with two trees after they have been untangled.

If the dendlist was originally larger than 2, it will return the original dendlist but with the relevant
trees properly rotate.

Author(s)

Tal Galili

See Also

tanglegram, untangle_random_search, untangle_step_rotate_1side, untangle_step_rotate_2side, un-
tangle_DendSer, entanglement

Examples

Not run:
set.seed(23235)
ss <- sample(1:150, 10)
dend1 <- iris[ss, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[ss, -5] %>%
dist() %>%
hclust("sin") %>%
as.dendrogram()

dend12 <- dendlist(dend1, dend2)

dend12 %>% tanglegram()

untangle(dend1, dend2, method = "random", R = 5) %>% tanglegram()

it works, and we get something different:
set.seed(1234)
dend12 %>%

untangle(method = "random", R = 5) %>%
tanglegram()

set.seed(1234)
fixes it completely:
dend12 %>%

untangle(method = "random", R = 5) %>%
untangle(method = "step1") %>%
tanglegram()

not good enough
dend12 %>%

untangle(method = "step1") %>%
tanglegram()

not good enough
dend12 %>%

untangle_DendSer 197

untangle(method = "step2") %>%
tanglegram()

How we might wish to use it:
set.seed(12777)
dend12 %>%

untangle(method = "random", R = 1) %>%
untangle(method = "step2") %>%
tanglegram()

End(Not run)

untangle_DendSer Tries to run DendSer on a dendrogram

Description

The function tries to turn the dend into hclust. It then uses the cophenetic distance matrix for
optimizing the tree’s rotation.

This is a good (and fast) starting point for linkuntangle_step_rotate_2side

Usage

untangle_DendSer(dend, ...)

Arguments

dend An object of class dendlist

... NOT USED

Value

A dendlist object with ordered dends

See Also

DendSer, DendSer.dendrogram , untangle_DendSer, rotate_DendSer

Examples

Not run:
set.seed(232)
ss <- sample(1:150, 20)
dend1 <- iris[ss, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[ss, -5] %>%
dist() %>%
hclust("sin") %>%

198 untangle_random_search

as.dendrogram()
dend12 <- dendlist(dend1, dend2)

bad solutions
dend12 %>% tanglegram()
dend12 %>%

untangle("step2") %>%
tanglegram()

dend12 %>%
untangle_DendSer() %>%
tanglegram()

but the combination is quite awsome:
dend12 %>%

untangle_DendSer() %>%
untangle("step2") %>%
tanglegram()

End(Not run)

untangle_random_search

Untangle - random search

Description

Searches for two untangled dendrogram by randomlly shuflling them and each time checking if
their entanglement was improved.

Usage

untangle_random_search(
dend1,
dend2,
R = 100L,
L = 1,
leaves_matching_method = c("labels", "order"),
...

)

Arguments

dend1 a tree object (of class dendrogram/hclust/phylo).

dend2 a tree object (of class dendrogram/hclust/phylo).

R numeric (default is 100). The number of shuffles to perform.

L the distance norm to use for measuring the distance between the two trees. It
can be any positive number, often one will want to use 0, 1, 1.5, 2 (see ’details’
for more). It is passed to entanglement.

untangle_random_search 199

leaves_matching_method

a character scalar passed to entanglement. It can be either "order" or "labels"
(default). If using "labels", then we use the labels for matching the leaves order
value. And if "order" then we use the old leaves order value for matching the
leaves order value.
Using "order" is faster, but "labels" is safer. "order" will assume that the original
two trees had their labels and order values MATCHED.
Hence, it is best to make sure that the trees used here have the same labels and
the SAME values matched to these values - and then use "order" (for fastest
results).
If "order" is used, the function first calls match_order_by_labels in order to make
sure that the two trees have their labels synced with their leaves order values.

... not used

Details

Untangaling two trees is a hard combinatorical problem without a closed form solution. One way
for doing it is to run through a random spectrom of options and look for the "best" two trees. This
is what this function offers.

Value

A dendlist with two trees with the best entanglement that was found.

See Also

tanglegram, match_order_by_labels, entanglement.

Examples

Not run:
dend1 <- iris[, -5] %>%

dist() %>%
hclust("com") %>%
as.dendrogram()

dend2 <- iris[, -5] %>%
dist() %>%
hclust("sin") %>%
as.dendrogram()

tanglegram(dend1, dend2)

set.seed(65168)
dend12 <- untangle_random_search(dend1, dend2, R = 10)
tanglegram(dend12[[1]], dend12[[2]])
tanglegram(dend12)

entanglement(dend1, dend2, L = 2) # 0.8894
entanglement(dend12[[1]], dend12[[2]], L = 2) # 0.0998

End(Not run)

200 untangle_step_rotate_1side

untangle_step_rotate_1side

Stepwise untangle one tree compared to another

Description

Given a fixed tree and a tree we wish to rotate, this function goes through all of the k number of
clusters (from 2 onward), and each time rotates the branch which was introduced in the new k’th
cluster. This rotated tree is compared with the fixed tree, and if it has a better entanglement, it will
be used for the following iterations.

This is a greedy forward selection algorithm for rotating the tree and looking for a better match.

This is useful for finding good trees for a tanglegram.

Usage

untangle_step_rotate_1side(
dend1,
dend2_fixed,
L = 1.5,
direction = c("forward", "backward"),
k_seq = NULL,
dend_heights_per_k,
leaves_matching_method = c("labels", "order"),
...

)

Arguments

dend1 a dendrogram object. The one we will rotate to best fit dend2_fixed.

dend2_fixed a dendrogram object. This one is kept fixed.

L the distance norm to use for measuring the distance between the two trees. It
can be any positive number, often one will want to use 0, 1, 1.5, 2 (see ’details’
in entanglement).

direction a character scalar, either "forward" (default) or "backward". Impacts the direc-
tion of clustering that are tried. Either from 2 and up (in case of "forward"), or
from nleaves to down (in case of "backward")
If k_seq is not NULL, then it overrides "direction".

k_seq a sequence of k clusters to go through for improving dend1. If NULL (default),
then we use the "direction" parameter.

dend_heights_per_k

a numeric vector of values which indicate which height will produce which num-
ber of clusters (k)

untangle_step_rotate_2side 201

leaves_matching_method

a character scalar passed to entanglement. It can be either "order" or "labels"
(default). If using "labels", then we use the labels for matching the leaves order
value. And if "order" then we use the old leaves order value for matching the
leaves order value.
Using "order" is faster, but "labels" is safer. "order" will assume that the original
two trees had their labels and order values MATCHED.
Hence, it is best to make sure that the trees used here have the same labels and
the SAME values matched to these values - and then use "order" (for fastest
results).
If "order" is used, the function first calls match_order_by_labels in order to make
sure that the two trees have their labels synced with their leaves order values.

... not used

Value

A dendlist with 1) dend1 after it was rotated to best fit dend2_fixed. 2) dend2_fixed.

See Also

tanglegram, match_order_by_labels, entanglement, flip_leaves, all_couple_rotations_at_k, untan-
gle_step_rotate_2side.

Examples

Not run:
dend1 <- USArrests[1:10,] %>%

dist() %>%
hclust() %>%
as.dendrogram()

set.seed(3525)
dend2 <- shuffle(dend1)
tanglegram(dend1, dend2)
entanglement(dend1, dend2, L = 2) # 0.4727

dend2_corrected <- untangle_step_rotate_1side(dend2, dend1)[[1]]
tanglegram(dend1, dend2_corrected) # FIXED.
entanglement(dend1, dend2_corrected, L = 2) # 0

End(Not run)

untangle_step_rotate_2side

Stepwise untangle two trees one at a time

202 untangle_step_rotate_2side

Description

This is a greedy forward selection algorithm for rotating the tree and looking for a better match.

This is useful for finding good trees for a tanglegram.

It goes through rotating dend1, then dend2, and so on - until a locally optimal solution is found.

Similar to "step1side", one tree is held fixed and the other tree is rotated. This function goes through
all of the k number of clusters (from 2 onward), and each time rotates the branch which was intro-
duced in the new k’th cluster. This rotated tree is compared with the fixed tree, and if it has a better
entanglement, it will be used for the following iterations. Once finished the rotated tree is held
fixed, and the fixed tree is now rotated. This continues until a local optimal solution is reached.

Usage

untangle_step_rotate_2side(
dend1,
dend2,
L = 1.5,
direction = c("forward", "backward"),
max_n_iterations = 10L,
print_times = dendextend_options("warn"),
k_seq = NULL,
...

)

Arguments

dend1 a dendrogram object. The one we will rotate to best fit dend2.

dend2 a dendrogram object. The one we will rotate to best fit dend1.

L the distance norm to use for measuring the distance between the two trees. It
can be any positive number, often one will want to use 0, 1, 1.5, 2 (see ’details’
in entanglement).

direction a character scalar, either "forward" (default) or "backward". Impacts the direc-
tion of clustering that are tried. Either from 2 and up (in case of "forward"), or
from nleaves to down (in case of "backward")
If k_seq is not NULL, then it overrides "direction".

max_n_iterations

integer. The maximal number of times to switch between optimizing one tree
with another.

print_times logical (TRUE), should we print how many times we switched between rotating
the two trees?

k_seq a sequence of k clusters to go through for improving dend1. If NULL (default),
then we use the "direction" parameter.

... not used

Value

A list with two dendrograms (dend1/dend2), after they are rotated to best fit one another.

which_leaf 203

See Also

tanglegram, match_order_by_labels, entanglement, flip_leaves, all_couple_rotations_at_k. untan-
gle_step_rotate_1side.

Examples

Not run:
dend1 <- USArrests[1:20,] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend2 <- USArrests[1:20,] %>%
dist() %>%
hclust(method = "single") %>%
as.dendrogram()

set.seed(3525)
dend2 <- shuffle(dend2)
tanglegram(dend1, dend2, margin_inner = 6.5)
entanglement(dend1, dend2, L = 2) # 0.79

dend2_corrected <- untangle_step_rotate_1side(dend2, dend1)
tanglegram(dend1, dend2_corrected, margin_inner = 6.5) # Good.
entanglement(dend1, dend2_corrected, L = 2) # 0.0067
it is better, but not perfect. Can we improve it?

dend12_corrected <- untangle_step_rotate_2side(dend1, dend2)
tanglegram(dend12_corrected[[1]], dend12_corrected[[2]], margin_inner = 6.5) # Better...
entanglement(dend12_corrected[[1]], dend12_corrected[[2]], L = 2) # 0.0045

best combination:
dend12_corrected_1 <- untangle_random_search(dend1, dend2)
dend12_corrected_2 <- untangle_step_rotate_2side(dend12_corrected_1[[1]], dend12_corrected_1[[2]])
tanglegram(dend12_corrected_2[[1]], dend12_corrected_2[[2]], margin_inner = 6.5) # Better...
entanglement(dend12_corrected_2[[1]], dend12_corrected_2[[2]], L = 2) # 0 - PERFECT.

End(Not run)

which_leaf Which node is a leaf?

Description

Gives a vector as the number of nodes (nnodes), which gives a TRUE when a node is a leaf.

Usage

which_leaf(dend, ...)

204 which_node

Arguments

dend a dendrogram dend
... ignored.

Value

A logical vector with the length of nnodes, which gives a TRUE when a node is a leaf.

See Also

noded_with_condition, is.leaf, nnodes

Examples

Not run:

library(dendextend)

Getting the dend dend
set.seed(23235)
ss <- sample(1:150, 10)
dend <- iris[ss, -5] %>%

dist() %>%
hclust() %>%
as.dendrogram()

dend %>% plot()

which_leaf(dend)

End(Not run)

which_node Which node id is common to a group of labels

Description

This function identifies which edge(s) in a tree has group of labels ("tips") in common. By default
it only returns the edge (node) with the heighest id.

Usage

which_node(dend, labels, max_id = TRUE, ...)

Arguments

dend a dendrogram dend
labels a character vector of labels from the tree
max_id logical (TRUE) - if to return only the max id
... ignored.

which_node 205

Value

An integer with the id(s) of the nodes which includes all of the labels.

See Also

noded_with_condition, branches_attr_by_clusters, nnodes, branches_attr_by_labels, get_nodes_attr
which.edge

Examples

dend <- iris[1:10, -5] %>%
dist() %>%
hclust() %>%
as.dendrogram() %>%
set("labels", 1:10)

dend %>% plot()

which_node(dend, c(1, 2), max_id = FALSE)
which_node(dend, c(2, 3), max_id = FALSE)
which_node(dend, c(2, 3))

dend %>% plot()
the_h <- get_nodes_attr(dend, "height", which_node(dend, c(4, 6)))
the_h
abline(h = the_h, lty = 2, col = 2)
get_nodes_attr(dend, "height", which_node(dend, c(4, 6)))
get_nodes_attr(dend, "members", which_node(dend, c(4, 6)))

Index

∗ clustering
dendextend-package, 5

∗ datasets
khan, 124

∗ dendrogram
dendextend-package, 5

∗ package
dendextend-package, 5

∗ visualization
dendextend-package, 5

all.equal, 7
all.equal.dendlist

(all.equal.dendrogram), 6
all.equal.dendrogram, 6
all.equal.list, 6
all.equal.phylo, 7
all_couple_rotations_at_k, 7, 201, 203
all_unique, 9
apply, 184
as.dendlist, 10
as.dendrogram, 11
as.ggdend (ggdend), 108
as.hclust, 11, 18, 147
as.hclust.dendrogram, 11
as.phylo, 11
as.phylo.dendrogram, 11
as.phylo.hclust, 11
as_hclust_fixed, 18
assign_dendextend_options, 12
assign_values_to_branches_edgePar, 12,

75, 118, 163, 164, 174
assign_values_to_leaves_edgePar, 14, 50,

129
assign_values_to_leaves_nodePar, 15, 17,

97–101, 163, 173, 174
assign_values_to_nodes_nodePar, 17, 174
attr, 106, 138

bakers_gamma_for_2_k_matrix, 19, 55

Bk, 20, 23, 25, 61
Bk_permutations, 21, 25
Bk_plot, 20, 23
branches_attr_by_clusters, 26, 39, 42, 45,

46, 205
branches_attr_by_labels, 28, 29, 32, 141,

173, 174, 205
branches_attr_by_lists, 31, 173, 174
branches_color (color_branches), 45

circlize_dendrogram, 32
circos.dendrogram, 33
circos.track, 32
click_rotate, 34
clip, 160
collapse_branch, 36
color_branches, 45, 50, 52, 98–100, 115,

129, 132, 174
color_clusters, 46
color_labels, 46, 49, 129, 173
color_unique_labels, 51
colored_bars, 37
colored_dots, 41
colour_branches (color_branches), 45
colour_labels (color_labels), 49
common_subtrees_clusters, 52, 148
cophenetic, 53, 58, 59, 73, 76, 85, 169, 197
cor, 58
cor.dendlist, 53, 57, 61
cor_bakers_gamma, 19, 20, 53, 54, 59, 90, 92,

94, 133
cor_common_nodes, 53, 57
cor_cophenetic, 53, 56, 58, 76, 183
cor_FM_index, 53, 60
count_terminal_nodes, 61, 139, 140
cut_lower_fun, 70
cutree, 27, 45, 46, 49, 50, 55, 62, 64, 66–69,

106, 129, 184
cutree.dendrogram, 8, 46, 70, 106, 107, 114,

120, 160

206

INDEX 207

cutree_1h.dendrogram, 64, 66, 69
cutree_1k.dendrogram, 64, 68
cutreeDynamic, 27, 28

data.frame, 125
dend_diff, 74, 117
dend_expend, 75
dendbackback (tanglegram), 185
dendextend (dendextend-package), 5
dendextend-package, 5
dendextend_cut_lower_fun

(cut_lower_fun), 70
dendextend_heights_per_k.dendrogram

(heights_per_k.dendrogram), 114
dendextend_options, 71
dendlist, 6, 53, 72, 74, 75, 77, 106, 118, 121,

131, 138, 148, 173, 190, 196, 197
dendrapply, 129
dendro_data, 110
dendrogram, 5, 6, 33, 46, 50, 52, 70, 75, 78,

85, 109, 110, 113, 115, 119, 129,
131, 136, 144, 159, 171, 173, 174,
179–181

DendSer, 73, 74, 169, 197
DendSer.dendrogram, 73, 74, 169, 197
dist, 46, 58, 76, 77, 127, 171, 183
dist.dendlist, 75, 76, 78, 118, 144
dist.multiPhylo, 77
dist.topo, 77
dist_long, 79
distinct.edges, 75, 78, 118
distinct_edges, 57, 75, 77, 78, 78, 118, 144
drop.tip, 147
duplicate_leaf, 79, 171

entanglement, 8, 81, 88, 133–135, 180, 181,
196, 198–203

fac2num, 83, 184
factor, 125
find_dend (dend_expend), 75
find_dendrogram, 84
find_k, 85
fix_members_attr.dendrogram, 80, 86, 170
flatten.dendrogram, 87
flip_leaves, 8, 88, 201, 203
FM_index, 20, 23, 25, 61, 89, 92
FM_index_permutation, 91
FM_index_R, 92, 93

geom_line, 109
geom_point, 109
get_branches_heights, 95, 96, 115, 156
get_childrens_heights, 96, 156
get_leaves_attr, 14, 16, 17, 28, 30, 97, 103,

141, 163
get_leaves_branches_attr, 98, 99
get_leaves_branches_col, 46, 99, 129
get_leaves_edgePar, 98, 99, 100, 101
get_leaves_nodePar, 98–100, 101, 110
get_nodes_attr, 97–101, 102, 104, 110, 113,

205
get_nodes_xy, 104
get_root_branches_attr, 13, 105, 163, 164
get_subdendrograms, 106
ggdend, 108, 192
ggdendrogram, 110
ggplot, 110
ggplot.dendrogram (ggdend), 108
ggplot.ggdend (ggdend), 108

hang.dendrogram, 111, 156, 174, 190
has_component_in_attribute, 112
has_edgePar, 189, 190
has_edgePar

(has_component_in_attribute),
112

has_nodePar
(has_component_in_attribute),
112

hclust, 5, 46, 50, 64, 67, 69, 76, 127, 129,
171, 173, 180, 181

heights_per_k.dendrogram, 8, 114
highlight_branches

(highlight_branches_col), 115
highlight_branches_col, 115, 174, 190
highlight_branches_lwd, 174, 188, 190
highlight_branches_lwd

(highlight_branches_col), 115
highlight_distinct_edges, 75, 78, 117,

118, 144

identical, 7
identify.dendrogram, 119
identify.hclust, 119, 120
intersect, 121
intersect_trees, 53, 54, 58, 121
is.dendlist (is_some_class), 124
is.dendrogram (is_some_class), 124

208 INDEX

is.dist (is_some_class), 124
is.double, 122
is.hclust (is_some_class), 124
is.integer, 122
is.leaf, 204
is.natural.number, 122
is.numeric, 122
is.phylo (is_some_class), 124
is_null_list, 123
is_some_class, 124

khan, 124

labels, 46, 70, 121, 127, 170, 180
labels.hclust (labels<-), 126
labels.phylo (labels<-), 126
labels<-, 126
labels<-.dendrogram, 173, 174
labels_cex, 128
labels_cex<- (labels_cex), 128
labels_col (labels_colors), 129
labels_colors, 46, 50, 98–101, 129
labels_colors<-, 174
labels_colors<- (labels_colors), 129
ladderize, 130, 131, 167, 168
layout, 188
leaf_Colors, 131
leaf_colors (leaf_Colors), 131
lowest_common_branch, 132

match_order_by_labels, 8, 55, 82, 88, 133,
134, 135, 199, 201, 203

match_order_dendrogram_by_old_order,
134

max_depth (min_depth), 136
min_depth, 136
multi2di, 36

na.locf, 137
na_locf, 136
names, 83
nleaves, 28, 30, 97, 103, 104, 138, 140, 141,

194
nnodes, 28, 30, 97, 103, 104, 139, 141,

203–205
noded_with_condition, 30, 140, 174, 204,

205
nrow, 139, 140

order, 167, 168

order.dendrogram, 27, 45, 120, 138, 142,
143, 147, 160, 167, 168

order.dendrogram<-, 141
order.hclust, 142

pam, 85, 86
pamk, 85, 86
par, 38, 41, 160
partition.leaves, 144
partition_leaves, 143
phylo, 131, 180, 181
phylo.diff, 75
place_labels (set_labels), 179
plot, 25, 145
plot.dendlist (dendlist), 72
plot.dendrogram, 74, 104, 109, 145, 146
plot.find_k (find_k), 85
plot_horiz.dendrogram, 144, 190
plotDendroAndColors, 28, 39, 42
plotHclustColors, 38, 42
prepare.ggdend (ggdend), 108
print.ggdend (ggdend), 108
prune, 121, 146, 149, 157
prune_common_subtrees.dendlist, 148
prune_leaf, 147, 149
pvclust_edges, 149
pvclust_show_signif, 150, 151, 152, 154
pvclust_show_signif_gradient, 151, 152,

152
pvrect, 153, 154
pvrect2, 153

rainbow, 45, 50
rainbow_hcl, 45, 50
raise.dendrogram, 155
rank, 157
rank_branches, 156, 190
rank_order.dendrogram, 80, 157, 170
rank_values_with_clusters, 158
rect, 154, 159
rect.dendrogram, 158
rect.hclust, 120, 160
reindex_dend, 161
remove_branches_edgePar, 162, 174
remove_leaves_nodePar, 163, 174, 190
remove_nodes_nodePar, 164
rev.dendrogram, 131, 167, 168
rev.hclust (rotate), 166
rllply, 165

INDEX 209

rotate, 131, 166, 167, 168, 172, 180, 181
rotate.dendrogram, 35
rotate_DendSer, 74, 169, 169, 197
rownames, 46

sample, 170, 171
sample.dendrogram, 170
seriate, 171, 172
seriate_dendrogram, 171
set, 113, 115, 172, 180
set_labels, 179
shuffle, 180
silhouette, 85, 86
simplify2array, 102
slice, 46, 132
sort, 184
sort.dendlist (rotate), 166
sort.dendrogram (rotate), 166
sort.hclust (rotate), 166
sort_2_clusters_vectors, 182
sort_dist_mat, 183
sort_levels_values, 184
stats, 5

tanglegram, 8, 52, 75, 78, 82, 88, 115, 117,
118, 133, 135, 144, 146, 156, 180,
181, 185, 196, 199–203

tapply, 27
theme_dendro, 109, 192
treedist, 77

unbranch, 193
unclass_dend, 194
unique, 9
unroot, 193
untangle, 195
untangle_DendSer, 74, 169, 196, 197, 197
untangle_labels (untangle), 195
untangle_random_search, 196, 198
untangle_step_rotate_1side, 196, 200,

203
untangle_step_rotate_2side, 196, 201,

201

viridis, 115

which.edge, 205
which_leaf, 203
which_node, 204

	dendextend-package
	all.equal.dendrogram
	all_couple_rotations_at_k
	all_unique
	as.dendlist
	as.phylo.dendrogram
	assign_dendextend_options
	assign_values_to_branches_edgePar
	assign_values_to_leaves_edgePar
	assign_values_to_leaves_nodePar
	assign_values_to_nodes_nodePar
	as_hclust_fixed
	bakers_gamma_for_2_k_matrix
	Bk
	Bk_permutations
	Bk_plot
	branches_attr_by_clusters
	branches_attr_by_labels
	branches_attr_by_lists
	circlize_dendrogram
	click_rotate
	collapse_branch
	colored_bars
	colored_dots
	color_branches
	color_labels
	color_unique_labels
	common_subtrees_clusters
	cor.dendlist
	cor_bakers_gamma
	cor_common_nodes
	cor_cophenetic
	cor_FM_index
	count_terminal_nodes
	cutree
	cutree_1h.dendrogram
	cutree_1k.dendrogram
	cut_lower_fun
	dendextend_options
	dendlist
	DendSer.dendrogram
	dend_diff
	dend_expend
	dist.dendlist
	distinct_edges
	dist_long
	duplicate_leaf
	entanglement
	fac2num
	find_dendrogram
	find_k
	fix_members_attr.dendrogram
	flatten.dendrogram
	flip_leaves
	FM_index
	FM_index_permutation
	FM_index_R
	get_branches_heights
	get_childrens_heights
	get_leaves_attr
	get_leaves_branches_attr
	get_leaves_branches_col
	get_leaves_edgePar
	get_leaves_nodePar
	get_nodes_attr
	get_nodes_xy
	get_root_branches_attr
	get_subdendrograms
	ggdend
	hang.dendrogram
	has_component_in_attribute
	heights_per_k.dendrogram
	highlight_branches_col
	highlight_distinct_edges
	identify.dendrogram
	intersect_trees
	is.natural.number
	is_null_list
	is_some_class
	khan
	labels<-
	labels_cex
	labels_colors
	ladderize
	leaf_Colors
	lowest_common_branch
	match_order_by_labels
	match_order_dendrogram_by_old_order
	min_depth
	na_locf
	nleaves
	nnodes
	noded_with_condition
	order.dendrogram<-
	order.hclust
	partition_leaves
	plot_horiz.dendrogram
	prune
	prune_common_subtrees.dendlist
	prune_leaf
	pvclust_edges
	pvclust_show_signif
	pvclust_show_signif_gradient
	pvrect2
	raise.dendrogram
	rank_branches
	rank_order.dendrogram
	rank_values_with_clusters
	rect.dendrogram
	reindex_dend
	remove_branches_edgePar
	remove_leaves_nodePar
	remove_nodes_nodePar
	rllply
	rotate
	rotate_DendSer
	sample.dendrogram
	seriate_dendrogram
	set
	set_labels
	shuffle
	sort_2_clusters_vectors
	sort_dist_mat
	sort_levels_values
	tanglegram
	theme_dendro
	unbranch
	unclass_dend
	untangle
	untangle_DendSer
	untangle_random_search
	untangle_step_rotate_1side
	untangle_step_rotate_2side
	which_leaf
	which_node
	Index

