Package 'elasdics'

December 9, 2022

Type Package

Title Elastic Analysis of Sparse, Dense and Irregular Curves

Version 1.1.1

Author Lisa Steyer <lisa.steyer@hu-berlin.de>

Maintainer Lisa Steyer <lisa.steyer@hu-berlin.de>

Description Provides functions to align curves and to compute mean curves based on the elastic distance defined in the square-root-velocity framework. For more details on this framework see Srivastava and Klassen (2016, <doi:10.1007/978-1-4939-4020-2>). For more theoretical details on our methods and algorithms see Steyer et al. (2021, <arXiv:2104.11039>).

License GPL-3

Encoding UTF-8

Imports splines, stats, numDeriv

RoxygenNote 7.2.2

Suggests testthat, covr

NeedsCompilation no

Repository CRAN

Date/Publication 2022-12-09 18:50:06 UTC

R topics documented:

lign_curves
center_curve
compute_elastic_mean
elasdics
ind_optimal_t
ind_optimal_t_discrete
ind_optimal_t_discrete_closed
it_elastic_regression
it_mean
it_mean_closed

align_curves

get_evals	. 10
get_srv_from_points	. 11
optimise_one_coord_analytic	. 12
optimise_one_coord_analytic_closed	. 13
plot.aligned_curves	. 13
plot.elastic_mean	. 14
plot.elastic_reg_model	. 15
predict.elastic_reg_model	. 15
project_curve_on_closed	. 16
srvf_to_curve	. 17
	18

Index

align_curves Align two curves measured at discrete points

Description

Finds the optimal reparametrization of the second curve (stored in data_curve2) to the first one (stored in data_curve1) with respect to the elastic distance. Constructor function for class aligned_curves.

Usage

```
align_curves(data_curve1, data_curve2, closed = FALSE, eps = 0.01)
```

Arguments

data_curve1	data.frame with observed points in each row. Each variable is one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
data_curve2	same as data_curve1
closed	TRUE if the curves should be treated as closed.
eps	convergence tolerance

Value

an object of class aligned_curves, which is a list with entries

data_curve1	data_curve1 with parametrization variable t	
data_curve2_aligned		
	data_curve2 with initial parametrization variable t and optimal parametrization t_optim	
elastic_dist	elastic distance between curve1 and curve2	
closed	TRUE if the curves should have been treated as closed.	

center_curve

Examples

```
#open curves
data_curve1 <- data.frame(x1 = c(1, 0.5, -1, -1), x2 = c(1, -0.5, -1, 1))
data_curve2 <- data.frame(x1 = c(0.1,0.7)*sin(1:6), x2 = cos(1:6))
aligned_curves <- align_curves(data_curve1, data_curve2)
plot(aligned_curves)
#different parametrization of the first curve
data_curve1$t <- 0:3/3
align_curves(data_curve1, data_curve2)
#closed curves
data_curve1 <- data.frame(x1 = sin(0:12/5), x2 = cos(0:12/5))
data_curve2 <- data.frame(x1 = c(1, 0.5, -1, -1), x2 = c(1, -0.5, -1, 1))
aligned_curves_closed <- align_curves(data_curve1, data_curve2, closed = TRUE)
plot(aligned_curves_closed, asp = 1)
```

center_curve

Centers curves for plotting

Description

Centers curves for plotting

Usage

```
center_curve(data_curve)
```

Arguments

data_curve curve data

Value

a data.frame with evaluations of the curve centered at the origin

compute_elastic_mean Compute a elastic mean for a collection of curves

Description

Computes a Fréchet mean for the curves stored in data_curves) with respect to the elastic distance. Constructor function for class elastic_mean.

Usage

```
compute_elastic_mean(
  data_curves,
  knots = seq(0, 1, len = 5),
  type = c("smooth", "polygon"),
  closed = FALSE,
  eps = 0.01,
  pen_factor = 100,
  max_iter = 50
)
```

Arguments

data_curves	list of data.frames with observed points in each row. Each variable is one coor- dinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
knots	set of knots for the mean spline curve
type	if "smooth" linear srv-splines are used which results in a differentiable mean curve if "polygon" the mean will be piecewise linear.
closed	TRUE if the curves should be treated as closed.
eps	the algorithm stops if L2 norm of coefficients changes less
pen_factor	penalty factor forcing the mean to be closed
<pre>max_iter</pre>	maximal number of iterations

Value

an object of class elastic_mean, which is a list with entries

type	"smooth" if mean was modeled using linear srv-splines or "polygon" if constant srv-splines are used
coefs	spline coeffiecients
knots	spline knots
data_curves	list of data.frames with observed points in each row. First variable t gives the initial parametrization, second variable t_optim the optimal parametrization when the curve is aligned to the mean.
closed	TRUE if the mean is supposed to be a closed curve.

Examples

```
curve <- function(t){
   rbind(t*cos(13*t), t*sin(13*t))
}
set.seed(18)
data_curves <- lapply(1:4, function(i){
   m <- sample(10:15, 1)
   delta <- abs(rnorm(m, mean = 1, sd = 0.05))</pre>
```

4

elasdics

elasdics

elasdics: elastic analysis of sparse, dense and irregular curves.

Description

The elasdics package provides functions to align observed curves and to compute elastic means for collections of curves.

Main functions

Align two observed curves: align_curves Compute a mean for a set of observed curves: compute_elastic_mean

find_optimal_t Optimal alignment to a smooth curve

Description

Finds optimal alignment for a discrete open srv curve to a smooth curve

Usage

```
find_optimal_t(srv_curve, s, q, initial_t = s, eps = 10 * .Machine$double.eps)
```

srv_curve	srv transformation of the smooth curve, needs to be vectorized
S	time points for q, first has to be 0, last has to be 1
q	square root velocity vectors, one less than time points in s
initial_t	starting value for the optimization algorithm
eps	convergence tolerance

Value

optimal time points for q, without first value 0 and last value 1, optimal time points have the distance of the observation to the srv_curve as an attribute

find_optimal_t_discrete

Finds optimal alignment for discrete open curves

Description

Finds optimal aligned time points for srv curve q to srv curve p using coordinate wise optimization.

Usage

```
find_optimal_t_discrete(r, p, s, q, initial_t = s, eps = 10^-3)
```

Arguments

r	time points for p, first has to be 0, last has to be 1
р	square root velocity vectors, one less than time points in r
S	time points for q, first has to be 0, last has to be 1
q	square root velocity vectors, one less than time points in s
initial_t	starting value for the optimization algorithm
eps	convergence tolerance

Value

optimal time points for q, without first value 0 and last value 1 optimal time points have the distance of the observation to the srv_curve as an attribute

find_optimal_t_discrete_closed

```
Finds optimal alignment for discrete closed curves
```

Description

Finds optimal aligned time points for srv curve q to srv curve p using coordinate wise optimization.

Usage

```
find_optimal_t_discrete_closed(r, p, s, q, initial_t, eps = 10^-3)
```

Arguments

r	time points for p, first is last - 1
р	square root velocity vectors, one less than time points in r
S	time points for q, first is last - 1
q	square root velocity vectors, one less than time points in s
initial_t	starting value for the optimization algorithm
eps	convergence tolerance

Value

optimal time points for q, first is last -1

```
fit_elastic_regression
```

Compute a elastic mean for a collection of curves

Description

Computes a Fréchet mean for the curves stored in data_curves with respect to the elastic distance. Constructor function for class elastic_reg_model.

Usage

```
fit_elastic_regression(
   formula,
   data_curves,
   x_data,
   knots = seq(0, 1, 0.2),
   type = "smooth",
   closed = FALSE,
   max_iter = 10,
   eps = 0.001
)
```

formula	an object of class "formula" of the form data_curves ~".
data_curves	list of data.frames with observed points in each row. Each variable is one coor- dinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
x_data	a data.frame with covariates.
knots	set of knots for the parameter curves of the regression model
type	if "smooth" linear srv-splines are used which results in a differentiable mean curve if "polygon" the mean will be piecewise linear.
closed	TRUE if the curves should be treated as closed.
max_iter	maximal number of iterations
eps	the algorithm stops if L2 norm of coefficients changes less

Value

an object of class elastic_reg_model, which is a list with entries

type	"smooth" if linear srv-splines or "polygon" if constant srv-splines were used
coefs	spline coefficcients
knots	spline knots
data_curves	list of data.frames with observed points in each row. First variable t gives the initial parametrization, second variable t_optim the optimal parametrization when the curve is aligned to the model prediction.
closed	TRUE if the regression model fitted closed curves.

Examples

fit_mean

Description

Fits an elastic mean for open curves. Is usually called from compute_elastic_mean.

Usage

fit_mean(srv_data_curves, knots, max_iter, type, eps)

Arguments

srv_data_curves

	list of data.frames with srv vectors in each row. Usually a result of a call to get_srv_from_points
knots	set of knots for the mean spline curve
<pre>max_iter</pre>	maximal number of iterations
type	if "smooth" linear srv-splines are used which results in a differentiable mean curve if "polygon" the mean will be piecewise linear.
eps	the algorithm stops if L2 norm of coefficients changes less

Value

a list with entries

type	"smooth" or "polygon"
coefs	coefs srv spline coefficients of the estimated mean
knots	spline knots
t_optims	optimal parametrization

fit_mean_closed	Fitting function for open curves	
-----------------	----------------------------------	--

Description

Fits an elastic mean for open curves. Is usually called from compute_elastic_mean.

Usage

fit_mean_closed(srv_data_curves, knots, max_iter, type, eps, pen_factor)

srv_data_curve	S
	list of data.frames with srv vectors in each row. Usually a result of a call to get_srv_from_points
knots	set of knots for the mean spline curve
<pre>max_iter</pre>	maximal number of iterations
type	if "smooth" linear srv-splines are used which results in a differentiable mean curve
eps	the algorithm stops if L2 norm of coefficients changes less
pen_factor	penalty factor forcing the mean to be closed if "polygon" the mean will be piece- wise linear.

Value

a list with entries	
type	"smooth" or "polygon"
coefs	coefs srv spline coefficients of the estimated mean
knots	spline knots
t_optims	optimal parametrization
shift_idxs	index of the starting point of the closed curve after alignment

get_	evals

Evaluate a curve on a grid

Description

Evaluate a curve on a grid

Usage

```
get_evals(curve, t_grid = NULL, ...)
## S3 method for class 'data.frame'
get_evals(curve, t_grid = NULL, ...)
## S3 method for class 'elastic_mean'
get_evals(curve, t_grid = NULL, centering = TRUE, ...)
```

Arguments

curve	a one parameter function which is to be evaluated on a grid
t_grid	the curve is evaluated at the values in t_grid, first value needs to be 0, last value needs to be 1. If t_grid = NULL, a default regular grid with grid length 0.01 is chosen
	other arguments
centering	TRUE if curves shall be centered

10

get_srv_from_points

Value

a data.frame with evaluations of the curve at the values in t_grid in its rows.

Examples

```
curve <- function(t){c(t*sin(10*t), t*cos(10*t))}
plot(get_evals(curve), type = "b")</pre>
```

get_srv_from_points Helper functions for curve data measured at discrete points

Description

Compute the square-root-velocity transformation or the parametrization with respect to arc length for a curve observed at discrete points.

Usage

```
get_srv_from_points(data_curve)
```

get_points_from_srv(srv_data)

get_arc_length_param(data_curve)

Arguments

data_curve	A data.frame with observed points on a curve. Each row is one point, each
	variable one coordinate direction. If there is a variable t, it is treated as the time
	parametrization, not as an additional coordinate.
srv_data	A data.frame with first column t corresponding to the parametrization and square-root-velocity vectors in the remaining columns.

Value

get_srv_from_points returns a data.frame with first column t corresponding to the parametrization and square-root-velocity vectors in the remaining columns. If no parametrization is given, the curve will be parametrized with respect to arc length. This parametrization will be computed by a call to get_arc_length_param as well.

Functions

- get_srv_from_points(): Compute square-root-velocity transformation for curve data measured at discrete points. The inverse transformation can be computed with get_points_from_s
- get_points_from_srv(): The inverse transformation to get_srv_from_points. Transforms square-root-velocity data to points representing a curve (with no parametrization).
- get_arc_length_param(): Compute arc length parametrization.

Examples

```
data_curve1 <- data.frame(x1 = 1:6*sin(1:6), x2 = cos(1:6))
get_arc_length_param(data_curve1) #same parametrization as in
get_srv_from_points(data_curve1)

data_curve2 <- data.frame(t = seq(0,1, length = 6), data_curve1)
plot(data_curve2[,2:3], type = "1", xlim = c(-6, 2), ylim = c(-2, 1))
srv_data <- get_srv_from_points(data_curve2)
#back transformed curve starts at (0,0)
lines(get_points_from_srv(srv_data), col = "red")</pre>
```

optimise_one_coord_analytic Does optimization in one parameter direction

Description

Does optimization in one parameter direction

Usage

```
optimise_one_coord_analytic(t, i, r, p, s, q)
```

Arguments

t	current time points, first has to be 0, last has to be 1
i	index of t that should be updated
r	time points for p, first has to be 0, last has to be 1
р	square root velocity vectors, one less than time points in r
S	time points for q, first has to be 0, last has to be 1
q	square root velocity vectors, one less than time points in s

Value

optimal time points for q with respect to optimization only in the i-th coordinate direction

12

optimise_one_coord_analytic_closed *Does optimization in one parameter direction*

Description

Does optimization in one parameter direction

Usage

```
optimise_one_coord_analytic_closed(t, i, r, p, s, q)
```

Arguments

t	current time points, first has to be 0, last has to be 1
i	index of t that should be updated
r	time points for p, first is last - 1
р	square root velocity vectors, one less than time points in r
S	time points for q, first is last - 1
q	square root velocity vectors, one less than time points in s

Value

optimal time points for q with respect to optimization only in the i-th coordinate direction

plot.aligned_curves Plot method for aligned curves

Description

Plots objects of class aligned_curves. Points of same color correspond after the second curve is optimally aligned to the first curve.

Usage

S3 method for class 'aligned_curves'
plot(x, points_col = rainbow, ...)

Arguments

х	object of class aligned_curves, usually a result of a call to align_curves
points_col	which color palette is used for points on the curves, default is rainbow, see rainbow for further options.
	further plotting parameters.

Value

No value

See Also

For examples see documentation of align_curves.

plot.elastic_mean Plot method for planar elastic mean curves

Description

Plots objects of class elastic_mean.

Usage

S3 method for class 'elastic_mean'
plot(x, asp = 1, col = "red", ...)

Arguments

х	object of class elastic_mean, usually a result of a call to compute_elastic_mean
asp	numeric, giving the aspect ratio of the two coordinates, see plot.window for details.
col	color of the mean curve.
	further plotting parameters.

Value

No value

See Also

For examples see documentation of compute_elastic_mean.

plot.elastic_reg_model

Plot method for planar elastic regression models

Description

Plots objects of class elastic_reg_model.

Usage

```
## S3 method for class 'elastic_reg_model'
plot(x, asp = 1, col = "red", ...)
```

Arguments

х	object of class elastic_reg_model, usually a result of a call to fit_elastic_regression
asp	numeric, giving the aspect ratio of the two coordinates, see plot.window for details.
col	color of the predicted curves.
	further plotting parameters.

Value

No value

See Also

For examples see documentation of fit_elastic_regression.

predict.elastic_reg_model

Predict method for elastic regression models

Description

predicted curves for elastic regression model objects.

Usage

```
## S3 method for class 'elastic_reg_model'
predict(object, newdata = NULL, t_grid = seq(0, 1, 0.01), ...)
```

object	object of class elastic_reg_model, usually a result of a call to fit_elastic_regression
newdata	an optional data.frame in which to look for variables with which to predict. If not given, the fitted values are used.
t_grid	grid on which the predicted curves are evaluated.
	further arguments passed to or from other methods.

Value

a list of data.frames with predicted curves

See Also

For examples see documentation of fit_elastic_regression.

project_curve_on_closed

Close open curve via projection on derivative level.

Description

Close open curve via projection on derivative level.

Usage

```
project_curve_on_closed(data_curve)
```

Arguments

data_curve data.frame with values of the curve.

Value

a data.frame with closed curve.

srvf_to_curve

Description

Re-transform srv curve back to curve

Usage

srvf_to_curve(t, srv_curve)

Arguments

t	time points at which the resulting curve shall be evaluated.
srv_curve	srv curve as a function of one parameter, needs to be vectorized.

Value

a matrix with curve evaluations at time points t in its columns, rows correspond to coordinate directions

Index

```
align_curves, 2, 5, 13, 14
center_curve, 3
compute_elastic_mean, 3, 5, 9, 14
elasdics, 5
find_optimal_t, 5
find_optimal_t_discrete, 6
find_optimal_t_discrete_closed, 7
fit_elastic_regression, 7, 15, 16
fit_mean, 9
fit_mean_closed, 9
get_arc_length_param
        (get_srv_from_points), 11
\texttt{get\_evals}, \textbf{10}
get_points_from_srv
        (get_srv_from_points), 11
get_srv_from_points, 9, 10, 11
optimise_one_coord_analytic, 12
optimise_one_coord_analytic_closed, 13
plot.aligned_curves, 13
plot.elastic_mean, 14
plot.elastic_reg_model, 15
plot.window, 14, 15
predict.elastic_reg_model, 15
project_curve_on_closed, 16
rainbow, 13
srvf_to_curve, 17
```