
Package ‘dynamite’
December 23, 2022

Title Bayesian Modeling and Causal Inference for Multivariate
Longitudinal Data

Version 1.0.1

Description Easy-to-use and efficient interface for
Bayesian inference of complex panel (time series) data using dynamic
multivariate panel models by Helske and Tikka (2022)
<doi:10.31235/osf.io/mdwu5>. The package supports joint modeling of multiple
measurements per individual, time-varying and time-invariant effects, and a
wide range of discrete and continuous distributions. Estimation of these
dynamic multivariate panel models is carried out via 'Stan'.

License GPL (>= 3)

URL https://docs.ropensci.org/dynamite/,

https://github.com/ropensci/dynamite/

BugReports https://github.com/ropensci/dynamite/issues/

Depends R (>= 3.5.0)

Imports bayesplot, checkmate, cli, data.table, glue, ggplot2, loo,
MASS, methods, posterior, rlang, rstan, stats, tibble (>=
2.0.0), utils

Suggests cmdstanr, covr, dplyr, knitr, plm, rmarkdown, testthat (>=
3.0.0), tidyr

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

LazyData true

LazyDataCompression xz

Additional_repositories https://mc-stan.org/r-packages/

NeedsCompilation no

1

https://doi.org/10.31235/osf.io/mdwu5
https://docs.ropensci.org/dynamite/
https://github.com/ropensci/dynamite/
https://github.com/ropensci/dynamite/issues/
https://mc-stan.org/r-packages/

2 R topics documented:

Author Santtu Tikka [aut, cre] (<https://orcid.org/0000-0003-4039-4342>),
Jouni Helske [aut] (<https://orcid.org/0000-0001-7130-793X>),
Nicholas Clark [rev],
Lucy D’Agostino McGowan [rev]

Maintainer Santtu Tikka <santtuth@gmail.com>

Repository CRAN

Date/Publication 2022-12-23 19:30:02 UTC

R topics documented:
dynamite-package . 3
as.data.frame.dynamitefit . 3
as.data.table.dynamitefit . 7
as_draws_df.dynamitefit . 8
categorical_example . 9
categorical_example_fit . 10
coef.dynamitefit . 10
confint.dynamitefit . 12
dynamite . 12
dynamiteformula . 16
fitted.dynamitefit . 19
gaussian_example . 20
gaussian_example_fit . 21
get_code . 22
get_data . 23
get_priors . 24
lags . 25
latent_factor_example . 26
latent_factor_example_fit . 27
lfactor . 28
lfo . 29
loo.dynamitefit . 30
mcmc_diagnostics . 31
multichannel_example . 32
multichannel_example_fit . 32
ndraws.dynamitefit . 33
nobs.dynamitefit . 34
plot.dynamitefit . 35
plot.lfo . 36
plot_betas . 37
plot_deltas . 37
plot_lambdas . 38
plot_nus . 39
plot_psis . 40
predict.dynamitefit . 40
print.lfo . 43
random . 44

https://orcid.org/0000-0003-4039-4342
https://orcid.org/0000-0001-7130-793X

as.data.frame.dynamitefit 3

splines . 45
update.dynamitefit . 47

Index 49

dynamite-package The dynamite package.

Description

Easy-to-use and efficient interface for Bayesian inference of complex panel data consisting of multi-
ple individuals with multiple measurements over time. Supports several observational distributions,
time-varying effects and realistic counterfactual predictions which take into account the dynamic
structure of the model.

See Also

• The package vignette.

• dynamiteformula() for information on defining models.

• dynamite() for information on fitting models.

• https://github.com/ropensci/dynamite/issues/ to submit a bug report or a feature re-
quest.

Authors

Santtu Tikka (author) santtuth@gmail.com
Jouni Helske (author) jouni.helske@iki.fi

as.data.frame.dynamitefit

Extract Samples From a dynamitefit Object as a Data Frame

Description

Provides a data.frame representation of the posterior samples of the model parameters.

Usage

S3 method for class 'dynamitefit'
as.data.frame(
x,

https://github.com/ropensci/dynamite/issues/
mailto:santtuth@gmail.com
mailto:jouni.helske@iki.fi

4 as.data.frame.dynamitefit

row.names = NULL,
optional = FALSE,
responses = NULL,
types = NULL,
summary = TRUE,
probs = c(0.05, 0.95),
include_fixed = TRUE,
...

)

Arguments

x [dynamitefit]
The model fit object.

row.names Ignored.

optional Ignored.

responses [character()]
Response(s) for which the samples should be extracted. Possible options are
elements of unique(x$priors$response), and the default is this entire vector.

types [character()]
Type(s) of the parameters for which the samples should be extracted. See details
of possible values. Default is all values listed in details except spline coefficients
omega and omega_alpha.

summary [logical(1)]
If TRUE (default), returns posterior mean, standard deviation, and posterior quan-
tiles (as defined by the probs argument) for all parameters. If FALSE, returns the
posterior samples instead.

probs [numeric()]
Quantiles of interest. Default is c(0.05, 0.95).

include_fixed [logical(1)]
If TRUE (default), time-varying parameters for 1:fixed time points are included
in the output as NA values. If FALSE, fixed time points are omitted completely
from the output.

... Ignored.

Details

The arguments responses and types can be used to extract only a subset of the model parameters
(i.e., only certain types of parameters related to a certain response variable).

Potential values for the types argument are:

• alpha
Intercept terms (time-invariant or time-varying).

• beta
Time-invariant regression coefficients.

as.data.frame.dynamitefit 5

• delta
Time-varying regression coefficients.

• nu
Random intercepts.

• lambda
Factor loadings.

• psi
Latent factors.

• tau
Standard deviations of the spline coefficients of delta.

• tau_alpha
Standard deviations of the spline coefficients of time-varying alpha.

• xi
Common time-varying shrinkage factor for splines.

• sigma_nu
Standard deviation of the random intercepts nu.

• corr_nu
Pairwise within-group correlations of random intercepts nu. Samples of the full correlation
matrix can be extracted manually as rstan::extract(fit$stanfit, pars = "corr_matrix_nu")
if necessary.

• sigma_lambda
Standard deviations of the latent factor loadings lambda.

• tau_psi
Standard deviations of the the spline coeffients of psi.

• corr_psi
Pairwise correlations of the latent factors. Samples of the full correlation matrix can be ex-
tracted manually as rstan::extract(fit$stanfit, pars = "corr_matrix_psi") if neces-
sary.

• sigma
Standard deviations of gaussian responses.

• phi
Dispersion parameters of negative binomial responses.

• omega
Spline coefficients of the regression coefficients delta.

• omega_alpha
Spline coefficients of time-varying alpha.

• omega_psi
Spline coefficients of the latent factors psi.

Value

A tibble containing either samples or summary statistics of the model parameters in a long format.
For a wide format, see as_draws().

6 as.data.frame.dynamitefit

Examples

results <- as.data.frame(
gaussian_example_fit,
responses = "y",
types = "beta",
summary = FALSE

)

#' # Basic summaries can be obtained automatically with summary = TRUE:
as.data.frame(

gaussian_example_fit,
responses = "y",
types = "beta",
summary = TRUE

)

#' # Time-varying coefficients delta
as.data.frame(gaussian_example_fit,

responses = "y",
types = "delta",
summary = TRUE

)

if (requireNamespace("dplyr") &&
requireNamespace("tidyr") &&
base::getRversion() >= "4.1.0") {

results |>
dplyr::group_by(parameter) |>
dplyr::summarise(mean = mean(value), sd = sd(value))

Compute MCMC diagnostics via posterior package
For this we need to first convert to wide format
and then to draws_df object
results |>

dplyr::select(parameter, value, .iteration, .chain) |>
tidyr::pivot_wider(values_from = value, names_from = parameter) |>
posterior::as_draws() |>
posterior::summarise_draws()

as.data.frame(gaussian_example_fit,
responses = "y", types = "delta", summary = FALSE

) |>
dplyr::select(parameter, value, time, .iteration, .chain) |>
tidyr::pivot_wider(

values_from = value,
names_from = c(parameter, time),
names_sep = "_t="

) |>
posterior::as_draws() |>
posterior::summarise_draws()

}

as.data.table.dynamitefit 7

as.data.table.dynamitefit

Extract Samples From a dynamitefit Object as a Data Table

Description

Provides a data.table representation of the posterior samples of the model parameters. See
as.data.frame.dynamitefit() for details.

Usage

S3 method for class 'dynamitefit'
as.data.table(
x,
keep.rownames = FALSE,
row.names = NULL,
optional = FALSE,
responses = NULL,
types = NULL,
summary = TRUE,
probs = c(0.05, 0.95),
include_fixed = TRUE,
...

)

Arguments

x [dynamitefit]
The model fit object.

keep.rownames [logical(1)]
Not used.

row.names Ignored.

optional Ignored.

responses [character()]
Response(s) for which the samples should be extracted. Possible options are
elements of unique(x$priors$response), and the default is this entire vector.

types [character()]
Type(s) of the parameters for which the samples should be extracted. See details
of possible values. Default is all values listed in details except spline coefficients
omega and omega_alpha.

summary [logical(1)]
If TRUE (default), returns posterior mean, standard deviation, and posterior quan-
tiles (as defined by the probs argument) for all parameters. If FALSE, returns the
posterior samples instead.

8 as_draws_df.dynamitefit

probs [numeric()]
Quantiles of interest. Default is c(0.05, 0.95).

include_fixed [logical(1)]
If TRUE (default), time-varying parameters for 1:fixed time points are included
in the output as NA values. If FALSE, fixed time points are omitted completely
from the output.

... Ignored.

Value

A data.table containing either samples or summary statistics of the model parameters.

Examples

as.data.table(
gaussian_example_fit,
responses = "y",
types = "beta",
summary = FALSE

)

as_draws_df.dynamitefit

Convert dynamite Output to draws_df Format

Description

Converts the output from dynamite() call to a draws_df format of the posterior package, enabling
the use of diagnostics and plotting methods of posterior and bayesplot packages. Note that this
function returns all variables in a wide format, whereas as.data.frame() uses the long format.

Usage

S3 method for class 'dynamitefit'
as_draws_df(x, responses = NULL, types = NULL, ...)

S3 method for class 'dynamitefit'
as_draws(x, responses = NULL, types = NULL, ...)

Arguments

x [dynamitefit]
The model fit object.

responses [character()]
Response(s) for which the samples should be extracted. Possible options are
elements of unique(x$priors$response), and the default is this entire vector.

categorical_example 9

types [character()]
Type(s) of the parameters for which the samples should be extracted. See details
of possible values. Default is all values listed in details except spline coefficients
omega and omega_alpha.

... Ignored.

Details

You can use the arguments responses and types to extract only a subset of the model parameters
(i.e., only certain types of parameters related to a certain response variable).

See potential values for the types argument in as.data.frame.dynamitefit()

Value

A draws_df object.

A draws_df object.

Examples

as_draws(gaussian_example_fit, types = c("sigma", "beta"))

categorical_example Simulated Categorical Multivariate Panel Data

Description

A simulated data containing multiple individuals with two categorical response variables.

Usage

categorical_example

Format

A data frame with 2000 rows and 5 variables:

id Variable defining individuals (1 to 100).

time Variable defining the time point of the measurement (1 to 20).

x Categorical variable with three levels, A, B, and C.

y Categorical variable with three levels, a, b, and c.

z A continuous covariate.

Source

The data was generated according to a script in https://github.com/ropensci/dynamite/blob/
main/data-raw/categorical_example.R

https://github.com/ropensci/dynamite/blob/main/data-raw/categorical_example.R
https://github.com/ropensci/dynamite/blob/main/data-raw/categorical_example.R

10 coef.dynamitefit

categorical_example_fit

Model Fit for the Simulated Categorical Multivariate Panel Data

Description

A dynamitefit object obtained by running dynamite on the categorical_example dataset as

set.seed(1)
library(dynamite)
f <- obs(x ~ z + lag(x) + lag(y), family = "categorical") +
obs(y ~ z + lag(x) + lag(y), family = "categorical")

categorical_example_fit <- dynamite(
f, categorical_example, "id", "time",
chains = 1, refresh = 0, thin = 5, save_warmup = FALSE)

Note the small number of samples due to size restrictions on CRAN.

Usage

categorical_example_fit

Format

A dynamitefit object.

Source

Script in https://github.com/ropensci/dynamite/blob/main/data-raw/categorical_example_
fit.R

coef.dynamitefit Extract Regression Coefficients of a Dynamite Model

Description

Extracts either time-varying or time-invariant parameters of the model.

https://github.com/ropensci/dynamite/blob/main/data-raw/categorical_example_fit.R
https://github.com/ropensci/dynamite/blob/main/data-raw/categorical_example_fit.R

coef.dynamitefit 11

Usage

S3 method for class 'dynamitefit'
coef(
object,
type = c("beta", "delta", "nu", "lambda", "psi"),
responses = NULL,
summary = TRUE,
probs = c(0.05, 0.95),
include_alpha = TRUE,
...

)

Arguments

object [dynamitefit]
The model fit object.

type [character(1)]
Either beta (the default) for time-invariant coefficients, delta for time-varying
coefficients, nu for random intercepts, lambda for factor loadings, or psi for
latent factor.

responses [character()]
Response(s) for which the samples should be extracted. Possible options are
elements of unique(x$priors$response), and the default is this entire vector.

summary [logical(1)]
If TRUE (default), returns posterior mean, standard deviation, and posterior quan-
tiles (as defined by the probs argument) for all parameters. If FALSE, returns the
posterior samples instead.

probs [numeric()]
Quantiles of interest. Default is c(0.05, 0.95).

include_alpha [logical(1)]
If TRUE (default), extracts also time-invariant intercept term alpha if time-invariant
parameters beta are extracted, and time-varying alpha if time-varying delta are
extracted.

... Ignored.

Value

A tibble containing either samples or summary statistics of the model parameters in a long format.

Examples

betas <- coef(gaussian_example_fit, type = "beta")
deltas <- coef(gaussian_example_fit, type = "delta")

12 dynamite

confint.dynamitefit Credible Intervals for Dynamite Model Parameters

Description

Credible Intervals for Dynamite Model Parameters

Usage

S3 method for class 'dynamitefit'
confint(object, parm, level = 0.95, ...)

Arguments

object [dynamitefit]
The model fit object.

parm Ignored.

level [numeric(1)]
Credible interval width.

... Ignored.

Value

The rows of the resulting matrix will be named using the following logic: {parameter}_{time}_{category}_{group}
where parameter is the name of the parameter, time is the time index of the parameter, category
specifies the level of the response the parameter is related to if the response is categorical, and group
determines which group of observations the parameter is related to in the case of random intercepts
and loadings. Non-applicable fields in the this syntax are set to NA.

Examples

confint(gaussian_example_fit, level = 0.9)

dynamite Estimate a Bayesian Dynamic Multivariate Panel Model

dynamite 13

Description

Fit a Bayesian dynamic multivariate panel model using Stan for Bayesian inference. The dynamite
package supports a wide range of distributions and allows the user to flexibly customize the priors
for the model parameters. The dynamite model is specified using standard R formula syntax via
dynamiteformula(). For more information and examples, see ’Details’ and the package vignette.

The formula method returns the model definition as a quoted expression.

Information on the estimated dynamite model can be obtained via print including the following:
The model formula, the data, the smallest effective sample sizes, largest Rhat and summary statistics
of the time-invariant model parameters.

The summary method provides statistics of the posterior samples of the model; this is an alias of
as.data.frame.dynamitefit().

Usage

dynamite(
dformula,
data,
group = NULL,
time,
priors = NULL,
verbose = TRUE,
debug = NULL,
backend = "rstan",
...

)

S3 method for class 'dynamitefit'
formula(x, ...)

S3 method for class 'dynamitefit'
print(x, ...)

S3 method for class 'dynamitefit'
summary(object, ...)

Arguments

dformula [dynamiteformula]
The model formula. See dynamiteformula() and ’Details’.

data [data.frame, tibble::tibble, or data.table::data.table]
The data that contains the variables in the model. Supported column types are
integer, logical, double, and factor. Columns of type character will be
converted to factors. Unused factor levels will be dropped. The data can contain
missing values which will simply be ignored in the estimation in a case-wise
fashion (per time-point and per channel). Input data is converted to channel
specific matrix representations via stats::model.matrix.lm().

14 dynamite

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

priors [data.frame]
An optional data frame with prior definitions. See get_priors() and ’Details’.

verbose [logical(1)]
All warnings and messages are suppressed if set to FALSE. Defaults to TRUE.

debug [list()]
A named list of form name = TRUE indicating additional objects in the environ-
ment of the dynamite function which are added to the return object. Addition-
ally, values no_compile = TRUE and no_sampling = TRUE can be used to skip
the compilation of the Stan code and sampling steps respectively. This can be
useful for debugging when combined with model_code = TRUE, which adds the
Stan model code to the return object.

backend [character(1)]
Defines the backend interface to Stan, should be either "rstan" (the default) or
"cmdstanr". Note that cmdstanr needs to be installed separately as it is not on
CRAN. It also needs the actual CmdStan software. See https://mc-stan.org/cmdstanr/
for details.

... Further arguments to as.data.frame.dynamitefit().
x [dynamitefit]

The model fit object.
object [dynamitefit]

The model fit object.

Details

Any univariate unbounded continuous distributions supported by Stan can be used as a prior for
model parameters (the distribution is automatically truncated to positive side for constrained pa-
rameters). In addition, any univariate distribution bounded to the positive real line can be used as a
prior for parameters constrained to be positive. See Stan function reference at https://mc-stan.
org/users/documentation/ for details. For custom priors, you should first get the default pri-
ors with get_priors() function, and then modify the priors column of the obtained data frame
before supplying it to the dynamite function.

The default priors for regression coefficients are based on the standard deviation of the covariates at
the first non-fixed time point. In case this is 0 or NA, it is transformed to (arbitrary) 0.5. The final
prior is then normal distribution with zero mean and two times this standard deviation.

The prior for the correlation structure of the random intercepts is defined via the Cholesky decom-
position of the correlation matrix, as lkj_corr_cholesky(1). See https://mc-stan.org/docs/
functions-reference/cholesky-lkj-correlation-distribution.html for details.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/functions-reference/cholesky-lkj-correlation-distribution.html
https://mc-stan.org/docs/functions-reference/cholesky-lkj-correlation-distribution.html

dynamite 15

The best-case scalability of dynamite in terms of data size should be approximately linear in terms
of number of time points and and number of groups, but as wall-clock time of the MCMC algorithms
provided by Stan can depend on the discrepancy of the data and the model (and the subsequent shape
of the posterior), this can vary greatly.

Value

dynamite returns a dynamitefit object which is a list containing the following components:

• stanfit
A stanfit object, see rstan::sampling() for details.

• dformulas
A list of dynamiteformula objects for internal use.

• data
A processed version of the input data.

• data_name
Name of the input data object.

• stan
A list containing various elements related to Stan model construction and sampling.

• group_var
Name of the variable defining the groups.

• time_var
Name of the variable defining the time index.

• priors
Data frame containing the used priors.

• backend
Either "rstan" or "cmdstanr" indicating which package was used in sampling.

• call
Original function call as an object of class call.

formula returns a quoted expression.

print returns x invisibly.

summary returns a data.frame.

Examples

fit <- dynamite(
dformula = obs(y ~ -1 + varying(~x), family = "gaussian") +
lags(type = "varying") +
splines(df = 20), gaussian_example, "id", "time",

chains = 1,
refresh = 0

)

formula(gaussian_example_fit)

16 dynamiteformula

print(gaussian_example_fit)

summary(gaussian_example_fit, types = "beta",
probs = c(0.05, 0.1, 0.9, 0.95))

dynamiteformula Model formula for dynamite

Description

Defines a new observational or a new auxiliary channel for the model using standard R formula
syntax. Formulas of individual response variables can be joined together via +. See ’Details’ and the
package vignette for more information. The function obs is a shorthand alias for dynamiteformula,
and aux is a shorthand alias for dynamiteformula(formula, family = "deterministic").

Usage

dynamiteformula(formula, family)

obs(formula, family)

aux(formula)

S3 method for class 'dynamiteformula'
e1 + e2

S3 method for class 'dynamiteformula'
print(x, ...)

Arguments

formula [formula]
An R formula describing the model.

family [character(1)]
The family name. See ’Details’ for the supported families.

e1 [dynamiteformula]
A model formula specification.

e2 [dynamiteformula]
A model formula specification.

x [dynamiteformula]
The model formula.

... Ignored.

dynamiteformula 17

Details

Currently the dynamite package supports the following distributions for the observations:

• Categorical: categorical (with a softmax link using the first category as reference). See
the documentation of the categorical_logit_glm in the Stan function reference manual
(https://mc-stan.org/users/documentation/).

• Gaussian: gaussian (identity link, parameterized using mean and standard deviation).

• Poisson: poisson (log-link, with an optional known offset variable).

• Negative-binomial: negbin (log-link, using mean and dispersion parameterization, with an
optional known offset variable). See the documentation on NegBinomial2 in the Stan function
reference manual.

• Bernoulli: bernoulli (logit-link).

• Binomial: binomial (logit-link).

• Exponential: exponential (log-link).

• Gamma: gamma (log-link, using mean and shape parameterization).

• Beta: beta (logit-link, using mean and precision parameterization).

The models in the dynamite package are defined by combining the channel-specific formulas de-
fined via R formula syntax. Each channel is defined via the obs function, and the channels are
combined with +. For example a formula obs(y ~ lag(x), family = "gaussian") + obs(x ~ z,
family = "poisson") defines a model with two channels; first we declare that y is a gaussian vari-
able depending on a previous value of x (lag(x)), and then we add a second channel declaring x
as Poisson distributed depending on some exogenous variable z (for which we do not define any
distribution).

In addition to declaring response variables via obs, we can also use the function aux to define auxil-
iary channels which are deterministic functions of other variables. The values of auxiliary variables
are computed dynamically during prediction, making the use of lagged values and other transforma-
tions possible. Note that the auxiliary channel can also depend on other variables without lags. The
function aux also does not use the family argument, which is automatically set to deterministic
and is a special channel type of obs. Note that lagged values of deterministic aux channels do not
imply fixed time points. Instead they must be given starting values using a special function init
that directly initializes the lags to specified values, or by past which computes the initial values
based on an R expression. Both init and past should appear on the right hand side of the model
formula, separated from the primary defining expression via |.

The formula within obs can also contain an additional special function varying, which defines the
time-varying part of the model equation, in which case we could write for example obs(x ~ z +
varying(~ -1 + w), family = "poisson"), which defines a model equation with a constant inter-
cept and time-invariant effect of z, and a time-varying effect of w. We also remove the duplicate in-
tercept with -1 in order to avoid identifiability issues in the model estimation (we could also define a
time varying intercept, in which case we would write obs(x ~ -1 + z + varying(~ w), family = "poisson)).
The part of the formula not wrapped with varying is assumed to correspond to the fixed part of the
model, so obs(x ~ z + varying(~ -1 + w), family = "poisson") is actually identical to obs(x ~
-1 + fixed(~ z) + varying(~ -1 + w), family = "poisson") and obs(x ~ fixed(~ z) + varying(~
-1 + w), family = "poisson").

When defining varying effects, we also need to define how the these time-varying regression coeffi-
cient behave. For this, a splines component should be added to the model, e.g., obs(x ~ varying(~ -1 + w), family = "poisson) + splines(df = 10)

18 dynamiteformula

defines a cubic B-spline with 10 degrees of freedom for the time-varying coefficient corresponding
to the w. If the model contains multiple time-varying coefficients, same spline basis is used for all
coefficients, with unique spline coefficients and their standard deviation.

If the desired model contains lagged predictors of each response in each channel, these can be
quickly added to the model as either time-invariant or time-varying predictors via lags() instead
of writing them manually for each channel.

It is also possible to define a random intercept term for each group by using the component random()
where the first argument defines for which channels the intercept should be added, and second ar-
gument defines whether or not these intercepts should be correlated between channels. This leads
to a model where in addition to the common intercept, each individual/group has their own inter-
cept with zero-mean normal prior and unknown standard deviation (or multivariate gaussian in case
correlated = TRUE), analogously with the typical mixed models. Note however that if the channel
already contains the lagged response variable, the "intercept" is actually a slope of (linear) trend as
dynamite does not do any centering of variables.

Value

A dynamiteformula object.

Examples

A single gaussian response channel with a time-varying effect of 'x',
and a time-varying effect of the lag of 'y' using B-splines with
20 degrees of freedom for the coefficients of the time-varying terms.
obs(y ~ -1 + varying(~x), family = "gaussian") +

lags(type = "varying") +
splines(df = 20)

A two-channel categorical model with time-invariant predictors
here, lag terms are specified manually
obs(x ~ z + lag(x) + lag(y), family = "categorical") +

obs(y ~ z + lag(x) + lag(y), family = "categorical")

The same categorical model as above, but with the lag terms
added using 'lags'
obs(x ~ z, family = "categorical") +

obs(y ~ z, family = "categorical") +
lags(type = "fixed")

A multichannel model with a gaussian, Poisson and a Bernoulli response and
an auxiliary channel for the logarithm of 'p' plus one
obs(g ~ lag(g) + lag(logp), family = "gaussian") +

obs(p ~ lag(g) + lag(logp) + lag(b), family = "poisson") +
obs(b ~ lag(b) * lag(logp) + lag(b) * lag(g), family = "bernoulli") +
aux(numeric(logp) ~ log(p + 1))

obs(y ~ x, family = "gaussian") + obs(z ~ w, family = "exponential")

x <- obs(y ~ x, family = "gaussian") +
obs(z ~ w, family = "exponential") +
aux(numeric(d) ~ log(y) | init(c(0, 1))) +

fitted.dynamitefit 19

lags(k = 2) +
splines(df = 5) +
random(responses = c("y", "z"), correlated = TRUE)

print(x)

fitted.dynamitefit Extract Fitted Values of a Dynamite Model

Description

Fitted values for a dynamitefit object.Note that these are conditional on the observed data in
newdata,i.e., these are one-step estimates E(y_t|y_t-1,...,y_1). Often predict.dynamitefit() is
what you want.

Usage

S3 method for class 'dynamitefit'
fitted(object, newdata = NULL, n_draws = NULL, expand = TRUE, df = TRUE, ...)

Arguments

object [dynamitefit]
The model fit object.

newdata [data.frame]
Data used in predictions. If NULL (default), the data used in model estimation is
used for predictions as well, There should be no new time points that were not
present in the data that were used to fit the model, and no new group levels can
be included.

n_draws [integer(1)]
Number of posterior samples to use, default is NULL which uses all samples.

expand [logical(1)]
If TRUE (the default), the output is a single data.frame containing the original
newdata and the predicted values. Otherwise, a list is returned with two com-
ponents, simulated and observed, where the first contains only the predicted
values, and the second contains the original newdata. Setting expand to FALSE
can help conserve memory because newdata is not replicated n_draws times in
the output. This argument is ignored if funs are provided.

df [logical(1)]
If TRUE (default) the output consists of data.frame objects, and data.table
objects otherwise.

... Ignored.

Value

A data.frame containing the fitted values.

20 gaussian_example

Examples

fitted(gaussian_example_fit, n_draws = 2L)

set.seed(1)
fit <- dynamite(

dformula = obs(LakeHuron ~ 1, "gaussian") + lags(),
data = data.frame(LakeHuron, time = seq_len(length(LakeHuron)), id = 1),
group = "id",
time = "time",
chains = 1,
refresh = 0

)

if (requireNamespace("dplyr") &&
requireNamespace("tidyr") &&
base::getRversion() >= "4.1.0") {

One-step ahead samples (fitted values) from the posterior
(first time point is fixed due to lag in the model):
fitted(fit) |>

dplyr::filter(time > 2) |>
ggplot2::ggplot(ggplot2::aes(time, LakeHuron_fitted, group = .draw)) +
ggplot2::geom_line(alpha = 0.5) +
observed values
ggplot2::geom_line(ggplot2::aes(y = LakeHuron), colour = "tomato") +
ggplot2::theme_bw()

Posterior predictive distribution given the first time point:
predict(fit, type = "mean") |>

dplyr::filter(time > 2) |>
ggplot2::ggplot(ggplot2::aes(time, LakeHuron_mean, group = .draw)) +
ggplot2::geom_line(alpha = 0.5) +
observed values
ggplot2::geom_line(ggplot2::aes(y = LakeHuron), colour = "tomato") +
ggplot2::theme_bw()

}

gaussian_example Simulated Data of Gaussian Responses

Description

Simulated data containing gaussian response variables with two covariates. The dataset was gen-
erated from a model with time-varying effects of covariate x and the lagged value of the response
variable, time-varying intercept, and time-invariant effect of covariate z. The time-varying coeffi-
cients vary according to a spline with 20 degrees of freedom.

Usage

gaussian_example

gaussian_example_fit 21

Format

A data frame with 3000 rows and 5 variables:

y The response variable.

x A continuous covariate.

z A binary covariate.

id Variable defining individuals (1 to 50).

time Variable defining the time point of the measurement (1 to 30).

Source

The data was generated according to a script in https://github.com/ropensci/dynamite/blob/
main/data-raw/gaussian_example.R

gaussian_example_fit Model Fit for the Simulated Data of Gaussian Responses

Description

A dynamitefit object obtained by running dynamite on the gaussian_example dataset as

set.seed(1)
library(dynamite)
gaussian_example_fit <- dynamite(
obs(y ~ -1 + z + varying(~ x + lag(y)), family = "gaussian") +
random() + splines(df = 20),
data = gaussian_example, time = "time", group = "id",
iter = 2000, warmup = 1000, thin = 10,
chains = 2, cores = 2, refresh = 0, save_warmup = FALSE,
pars = c("omega_alpha_1_y", "omega_raw_alpha_y", "nu_raw", "nu", "L"),
include = FALSE

)

Note the very small number of samples due to size restrictions on CRAN.

Usage

gaussian_example_fit

Format

A dynamitefit object.

Source

The data was generated according to a script in https://github.com/ropensci/dynamite/blob/
main/data-raw/gaussian_example_fit.R

https://github.com/ropensci/dynamite/blob/main/data-raw/gaussian_example.R
https://github.com/ropensci/dynamite/blob/main/data-raw/gaussian_example.R
https://github.com/ropensci/dynamite/blob/main/data-raw/gaussian_example_fit.R
https://github.com/ropensci/dynamite/blob/main/data-raw/gaussian_example_fit.R

22 get_code

get_code Extract the Stan Code of the Dynamite Model

Description

Returns the Stan code of the model. Mostly useful for debugging or for building a customized
version of the model.

Usage

get_code(x, ...)

S3 method for class 'dynamiteformula'
get_code(x, data, group = NULL, time, ...)

S3 method for class 'dynamitefit'
get_code(x, ...)

Arguments

x [dynamiteformula or dynamitefit]
The model formula or an existing dynamitefit object. See dynamiteformula()
and dynamite().

... Ignored.

data [data.frame, tibble::tibble, or data.table::data.table]
The data that contains the variables in the model. Supported column types are
integer, logical, double, and factor. Columns of type character will be
converted to factors. Unused factor levels will be dropped. The data can contain
missing values which will simply be ignored in the estimation in a case-wise
fashion (per time-point and per channel). Input data is converted to channel
specific matrix representations via stats::model.matrix.lm().

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

Value

A Stan model code as a character string.

get_data 23

Examples

d <- data.frame(y = rnorm(10), x = 1:10, time = 1:10, id = 1)
cat(get_code(obs(y ~ x, family = "gaussian"),

data = d, time = "time", group = "id"
))
same as
cat(dynamite(obs(y ~ x, family = "gaussian"),

data = d, time = "time", group = "id",
debug = list(model_code = TRUE, no_compile = TRUE)

)$model_code)

get_data Extract the Model Data of the Dynamite Model

Description

Returns the input data to the Stan model. Mostly useful for debugging.

Usage

get_data(x, ...)

S3 method for class 'dynamiteformula'
get_data(x, data, group = NULL, time, ...)

S3 method for class 'dynamitefit'
get_data(x, ...)

Arguments

x [dynamiteformula or dynamitefit]
The model formula or an existing dynamitefit object. See dynamiteformula()
and dynamite().

... Ignored.
data [data.frame, tibble::tibble, or data.table::data.table]

The data that contains the variables in the model. Supported column types are
integer, logical, double, and factor. Columns of type character will be
converted to factors. Unused factor levels will be dropped. The data can contain
missing values which will simply be ignored in the estimation in a case-wise
fashion (per time-point and per channel). Input data is converted to channel
specific matrix representations via stats::model.matrix.lm().

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

24 get_priors

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

Value

A list containing the input data to Stan.

Examples

d <- data.frame(y = rnorm(10), x = 1:10, time = 1:10, id = 1)
str(get_data(obs(y ~ x, family = "gaussian"),

data = d, time = "time", group = "id"
))

get_priors Get Prior Definitions of a Dynamite Model

Description

Extracts the priors used in the dynamite model as a data frame. You can then alter the priors by
changing the contents of the prior column and supplying this data frame to dynamite function
using the argument priors.

Usage

get_priors(x, ...)

S3 method for class 'dynamiteformula'
get_priors(x, data, group = NULL, time, ...)

S3 method for class 'dynamitefit'
get_priors(x, ...)

Arguments

x [dynamiteformula or dynamitefit]
The model formula or an existing dynamitefit object. See dynamiteformula()
and dynamite().

... Ignored.
data [data.frame, tibble::tibble, or data.table::data.table]

The data that contains the variables in the model. Supported column types are
integer, logical, double, and factor. Columns of type character will be
converted to factors. Unused factor levels will be dropped. The data can contain
missing values which will simply be ignored in the estimation in a case-wise
fashion (per time-point and per channel). Input data is converted to channel
specific matrix representations via stats::model.matrix.lm().

lags 25

group [character(1)]
A column name of data that denotes the unique groups or NULL corresponding
to a scenario without any groups. If group is NULL, a new column .group is
created with constant value 1L is created indicating that all observations belong
to the same group. In case of name conflicts with data, see the group_var
element of the return object to get the column name of the new variable.

time [character(1)]
A column name of data that denotes the time index of observations. If this
variable is a factor, the integer representation of its levels are used internally for
defining the time indexing.

Details

Note that the prior for the intercept term alpha is actually defined in a centered form, so the prior is
related to the alpha when the covariates at the first time point are centered around their means. In
other words, the prior is defined for alpha + x_m * gamma where x_m is vector of covariate means
and gamma contains the corresponding coefficients (beta and delta_1). If you want to use prior
directly on alpha, remove intercept from the formula and add a dummy covariate consisting of ones
to the model.

Value

A data.frame containing the prior definitions.

Note

Only the prior column of the output should be altered when defining the user-defined priors for
the dynamite.

Examples

d <- data.frame(y = rnorm(10), x = 1:10, time = 1:10, id = 1)
get_priors(obs(y ~ x, family = "gaussian"),

data = d, time = "time", group = "id"
)

lags Add Lagged Responses as Predictors to Each Channel of a Dynamite
Model

Description

Adds the lagged value of the response of each channel specified via dynamiteformula() as a
predictor to each channel. The added predictors can be either time-varying or time-invariant.

Usage

lags(k = 1L, type = c("fixed", "varying"))

26 latent_factor_example

Arguments

k [integer()]
Values lagged by k units of time of each observed response variable will be
added as a predictor for each channel. Should be a positive (unrestricted) integer.

type [integer(1)]
Either "fixed" or "varying" which indicates whether the coefficients of the
added lag terms should vary in time or not.

Value

An object of class lags.

Examples

obs(y ~ -1 + varying(~x), family = "gaussian") +
lags(type = "varying") + splines(df = 20)

A two-channel categorical model with time-invariant predictors
here, lag terms are specified manually
obs(x ~ z + lag(x) + lag(y), family = "categorical") +

obs(y ~ z + lag(x) + lag(y), family = "categorical")

The same categorical model as above, but with the lag terms
added using 'lags'
obs(x ~ z, family = "categorical") +

obs(y ~ z, family = "categorical") +
lags(type = "fixed")

latent_factor_example Simulated Latent Factor Model Panel Data

Description

A simulated single-channel data containing multiple individuals whose trajectories are defined by a
latent factor and random intercept terms.

Usage

latent_factor_example

Format

A data frame with 2000 rows and 3 variables:

y A continuos variable.

id Variable defining individuals (1 to 100).

time Variable defining the time point of the measurement (1 to 20).

latent_factor_example_fit 27

Source

The data was generated according to a script in https://github.com/ropensci/dynamite/blob/
main/data-raw/latent_factor_example.R

latent_factor_example_fit

Model Fit for the Simulated Latent Factor Data

Description

A dynamitefit object obtained by running dynamite on the latent_factor_example dataset as

set.seed(1)
library(dynamite)
latent_factor_example_fit <- dynamite(
obs(y ~ 1, family = "gaussian") + lfactor() + splines(df = 10),
data = latent_factor_example,
group = "id",
time = "time",
iter = 2000,
warmup = 1000,
thin = 10,
chains = 2,
cores = 2,
refresh = 0,
save_warmup = FALSE,
pars = c("omega_alpha_1_y", "omega_raw_alpha_y", "omega_raw_psi", "L_lf",
"lambda_raw_y", "lambda_std_y"),

include = FALSE
)

Note the very small number of samples due to size restrictions on CRAN.

Usage

latent_factor_example_fit

Format

A dynamitefit object.

Source

Script in https://github.com/ropensci/dynamite/blob/main/data-raw/latent_factor_example_
fit.R

https://github.com/ropensci/dynamite/blob/main/data-raw/latent_factor_example.R
https://github.com/ropensci/dynamite/blob/main/data-raw/latent_factor_example.R
https://github.com/ropensci/dynamite/blob/main/data-raw/latent_factor_example_fit.R
https://github.com/ropensci/dynamite/blob/main/data-raw/latent_factor_example_fit.R

28 lfactor

lfactor Define a Common Latent Factor for the Dynamite Model.

Description

This function can be used as part of dynamiteformula() to define a common latent factor com-
ponent. The latent factor is modeled as a spline similarly as time-varying intercept, but instead of
having equal effect on each group, there is additional loading variable for each group so that in the
linear predictor we have a term λiψt for each group i. In order to keep the full the factor loadings λ,
the latent factor ψ and the full model identifiable, some restrictions are added to the model. Details
will be available in an upcoming paper.

Usage

lfactor(
responses = NULL,
noncentered_lambda = TRUE,
noncentered_psi = FALSE,
nonzero_lambda = TRUE,
correlated = TRUE

)

Arguments

responses [character()]
Names of the responses for which the factor should affect. Default is all re-
sponses defined with obs except categorical response, which does not (yet) sup-
port factor component.

noncentered_lambda

[logical()]
If TRUE (the default), use a noncentered parametrization for factor loadings.
Should be a logical vector matching the length of responses or a single log-
ical value in case responses is NULL. Try changing this if you encounter diver-
gences or other problems in sampling. Use splines() to define whether the
spline coefficients of the the factors are should be centered or not.

noncentered_psi

[logical(1)]
If TRUE, uses a noncentered parametrization for spline coefficients of all the
factors. The number of knots is based splines() call.

nonzero_lambda [logical()]
If TRUE (the default), assumes that the mean of factor loadings is nonzero or not.
Should be a logical vector matching the length of responses or a single logical
value in case responses is NULL. See details.

correlated [logical()]
If TRUE (the default), the latent factors are assumed to be correlated between
channels.

lfo 29

Value

An object of class latent_factor.

Examples

three channel model with common factor affecting for responses x and y
obs(y ~ 1, family = "gaussian") +

obs(x ~ 1, family = "poisson") +
obs(z ~ 1, family = "gaussian") +
lfactor(responses = c("y", "x"), noncentered_lambda = c(FALSE, TRUE),
noncentered_psi = FALSE, nonzero_lambda = c(TRUE, FALSE))

lfo Approximate Leave-Future-Out (LFO) Cross-validation

Description

Estimates the leave-future-out (LFO) information criterion for dynamite models using Pareto smoothed
importance sampling.

Usage

lfo(x, L, verbose = TRUE, k_threshold = 0.7, ...)

Arguments

x [dynamitefit]
The model fit object.

L [integer(1)]
Positive integer defining how many time points should be used for the initial fit.

verbose [logical(1)]
If TRUE (default), print the progress of the LFO computations to the console.

k_threshold [numeric(1)]
Threshold for the pareto k estimate triggering refit. Default is 0.7.

... Additional parameters to dynamite.

Details

For multichannel models, the log-likelihoods of all channels are combined. For models with groups,
expected log predictive densities (ELPDs) are computed independently for each group, but the re-
estimation of the model is triggered if pareto k values of any group exceeds the threshold.

30 loo.dynamitefit

Value

An lfo object which is a list with the following components:

• ELPD
Expected log predictive density estimate.

• ELPD_SE
Standard error of ELPD. This is a crude approximation which does not take into account
potential serial correlations.

• pareto_k
Pareto k values.

• refits
Time points where model was re-estimated.

• L
L value used in the LFO estimation.

• k_threshold
Threshold used in the LFO estimation.

Examples

this gives warnings due to the small number of iterations
out <- suppressWarnings(lfo(gaussian_example_fit, L = 20))
out$ELPD
out$ELPD_SE

loo.dynamitefit Approximate Leave-One-Out (LOO) Cross-validation

Description

Estimates the leave-one-out (LOO) information criterion for dynamite models using Pareto smoothed
importance sampling with the loo package.

Usage

S3 method for class 'dynamitefit'
loo(x, separate_channels = FALSE, ...)

Arguments

x [dynamitefit]
The model fit object.

mcmc_diagnostics 31

separate_channels

[logical(1)]
If TRUE, computes LOO separately for each channel. This can be useful in diag-
nosing where the model fails. Default is FALSE, in which case the likelihoods of
different channels are combined, i.e., all channels of are left out.

... Ignored.

Value

An output from loo::loo() or a list of such outputs (if separate_channels was TRUE).

Examples

this gives warnings due to the small number of iterations
suppressWarnings(loo(gaussian_example_fit))
suppressWarnings(loo(gaussian_example_fit, separate_channels = TRUE))

mcmc_diagnostics Diagnostic Values of a Dynamite Model

Description

Prints HMC diagnostics, and lists parameters with smallest effective sample sizes and largest Rhat
values. See rstan::check_hmc_diagnostics() and posterior::default_convergence_measures()
for details.

Usage

mcmc_diagnostics(x, n)

S3 method for class 'dynamitefit'
mcmc_diagnostics(x, n = 1L)

Arguments

x [dynamitefit]
The model fit object.

n [integer(1)]
How many rows to print in parameter-specific convergence measures. The de-
fault is 1. Should be a positive (unrestricted) integer.

Value

Returns x (invisibly).

32 multichannel_example_fit

Examples

mcmc_diagnostics(gaussian_example_fit)

multichannel_example Simulated Multivariate Panel Data

Description

A simulated multichannel data containing multiple individuals with multiple response variables of
different distributions.

Usage

multichannel_example

Format

A data frame with 3000 rows and 5 variables:

id Variable defining individuals (1 to 50).

time Variable defining the time point of the measurement (1 to 20).

g Response variable following gaussian distribution.

p Response variable following Poisson distribution.

b Response variable following Bernoulli distribution.

Source

The data was generated according to a script in https://github.com/ropensci/dynamite/blob/
main/data-raw/multichannel_example.R

multichannel_example_fit

Model Fit for the Simulated Multivariate Panel Data

https://github.com/ropensci/dynamite/blob/main/data-raw/multichannel_example.R
https://github.com/ropensci/dynamite/blob/main/data-raw/multichannel_example.R

ndraws.dynamitefit 33

Description

A dynamitefit object obtained by running dynamite on the multichannel_example dataset as

set.seed(1)
library(dynamite)
f <- obs(g ~ lag(g) + lag(logp), family = "gaussian") +
obs(p ~ lag(g) + lag(logp) + lag(b), family = "poisson") +
obs(b ~ lag(b) * lag(logp) + lag(b) * lag(g), family = "bernoulli") +
aux(numeric(logp) ~ log(p + 1))

multichannel_example_fit <- dynamite(
f, multichannel_example, "id", "time",
chains = 1, cores = 1, iter = 2000, warmup = 1000, init = 0, refresh = 0,
thin = 5, save_warmup = FALSE)

Note the small number of samples due to size restrictions on CRAN.

Usage

multichannel_example_fit

Format

A dynamitefit object.

Source

Script in https://github.com/ropensci/dynamite/blob/main/data-raw/multichannel_example_
fit.R

ndraws.dynamitefit Return the Number of Posterior Draws of a dynamitefit Object

Description

Return the Number of Posterior Draws of a dynamitefit Object

Usage

S3 method for class 'dynamitefit'
ndraws(x)

Arguments

x [dynamitefit]
The model fit object.

https://github.com/ropensci/dynamite/blob/main/data-raw/multichannel_example_fit.R
https://github.com/ropensci/dynamite/blob/main/data-raw/multichannel_example_fit.R

34 nobs.dynamitefit

Value

Number of posterior draws as a single integer value.

Examples

ndraws(gaussian_example_fit)

nobs.dynamitefit Extract the Number of Observations Used to Fit a Dynamite Model

Description

Extract the Number of Observations Used to Fit a Dynamite Model

Usage

S3 method for class 'dynamitefit'
nobs(object, ...)

Arguments

object [dynamitefit]
The model fit object.

... Not used.

Value

Total number of non-missing observations as an integer.

Examples

nobs(gaussian_example_fit)

plot.dynamitefit 35

plot.dynamitefit Traceplots and Density Plots of a dynamitefit Object

Description

Produces the traceplots and the density plots of the model parameters. See ’Details’ for the available
parameter types.

Usage

S3 method for class 'dynamitefit'
plot(x, responses = NULL, type, ...)

Arguments

x [dynamitefit]
The model fit object.

responses [character()]
Response(s) for which the plots should be drawn. Possible options are unique(x$priors$response).
Default is all responses.

type [character(1)]
Type of the parameter for which the plots should be drawn. See details of possi-
ble values.

... Further arguments to bayesplot::mcmc_combo.

Details

Possible parameter types are:

• alpha Intercept terms (time-invariant or time-varying).

• beta Time-invariant regression coefficients.

• delta Time-varying regression coefficients.

• nu Random intercepts.

• tau Standard deviations of the spline coefficients of delta.

• tau_alpha Standard deviations of the spline coefficients of time-varying alpha.

• sigma_nu Standard deviation of the random intercepts nu.

• sigma Standard deviations of gaussian responses.

• phi Dispersion parameters of negative binomial responses.

• omega Spline coefficients of the regression coefficients delta.

• omega_alpha Spline coefficients of time-varying alpha.

Note however, that typically drawing these plots for the time-varying parameters delta (and alpha),
spline coefficients, or random intercepts leads to too many plots.

36 plot.lfo

Value

The output object from bayesplot::mcmc_combo.

Examples

plot(gaussian_example_fit, type = "beta")

plot.lfo Diagnostic Plot for Pareto k Values from LFO

Description

Plots Pareto k values per each time point (with one point per group), together with the horizontal
line representing the used threshold.

Usage

S3 method for class 'lfo'
plot(x, ...)

Arguments

x [lfo]
Output from the lfo function.

... Ignored.

Value

A ggplot object.

Examples

this gives warnings due to the small number of iterations
plot(suppressWarnings(lfo(gaussian_example_fit, L = 20)))

plot_betas 37

plot_betas Plot Time-invariant Regression Coefficients of a Dynamite Model

Description

Plot Time-invariant Regression Coefficients of a Dynamite Model

Usage

plot_betas(x, responses = NULL, level = 0.05, include_alpha = TRUE)

Arguments

x [dynamitefit]
The model fit object

responses [character()]
Response(s) for which the coefficients should be drawn. Possible options are
elements of unique(x$priors$response), and the default is this whole vector.

level [numeric(1)]
Level for posterior intervals. Default is 0.05, leading to 90% intervals.

include_alpha [logical(1)]
If TRUE (default), plots also the time-invariant alphas if such parameters exists
in the model.

Value

A ggplot object.

Examples

plot_betas(gaussian_example_fit, level = 0.1)

plot_deltas Plot Time-varying Regression Coefficients of a Dynamite Model

Description

Plot Time-varying Regression Coefficients of a Dynamite Model

38 plot_lambdas

Usage

plot_deltas(
x,
responses = NULL,
level = 0.05,
alpha = 0.5,
scales = c("fixed", "free"),
include_alpha = TRUE

)

Arguments

x [dynamitefit]
The model fit object

responses [character()]
Response(s) for which the coefficients should be drawn. Possible options are
elements of unique(x$priors$response), and the default is this whole vector.

level [numeric(1)]
Level for posterior intervals. Default is 0.05, leading to 90% intervals.

alpha [numeric(1)]
Opacity level for geom_ribbon. Default is 0.5.

scales [character(1)] Should y-axis of the panels be "fixed" (the default) or "free"?
See ggplot2::facet_wrap().

include_alpha [logical(1)]
If TRUE (default), plots also the time-varying alphas if such parameters exists in
the model.

Value

A ggplot object.

Examples

plot_deltas(gaussian_example_fit, level = 0.025, scales = "free") +
ggplot2::theme_minimal()

plot_lambdas Plot Factor Loadings of a Dynamite Model

Description

Plot Factor Loadings of a Dynamite Model

Usage

plot_lambdas(x, responses = NULL, level = 0.05)

plot_nus 39

Arguments

x [dynamitefit]
The model fit object

responses [character()]
Response(s) for which the coefficients should be drawn. Possible options are
elements of unique(x$priors$response), and the default is this whole vector.

level [numeric(1)]
Level for posterior intervals. Default is 0.05, leading to 90% intervals.

Value

A ggplot object.

plot_nus Plot Random Intercepts of a Dynamite Model

Description

Plot Random Intercepts of a Dynamite Model

Usage

plot_nus(x, responses = NULL, level = 0.05)

Arguments

x [dynamitefit]
The model fit object

responses [character()]
Response(s) for which the coefficients should be drawn. Possible options are
elements of unique(x$priors$response), and the default is this whole vector.

level [numeric(1)]
Level for posterior intervals. Default is 0.05, leading to 90% intervals.

Value

A ggplot object.

Examples

plot_nus(gaussian_example_fit)

40 predict.dynamitefit

plot_psis Plot Latent Factors of a Dynamite Model

Description

Plot Latent Factors of a Dynamite Model

Usage

plot_psis(
x,
responses = NULL,
level = 0.05,
alpha = 0.5,
scales = c("fixed", "free")

)

Arguments

x [dynamitefit]
The model fit object

responses [character()]
Response(s) for which the coefficients should be drawn. Possible options are
elements of unique(x$priors$response), and the default is this whole vector.

level [numeric(1)]
Level for posterior intervals. Default is 0.05, leading to 90% intervals.

alpha [numeric(1)]
Opacity level for geom_ribbon. Default is 0.5.

scales [character(1)] Should y-axis of the panels be "fixed" (the default) or "free"?
See ggplot2::facet_wrap().

Value

A ggplot object.

predict.dynamitefit Predict Method for a Dynamite Model

Description

Obtain counterfactual predictions for a dynamitefit object.

predict.dynamitefit 41

Usage

S3 method for class 'dynamitefit'
predict(
object,
newdata = NULL,
type = c("response", "mean", "link"),
funs = list(),
impute = c("none", "locf"),
new_levels = c("none", "bootstrap", "gaussian", "original"),
global_fixed = FALSE,
n_draws = NULL,
expand = TRUE,
df = TRUE,
...

)

Arguments

object [dynamitefit]
The model fit object.

newdata [data.frame]
Data used in predictions. Predictions are computed for missing (NA) values in
the response variable columns, and non-missing values are assumed fixed. If
NULL (default), the data used in model estimation is used for predictions as well,
after all values in the response variable columns after the first fixed time points
are converted to NA values. Missing values in predictor columns can be imputed
(argument impute). There should be no new time points that were not present in
the data that were used to fit the model. New group levels can be included, but
if the model contains random intercepts, an options for the random effects for
the new levels must be chosen (argument new_levels). Note that as newdata
is expanded with predictions, it can be beneficial in terms of memory usage to
first remove redundant columns from newdata. If the grouping variable of the
original data is missing, it is assumed that all observations in newdata belong to
the first group in the original data.

type [character(1)]
Type of prediction, "response" (default), "mean", or "link".

funs [list()]
A named list whose names should correspond to the response variables of the
model. Each element of funs should be a a named list of functions that will be
applied to the corresponding predicted type of the channel over the individuals
for each combination of the posterior draws and time points. In other words,
the resulting predictions will be averages over the individuals. The functions
should take the corresponding type variable values as their only argument. If
funs is empty, the full individual level values are returned instead. Note that
this argument can only be used if there are multiple individuals (i.e., group was
not NULL in the dynamite call).

42 predict.dynamitefit

impute [character(1)]
Which imputation scheme to use for missing predictor values. Currently sup-
ported options are no imputation: "none" (default), and last observation carried
forward: "locf".

new_levels [character(1)]
Defines if and how to sample the random intercepts for observations whose
group level was not present in the original data. The options are * "none" (the
default) which will signal an error if new levels are encountered. * "bootstrap"
which will randomly draw from the posterior samples of the random intercepts
across all original levels. * "gaussian" which will randomly draw from a gaus-
sian distribution using the posterior samples of the random intercept standard
deviation. * "original" which will randomly match each new level to one of
the original levels. The posterior samples of the random intercept of the matched
levels will then be used for the new levels. This argument is ignored if model
does not contain random intercepts.

global_fixed [logical(1)]
If FALSE (the default), the first non-fixed time point is counted from the the
first non-NA observation for each group member separately. Otherwise, the first
non-fixed time point is counted from the first time point globally. If there are no
groups, then the options are equivalent.

n_draws [integer(1)]
Number of posterior samples to use, default is NULL which uses all samples.

expand [logical(1)]
If TRUE (the default), the output is a single data.frame containing the original
newdata and the predicted values. Otherwise, a list is returned with two com-
ponents, simulated and observed, where the first contains only the predicted
values, and the second contains the original newdata. Setting expand to FALSE
can help conserve memory because newdata is not replicated n_draws times in
the output. This argument is ignored if funs are provided.

df [logical(1)]
If TRUE (default) the output consists of data.frame objects, and data.table
objects otherwise.

... Ignored.

Details

Note that forecasting (i.e., predictions for time indices beyond the last time index in the original
data) is not supported by the dynamite package. However, such predictions can be obtained by
augmenting the original data with NA values before model estimation.

Value

A data.frame containing the predicted values or a list of two data.frames. See the expand
argument for details. Note that the .draw column is not the same as .draw from as.data.frame
and as_draws methods as predict uses permuted samples. A mapping between these variables
can be done using information in object$stanfit@sim$permutation.

print.lfo 43

Examples

predict(gaussian_example_fit, type = "response", n_draws = 2L)

Simulate from the prior predictive distribution

f <- obs(y ~ lag(y) + varying(~ -1 + x), "gaussian") +
splines(df = 10, noncentered = TRUE)

Create data with missing observations
Note that due to the lagged term in the model,
we need to fix the first time point
d <- data.frame(y = c(0, rep(NA, 49)), x = rnorm(50), time = 1:50)

suppress warnings due to the lack of data
suppressWarnings(

priors <- get_priors(f, data = d, time = "time")
)

modify default priors which can produce exploding behavior when used
without data
priors$prior <- c(

"normal(0, 1)",
"normal(0.6, 0.1)",
"normal(-0.2, 0.5)",
"normal(0.2, 0.1)",
"normal(0.5, 0.1)"

)

samples from the prior conditional on the first time point and x
fit <- dynamite(

dformula = f,
data = d,
time = "time",
verbose = FALSE,
priors = priors,
chains = 1

)

simulate new data
pp <- predict(fit)

ggplot2::ggplot(pp, ggplot2::aes(time, y_new, group = .draw)) +
ggplot2::geom_line(alpha = 0.1) +
ggplot2::theme_bw()

print.lfo Print the results from the LFO

44 random

Description

Prints the summary of the leave-future-out cross-validation.

Usage

S3 method for class 'lfo'
print(x, ...)

Arguments

x x [lfo]
Output from lfo function.

... Ignored.

Value

Returns x invisibly.

Examples

this gives warnings due to the small number of iterations
suppressWarnings(lfo(gaussian_example_fit, L = 20))

random Define Random Intercepts for the Dynamite Model.

Description

This function can be used as part of dynamiteformula() to define (correlated) random intercepts
for each group.

Usage

random(responses = NULL, correlated = TRUE, noncentered = TRUE)

Arguments

responses [character()]
Names of the responses for which the random intercepts should be defined. De-
fault is all responses defined with obs, except categorical response, which does
not (yet) support random intercepts.

correlated [logical(1)]
If TRUE (the default), correlations of intercepts within a group (i.e., between
responses) are modeled so that the intercepts follow a multivariate normal dis-
tribution.

splines 45

noncentered [logical(1)]
If TRUE (the default), use a noncentered parameterization for random intercepts.
Try changing this if you encounter divergences or other problems in sampling.

Details

With a large number of time points these intercepts can become challenging sample with default
priors. This is because with large group sizes the group-level intercepts tend to be behave similarly
to fixed group-factor variable so the model becomes overparameterized given these and the common
intercept term. Another potential cause for sampling problems is relatively large variation in the
intercepts (large sigma_nu) compared to the sampling variation (sigma) in the Gaussian case.

Value

An object of class random.

Examples

three channel model with correlated random effects for responses x and y
obs(y ~ 1, family = "gaussian") +

obs(x ~ 1, family = "poisson") +
obs(z ~ 1, family = "gaussian") +
random(responses = c("y", "x"), correlated = TRUE)

splines Define the B-splines Used for the Time-varying Coefficients of the
Model.

Description

This function can be used as part of dynamiteformula() to define the splines used for the time-
varying coefficients δ.

Usage

splines(
df = NULL,
degree = 3L,
lb_tau = 0,
noncentered = FALSE,
shrinkage = FALSE,
override = FALSE

)

46 splines

Arguments

df [integer(1)]
Degrees of freedom, i.e., the total number of spline coefficients. See splines::bs().
Note that the knots are always defined as an equidistant sequence on the interval
starting from the first non-fixed time point to the last time point in the data. See
dynamiteformula() for more information on fixed time points. Should be an
(unrestricted) positive integer.

degree [integer(1)]
See splines::bs(). Should be an (unrestricted) positive integer.

lb_tau [numeric()]
Hard constraint(s) on the lower bound of the standard deviation parameters τ
of the random walk priors. Can be useful in avoiding divergences in some
cases. See also noncentered argument. Can be a single positive value, or vector
defining the lower bound separately for each channel, even for channels without
varying effects. The ordering is based on the order of channel definitions in the
dynamiteformula.

noncentered [logical()]
If TRUE, use a noncentered parameterization for the spline coefficients. Default
is FALSE. Try changing this if you encounter divergences or other problems in
sampling for example when simulating from prior predictive distribution. Can
be a single logical value, or vector of logical values, defining the parameteriza-
tion separately for each channel, even for channels without varying effects.

shrinkage [logical(1)]
If TRUE, a common global shrinkage parameter ξ is used for the splines so that
the standard deviation of the random walk prior is of the spline coefficients is
ξτ . Default is FALSE. This is an experimental feature and not tested comprehen-
sively.

override [logical(1)]
If FALSE (the default), an existing definition for the splines will not be overridden
by another call to splines(). If TRUE, any existing definitions will be replaced.

Value

An object of class splines.

Examples

Two channel model with varying effects, with explicit lower bounds for the
random walk prior standard deviations, with noncentered parameterization
for the first channel and centered for the second channel.
obs(y ~ 1, family = "gaussian") + obs(x ~ 1, family = "gaussian") +

lags(type = "varying") +
splines(

df = 20, degree = 3, lb_tau = c(0, 0.1),
noncentered = c(TRUE, FALSE)

)

update.dynamitefit 47

update.dynamitefit Update Dynamite Model

Description

Update Dynamite Model

Usage

S3 method for class 'dynamitefit'
update(
object,
dformula = NULL,
data = NULL,
priors = NULL,
recompile = NULL,
...

)

Arguments

object [dynamitefit]
The model fit object.

dformula [dynamiteformula]
Updated model formula. By default the original formula is used.

data [data.frame, tibble::tibble, or data.table::data.table]
Data for the updated model. By default original data is used.

priors [data.frame]
Updated priors. By default the priors of the original model are used.

recompile [logical(1)]
Should the model be recompiled? If NULL (default), tries to avoid recompilation.
Recompilation is forced when the model formula or priors are changed, or if the
new data contains missing values in a channel which did not contain missing
values in the original data. Recompilation is also forced in case the backend
previous or new backend is cmdstanr.

... Additional parameters to dynamite.

Value

Updated dynamitefit object.

Examples

Not run:
re-estimate the example fit without thinning:
As the model is compiled on Windows, this will fail on other platforms

48 update.dynamitefit

if (.Platform$OS.type == "windows") {
fit <- update(gaussian_example_fit, thin = 1)

}

End(Not run)

Index

∗ datasets
categorical_example, 9
categorical_example_fit, 10
gaussian_example, 20
gaussian_example_fit, 21
latent_factor_example, 26
latent_factor_example_fit, 27
multichannel_example, 32
multichannel_example_fit, 32

+.dynamiteformula (dynamiteformula), 16

as.data.frame(), 8
as.data.frame.dynamitefit, 3
as.data.frame.dynamitefit(), 7, 9, 13, 14
as.data.table

(as.data.table.dynamitefit), 7
as.data.table.dynamitefit, 7
as_draws (as_draws_df.dynamitefit), 8
as_draws(), 5
as_draws_df (as_draws_df.dynamitefit), 8
as_draws_df.dynamitefit, 8
aux (dynamiteformula), 16

bayesplot::mcmc_combo, 35, 36

categorical_example, 9
categorical_example_fit, 10
coef.dynamitefit, 10
confint.dynamitefit, 12

dynamite, 12
dynamite(), 3, 8, 22–24
dynamite-package, 3
dynamiteformula, 16
dynamiteformula(), 3, 13, 22–25, 28, 44–46

fitted.dynamitefit, 19
formula.dynamitefit (dynamite), 12

gaussian_example, 20
gaussian_example_fit, 21

get_code, 22
get_data, 23
get_priors, 24
get_priors(), 14
ggplot2::facet_wrap(), 38, 40

lags, 25
lags(), 18
latent_factor_example, 26
latent_factor_example_fit, 27
lfactor, 28
lfo, 29
loo (loo.dynamitefit), 30
loo.dynamitefit, 30
loo::loo(), 31

mcmc_diagnostics, 31
multichannel_example, 32
multichannel_example_fit, 32

ndraws (ndraws.dynamitefit), 33
ndraws.dynamitefit, 33
nobs.dynamitefit, 34

obs (dynamiteformula), 16

plot.dynamitefit, 35
plot.lfo, 36
plot_betas, 37
plot_deltas, 37
plot_lambdas, 38
plot_nus, 39
plot_psis, 40
posterior::default_convergence_measures(),

31
predict.dynamitefit, 40
predict.dynamitefit(), 19
print.dynamitefit (dynamite), 12
print.dynamiteformula

(dynamiteformula), 16
print.lfo, 43

49

50 INDEX

random, 44
random(), 18
rstan::check_hmc_diagnostics(), 31
rstan::sampling(), 15

splines, 45
splines::bs(), 46
stats::model.matrix.lm(), 13, 22–24
summary.dynamitefit (dynamite), 12

update.dynamitefit, 47

	dynamite-package
	as.data.frame.dynamitefit
	as.data.table.dynamitefit
	as_draws_df.dynamitefit
	categorical_example
	categorical_example_fit
	coef.dynamitefit
	confint.dynamitefit
	dynamite
	dynamiteformula
	fitted.dynamitefit
	gaussian_example
	gaussian_example_fit
	get_code
	get_data
	get_priors
	lags
	latent_factor_example
	latent_factor_example_fit
	lfactor
	lfo
	loo.dynamitefit
	mcmc_diagnostics
	multichannel_example
	multichannel_example_fit
	ndraws.dynamitefit
	nobs.dynamitefit
	plot.dynamitefit
	plot.lfo
	plot_betas
	plot_deltas
	plot_lambdas
	plot_nus
	plot_psis
	predict.dynamitefit
	print.lfo
	random
	splines
	update.dynamitefit
	Index

