
Package ‘diffusr’
October 13, 2022

Type Package

Title Network Diffusion Algorithms

Version 0.1.4

Date 2018-04-20

Maintainer Simon Dirmeier <simon.dirmeier@gmx.de>

Description Implementation of network diffusion algorithms such as
heat diffusion or Markov random walks. Network diffusion algorithms generally
spread information in the form of node weights along the edges of a graph to other nodes.
These weights can for example be interpreted as temperature, an initial amount
of water, the activation of neurons in the brain, or the location of a random
surfer in the internet. The information (node weights) is iteratively propagated
to other nodes until a equilibrium state or stop criterion occurs.

URL https://github.com/dirmeier/diffusr

BugReports https://github.com/dirmeier/diffusr/issues

License GPL (>= 3)

Depends R (>= 3.4)

LazyData TRUE

LinkingTo Rcpp, RcppEigen

Imports Rcpp, igraph, methods

Suggests knitr, rmarkdown, testthat, lintr, Matrix

VignetteBuilder knitr

RoxygenNote 6.0.1

SystemRequirements C++11

NeedsCompilation yes

Author Simon Dirmeier [aut, cre]

Repository CRAN

Date/Publication 2018-05-17 21:01:21 UTC

1

https://github.com/dirmeier/diffusr
https://github.com/dirmeier/diffusr/issues

2 diffusr-package

R topics documented:

diffusr-package . 2
heat.diffusion . 3
hub.correction . 4
nearest.neighbors . 4
normalize.laplacian . 5
normalize.stochastic . 6
random.walk . 6

Index 9

diffusr-package diffusr

Description

Network diffusion algorithms in R.

Author(s)

Simon Dirmeier <simon.dirmeier@gmx.de>

References

Tong, H., Faloutsos, C., & Pan, J. Y. (2006), Fast random walk with restart and its applications.

Koehler, S., Bauer, S., Horn, D., & Robinson, P. N. (2008), Walking the interactome for priori-
tization of candidate disease genes. The American Journal of Human Genetics

Bonacich, P. (1987), Power and centrality: A family of measures. American Journal of Sociol-
ogy

Leiserson, M. D., Vandin, F., Wu, H. T., Dobson, J. R., Eldridge, J. V., Thomas, J. L., ... &
Lawrence, M. S. (2015), Pan-cancer network analysis identifies combinations of rare somatic mu-
tations across pathways and protein complexes. Nature genetics

https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Heat_equation

https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Heat_equation

heat.diffusion 3

heat.diffusion Graph diffusion using a heat diffusion process on a Laplacian matrix.

Description

An amount of starting heat gets distribution using the Laplacian matrix of a graph. Every iteration
(or time interval) t heat streams from the starting nodes into surrounding nodes.

Usage

heat.diffusion(h0, graph, t = 0.5, ...)

S4 method for signature 'numeric,matrix'
heat.diffusion(h0, graph, t = 0.5, ...)

S4 method for signature 'matrix,matrix'
heat.diffusion(h0, graph, t = 0.5, ...)

Arguments

h0 an n x p-dimensional numeric non-negative vector/matrix of starting tempera-
tures

graph an (n x n)-dimensional numeric non-negative adjacence matrix representing the
graph

t time point when heat is measured

... additional parameters

Value

returns the heat on every node as numeric vector

References

https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Heat_equation

Examples

count of nodes
n <- 5
starting distribution (has to sum to one)
h0 <- as.vector(rmultinom(1, 1, prob=rep(.2, n)))
adjacency matrix (either normalized or not)
graph <- matrix(abs(rnorm(n*n)), n, n)
computation of stationary distribution
ht <- heat.diffusion(h0, graph)

https://en.wikipedia.org/wiki/Laplacian_matrix
https://en.wikipedia.org/wiki/Heat_equation

4 nearest.neighbors

hub.correction Correct for hubs in an adjacency matrix

Description

Correct for hubs in an adjacency matrix

Usage

hub.correction(obj)

Arguments

obj matrix for which hubs are corrected

Value

returns the matrix with hub correction

Examples

W <- matrix(abs(rnorm(10000)), 100, 100)
cor.hub <- hub.correction(W)

nearest.neighbors Graph diffusion using nearest neighbors

Description

For every node in a set of nodes the graph gets traversed along the node’s shortest paths to its
neighbors. Nearest neighbors are added until a maximum depth of k is reached. For settings where
there are more than k neighbors having the same distance, all neighbors are returned.

Usage

nearest.neighbors(nodes, graph, k = 1L, ...)

S4 method for signature 'integer,matrix'
nearest.neighbors(nodes, graph, k = 1L, ...)

Arguments

nodes a n-dimensional integer vector of node indexes (1-based) for which the algo-
rithm is applied iteratively

graph an (n x n)-dimensional numeric non-negative adjacence matrix representing the
graph

k the depth of the nearest neighbor search, e.g. the depth of the graph traversal
... additional parameters

normalize.laplacian 5

Value

returns the kNN nodes as list of integer vectors of node indexes

Examples

count of nodes
n <- 10
indexes (integer) of nodes for which neighbors should be searched
node.idxs <- c(1L, 5L)
the adjaceny matrix (does not need to be symmetric)
graph <- rbind(cbind(0, diag(n-1)), 0)
compute the neighbors until depth 3
neighs <- nearest.neighbors(node.idxs, graph, 3)

normalize.laplacian Calculate the Laplacian of a matrix

Description

Calculate the Laplacian of a matrix

Usage

normalize.laplacian(obj, ...)

Arguments

obj matrix for which the Laplacian is calculated

... additional params

Value

returns the Laplacian

Examples

W <- matrix(abs(rnorm(10000)), 100, 100)
lapl.W <- normalize.laplacian(W)

6 random.walk

normalize.stochastic Create a stochastically normalized matrix/vector

Description

Create a stochastically normalized matrix/vector

Usage

normalize.stochastic(obj, ...)

Arguments

obj matrix/vector that is stochstically normalized

... additional params

Value

returns the normalized matrix/vector

Examples

W <- matrix(abs(rnorm(10000)), 100, 100)
stoch.W <- normalize.stochastic(W)

random.walk Graph diffusion using a Markov random walk

Description

A Markov Random Walk takes an inital distribution p0 and calculates the stationary distribution
of that. The diffusion process is regulated by a restart probability r which controls how often the
MRW jumps back to the initial values.

Usage

random.walk(p0, graph, r = 0.5, niter = 10000, thresh = 1e-04,
do.analytical = FALSE, correct.for.hubs = FALSE)

S4 method for signature 'numeric,matrix'
random.walk(p0, graph, r = 0.5, niter = 10000,
thresh = 1e-04, do.analytical = FALSE, correct.for.hubs = FALSE)

S4 method for signature 'matrix,matrix'
random.walk(p0, graph, r = 0.5, niter = 10000,
thresh = 1e-04, do.analytical = FALSE, correct.for.hubs = FALSE)

random.walk 7

Arguments

p0 an n x p-dimensional numeric non-negative vector/matrix representing the start-
ing distribution of the Markov chain (does not need to sum to one).

graph an (n x n)-dimensional numeric non-negative adjacence matrix representing the
graph

r a scalar between (0, 1). restart probability if a Markov random walk with restart
is desired

niter maximal number of iterations for computation of the Markov chain. If thresh
is not reached, then niter is used as stop criterion.

thresh threshold for breaking the iterative computation of the stationary distribution. If
the absolute difference of the distribution at time point $t-1$ and t is less than
thresh, then the algorithm stops. If thresh is not reached before niter, then
the algorithm stops as well.

do.analytical boolean if the stationary distribution shall be computed solving the analytical
solution or rather iteratively

correct.for.hubs

if TRUE multiplies a correction factor to the nodes, such that the random walk
gets not biased to nodes with high degree. In that case the original input matrix
will be normalized as:

P (j|i) = 1/degree(i) ∗min(1, degree(j)/degree(j))

Note that this will not consider edge weights.

Value

returns a list with the following elements

• p.inf the stationary distribution as numeric vector

• transition.matrix the column normalized transition matrix used for the random walk

References

Tong, H., Faloutsos, C., & Pan, J. Y. (2006), Fast random walk with restart and its applications.

Koehler, S., Bauer, S., Horn, D., & Robinson, P. N. (2008), Walking the interactome for priori-
tization of candidate disease genes. The American Journal of Human Genetics

Examples

count of nodes
n <- 5
starting distribution (has to sum to one)
p0 <- as.vector(rmultinom(1, 1, prob=rep(.2, n)))
adjacency matrix (either normalized or not)
graph <- matrix(abs(rnorm(n*n)), n, n)

8 random.walk

computation of stationary distribution
pt <- random.walk(p0, graph)

Index

∗ package
diffusr-package, 2

diffusr-package, 2

heat.diffusion, 3
heat.diffusion,matrix,matrix-method

(heat.diffusion), 3
heat.diffusion,numeric,matrix-method

(heat.diffusion), 3
hub.correction, 4

nearest.neighbors, 4
nearest.neighbors,integer,matrix-method

(nearest.neighbors), 4
normalize.laplacian, 5
normalize.stochastic, 6

random.walk, 6
random.walk,matrix,matrix-method

(random.walk), 6
random.walk,numeric,matrix-method

(random.walk), 6

9

	diffusr-package
	heat.diffusion
	hub.correction
	nearest.neighbors
	normalize.laplacian
	normalize.stochastic
	random.walk
	Index

