DexterMST is an R package acting as a companion to dexter and adding facilities to manage and analyze data from multistage tests (MST). It includes functions for importing and managing test data, assessing and improving the quality of data through basic test and item analysis, and fitting an IRT model, all adapted to the peculiarities of MST designs. DexterMST typically works with project database files saved on disk.
install.packages('dexterMST')
If you encounter a bug, please post a minimal reproducible example on github. We post news and examples on a blog, it’s also the place for general questions.
Here is an example for a simple two-stage test.
library(dexterMST)
library(dplyr)
# start a project
= create_mst_project(":memory:")
db
= data.frame(item_id=sprintf("item%02i",1:70), item_score=1, delta=sort(runif(70,-1,1)))
items
= data.frame(item_id=sprintf("item%02i",1:70),
design module_id=rep(c('M4','M2','M5','M1','M6','M3', 'M7'),each=10))
= routing_rules = mst_rules(
routing_rules `124` = M1[0:5] --+ M2[0:10] --+ M4,
`125` = M1[0:5] --+ M2[11:15] --+ M5,
`136` = M1[6:10] --+ M3[6:15] --+ M6,
`137` = M1[6:10] --+ M3[16:20] --+ M7)
= data.frame(
scoring_rules item_id = rep(items$item_id,2),
item_score= rep(0:1,each=nrow(items)),
response= rep(0:1,each=nrow(items))) # dummy respons
= create_mst_project(":memory:")
db add_scoring_rules_mst(db, scoring_rules)
create_mst_test(db,
test_design = design,
routing_rules = routing_rules,
test_id = 'sim_test',
routing = "all")
We can now plot the design
# plot test designs for all tests in the project
design_plot(db)
We now simulate data:
= rnorm(3000)
theta
= sim_mst(items, theta, design, routing_rules,'all')
dat $test_id='sim_test'
dat$response=dat$item_score
dat
add_response_data_mst(db, dat)
# IRT, extended nominal response model
= fit_enorm_mst(db)
f
head(f)
item_id | item_score | beta | SE_beta |
---|---|---|---|
item01 | 1 | -1.0863339 | 0.0626345 |
item02 | 1 | -0.9418913 | 0.0623325 |
item03 | 1 | -0.9251972 | 0.0623113 |
item04 | 1 | -0.8020044 | 0.0622434 |
item05 | 1 | -0.9318730 | 0.0623195 |
item06 | 1 | -0.7521299 | 0.0622601 |
# ability estimates per person
= get_responses_mst(db)
rsp_data = ability(rsp_data, parms = f)
abl head(abl)
booklet_id | person_id | booklet_score | theta |
---|---|---|---|
136 | 1 | 19 | 0.8404993 |
125 | 10 | 19 | 0.2563194 |
124 | 100 | 9 | -1.3259574 |
136 | 1000 | 19 | 0.8404993 |
136 | 1001 | 14 | 0.1491514 |
125 | 1002 | 18 | 0.1129540 |
# ability estimates without item Item01
= ability(rsp_data, parms = f, item_id != "item01")
abl2
# plausible values
= plausible_values(rsp_data, parms = f, nPV = 5)
pv head(pv)
booklet_id | person_id | booklet_score | PV1 | PV2 | PV3 | PV4 | PV5 |
---|---|---|---|---|---|---|---|
136 | 1 | 19 | 0.3839768 | 0.8766796 | 1.2262293 | 0.8659529 | 1.3278310 |
136 | 1000 | 19 | 0.4315371 | 0.4050729 | 1.0509408 | 0.5545282 | 0.9193252 |
136 | 1001 | 14 | 0.2054455 | 0.1277102 | 0.4737698 | 0.2015225 | 0.3163110 |
136 | 1006 | 16 | 0.3514111 | -0.0298913 | 0.6811140 | 0.0550563 | 0.2982861 |
136 | 1008 | 14 | 0.0542015 | 0.0259179 | 0.4488831 | 0.4268412 | 0.6982703 |
136 | 1009 | 14 | 0.0898933 | 0.4605046 | 0.3446569 | 0.0130914 | -0.1554303 |
Contributions are welcome but please check with us first about what you would like to contribute.