Package 'erah'

October 13, 2022

Type Package
Title Automated Spectral Deconvolution, Alignment, and Metabolite Identification in GC/MS-Based Untargeted Metabolomics
Version 1.1.2
Date 2021-05-10
Author Xavier Domingo- Almenara [aut, cre, cph], Jasen P. Finch [ctb], Sara Samino [aut], Maria Vinaixa [aut], Alexan- dre Perera [aut, ths], Jesus Brezmes [aut, ths], Oscar Yanes [aut, ths]
Depends Rcpp, R (>= 3.5.0)
Imports ncdf4, nnls, igraph, signal, quantreg, XML, methods
Suggests R.rsp, mzR
Maintainer Xavier Domingo-Almenara <xavier.domingoa@eurecat.org></xavier.domingoa@eurecat.org>
Description Automated compound deconvolution, alignment across samples, and identification of metabolites by spectral library matching in Gas Chromatography - Mass spectrometry (GC-MS) untargeted metabolomics. Outputs a table with compound names, matching scores and the integrated area of the compound for each sample. Package implementation is described in Domingo-Almenara et al. (2016) <doi:10.1021 acs.analchem.6b02927="">.</doi:10.1021>
License GPL (>= 2)
<pre>URL https://scholar.google.es/citations?user=i-0XFxkAAAAJ&hl=en</pre>
Repository CRAN
LazyData yes
NeedsCompilation yes
Encoding UTF-8
Date/Publication 2021-05-11 04:20:17 UTC
R topics documented:
alignComp

2 alignComp

alig	nComp Al	lignment of compounds	
Index			3
	snow.MetaboSet		30
	•		
	=		
		ass	
	1 1		
	•		
	•		
	plotAlign		
	phenoData		2
	newExp		2
	mslib		1
	metaData		1
	MetaboSet-class		1
	importMSP		1
	-		
	-		
	=		1
	•		1
	-		
	_		1
	1		

Description

Alignment of GC-MS deconvolved compounds

Usage

alignComp(Experiment, alParameters, blocks.size=NULL)

Arguments

Experiment	A 'MetaboSet' S4 object containing the experiment data previously created by		
	newExp and deconvolved by deconvolveComp.		
alParameters	The software alignment parameters object previously created by setAlPar		
blocks.size	For experiment of more than 1000 samples, and depending on the computer,		
	alignment can be conducted by block segmentation. See details.		

alignList 3

Details

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")

For experiments containing more than 100 (Windows) or 1000 (Mac or Linux) samples (numbers depending on the computer resoures and sample type). In those cases alignment can be conducted by block segmentation. For an experiment of e.g. 1000 samples, the block.size can be set to 100, so the alignment will perform as multiple (ten) 100-samples experiments, to later align them into a single experiment.

This parameter is designed to solve the typical problem that appear when aligning under Windows operating system: "Error: cannot allocate vector of size XX Gb". Such a problem will not appear with Mac or Linux, but several hours of computation are expected when aligning a large number of samples. Using block segmentation provides a greatly improved run-time performance.

Value

The function returns an updated S4 'MetaboSet' class, where the GC-MS samples have been now aligned.

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] Xavier Domingo-Almenara, et al., eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC-MS-Based Metabolomics. Analytical Chemistry (2016). DOI: 10.1021/acs.analchem.6b02927

See Also

newExp, setDecPar, deconvolveComp

alignList

Alignment list

Description

The list of aligned metabolites and their relative quantification for each sample in a given experiment

Usage

```
alignList(object, by.area=TRUE)
```

4 compInfo

Arguments

object A 'MetaboSet' S4 object containing the experiment data. The experiment has to

be previously deconvolved, aligned and (optionally) identified.

by area if TRUE (default), eRah outputs quantification by the area of the deconvolved

chromatographic peak of each compound. If FALSE, eRah outputs the intensity

of the deconvolved chromatographic peak.

Details

Returns an alignment table containing the list of aligned metabolites and their relative quantification for each sample in a given experiment.

Value

alignList returns a data frame object:

AlignID The unique Tag for found metabolite by eRah. Each metabolite found by eRah

for a given experiment has an unique AlignID tag number.

Factor the Factor tag name. Each metabolite has an unique 'Factor' name to enhance

visual interpretation.

tmean The mean compound retention time.

FoundIn The number of samples in which the compound has been detected (the number

of samples where the compound area is non-zero).

Quantification As many columns as samples and as many rows as metabolites, where each

column name has the name of each sample.

See Also

idList, dataList

Compound

Description

Displays basic information of a compound in the MS library.

Usage

```
compInfo(comp.id, id.database=mslib)
```

Arguments

comp.id The DB.Id number of the compound.

id.database The mass-spectra library to be compared with the empirical spectra. By default,

the MassBank - Mass Bank of North America (MoNa) database are employed

(mslib object).

computeRIerror 5

Details

Returns details on a given compound such as the synonyms, CAS, KEGG, retention index, among others.

See Also

```
findComp
```

Examples

```
# finding proline
findComp("proline")

#we see that proline 2TMS has the DB.Id number 42, then:
compInfo(42)
```

computeRIerror

Retention Index Error Computation

Description

Computes the retention indexes (RI) errors given an internal or external calibration curve

Usage

```
computeRIerror(Experiment, id.database=mslib, reference.list,
ri.error.type=c('relative','absolute'), plot.results=TRUE)
```

Arguments

Experiment	A 'MetaboSet' S4 object containing the experiment data. The experiment has to be previously deconvolved, aligned and identified.
id.database	The mass-spectra library to be compared with the empirical spectra. By default, the MassBank - Mass Bank of North America (MoNa) database are employed (mslib object).
reference.list	The list containing the reference data to create the calibration curve (Internal or external calibration). Please see the Vignette and Examples.
ri.error.type	Specify wether absolute or relative (default) RI error is to be computed.
plot.results	Shows the RI/RT graphic.

Value

Returns an 'Experiment' object. To visualize the output use: idList() function.

6 createdt

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] Xavier Domingo-Almenara, et al., eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC-MS-Based Metabolomics. Analytical Chemistry (2016). DOI: 10.1021/acs.analchem.6b02927

See Also

```
idList, dataList
```

Examples

```
## Not run:
#Option A: (The RT and RI of an external calibration is provided)
ex <- computeRIerror(ex, mslib, reference.list=list(RT=c(4.4683, 7.4402, 8.8121, 11.5103),
RI=c(1081.68, 1251.31, 1346.8, 1456.8)))
id.list <- idList(ex)

#Option B: (The AlignID of internally identified metabolites by
# eRah are provided, and used as a reference.)

ex <- computeRIerror(ex, mslib, reference.list=list(AlignID = c(45,67,92,120)))
id.list <- idList(ex)

#Please, see Vignette for extended details.

## End(Not run)</pre>
```

createdt

Creating Experiment Tables

Description

eRah requieres of a instrumental and (optionally) phenotype .csv file for starting/creating a new eRah project/experiment. This function automatically creates the Phenoytpe and Instrumental data .csv files.

Usage

```
createdt(path)
```

Arguments

path

the path where the experiment-folder is (where the experiment samples are stored).

dataList 7

Details

The experiment has to been organized as follows: all the samples related to each class have to be stored in the same folder (one folder = one class), and all the class-folders in one folder, which is the experiment folder.

Two things have to be considered at this step: .csv files are different when created by American and European computers, so errors may raise due to that fact. Also, the folder containing the samples, must contain only folders. If the folder contains files (for example, already created .csv files), eRah will prompt an error.

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")

See Also

newExp

Examples

```
## Not run:
# Store all the raw data files in one different folder per class,
# and all the class-folders in one folder, which is the experiment
# folder. Then execute

createdt(path)
# where path is the experiment folder path.
# The experiment can be now startd by:

ex <- newExp(instrumental="path/DEMO_inst.csv",
phenotype="path/DEMO_pheno.csv", info="DEMO Experiment")

## End(Not run)</pre>
```

dataList

Data list

Description

The final eRah list of aligned and identified metabolites and their relative quantification for each sample in a given experiment

Usage

```
dataList(Experiment, id.database=mslib, by.area=TRUE)
```

8 dataList

Arguments

Experiment A 'MetaboSet' S4 object containing the experiment data. The experiment has to be previously deconvolved, aligned and identified.

id.database The mass-spectra library to be compared with the empirical spectra. By default,

the MassBank - Mass Bank of North America (MoNa) database are employed

(mslib object).

by area if TRUE (default), eRah outputs quantification by the area of the deconvolved

chromatographic peak of each compound. If FALSE, eRah outputs the intensity

of the deconvolved chromatographic peak.

Details

Returns an identification and alignment table containing the list of aligned and identified metabolites (names) and their relative quantification for each sample in a given experiment.

Value

alignList returns an S3 object:

AlignID The unique Tag for found metabolite by eRah. Each metabolite found by eRah

for a given experiment has an unique AlignID tag number.

tmean The mean compound retention time.

FoundIn The number of samples in which the compound has been detected (the number

of samples where the compound area is non-zero).

Name.X the name of the Xst/nd/rd... hit. idList return as many X (hits) as n.putative

selected with identifyComp.

MatchFactor.X The match factor/score of spectral similarity (spectral correlation).

DB.Id.X The identification number of the library. Each metbolite in the reference library

has a different DB.Id number.

CAS. X the CAS number of each identified metabolite.

Quantification As many columns as samples and as many rows as metabolites, where each

column name has the name of each sample.

See Also

idList, alignList

deconvolveComp 9

Description

Deconvolution of GC-MS data

Usage

```
deconvolveComp(Experiment, decParameters,
samples.to.process=NULL, down.sample=FALSE,
virtual.scans.ps=NULL)
```

Arguments

Experiment A 'MetaboSet' S4 object containing the experiment data previously created by

newExp.

decParameters The software deconvolution parameters object previously created by setDecPar

samples.to.process

Vector indicating which samples are to be processed.

points (according to the minimum peak width). This is to process longer chromatograms with wider peak widths (more than 20 seconds peak width and small

scans per second values). See details.

virtual.scans.ps

Manually correction of scans per second. When chromatograms are downsampled (too few scans per second, or too many), a virtual scans per second can be defined, and data interpolation will correct the data. However, reanalysis of

experimental data is advised.

Details

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")

eRah uses multivariate methods which run-time performance depend on the amount of data to be analyzed. When peaks are wide and the scans per second used for acquisition is too large, the number of points (scans) that define a peak might be too many, leading eRah to a poor run-time performance. To solve that, use down.sample=TRUE to allow eRah to define a peak with 10 seconds and analyze the data more efficiently

Value

The function returns an updated S4 'MetaboSet' class, where the GC-MS samples have been now deconvolved.

10 eRah_DB-class

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] Xavier Domingo-Almenara, et al., eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC-MS-Based Metabolomics. Analytical Chemistry (2016). DOI: 10.1021/acs.analchem.6b02927

See Also

```
newExp, setAlPar
```

Examples

```
## Not run:
# Deconvolve data from a created experiment by newExp().
ex <- newExp(instrumental="path")

# The following will set eRah for analyzing the chromatograms
# from minutes 5 to 15, and withouth taking into account the masses
# 35:69,73:75,147:149, with a minimum peak widht of 0.7 seconds.

ex.dec.par <- setDecPar(min.peak.width=0.7, min.peak.height=5000,
noise.threshold=500, avoid.processing.mz=c(35:69,73:75,147:149),
analysis.time=c(5,15))

# An now deconvolve the compounds in the samples:
ex <- deconvolveComp(ex, decParameters=ex.dec.par)

## End(Not run)</pre>
```

eRah_DB-class

Class "eRah_DB"

Description

The eRah_DB class contains the slots for storing and accessing a MS library.

Slots

name: The name of the stored library

version: The version of the stored library (and which is the database identifier, should be unique and used to check if is the database used in other experiments)

info: Character vector containing complementary information about the library.

database: A list of S3 objects, which each object contains the information on a different compound.

expClasses 11

Author(s)

Xavier Domingo-Almenara.

expClasses

Experiment classes

Description

The classes of a given experiment.

Usage

```
expClasses(object)
```

Arguments

object

A 'MetaboSet' S4 object containing the experiment.

Details

Returns the classes details of the experiment.

See Also

metaData, phenoData

export2CEF

Export spectra to CEF

Description

Export spectra to CEF format for comparison with the NIST library through MassHunter interface.

Usage

```
export2CEF(Experiment, export.id=NULL,
id.database = mslib, store.path=getwd())
```

Arguments

Experiment	A 'MetaboSet' S4 object containing the experiment.
export.id	If NULL, all the spectra in the experiment will be exported. Otherwise, only the AlignID in export.id will be exported.
id.database	The mass-spectra library used in the experiment.
store.path	The path where the converted files are to be exported.

12 findComp

	Export spectra to MSP	export2MSP
--	-----------------------	------------

Description

Export spectra to MSP format for comparison with the NIST library.

Usage

```
export2MSP(Experiment, export.id=NULL,
id.database = mslib, store.path=getwd(),
alg.version=1)
```

Arguments

Experiment	A 'MetaboSet' S4 object containing the experiment.
export.id	If NULL, all the spectra in the experiment will be exported. Otherwise, only the AlignID in export.id will be exported.
id.database	The mass-spectra library used in the experiment.
store.path	The path where the converted files are to be exported.
alg.version	Different algorithm implementations. Users have to chose what version works with their NIST MSearch or other software version. By default, alg.version is set to 1. If it not works, try setting alg.version to 2;).

findComp	Find a Compound

Description

Finds compounds in the MS library by Name, CAS or chemical formula.

Usage

```
findComp(name = NULL, id.database = mslib, CAS = NULL,
chem.form = NULL)
```

Arguments

name	The name of the compound to be found.
id.database	The mass-spectra library to be compared with the empirical spectra. By default, the MassBank - Mass Bank of North America (MoNa) database are employed (mslib object).
CAS	The CAS number of the compound to be found.
chem.form	The chemical formula of the compound to be found.

identifyComp 13

Value

findComp returns an S3 object:

DB. Id The identification number of the library. Each metbolite in the reference library

has a different DB.Id number.

Compound Name Compound Name.

CAS CAS number

Formula Chemical Formula.

See Also

compInfo

Examples

```
# finding proline
findComp("proline")
# be careful, exact matches are not supported,
# as well as special cases of partial searches, like these cases:
findComp("L-proline (2TMS)")
findComp("proline 2")
# which will not report any results despite being in the database
```

identifyComp

Identification of compounds

Description

Identification of compounds. Each empirical spectrum is compared against a ms library.

Usage

```
identifyComp(Experiment, id.database=mslib,
mz.range=NULL, n.putative=3)
```

Arguments

Experiment

A 'MetaboSet' S4 object containing the experiment data previously created by newExp, deconvolved by deconvolveComp and optionally aligned by align-Comp.

14 idList

The mass-spectra library to be compared with the empirical spectra. By default, the MassBank-[2] - Mass Bank of North America (MoNa) database are employed.

mz.range

The same as in alignComp. If specified already in alignComp, then there is no need to especify it again. If not, it has to be specified.

n.putative The number of hits (compound candidate names) to be returned for each spectrum found.

Value

The function returns an updated S4 'MetaboSet' class, where the GC-MS samples have been now aligned.

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] Xavier Domingo-Almenara, et al., eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC-MS-Based Metabolomics. Analytical Chemistry (2016). DOI: 10.1021/acs.analchem.6b02927

[2] MassBank: A public repository for sharing mass spectral data for life sciences, H. Horai, M. Arita, S. Kanaya, Y. Nihei, T. Ikeda, K. Suwa. Y. Ojima, K. Tanaka, S. Tanaka, K. Aoshima, Y. Oda, Y. Kakazu, M. Kusano, T. Tohge, F. Matsuda, Y. Sawada, M. Yokota Hirai, H. Nakanishi, K. Ikeda, N. Akimoto, T. Maoka, H. Takahashi, T. Ara, N. Sakurai, H. Suzuki, D. Shibata, S. Neumann, T. Iida, K. Tanaka, K. Funatsu, F. Matsuura, T. Soga, R. Taguchi, K. Saito and T. Nishioka, J. Mass Spectrom., 45 (2010) 703-714.

See Also

newExp, alignComp, setAlPar, setDecPar

idList Identification list

Description

The list of identified metabolites in a given experiment

Usage

idList(object, id.database=mslib)

importGMD 15

Arguments

object A 'MetaboSet' S4 object containing the experiment data. The experiment has to

be previously deconvolved, aligned and identified.

id. database The mass-spectra library to be compared with the empirical spectra. By default,

the MassBank - Mass Bank of North America (MoNa) database are employed

(mslib object).

Details

Returns an identification table containing the names, match scores, and other variables for a given experiment.

Value

idList returns an S3 object:

AlignID The unique Tag for found metabolite by eRah. Each metabolite found by eRah

for a given experiment has an unique AlignID tag number.

tmean The mean compound retention time.

Name.X the name of the Xst/nd/rd... hit. idList return as many X (hits) as n.putative

selected with identifyComp.

FoundIn The number of samples in which the compound has been detected (the number

of samples where the compound area is non-zero).

MatchFactor.X The match factor/score of spectral similarity (spectral correlation).

DB. Id. X The identification number of the library. Each metbolite in the reference library

has a different DB.Id number.

CAS. X the CAS number of each identified metabolite.

See Also

alignList, dataList

importGMD	Import MSP	files	from	GMD i	to R

Description

Import the Golm Metabolome Database.

Usage

```
importGMD(filename, DB.name, DB.version, DB.info,
type=c("VAR5.ALK","VAR5.FAME","MDN35.ALK", "MDN35.FAME"))
```

16 importMSP

Arguments

filename The filepath containing the GMD database file.

DB. name The name of the database (each user may chose its own name)

DB. version The version of the database (each user may chose its own version)

DB. info Some info about the database for further reference type The type of RI to be imported from the database

Details

For more details, please see the eRah manual

importMSP Import MSP files to R

Description

Import MS libraries in MSP format to eRah DB format.

Usage

```
importMSP(filename, DB.name, DB.version, DB.info)
```

Arguments

filename The filepath containing the MSP library file.

DB. name The name of the database (each user may chose its own name)

DB. version The version of the database (each user may chose its own version)

DB. info Some info about the database for further reference

Details

The MSP input file should look like:

Name: Metabolite_name

Formula: H2O MW: 666

ExactMass: 666.266106

CAS#: 11-22-3

DB#: 1

Comments: Metabolite_name reference standard

Num Peaks: XX

53 1; 54 2; 55 5; 56 2; 57 2;

58 14; 59 18; 60 1000; 61 2; 67 1; Name: Metabolite_name_2 Formula: H2O2 MW: 999 ExactMass: 999.266106 CAS#: 22-33-4 DB#: 2 Comments: Metabolite_name_"" reference standard Num Peaks: XX 66 10; 67 1000; 155 560; 156 800; 157 2; 158 14; 159 1; 160 100; 161 2; 167 1; OR Name: Metabolite_name Formula: H2O MW: 666 ExactMass: 666.266106 CASNO: 11-22-3 DB#: 1 Comment: Metabolite_name reference standard Num peaks: XX 53 1 54 2 55 5 Name: Metabolite_name_2 Formula: H2O2 MW: 999 ExactMass: 999.266106 CASNO: 22-33-4 DB#: 2 Comment: Metabolite_name_"" reference standard Num Peaks: XX 66 10 67 1000 155 560

18 metaData

Or combinations of both.

For more details, please see the eRah manual.

MetaboSet-class

Class "MetaboSet"

Description

The MetaboSet class is a single generic class valid for all sorts of metabolomic studies regardless of the experimental platform, the statistical processing and the annotation stage. It is the core operation class of eRah.

Slots

Info: Slot Info stores the general information of the experiment and the experimental platform used in the analysis of the biological samples.

Data: Slot Data contains either the raw data or the path of the files. It also contains the list of the selected features (deconvolved compounds). In the subslot Parameters it is saved the information regarding the feature selector algorithm (type, parameters, version...) and the experimental platform used.

MetaData: Slot MetaData has two slots. In the Instrumental slot it is saved a data frame with some mandatory fields (filename, date, time, sampleID) and optional fields related to the experimental platform (Column ID, Column Type, Ioniser,...). Slot Phenotypic contains a data frame with the sample and experimental information (phenotypes, longitudinal data,...).

Results: In the Results slot it is saved the information related to the statistical and identification results. The slot Parameters contains all the values of the parameters used in the identification and statistical functions. Slot Identification has the results of the identification process as well as the identification or/and annotation steps. The results of the statistical functions are saved in the Statistics slot.

Author(s)

Xavier Domingo-Almenara, Arnald Alonso and Francesc Fernandez-Albert.

metaData

Metadata

Description

Displays the Experiment metadata.

Usage

metaData(object)

mslib 19

Arguments

object

A 'MetaboSet' S4 object containing the experiment.

See Also

phenoData

mslib

MassBank Spectral Library

Description

The default mass spectral library of eRah, which is the MassBank repository.

Usage

data(mslib)

Details

This is the eRah default MS library, and automatically loaded with the eRah package. It contains almost 500 MS spectra. For details, see reference below.

Author(s)

The TOF-MS spectra were contributted by Kazusa DNA Research Institute, the Engineering Department of Osaka University and Plant Science Center of RIKEN.

MassBank (http://www.massbank.jp/)

References

[1] MassBank: A public repository for sharing mass spectral data for life sciences, H. Horai, M. Arita, S. Kanaya, Y. Nihei, T. Ikeda, K. Suwa. Y. Ojima, K. Tanaka, S. Tanaka, K. Aoshima, Y. Oda, Y. Kakazu, M. Kusano, T. Tohge, F. Matsuda, Y. Sawada, M. Yokota Hirai, H. Nakanishi, K. Ikeda, N. Akimoto, T. Maoka, H. Takahashi, T. Ara, N. Sakurai, H. Suzuki, D. Shibata, S. Neumann, T. Iida, K. Tanaka, K. Funatsu, F. Matsuura, T. Soga, R. Taguchi, K. Saito and T. Nishioka, J. Mass Spectrom., 45, 703-714 (2010)

See Also

compInfo

20 newExp

|--|

Description

Sets a new experiment for eRah

Usage

```
newExp(instrumental, phenotype=NULL, info=character())
```

Arguments

instrumental The path where the instrumental .csv file is located.

phenotype (optional) The path where the phenotypic .csv file is located.

info Experiment description

Details

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")

Value

newExp returns an S4 object of the class 'MetaboSet'.

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] Xavier Domingo-Almenara, et al., eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC-MS-Based Metabolomics. Analytical Chemistry (2016). DOI: 10.1021/acs.analchem.6b02927

See Also

```
createdt, setDecPar, setAlPar
```

Examples

```
## Not run:
# Store all the raw data files in one different folder per class,
# and all the class-folders in one folder, which is the experiment
# folder. Then execute
createdt(path)
```

phenoData 21

```
# where path is the experiment folder path.
# The experiment can be now started by:
ex <- newExp(instrumental="path/DEMO_inst.csv",
phenotype="path/DEMO_pheno.csv", info="DEMO Experiment")
## End(Not run)</pre>
```

phenoData

Show Phenotyphe data

Description

Displays the Experiment phenotypic data (if included).

Usage

```
phenoData(object)
```

Arguments

object

A 'MetaboSet' S4 object containing the experiment.

See Also

metaData

plotAlign

Plotting chromatophic profile with and without alignement

Description

Plots the chromatophic profiles of the compounds found by eRah. Similarly to plotProfile, but with two sub-windows, showing the chromatophic profiles before and after alignment.

Usage

```
plotAlign(Experiment,AlignId, per.class=T, xlim=NULL)
```

22 plotChr

Arguments

Experiment A 'MetaboSet' S4 object containing the experiment after being deconolved,

aligned and (optionally) identified.

AlignId the Id identificator for the compound to be shown.

per.class logical. if TRUE the profiles are shown one color per class, if FALSE one color

per sample.

xlim x axsis (retention time) limits (see plot.default).

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

See Also

```
plotSpectra, plotProfile
```

plotChr

Plotting sample chromatogram

Description

Plot the sample chromatogram.

Usage

```
plotChr(Experiment, N.sample=1, type=c("BIC","TIC","EIC"),
xlim=NULL, mz=NULL)
```

Arguments

Experiment A 'MetaboSet' S4 object containing the experiment.

N. sample Integer. The number of the sample to query.

type The type of plotting, Base Ion Chromatogram (BIC), Total Ion Chromatogram

(TIC), or Extracted Ion Chromatogram (EIC).

xlim The range in minutes, separated by comas: c(rt.min, rt.max) of the limits of

plotting. By default, all the chromatogram is plotted.

mz Just when EIC is selected. The range separated by comas: c(mz.min, mz.max)

or a vector of numbers: c(50,67,80), of the masses to be ploted.

See Also

sampleInfo

plotProfile 23

Examples

```
## Not run:
# First, an experiment has to be already created by newExp()
# then, each sample chromatogram can be plotted by:
plotChr(Experiment, 1, "BIC")
plotChr(Experiment, 1, "TIC", xlim=c(5,7)) #Plots from minute 5 to 7.

plotChr(Experiment, 1, "EIC", mz=50:70, xlim=c(5,7)) #Plots
# from minute 5 to 7, and only the masses from 50 to 70.

plotChr(Experiment, 1, "EIC", xlim=c(7,7.5), mz=c(50,54,70)) #Plots
# the EIC from minute 7 to 7.5, and only the masses 50, 54 and 70.

## End(Not run)
```

plotProfile

Plotting chromatophic profile

Description

Plots the chromatophic profiles of the compounds found by eRah.

Usage

```
plotProfile(Experiment,AlignId, per.class=T, xlim=NULL)
```

Arguments

Experiment	A 'MetaboSet' S4 object containing the experiment after being deconolved, aligned and (optionally) identified.
AlignId	the Id identificator for the compound to be shown.
per.class	logical. if TRUE the profiles are shown one color per class, if FALSE one color per sample.
xlim	x axsis (retention time) limits (see plot.default).

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

See Also

```
plotSpectra, plotAlign
```

24 plotSpectra

|--|

Description

Plots the empirical spectra found by eRah, and allows comparing it with the reference spectra.

Usage

```
plotSpectra(Experiment, AlignId, n.putative=1,
compare=T, id.database=mslib, comp.db=NULL,
return.spectra=F, draw.color="purple", xlim=NULL)
```

Arguments

Experiment	A 'MetaboSet' S4 object containing the experiment after being deconolved, aligned and (optionally) identified.
AlignId	the Id identificator for the compound to be shown.
n.putative	The hit number (position) to be returned when comparing the empirical spectrum with the reference. See details
compare	logical. If TRUE, then the reference spectrum from the library is shown for comparison.
id.database	The mass-spectra library to be compared with the empirical spectra. By default, the MassBank-[2] - Mass Bank of North America (MoNa) database are employed.
comp.db	If you want to compare the empirical spectrum with another spectrum from the database, select the comp.db number from the database.
return.spectra	logical. If TRUE, the function returns the empirical spectrum for the selected compound
draw.color	Selects the color for the reference spectrum (see colors).
xlim	x axsis (mass - m/z) limits (see plot.default).

Details

When identification is applied (see identifyComp), the number of hits to be returned (n.putative) has to be selected. Therefore, here you can compare the empirical spectrum (found by eRah) with each n.putative hit returned (1, 2, ...) by (see identifyComp).

Value

plotSpectra returns an vector when return.spectra=TRUE.

x vector. Containts the empirical spectrum.

RawDataParameters-class 25

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] eRah: an R package for spectral deconvolution, alignment, and metabolite identification in GC/MS-based untargeted metabolomics. Xavier Domingo-Almenara, Alexandre Perera, Maria Vinaixa, Sara Samino, Xavier Correig, Jesus Brezmes, Oscar Yanes. (2016) Article in Press.

[2] MassBank: A public repository for sharing mass spectral data for life sciences, H. Horai, M. Arita, S. Kanaya, Y. Nihei, T. Ikeda, K. Suwa. Y. Ojima, K. Tanaka, S. Tanaka, K. Aoshima, Y. Oda, Y. Kakazu, M. Kusano, T. Tohge, F. Matsuda, Y. Sawada, M. Yokota Hirai, H. Nakanishi, K. Ikeda, N. Akimoto, T. Maoka, H. Takahashi, T. Ara, N. Sakurai, H. Suzuki, D. Shibata, S. Neumann, T. Iida, K. Tanaka, K. Funatsu, F. Matsuura, T. Soga, R. Taguchi, K. Saito and T. Nishioka, J. Mass Spectrom., 45, 703-714 (2010)

See Also

plotProfile, plotAlign

RawDataParameters-class

Class "RawDataParameters"

Description

The RawDataParameters class contains the slots for storing and accessing into a MS sample, and the essential parameters for performing its processing (deconvolution).

Slots

```
data: The data matrix of the sample to be processed
min.mz: The minimum adquired mz number
max.mz: The maximum adquired mz number
start.time: Starting time of adquisition
mz.resolution: Mz resolution
scans.per.second: Scans per second
avoid.processing.mz: Which mz do not have to be processed
min.peak.width: Minimum peak width (stored in scans)
min.peak.height: Minimum peak height
noise.threshold: The noise threshold
compression.coef: Compression coefficient (parameter for Orthogonal Signal Deconvolution)
```

Author(s)

Xavier Domingo-Almenara.

26 recMissComp

recMissComp	Missing compound recovery	

Description

Missing compounds recovery: fits a general model (all the compounds above a certain minimum number of samples) to all the samples.

Usage

```
recMissComp(Experiment, min.samples, free.model=F)
```

Arguments

Experiment	A 'MetaboSet' S4 object containing the experiment data previously created by newExp, deconvolved by deconvolveComp and aligned by alignComp.
min.samples	The minimum number of samples in which a compound has to appear to be considered for searching into the rest of the samples where this compound missing.
free.model	If TRUE, the spectra found in the samples where the compound is missing is used to get the final average spectra. (See details)

Details

WARNING: If compounds were previously identified, they have to be identified again after applying the "recMissComp" function. This means that "identifyComp" function has to be executed always after "recMissComp" for identification of compounds, even if "identifyComp" has been previously applied before.

The free model parameter is recomended to be always FALSE (except for carbon tracking applications). This is because the spectra of the samples where the compound is missing is usually affected by noise, and this could decrease the matching score for a certain compound.

Value

The function returns an updated S4 'MetaboSet' class, where the GC-MS samples have been now aligned.

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] Domingo-Almenara X, et al. Compound deconvolution in GC-MS-based metabolomics by blind source separation. Journal of Chromatography A (2015). Vol. 1409: 226-233. DOI: 10.1016/j.chroma.2015.07.044

sampleInfo 27

See Also

```
newExp, alignComp, setAlPar, setDecPar
```

sampleInfo

Information of the samples

Description

Returns basic information on the samples.

Usage

```
sampleInfo(Experiment, N.sample=1)
```

Arguments

Experiment A 'MetaboSet' S4 object containing the experiment.

N. sample Integer. The number of the sample to query.

Details

Returns details on a given sample of the experiment, such as name, start time, end time, minium and maximum adquired m/z and scans per second.

See Also

plotChr

setAlPar

Set Alignment Parameters

Description

Setting alignment parameters for eRah.

Usage

```
setAlPar(min.spectra.cor, max.time.dist,
mz.range=c(70:600))
```

28 setDecPar

Arguments

min.spectra.cor

max.time.dist

Minimum spectral correlation value. From 0 (non similar) to 1 (very similar). This value sets how similar two or more compounds have be to be considered for alignment between them.

for angument between them

Maximum retention time distance. This value (in seconds) sets how far two or

more compounds can be to be considered for alignment between them.

mz.range The range of masses that is considered when comparing spectra.

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] Xavier Domingo-Almenara, et al., eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC-MS-Based Metabolomics. Analytical Chemistry (2016). DOI: 10.1021/acs.analchem.6b02927

See Also

```
newExp, setDecPar, alignComp
```

Examples

```
# The following will set eRah for aligning compounds which are
# at least 90 (per cent) similar, and which peaks are at a
# maximum distance of 2 seconds. All the masses are considered when
# computing the spectral similarity.

ex.al.par <- setAlPar(min.spectra.cor=0.90, max.time.dist=2, mz.range=1:600)</pre>
```

setDecPar

Set Software Parameters

Description

Sets Software Parameters for eRah.

Usage

```
setDecPar(min.peak.width, min.peak.height=2500,
noise.threshold=500,
avoid.processing.mz=c(73:75,147:149),
compression.coef=2, analysis.time=0)
```

setDecPar 29

Arguments

min.peak.width Minimum compound peak widht (in seconds). This is a critical parameter that conditions the efficiency of eRah. Typically, this should be the half of the mean

compound width.

min.peak.height

Minimum compound peak height

noise.threshold

Data below this threshold will be considered as noise

avoid.processing.mz

The masses that do not want to be considered for processing. Typically, in GC-MS those masses are 73,74,75,147,148 and 149, since they are they are ubiquitous mass fragments typically generated from compounds carrying a trimethylsi-lyl majety.

lyl moiety.

compression.coef

Data is compressed when using the orthogonal signal deconvolution (OSD) algorithm according to this value. A level 2 of compression is recomended.

analysis.time The

The chromatographic retention time window to process. If 0, all the chromatogram is processed.

Details

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")

Author(s)

Xavier Domingo-Almenara. xavier.domingoa@eurecat.org

References

[1] Xavier Domingo-Almenara, et al., eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC-MS-Based Metabolomics. Analytical Chemistry (2016). DOI: 10.1021/acs.analchem.6b02927

See Also

newExp, deconvolveComp, alignComp, setAlPar

Examples

```
# The following will set eRah for analyzing the chromatograms
# from minutes 5 to 15, and withouth taking into account the masses
# 35:69,73:75,147:149, widht a minimum peak widht of 0.7 seconds.

ex.dec.par <- setDecPar(min.peak.width=0.7, min.peak.height=5000, noise.threshold=500, avoid.processing.mz=c(35:69,73:75,147:149), analysis.time=c(5,15))</pre>
```

30 show.MetaboSet

show.MetaboSet	Show MetaboSet object	

Description

Show MetaboSet object

Index

```
alignComp, 2, 14, 27-29
alignList, 3, 8, 15
colors, 24
compInfo, 4, 13, 19
computeRIerror, 5
createdt, 6, 20
dataList, 4, 6, 7, 15
deconvolveComp, 3, 9, 29
eRah_DB-class, 10
expClasses, 11
export2CEF, 11
export2MSP, 12
findComp, 5, 12
identifyComp, 8, 13, 15, 24
idList, 4, 6, 8, 14
importGMD, 15
importMSP, 16
MetaboSet-class, 18
metaData, 11, 18, 21
mslib, 19
newExp, 3, 7, 10, 14, 20, 27–29
phenoData, 11, 19, 21
plot.default, 22-24
plotAlign, 21, 23, 25
plotChr, 22, 27
plotProfile, 22, 23, 25
plotSpectra, 22, 23, 24
RawDataParameters-class, 25
recMissComp, 26
sampleInfo, 22, 27
setAlPar, 10, 14, 20, 27, 27, 29
setDecPar, 3, 14, 20, 27, 28, 28
show.MetaboSet, 30
```