
Package ‘dfms’
January 12, 2023

Version 0.1.4

Title Dynamic Factor Models

Description Efficient estimation of Dynamic Factor Models using the Expectation Maximiza-
tion (EM) algorithm
or Two-Step (2S) estimation, supporting datasets with missing data. The estimation options fol-
low advances in the
econometric literature: either running the Kalman Filter and Smoother once with initial val-
ues from PCA -
2S estimation as in Doz, Giannone and Reichlin (2011) <doi:10.1016/j.jeconom.2011.02.012> -
or via iterated
Kalman Filtering and Smoothing until EM convergence -
following Doz, Giannone and Reichlin (2012)
<doi:10.1162/REST_a_00225> -
or using the adapted EM algorithm of Banbura and Modugno (2014) <doi:10.1002/jae.2306>,
allowing arbitrary patterns of missing data. The implementation makes heavy use of the 'Ar-
madillo' 'C++' library and
the 'collapse' package, providing for particularly speedy estimation. A comprehen-
sive set of methods supports
interpretation and visualization of the model as well as forecasting. Information crite-
ria to choose the number
of factors are also provided - following Bai and Ng (2002) <doi:10.1111/1468-0262.00273>.

URL https://sebkrantz.github.io/dfms/

BugReports https://github.com/SebKrantz/dfms/issues

Depends R (>= 3.3.0)

Imports Rcpp (>= 1.0.1), collapse (>= 1.8.0)

LinkingTo Rcpp, RcppArmadillo

Suggests xts, vars, magrittr, testthat (>= 3.0.0), knitr, rmarkdown,
covr

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

1

https://doi.org/10.1016/j.jeconom.2011.02.012
https://doi.org/10.1162/REST_a_00225
https://doi.org/10.1002/jae.2306
https://doi.org/10.1111/1468-0262.00273
https://sebkrantz.github.io/dfms/
https://github.com/SebKrantz/dfms/issues

2 .VAR

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation yes

Author Sebastian Krantz [aut, cre],
Rytis Bagdziunas [aut]

Maintainer Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>

Repository CRAN

Date/Publication 2023-01-12 16:00:08 UTC

R topics documented:
.VAR . 2
ainv . 3
as.data.frame.dfm . 4
BM14_Models . 5
DFM . 6
em_converged . 11
FIS . 12
ICr . 14
plot.dfm . 16
predict.dfm . 17
residuals.dfm . 20
SKF . 21
SKFS . 23
summary.dfm . 24
tsnarmimp . 25

Index 27

.VAR (Fast) Barebones Vector-Autoregression

Description

Quickly estimate a VAR(p) model using Armadillo’s inverse function.

Usage

.VAR(x, p = 1L)

Arguments

x data numeric matrix with time series in columns - without missing values.

p positive integer. The lag order of the VAR.

ainv 3

Value

A list containing matrices Y = x[-(1:p),], X which contains lags 1 - p of x combined column-wise,
A which is the np× n transition matrix, where n is the number of series in x, and the VAR residual
matrix res = Y - X %*% A.

A list with the following elements:

Y x[-(1:p),].

X lags 1 - p of x combined column-wise.

A np× n transition matrix, where n is the number of series in x.

res VAR residual matrix: Y - X %*% A.

Examples

var = .VAR(diff(EuStockMarkets), 3)
str(var)
var$A
rm(var)

ainv Armadillo’s Inverse Functions

Description

Matrix inverse and pseudo-inverse by the Armadillo C++ library.

Usage

ainv(x)

apinv(x)

Arguments

x a numeric matrix, must be square for ainv.

Value

The matrix-inverse or pseudo-inverse.

Examples

ainv(crossprod(diff(EuStockMarkets)))

4 as.data.frame.dfm

as.data.frame.dfm Extract Factor Estimates in a Data Frame

Description

Extract Factor Estimates in a Data Frame

Usage

S3 method for class 'dfm'
as.data.frame(
x,
...,
method = "all",
pivot = c("long", "wide.factor", "wide.method", "wide", "t.wide"),
time = seq_row(x$F_pca),
stringsAsFactors = TRUE

)

Arguments

x an object class ’dfm’.

... not used.

method character. The factor estimates to use: any of "qml", "2s", "pca" (multiple can
be supplied) or "all" for all estimates.

pivot character. The orientation of the frame: "long", "wide.factor" or "wide.method",
"wide" or "t.wide".

time a vector identifying the time dimension, or NULL to omit a time variable.
stringsAsFactors

make factors from method and factor identifiers. Same as option to as.data.frame.table.

Value

A data frame of factor estimates.

Examples

library(xts)
Fit DFM with 3 factors and 3 lags in the transition equation
mod = DFM(diff(BM14_M), r = 3, p = 3)

Taking a single estimate:
print(head(as.data.frame(mod, method = "qml")))
print(head(as.data.frame(mod, method = "qml", pivot = "wide")))

Adding a proper time variable

BM14_Models 5

time = index(BM14_M)[-1L]
print(head(as.data.frame(mod, method = "qml", time = time)))

All estimates: different pivoting methods
for (pv in c("long", "wide.factor", "wide.method", "wide", "t.wide")) {

cat("\npivot = ", pv, "\n")
print(head(as.data.frame(mod, pivot = pv, time = time), 3))

}

BM14_Models Euro Area Macroeconomic Data from Banbura and Modugno 2014

Description

A data extract from BM 2014 replication files. Some proprietary series (mostly PMI’s) are excluded.
The dataset BM14_Models provides information about all series and their inclusion in the ’small’,
’medium’ and ’large’ sized dynamic factor models estimated by BM 2014. The actual data is
contained in xts format in BM14_M for monthly data and BM14_Q for quarterly data.

Usage

BM14_Models
BM14_M
BM14_Q

Format

BM14_Models is a data frame with 101 obs. (series) and 8 columns:

series BM14 series code (converted to snake case for R)

label BM14 series label

code original series code from data source

freq series frequency

log_trans logical indicating whether the series was transformed by the natural log before differenc-
ing. Note that all data are provided in untransformed levels, and all data was (log-)differenced
by BM14 before estimation.

small logical indicating series included in the ’small’ model of BM14. Proprietary series are ex-
cluded.

medium logical indicating series included in the ’medium’ model of BM14. Proprietary series are
excluded.

large logical indicating series included in the ’large’ model of BM14. This comprises all series,
thus the variable is redundant but included for completeness. Proprietary series are excluded.

6 DFM

Source

Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets
with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160.

Examples

library(magrittr)
library(xts)

Constructing the database for the large model
BM14 = merge(BM14_M, BM14_Q)
BM14[, BM14_Models$log_trans] %<>% log()
BM14[, BM14_Models$freq == "M"] %<>% diff()
BM14[, BM14_Models$freq == "Q"] %<>% diff(3)

Small Model Database
head(BM14[, BM14_Models$small])

Medium-Sized Model Database
head(BM14[, BM14_Models$medium])

DFM Estimate a Dynamic Factor Model

Description

Efficient estimation of a Dynamic Factor Model via the EM Algorithm - on stationary data with
time-invariant system matrices and classical assumptions, while permitting missing data.

Usage

DFM(
X,
r,
p = 1L,
...,
rQ = c("none", "diagonal", "identity"),
rR = c("diagonal", "identity", "none"),
em.method = c("auto", "DGR", "BM", "none"),
min.iter = 25L,
max.iter = 100L,
tol = 1e-04,
pos.corr = TRUE,
check.increased = FALSE

)

DFM 7

Arguments

X a T x n numeric data matrix or frame of stationary time series. May contain
missing values.

r integer. number of factors.

p integer. number of lags in factor VAR.

... (optional) arguments to tsnarmimp.

rQ character. restrictions on the state (transition) covariance matrix (Q).

rR character. restrictions on the observation (measurement) covariance matrix (R).

em.method character. The implementation of the Expectation Maximization Algorithm
used. The options are:

"auto" Automatic selection: "BM" if anyNA(X), else "DGR".

"DGR" The classical EM implementation of Doz, Giannone and Reichlin (2012). This implementation is efficient and quite robust, missing values are removed on a casewise basis in the Kalman Filter and Smoother, but not explicitly accounted for in EM iterations.

"BM" The modified EM algorithm of Banbura and Modugno (2014) which also accounts for missing data in the EM iterations. Optimal for datasets with systematically missing data e.g. datasets with ragged edges or series at different frequencies.

"none" Performs no EM iterations and just returns the Two-Step estimates from running the data through the Kalman Filter and Smoother once as in Doz, Giannone and Reichlin (2011) (the Kalman Filter is Initialized with system matrices obtained from a regression and VAR on PCA factor estimates). This yields significant performance gains over the iterative methods. Final system matrices are estimated by running a regression and a VAR on the smoothed factors.

min.iter integer. Minimum number of EM iterations (to ensure a convergence path).

max.iter integer. Maximum number of EM iterations.

tol numeric. EM convergence tolerance.

pos.corr logical. Increase the likelihood that factors correlate positively with the data, by
scaling the eigenvectors such that the principal components (used to initialize
the Kalman Filter) co-vary positively with the row-means of the standardized
data.

check.increased

logical. Check if likelihood has increased. Passed to em_converged. If TRUE,
the algorithm only terminates if convergence was reached with decreasing like-
lihood.

Details

This function efficiently estimates a Dynamic Factor Model with the following classical assump-
tions:

1. Linearity

2. Idiosynchratic measurement (observation) errors (R is diagonal)

3. No direct relationship between series and lagged factors (ceteris paribus contemporaneous
factors)

4. No relationship between lagged error terms in the either measurement or transition equation
(no serial correlation)

8 DFM

Factors are allowed to evolve in a V AR(p) process, and data is internally standardized (scaled
and centered) before estimation (removing the need of intercept terms). By assumptions 1-4, this
translates into the following dynamic form:

xt = C0ft + et ∼ N(0,R)

ft =
p∑

j=1

Ajft−j + ut ∼ N(0,Q0)

where the first equation is called the measurement or observation equation and the second equation
is called transition, state or process equation, and

n number of series in xt (r and p as the arguments to DFM).

xt n× 1 vector of observed series at time t: (x1t, . . . , xnt)′. Some observations can be missing.

ft r × 1 vector of factors at time t: (f1t, . . . , frt)′.

C0 n× r measurement (observation) matrix.

Aj r × r state transition matrix at lag j.

Q0 r × r state covariance matrix.

R n× n measurement (observation) covariance matrix. It is diagonal by assumption 2 that E[xit|x−i,t, xi,t−1, . . . , ft, ft−1, . . .] = Cft∀i.

This model can be estimated using a classical form of the Kalman Filter and the Expectation Maxi-
mization (EM) algorithm, after transforming it to State-Space (stacked, VAR(1)) form:

xt = CFt + et ∼ N(0,R)

Ft = A Ft−1 + ut ∼ N(0,Q)

where

n number of series in xt (r and p as the arguments to DFM).

xt n× 1 vector of observed series at time t: (x1t, . . . , xnt)′. Some observations can be missing.

Ft rp× 1 vector of stacked factors at time t: (f1t, . . . , frt, f1,t−1, . . . , fr,t−1, . . . , f1,t−p, . . . , fr,t−p)′.

C n× rp observation matrix. Only the first n× r terms are non-zero, by assumption 3 that E[xt|Ft] = E[xt|ft] (no relationship of observed series with lagged factors given contemporaneous factors).

A stacked rp× rp state transition matrix consisting of 3 parts: the top r × rp part provides the dynamic relationships captured by (A1, . . . ,Ap) in the dynamic form, the terms A[(r+1):rp, 1:(rp-r)] constitute an (rp− r)× (rp− r) identity matrix mapping all lagged factors to their known values at times t. The remaining part A[(rp-r+1):rp, (rp-r+1):rp] is an r × r matrix of zeros.

Q rp× rp state covariance matrix. The top r × r part gives the contemporaneous relationships, the rest are zeros by assumption 4.

DFM 9

R n× n observation covariance matrix. It is diagonal by assumption 2 and identical to R as stated in the dynamic form.

Value

A list-like object of class ’dfm’ with the following elements:

X_imp T × n matrix with the imputed and standardized (scaled and centered) data -
with attributes attached allowing reconstruction of the original data:

"stats" is a n× 5 matrix of summary statistics of class "qsu" (see qsu).

"missing" is a T × n logical matrix indicating missing or infinite values in the original data (which are imputed in X_imp).

"attributes" contains the attributes of the original data input.

"is.list" is a logical value indicating whether the original data input was a list / data frame.

eigen eigen(cov(X_imp)).

F_pca T×rmatrix of principal component factor estimates - X_imp %*% eigen$vectors.

P_0 r × r initial factor covariance matrix estimate based on PCA results.

F_2s T × r matrix two-step factor estimates as in Doz, Giannone and Reichlin (2011)
- obtained from running the data through the Kalman Filter and Smoother once,
where the Filter is initialized with results from PCA.

P_2s r × r × T covariance matrices of two-step factor estimates.

F_qml T × r matrix of quasi-maximum likelihood factor estimates - obtained by iter-
atively Kalman Filtering and Smoothing the factor estimates until EM conver-
gence.

P_qml r × r × T covariance matrices of QML factor estimates.

A r × rp factor transition matrix.

C n× r observation matrix.

Q r × r state (error) covariance matrix.

R n× n observation (error) covariance matrix.

loglik vector of log-likelihoods - one for each EM iteration. The final value corre-
sponds to the log-likelihood of the reported model.

tol The numeric convergence tolerance used.

converged single logical valued indicating whether the EM algorithm converged (within
max.iter iterations subject to tol).

anyNA single logical valued indicating whether there were any (internal) missing values
in the data (determined after removal of rows with too many missing values). If
FALSE, X_imp is simply the original data in matrix form, and does not have the
"missing" attribute attached.

10 DFM

rm.rows vector of any cases (rows) that were removed beforehand (subject to max.missing
and na.rm.method). If no cases were removed the slot is NULL.

em.method The EM method used.

call call object obtained from match.call().

References

Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic
factor models based on Kalman filtering. Journal of Econometrics, 164(1), 188-205.

Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi-maximum likelihood approach for large,
approximate dynamic factor models. Review of Economics and Statistics, 94(4), 1014-1024.

Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets
with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160.

Stock, J. H., & Watson, M. W. (2016). Dynamic Factor Models, Factor-Augmented Vector Au-
toregressions, and Structural Vector Autoregressions in Macroeconomics. Handbook of Macroeco-
nomics, 2, 415–525. https://doi.org/10.1016/bs.hesmac.2016.04.002

Examples

library(magrittr)
library(xts)
library(vars)

BM14 Replication Data. Constructing the database:
BM14 = merge(BM14_M, BM14_Q)
BM14[, BM14_Models$log_trans] %<>% log()
BM14[, BM14_Models$freq == "M"] %<>% diff()
BM14[, BM14_Models$freq == "Q"] %<>% diff(3)

Small Model ---------------------------------------

IC for number of factors
IC_small = ICr(BM14[, BM14_Models$small], max.r = 5)
plot(IC_small)
screeplot(IC_small)

I take 2 factors. Now number of lags
VARselect(IC_small$F_pca[, 1:2])

Estimating the model with 2 factors and 3 lags
dfm_small = DFM(BM14[, BM14_Models$small], 2, 3)

Inspecting the model
summary(dfm_small)
plot(dfm_small) # Factors and data
plot(dfm_small, method = "all", type = "individual") # Factor estimates
plot(dfm_small, type = "residual") # Residuals from factor predictions

10 periods ahead forecast

em_converged 11

plot(predict(dfm_small), xlim = c(300, 370))

Medium-Sized Model ---------------------------------

IC for number of factors
IC_medium = ICr(BM14[, BM14_Models$medium])
plot(IC_medium)
screeplot(IC_medium)

I take 3 factors. Now number of lags
VARselect(IC_medium$F_pca[, 1:3])

Estimating the model with 3 factors and 3 lags
dfm_medium = DFM(BM14[, BM14_Models$medium], 3, 3)

Inspecting the model
summary(dfm_medium)
plot(dfm_medium) # Factors and data
plot(dfm_medium, method = "all", type = "individual") # Factor estimates
plot(dfm_medium, type = "residual") # Residuals from factor predictions

10 periods ahead forecast
plot(predict(dfm_medium), xlim = c(300, 370))

Large Model ---------------------------------

IC for number of factors
IC_large = ICr(BM14)
plot(IC_large)
screeplot(IC_large)

I take 6 factors. Now number of lags
VARselect(IC_large$F_pca[, 1:6])

Estimating the model with 6 factors and 3 lags
dfm_large = DFM(BM14, 6, 3)

Inspecting the model
summary(dfm_large)
plot(dfm_large) # Factors and data
plot(dfm_large, method = "all", type = "individual") # Factor estimates
plot(dfm_large, type = "residual") # Residuals from factor predictions

10 periods ahead forecast
plot(predict(dfm_large), xlim = c(300, 370))

em_converged Convergence Test for EM-Algorithm

12 FIS

Description

Convergence Test for EM-Algorithm

Usage

em_converged(loglik, previous_loglik, tol = 1e-04, check.increased = FALSE)

Arguments

loglik numeric. Current value of the log-likelihood function.

previous_loglik

numeric. Value of the log-likelihood function at the previous iteration.

tol numerical. The tolerance of the test. If |LL(t) - LL(t-1)| / avg < tol, where avg =
(|LL(t)| + |LL(t-1)|)/2, then algorithm has converged.

check.increased

logical. Check if likelihood has increased.

Value

A logical statement indicating whether EM algorithm has converged. if check.increased = TRUE,
a vector with 2 elements indicating the convergence status and whether the likelihood has decreased.

Examples

em_converged(1001, 1000)
em_converged(10001, 10000)
em_converged(10001, 10000, check = TRUE)
em_converged(10000, 10001, check = TRUE)

FIS (Fast) Fixed-Interval Smoother (Kalman Smoother)

Description

(Fast) Fixed-Interval Smoother (Kalman Smoother)

Usage

FIS(A, F, F_pred, P, P_pred, F_0 = NULL, P_0 = NULL)

FIS 13

Arguments

A transition matrix (rp× rp).
F state estimates (T × rp).
F_pred state predicted estimates (T × rp).
P variance estimates (rp× rp× T).
P_pred predicted variance estimates (rp× rp× T).
F_0 initial state vector (rp× 1) or empty (NULL).
P_0 initial state covariance (rp× rp) or empty (NULL).

Details

The Kalman Smoother is given by:

Jt = PtA + inv(Ppred
t+1)

Fsmooth
t = Ft + Jt(Fsmooth

t+1 − Fpred
t+1)

Psmooth
t = Pt + Jt(Psmooth

t+1 − Ppred
t+1)J′t

The initial smoothed values for period t = T are set equal to the filtered values. If F_0 and P_0
are supplied, the smoothed initial conditions (t = 0 values) are also calculated and returned. For
further details see any textbook on time series such as Shumway & Stoffer (2017), which provide
an analogous R implementation in astsa::Ksmooth0.

Value

Smoothed state and covariance estimates, including initial (t = 0) values.

F_smooth T × rp smoothed state vectors, equal to the filtered state in period T .
P_smooth rp×rp×T smoothed state covariance, equal to the filtered covariance in period

T .
F_smooth_0 1× rp initial smoothed state vectors, based on F_0.
P_smooth_0 rp× rp initial smoothed state covariance, based on P_0.

References

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R
Examples. Springer.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter.

See Also

SKF SKFS

Examples

See ?SKFS

14 ICr

ICr Information Criteria to Determine the Number of Factors (r)

Description

Minimizes 3 information criteria proposed by Bai and Ng (2002) to determine the optimal number
of factors r* to be used in an approximate factor model. A Screeplot can also be computed to eyeball
the number of factors in the spirit of Onatski (2010).

Usage

ICr(X, max.r = min(20, ncol(X) - 1))

S3 method for class 'ICr'
print(x, ...)

S3 method for class 'ICr'
plot(x, ...)

S3 method for class 'ICr'
screeplot(x, type = "pve", show.grid = TRUE, max.r = 30, ...)

Arguments

X a T x n numeric data matrix or frame of stationary time series.

max.r integer. The maximum number of factors for which IC should be computed (or
eigenvalues to be displayed in the screeplot).

x an object of type ’ICr’.

... further arguments to ts.plot or plot.

type character. Either "ev" (eigenvalues), "pve" (percent variance explained), or
"cum.pve" (cumulative PVE). Multiple plots can be requested.

show.grid logical. TRUE shows gridlines in each plot.

Details

Following Bai and Ng (2002) and De Valk et al. (2019), let NSSR(r) be the normalized sum of
squared residuals SSR(r)/(n×T) when r factors are estimated using principal components. Then
the information criteria can be written as follows:

ICr1 = ln(NSSR(r)) + r

(
n+ T

nT

)
+ ln

(
nT

n+ T

)
ICr2 = ln(NSSR(r)) + r

(
n+ T

nT

)
+ ln(min(n, T))

ICr3 = ln(NSSR(r)) + r

(
ln(min(n, T))

min(n, T)

)

ICr 15

The optimal number of factors r* corresponds to the minimum IC. The three criteria are are asymp-
totically equivalent, but may give significantly different results for finite samples. The penalty in
ICr2 is highest in finite samples.

In the Screeplot a horizontal dashed line is shown signifying an eigenvalue of 1, or a share of
variance corresponding to 1 divided by the number of eigenvalues.

Value

A list of 4 elements:

F_pca T x n matrix of principle component factor estimates.

eigenvalues the eigenvalues of the covariance matrix of X.

IC r.max x 3 ’table’ containing the 3 information criteria of Bai and Ng (2002),
computed for all values of r from 1:r.max.

r.star vector of length 3 containing the number of factors (r) minimizing each infor-
mation criterion.

Note

To determine the number of lags (p) in the factor transition equation, use the function vars::VARselect
with r* principle components (also returned by ICr).

References

Bai, J., Ng, S. (2002). Determining the Number of Factors in Approximate Factor Models. Econo-
metrica, 70(1), 191-221. doi: 10.1111/14680262.00273

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues.
The Review of Economics and Statistics, 92(4), 1004-1016.

De Valk, S., de Mattos, D., & Ferreira, P. (2019). Nowcasting: An R package for predicting eco-
nomic variables using dynamic factor models. The R Journal, 11(1), 230-244.

Examples

library(xts)
library(vars)

ics = ICr(diff(BM14_M))
print(ics)
plot(ics)
screeplot(ics)

Optimal lag-order with 6 factors chosen
VARselect(ics$F_pca[, 1:6])

https://doi.org/10.1111/1468-0262.00273

16 plot.dfm

plot.dfm Plot DFM

Description

Plot DFM

Usage

S3 method for class 'dfm'
plot(
x,
method = switch(x$em.method, none = "2s", "qml"),
type = c("joint", "individual", "residual"),
scale.factors = TRUE,
...

)

S3 method for class 'dfm'
screeplot(x, ...)

Arguments

x an object class ’dfm’.

method character. The factor estimates to use: one of "qml", "2s", "pca" or "all" to
plot all estimates.

type character. The type of plot: "joint", "individual" or "residual".

scale.factors logical. Standardize factor estimates, this usually improves the plot since the
factor estimates corresponding to the greatest PCA eigenvalues tend to have a
greater variance than the data.

... for plot.dfm: further arguments to plot, ts.plot, or boxplot, depending on
the type of plot. For screeplot.dfm: further arguments to screeplot.ICr.

Value

Nothing.

Examples

Fit DFM with 3 factors and 3 lags in the transition equation
mod = DFM(diff(BM14_M), r = 3, p = 3)
plot(mod)
plot(mod, type = "individual", method = "all")
plot(mod, type = "residual")

predict.dfm 17

predict.dfm DFM Forecasts

Description

This function produces h-step ahead forecasts of both the factors and the data, with an option to
also forecast autocorrelated residuals with a univariate method and produce a combined forecast.

Usage

S3 method for class 'dfm'
predict(
object,
h = 10L,
method = switch(object$em.method, none = "2s", "qml"),
standardized = TRUE,
resFUN = NULL,
resAC = 0.1,
...

)

S3 method for class 'dfm_forecast'
print(x, digits = 4L, ...)

S3 method for class 'dfm_forecast'
plot(
x,
main = paste(x$h, "Period Ahead DFM Forecast"),
xlab = "Time",
ylab = "Standardized Data",
factors = seq_len(ncol(x$F)),
scale.factors = TRUE,
factor.col = rainbow(length(factors)),
factor.lwd = 1.5,
fcst.lty = "dashed",
data.col = c("grey85", "grey65"),
legend = TRUE,
legend.items = paste0("f", factors),
grid = FALSE,
vline = TRUE,
vline.lty = "dotted",
vline.col = "black",
...

)

S3 method for class 'dfm_forecast'
as.data.frame(

18 predict.dfm

x,
...,
use = c("factors", "data", "both"),
pivot = c("long", "wide"),
time = seq_len(nrow(x$F) + x$h),
stringsAsFactors = TRUE

)

Arguments

object an object of class ’dfm’.

h integer. The forecast horizon.

method character. The factor estimates to use: one of "qml", "2s" or "pca".

standardized logical. FALSE will return data forecasts on the original scale.

resFUN an (optional) function to compute a univariate forecast of the residuals. The
function needs to have a second argument providing the forecast horizon (h) and
return a vector or forecasts. See Examples.

resAC numeric. Threshold for residual autocorrelation to apply resFUN: only residual
series where AC1 > resAC will be forecasted.

... not used.

x an object class ’dfm_forecast’.

digits integer. The number of digits to print out.
main, xlab, ylab

character. Graphical parameters passed to ts.plot.

factors integers indicating which factors to display. Setting this to NA, NULL or 0 will
omit factor plots.

scale.factors logical. Standardize factor estimates, this usually improves the plot since the
factor estimates corresponding to the greatest PCA eigenvalues tend to have a
greater variance than the data.

factor.col, factor.lwd

graphical parameters affecting the colour and line width of factor estimates
plots. See par.

fcst.lty integer or character giving the line type of the forecasts of factors and data. See
par.

data.col character vector of length 2 indicating the colours of historical data and forecasts
of that data. Setting this to NA, NULL or "" will not plot data and data forecasts.

legend logical. TRUE draws a legend in the top-left of the chart.

legend.items character names of factors for the legend.

grid logical. TRUE draws a grid on the background of the plot.

vline logical. TRUE draws a vertical line deliminating historical data and forecasts.
vline.lty, vline.col

graphical parameters affecting the appearance of the vertical line. See par.

use character. Which forecasts to use "factors", "data" or "both".

predict.dfm 19

pivot character. The orientation of the frame: "long" or "wide".

time a vector identifying the time dimension, must be of length T + h, or NULL to omit
a time variable.

stringsAsFactors

logical. If TRUE and pivot = "long" the ’Variable’ column is created as a factor.
Same as option to as.data.frame.table.

Value

A list-like object of class ’dfm_forecast’ with the following elements:

X_fcst h× n matrix with the forecasts of the variables.

F_fcst h× r matrix with the factor forecasts.

X T × n matrix with the standardized (scaled and centered) data - with attributes
attached allowing reconstruction of the original data:

"stats" is a n× 5 matrix of summary statistics of class "qsu" (see qsu). Only attached if standardized = TRUE.

"attributes" contains the attributes of the original data input.

"is.list" is a logical value indicating whether the original data input was a list / data frame.

F T × r matrix of factor estimates.

method the factor estimation method used.

anyNA logical indicating whether X contains any missing values.

h the forecast horizon.

resid.fc logical indicating whether a univariate forecasting function was applied to the
residuals.

resid.fc.ind indices indicating for which variables (columns of X) the residuals were fore-
casted using the univariate function.

call call object obtained from match.call().

Examples

library(xts)
library(collapse)

Fit DFM with 3 factors and 3 lags in the transition equation
mod = DFM(diff(BM14_M), r = 3, p = 3)

15 period ahead forecast
fc = predict(mod, h = 15)
print(fc)
plot(fc, xlim = c(300, 370))

20 residuals.dfm

Also forecasting autocorrelated residuals with an AR(1)
fcfun <- function(x, h) predict(ar(na_rm(x)), n.ahead = h)$pred
fcar = predict(mod, resFUN = fcfun, h = 15)
plot(fcar, xlim = c(300, 370))

Retrieving a data frame of the forecasts
head(as.data.frame(fcar, pivot = "wide")) # Factors
head(as.data.frame(fcar, use = "data")) # Data
head(as.data.frame(fcar, use = "both")) # Both

residuals.dfm DFM Residuals and Fitted Values

Description

The residuals et = xt − CFt or fitted values CFt of the DFM observation equation.

Usage

S3 method for class 'dfm'
residuals(
object,
method = switch(object$em.method, none = "2s", "qml"),
orig.format = FALSE,
standardized = FALSE,
...

)

S3 method for class 'dfm'
fitted(
object,
method = switch(object$em.method, none = "2s", "qml"),
orig.format = FALSE,
standardized = FALSE,
...

)

Arguments

object an object of class ’dfm’.

method character. The factor estimates to use: one of "qml", "2s" or "pca".

orig.format logical. TRUE returns residuals/fitted values in a data format similar to X.

standardized logical. FALSE will put residuals/fitted values on the original data scale.

... not used.

SKF 21

Value

A matrix of DFM residuals or fitted values. If orig.format = TRUE the format may be different,
e.g. a data frame.

Examples

library(xts)
Fit DFM with 3 factors and 3 lags in the transition equation
mod = DFM(diff(BM14_M), r = 3, p = 3)

Residuals
head(resid(mod))
plot(resid(mod, orig.format = TRUE)) # this is an xts object

Fitted values
head(fitted(mod))
head(fitted(mod, orig.format = TRUE)) # this is an xts object

SKF (Fast) Stationary Kalman Filter

Description

A simple and fast C++ implementation of the Kalman Filter for stationary data with time-invariant
system matrices and missing data.

Usage

SKF(X, A, C, Q, R, F_0, P_0, loglik = FALSE)

Arguments

X numeric data matrix (T × n).

A transition matrix (rp× rp).

C observation matrix (n× rp).

Q state covariance (rp× rp).

R observation covariance (n× n).

F_0 initial state vector (rp× 1).

P_0 initial state covariance (rp× rp).

loglik logical. Compute log-likelihood?

22 SKF

Details

The underlying state space model is:

xt = CFt + et ∼ N(0,R)

Ft = A Ft−1 + ut ∼ N(0,Q)

where xt is X[t,]. The filter then first performs a time update (prediction)

Ft = A Ft−1

Pt = A Pt−1A′ + Q

where Pt = Cov(Ft). This is followed by the measurement update (filtering)

Kt = PtC′(C PtC′ + R)−1

Ft = Ft + Kt(xt − C Ft)

Pt = Pt −KtC Pt

If a row of the data is all missing the measurement update is skipped i.e. the prediction becomes the
filtered value. The log-likelihood is computed as

1/2
∑
t

log(|St|)− e′tStet − n log(2π)

where St = (CPtC
′ +R)−1 and et = xt − CFt is the prediction error.

For further details see any textbook on time series such as Shumway & Stoffer (2017), which
provide an analogous R implementation in astsa::Kfilter0. For another fast (C-based) imple-
mentation that also allows time-varying system matrices and non-stationary data see FKF::fkf.

Value

Predicted and filtered state vectors and covariances.

F T × rp filtered state vectors.

P rp× rp× T filtered state covariances.

F_pred T × rp predicted state vectors.

P_pred rp× rp× T predicted state covariances.

loglik value of the log likelihood.

References

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R
Examples. Springer.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter.

Hamilton, J. D. (1994). Time Series Analysis. Princeton university press.

SKFS 23

See Also

FIS SKFS

Examples

See ?SKFS

SKFS (Fast) Stationary Kalman Filter and Smoother

Description

(Fast) Stationary Kalman Filter and Smoother

Usage

SKFS(X, A, C, Q, R, F_0, P_0, loglik = FALSE)

Arguments

X numeric data matrix (T × n).

A transition matrix (rp× rp).

C observation matrix (n× rp).

Q state covariance (rp× rp).

R observation covariance (n× n).

F_0 initial state vector (rp× 1).

P_0 initial state covariance (rp× rp).

loglik logical. Compute log-likelihood?

Value

All results from SKF and FIS, and additionally a rp× rp×T matrix PPm_smooth, which is equal to
the estimate of Cov(F smootht, F

smootht−1|T) and needed for EM iterations. See ’Property 6.3:
The Lag-One Covariance Smoother’ in Shumway & Stoffer (2017).

References

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R
Examples. Springer.

See Also

SKF FIS

24 summary.dfm

Examples

library(collapse)

Two-Step factor estimates from monthly BM (2014) data
X <- fscale(diff(qM(BM14_M))) # Standardizing as KF has no intercept
r <- 5L # 5 Factors
p <- 3L # 3 Lags
n <- ncol(X)

Initializing the Kalman Filter with PCA results
X_imp <- tsnarmimp(X) # Imputing Data
v <- eigen(cov(X_imp))$vectors[, 1:r] # PCA
F_pc <- X_imp %*% v # Principal component factor estimates
C <- cbind(v, matrix(0, n, r*p-r)) # Observation matrix
res <- X - tcrossprod(F_pc, v) # Residuals from static predictions
R <- diag(fvar(res)) # Observation residual covariance
var <- .VAR(F_pc, p) # VAR(p)
A <- rbind(t(var$A), diag(1, r*p-r, r*p))
Q <- matrix(0, r*p, r*p) # VAR residual matrix
Q[1:r, 1:r] <- cov(var$res)
F_0 <- var$X[1L,] # Initial factor estimate and covariance
P_0 <- ainv(diag((r*p)^2) - kronecker(A,A)) %*% unattrib(Q)
dim(P_0) <- c(r*p, r*p)

Run standartized data through Kalman Filter and Smoother once
kfs_res <- SKFS(X, A, C, Q, R, F_0, P_0, FALSE)

Two-step solution is state mean from the Kalman Smoother
F_kal <- kfs_res$F_smooth[, 1:r, drop = FALSE]
colnames(F_kal) <- paste0("f", 1:r)

See that this is equal to the Two-Step estimate by DFM()
all.equal(F_kal, DFM(X, r, p, em.method = "none", pos.corr = FALSE)$F_2s)

Same in two steps using SKF() and FIS()
kfs_res2 <- with(SKF(X, A, C, Q, R, F_0, P_0, FALSE), FIS(A, F, F_pred, P, P_pred))
F_kal2 <- kfs_res2$F_smooth[, 1:r, drop = FALSE]
colnames(F_kal2) <- paste0("f", 1:r)
all.equal(F_kal, F_kal2)

rm(X, r, p, n, X_imp, v, F_pc, C, res, R, var, A, Q, F_0, P_0, kfs_res, F_kal, kfs_res2, F_kal2)

summary.dfm DFM Summary Methods

Description

Summary and print methods for class ’dfm’. print.dfm just prints basic model information and
the factor transition matrix A, summary.dfm returns all system matrices and additional residual and
goodness of fit statistics - with a print method allowing full or compact printout.

tsnarmimp 25

Usage

S3 method for class 'dfm'
print(x, digits = 4L, ...)

S3 method for class 'dfm'
summary(object, method = switch(object$em.method, none = "2s", "qml"), ...)

S3 method for class 'dfm_summary'
print(x, digits = 4L, compact = sum(x$info["n"] > 15, x$info["n"] > 40), ...)

Arguments

x, object an object class ’dfm’.

digits integer. The number of digits to print out.

... not used.

method character. The factor estimates to use: one of "qml", "2s" or "pca".

compact integer. Display a more compact printout: 0 prints everything, 1 omits the ob-
servation matrix C and residual covariance matrix cov(resid(model)), and 2
omits all disaggregated information on the input data. Sensible default are cho-
sen for different sizes of the input dataset so as to limit large printouts.

Value

Summary information following a dynamic factor model estimation.

Examples

mod = DFM(diff(BM14_Q), 2, 3)
print(mod)
summary(mod)

tsnarmimp Remove and Impute Missing Values in a Multivariate Time Series

Description

This function imputes missing values in a stationary multivariate time series using various methods,
and removes cases with too many missing values.

26 tsnarmimp

Usage

tsnarmimp(
X,
max.missing = 0.8,
na.rm.method = c("LE", "all"),
na.impute = c("median.ma.spline", "median.ma", "median", "rnorm"),
ma.terms = 3L

)

Arguments

X a T x n numeric data matrix (incl. ts or xts objects) or data frame of stationary
time series.

max.missing numeric. Proportion of series missing for a case to be considered missing.

na.rm.method character. Method to apply concerning missing cases selected through max.missing:
"LE" only removes cases at the beginning or end of the sample, whereas "all"
always removes missing cases.

na.impute character. Method to impute missing values for the PCA estimates used to ini-
tialize the EM algorithm. Note that data are standardized (scaled and centered)
beforehand. Available options are:

"median" simple series-wise median imputation.

"rnorm" imputation with random numbers drawn from a standard normal distribution.

"median.ma" values are initially imputed with the median, but then a moving average is applied to smooth the estimates.

"median.ma.spline" "internal" missing values (not at the beginning or end of the sample) are imputed using a cubic spline, whereas missing values at the beginning and end are imputed with the median of the series and smoothed with a moving average.

ma.terms the order of the (2-sided) moving average applied in na.impute methods "median.ma"
and "median.ma.spline".

Value

The imputed matrix X_imp, with attributes:

"missing" a missingness matrix W matching the dimensions of X_imp.

"rm.rows" and a vector of indices of rows (cases) with too many missing values that were
removed.

Examples

library(xts)
str(tsnarmimp(BM14_M))

Index

∗ datasets
BM14_Models, 5

.VAR, 2

ainv, 3
apinv (ainv), 3
as.data.frame.dfm, 4
as.data.frame.dfm_forecast

(predict.dfm), 17
as.data.frame.table, 4, 19
attributes, 9, 19

BM14_M (BM14_Models), 5
BM14_Models, 5
BM14_Q (BM14_Models), 5
boxplot, 16

DFM, 6

em_converged, 7, 11

FIS, 12, 23
fitted.dfm (residuals.dfm), 20

ICr, 14

par, 18
plot, 14, 16
plot.dfm, 16
plot.dfm_forecast (predict.dfm), 17
plot.ICr (ICr), 14
predict.dfm, 17
print.dfm (summary.dfm), 24
print.dfm_forecast (predict.dfm), 17
print.dfm_summary (summary.dfm), 24
print.ICr (ICr), 14

qsu, 9, 19

resid.dfm (residuals.dfm), 20
residuals.dfm, 20

screeplot.dfm (plot.dfm), 16
screeplot.ICr, 16
screeplot.ICr (ICr), 14
SKF, 13, 21, 23
SKFS, 13, 23, 23
summary.dfm, 24

ts.plot, 14, 16, 18
tsnarmimp, 7, 25

27

	.VAR
	ainv
	as.data.frame.dfm
	BM14_Models
	DFM
	em_converged
	FIS
	ICr
	plot.dfm
	predict.dfm
	residuals.dfm
	SKF
	SKFS
	summary.dfm
	tsnarmimp
	Index

