
Package ‘eseis’
October 13, 2022

Type Package

Title Environmental Seismology Toolbox

Version 0.6.0

Date 2021-11-23

Maintainer Michael Dietze <mdietze@gfz-potsdam.de>

Description Environmental seismology is a scientific field that studies the
seismic signals, emitted by Earth surface processes. This package
provides all relevant functions to read/write seismic data files, prepare,
analyse and visualise seismic data, and generate reports of the processing
history.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.6.0)

LinkingTo Rcpp (>= 0.12.5)

Imports sp, multitaper, raster, rgdal, caTools, signal, fftw,
matrixStats, methods, IRISSeismic, XML, shiny, shinyFiles,
rmarkdown, reticulate, EMMAgeo, limSolve, extraDistr,
minpack.lm, Rcpp (>= 0.12.5)

Suggests plot3D, rgl, seewave

SystemRequirements gipptools dataselect

RoxygenNote 7.1.2

NeedsCompilation yes

Author Michael Dietze [cre, aut, trl],
Christoph Burow [ctb],
Sophie Lagarde [ctb, trl]

Repository CRAN

Date/Publication 2021-11-26 14:00:02 UTC

1

2 R topics documented:

R topics documented:
aux_commondt . 3
aux_cubeinfo . 4
aux_eseisobspy . 5
aux_fixmseed . 6
aux_getevent . 7
aux_getFDSNdata . 9
aux_getFDSNstation . 11
aux_getIRISdata . 13
aux_getIRISstation . 14
aux_gettemperature . 16
aux_hvanalysis . 17
aux_initiateeseis . 19
aux_obspyeseis . 20
aux_organisecentaurfiles . 21
aux_organisecubefiles . 23
aux_psdpanels . 25
aux_psdsummary . 27
aux_sonifysignal . 29
aux_stationinfofile . 30
earthquake . 33
eseis . 34
fmi_inversion . 34
fmi_parameters . 37
fmi_spectra . 39
gui_models . 40
list_logger . 41
list_sacparameters . 42
list_sensor . 42
model_amplitude . 43
model_bedload . 46
model_turbulence . 50
pick_correlation . 52
pick_kurtosis . 54
pick_stalta . 56
plot_components . 57
plot_ppsd . 58
plot_signal . 60
plot_spectrogram . 61
plot_spectrum . 62
read_mseed . 63
read_sac . 65
rockfall . 66
signal_aggregate . 67
signal_clip . 69
signal_cut . 70
signal_deconvolve . 71

aux_commondt 3

signal_demean . 73
signal_detrend . 74
signal_envelope . 75
signal_fill . 76
signal_filter . 77
signal_hilbert . 78
signal_hvratio . 79
signal_integrate . 81
signal_motion . 82
signal_pad . 83
signal_rotate . 84
signal_sign . 85
signal_snr . 86
signal_spectrogram . 87
signal_spectrum . 89
signal_stats . 90
signal_sum . 92
signal_taper . 93
signal_whiten . 94
spatial_amplitude . 95
spatial_clip . 97
spatial_convert . 98
spatial_crop . 99
spatial_distance . 100
spatial_migrate . 102
spatial_pmax . 104
spatial_track . 105
time_aggregate . 108
time_clip . 109
time_convert . 110
write_mseed . 111
write_report . 112
write_sac . 113

Index 115

aux_commondt Identify highest common sampling interval

Description

The function compares the sampling intervals of a list of eseis objects and identifies the highest
common sampling interval (dt) as well as the aggregation factors for each eseis object needed to
reach this common sampling interval.

Usage

aux_commondt(data, dt)

4 aux_cubeinfo

Arguments

data list of eseis objects or vector of sampling intervals to be checked for highest
common sampling interval

dt Numeric vector of length one, user-defined common sampling frequency for
which aggregation factors shall be computed.

Value

list object with elements dt (highest common sampling interval) and agg (aggregation factors for
each of the input data sets to reach the common sampling interval)

Author(s)

Michael Dietze

Examples

Not run:

TO BE WRITTEN

End(Not run)

aux_cubeinfo Get cube file information

Description

This is a simple wrapper for the Gipptools program cubeinfo, providing a short summary of the
cube file meta data, in a coherent data frame structure.

Usage

aux_cubeinfo(file, gipptools)

Arguments

file Characater value, cube file to be processes

gipptools Character value, path to gipptools or Gipptools directory.

Value

data frame with cube meta data

aux_eseisobspy 5

Author(s)

Michael Dietze

Examples

Not run:

get cube info
x = aux_cubeinfo(file = "data/cube/example.ATB",

gipptools = "/software/gipptools-2019.332/")

End(Not run)

aux_eseisobspy Convert eseis object to ObsPy stream object

Description

The function converts an eseis object to an ObsPy stream object. The functionality is mainly useful
when running ObsPy through R using the package ’reticulate’. Currently, only single traces (i.e.,
single eseis objects) can be converted. Thus, to convert multiple traces, these need to be converted
individually and added to the first trace using ObsPy functionalities.

Usage

aux_eseisobspy(data)

Arguments

data eseis object, list element.

Value

ObsPy stream object as defined by the architecture of package ’reticulate’.

Author(s)

Michael Dietze

6 aux_fixmseed

Examples

Not run:

load ObsPy library with package 'reticulate'
(requires ObsPy to be installed on the computer)
obspy <- reticulate::import("obspy")

load example data set
data(rockfall)

convert example eseis object to ObsPy stream object
x <- aux_eseisobspy(data = rockfall_eseis)

filter data set using ObsPy
x_filter <- obspy$traces[[1]]$filter(type = "bandpass",

freqmin = 0.5,
freqmax = 1.0)

plot filtered trace using ObsPy plotting routine
x$traces[[1]]$plot()

End(Not run)

aux_fixmseed Fix corrupt miniseed files

Description

This function is a wrapper for the library ’dataselect’ from IRIS. It reads a corrupt mseed file and
saves it in fixed state. Therefore, the function requires dataselect being installed (see details).

Usage

aux_fixmseed(file, input_dir, output_dir, software)

Arguments

file Character vector, seismic file to process.

input_dir Character value, path to input directory, i.e., the directory where the files to
process are located.

output_dir Character value, path to output directory, i.e., the directory where the processed
files are written to. This must be different from input_dir.

software Character value, path to the ’dataselect’ library, required unless the path to the
library is made gobally visible.

aux_getevent 7

Details

The library ’dataselect’ can be downloaded at https://github.com/iris-edu/dataselect and requires
compilation (see README file in dataselect directory). The function goes back to an email discus-
sion with Gillian Sharer (IRIS team), many thanks for pointing me at this option to process corrupt
mseed files.

Value

a set of mseed files written to disk.

Author(s)

Michael Dietze

Examples

Not run:

aux_fixmseed(file = list.files(path = "~/data/mseed",
pattern = "miniseed"),

input_dir = "~/data/mseed",
software = "~/software/dataselect-3.17")

End(Not run)

aux_getevent Load seismic data of a user-defined event

Description

The function loads seismic data from a data directory structure (see aux_organisecubefiles())
based on the event start time, duration, component and station ID.

Usage

aux_getevent(
start,
duration,
station,
component = "BHZ",
format = "sac",
dir,
simplify = TRUE,
eseis = TRUE,
try = FALSE,

8 aux_getevent

silent = TRUE
)

Arguments

start POSIXct value, start time of the data to import.

duration Numeric value, duration of the data to import, in seconds.

station Character value, seismic station ID, which must correspond to the ID in the
file name of the data directory structure (cf. aux_organisecubefiles).

component Character value, seismic component, which must correspond to the component
name in the file name of the data directory structure (cf. aux_organisecubefiles).
Default is "BHZ" (vertical component of a sac file).

format Character value, seismic data format. One out of "sac" and "mseed". Default
is "sac".

dir Character value, path to the seismic data directory.

simplify Logical value, option to simplify output when possible. This basically means
that if only data from one station is loaded, the list object will have one level
less. Default is TRUE.

eseis Logical value, option to read data to an eseis object (recommended, see doc-
umentation of aux_initiateeseis), default is TRUE

try Logical value, option to run the function in try-mode, i.e., to let it return NA in
case an error occurs during data import. Default is FALSE.

silent Logical value, option to suppress messages during function execution. Default
is TRUE.

Details

The function assumes complete data sets, i.e., not a single hourly data set must be missing. The
time vector is loaded only once, from the first station and its first component. Thus, it is assumed
that all loaded seismic signals are of the same sampling frequency and length.

Value

A list object containing either a set of eseis objects or a data set with the time vector ($time)
and a list of seismic stations ($station_ID) with their seismic signals as data frame ($signal). If
simplify = TRUE (the default option) and only one seismic station is provided, the output object
containseither just one eseis object or the vectors for $time and $signal.

Author(s)

Michael Dietze

aux_getFDSNdata 9

Examples

set seismic data directory
dir_data <- paste0(system.file("extdata", package="eseis"), "/")

load the z component data from a station
data <- aux_getevent(start = as.POSIXct(x = "2017-04-09 01:20:00",

tz = "UTC"),
duration = 120,
station = "RUEG1",
component = "BHZ",
dir = dir_data)

plot signal
plot_signal(data = data)

load data from two stations
data <- aux_getevent(start = as.POSIXct(x = "2017-04-09 01:20:00",

tz = "UTC"),
duration = 120,
station = c("RUEG1", "RUEG2"),
component = "BHZ",
dir = dir_data)

plot both signals
par(mfcol = c(2, 1))
lapply(X = data, FUN = plot_signal)

aux_getFDSNdata Download seismic data from FDSN data base

Description

The function accesses the specified FDSN internet data base(s) and downloads seismic data based
on the network and station IDs and time constraints.

Usage

aux_getFDSNdata(
start,
duration,
channel = "BHZ",
network,
station,
url,
link_only = FALSE,
eseis = TRUE

)

10 aux_getFDSNdata

Arguments

start POSIXct value, start time of the data to query.

duration Numeric value, length of the data to query, in seconds.

channel Character value, seismic channel to get. Default is "BHZ".

network Character vector, two-character FDSN network ID.

station Character vector, FDSN station ID.

url Character vector, FDSN URL.

link_only Logical vector, return only FDSN link instead of downloading and importing
the data.

eseis Logical scalar, option to read data to an eseis object (recommended, see doc-
umentation of aux_initiateeseis), default is TRUE

Details

A convenient way to get all the required input data is using the function aux_getFDSNstation
before. It will return all the information in a structured way.

It is possible to use the function to process more than one data set. In this case, the arguments
network, station and url must match pairwise. The arguments start, duration and channel
will be treated as constants if not also provided as vectors.

Value

List object with imported seismic data for each provided set of input arguments.

Author(s)

Michael Dietze

See Also

aux_get_FDSNstation, read_mseed

Examples

Not run:

get stations < 0.6 degrees away from Piz Chengalo collapse
x <- aux_getFDSNstation(centre = c(46.3, 9.6),

radius = 0.6,
access = TRUE)

sort statiions by distance
x <- x[order(x$distance),]

download available data
d <- aux_getFDSNdata(start = as.POSIXct(x = "2017-08-23 07:30:00",

tz = "UTC"),

aux_getFDSNstation 11

duration = 180,
network = x$network_ID,
station = x$station_code,
url = x$network_url)

remove stations without available data
x <- x[!unlist(lapply(d, is.null)),]
d <- d[!unlist(lapply(d, is.null))]

generate plots of the three nearest stations
par(mfcol = c(3, 1))

for(i in 1:3) {

plot_signal(data = d[[i]],
main = paste(x$ID[i],

" | ",
round(x$distance[i], 2),
"distance (DD)"))

}

End(Not run)

aux_getFDSNstation Query FDSN data base for stations

Description

This function queries as series of data bases for seismic stations that match a set of criteria for
seismic data. The criteria include signal time stamp and location, and component. The returned
data can be used to download data using the function aux_FDSNdata.

Usage

aux_getFDSNstation(centre, radius, start, access, url)

Arguments

centre Numeric vector of length two, center coordinates of the location to search data
for (c(latitude, longitude)). Units must be decimal degrees.

radius Numeric value, radius within which to search for seismic stations. Unit must be
decimal degrees.

start POSIXct value, start time of the data to query. If omitted, stations are queried
for the full time available.

access Logical value, access type of the data. If omitted, all data sets are returned, if
set TRUE, only data with access flag "open" are returned.

url Character vector, optional other FDSN base web addresses to search for sta-
tions. See details for default addresses and their format.

12 aux_getFDSNstation

Details

The function requires a working internet connection to perform the query. It uses the following
FDSN data bases by default:

• orfeus "http://www.orfeus-eu.org"

• geofon "http://geofon.gfz-potsdam.de/"

• bgr "http://eida.bgr.de"

• sss "http://eida.ethz.ch"

Other FDSN data base addresses can be provided in the same way as the addresses in the above list.
They need to be provided as character vector. For a list of addresses see "http://www.fdsn.org/webservices/datacenters/"
and "http://docs.obspy.org/packages/obspy.clients.fdsn.html#module-obspy.clients.fdsn".

Value

Data frame with query results. The data frame contains information for all seismic stations fulfill-
ing the defined criteria.

Author(s)

Michael Dietze

See Also

aux_get_FDSNdata, aux_getIRISstation

Examples

Not run:

x <- aux_getFDSNstation(start = as.POSIXct(x = "2010-01-01 22:22:22",
tz = "UTC"),

centre = c(45, 10),
radius = 1)

optionally plot station locations on a map (requires RgoogleMaps)
center <- c(mean(x$station_latitude),

mean(x$station_longitude))

zoom <- min(RgoogleMaps::MaxZoom(range(x$station_latitude),
range(x$station_longitude)))

Map <- RgoogleMaps::GetMap(center = center,
zoom = zoom,
maptype = "terrain")

RgoogleMaps::PlotOnStaticMap(MyMap = Map,
lat = x$station_latitude,
lon = x$station_longitude,

aux_getIRISdata 13

pch = 15,
col = 4)

End(Not run)

aux_getIRISdata Download seismic data from IRIS data base

Description

This function accesses the IRIS internet data base of seismic signals and downloads seismic data
based on the provided SNCL string and time information. The downloaded data is converted to the
same structure as would be expected from read_sac or read_mseed.

Usage

aux_getIRISdata(
start,
duration,
sncl,
quality = "D",
ID_iris = "IrisClient",
eseis = TRUE

)

Arguments

start POSIXct value, start time of the data to query.

duration Numeric value, length of the data to query, in seconds.

sncl Character vector, SNCL string used to identify station and component of in-
terest. These strings should match the time criteria. Typically, the SNCL string
can be taken from the output of the function aux_getirisstations.

quality Character value, quality level of the data. One out of "D" (The state of quality
control of the data is indeterminate), "R" (Raw Waveform Data with no Quality
Control), "Q" (Quality Controlled Data, some processes have been applied to
the data), "M" (Data center modified, time-series values have not been changed),
"B". Default is "D".

ID_iris Character value, IRIS ID. Default is "IrisClient".

eseis Logical scalar, option to read data to an eseis object (recommended, see doc-
umentation of aux_initiateeseis), default is TRUE

Details

The function makes use of the package ’IRISSeismic’. It requires a working internet connection to
perform the download.

14 aux_getIRISstation

Value

List with downloaded seismic data. For each element in sncl, a list element is created, which in
turn contains a list with the typical seismic data organisation as, for example, created by read_sac.

Author(s)

Michael Dietze

Examples

Not run:

sncl <- aux_getIRISstation(start = as.POSIXct("2010-01-01 22:22:22",
tz = "UTC"),

duration = 120,
location = c(53, 13),
radius = 0.7,
component = "BHZ")

s <- aux_getIRISdata(start = as.POSIXct("2010-01-01 22:22:22",
tz = "UTC"),

duration = 120,
sncl = sncl$sncl[1])

plot_signal(data = s[[1]])

End(Not run)

aux_getIRISstation Query IRIS data base for stations

Description

This function queries the IRIS data base for seismic stations that match a set of criteria for seismic
data. The criteria include signal time stamp and location, component and a search radius. The
returned SNCL strings can be used to download data using the function aux_getIRISdata.

Usage

aux_getIRISstation(
start,
duration,
location,
radius = 10,
component = "BHZ",
ID_iris = "IrisClient"

)

aux_getIRISstation 15

Arguments

start POSIXct value, start time of the data to query.

duration Numeric value, length of the data to query, in seconds.

location Numeric vector of length two, coordinates of the seismic source, in decimal
degrees (i.e., latitude and longitude).

radius Numeric value, search radius for the query, in decimal degrees. Default is 10
(about 1100 km).

component Character value, signal component to check for. One out of "BHE", "BHN" and
"BHZ". Currently, only one component can be defined per search. Default is
"BHZ".

ID_iris Character value, IRIS ID. Default is "IrisClient".

Details

The function makes use of the package IRISSeismic. It requires a working internet connection to
perform the query.

Value

Data frame with query results. The data frame contains information for all seismic stations fulfill-
ing the defined criteria.

Author(s)

Michael Dietze

Examples

Not run:

x <- aux_getIRISstation(start = as.POSIXct("2010-01-01 22:22:22",
tz = "UTC"),
duration = 3 * 3600,
location = c(53, 13),
radius = 1,
component = "BHZ")

End(Not run)

16 aux_gettemperature

aux_gettemperature Extract temperature data from cube files.

Description

This function reads auxiliary information stored in Omnirecs/Digos Datacube files and extracts the
temperature data that is stored along with each GPS tag. Optionally, the data is interpolated to equal
intervals.

Usage

aux_gettemperature(input_dir, logger_ID, interval, cpu, gipptools)

Arguments

input_dir Character value, path to directory where all cube files to be processed as stored.
Each set of files from one logger must be stored in a separate sub-directory
named after the cube ID.

logger_ID Character vector, logger ID.
interval Numeric value, time interval (minutes) to which temperature data is interpo-

lated. No interpolation is performed if this argument is omitted.
cpu Numeric value, fraction of CPUs to use for parallel processing. If omitted, one

CPU is used.
gipptools Character value, path to gipptools or cubetools directory.

Details

This feature is ony available for Omnirecs/Digos Datacube that were produced since 2015, i.e.,
whose GPS output files also record the temperature inside the logger. Generating an ACSII GPS
tag file using the gipptools software requires a few minutes time per daily file.

Value

A list of data frames with time and temperature values for each cube data logger.

Author(s)

Michael Dietze

Examples

uncomment to use
t <- aux_gettemperature(input_dir = "input",
logger_ID = c("ANN", "ABT"),
interval = 15,
gipptools = "~/software/gipptools-2015.225/")

aux_hvanalysis 17

aux_hvanalysis Perform H-V-spectral ratio analysis of a seismic data set

Description

This function cuts a three component seismic data set into time windows that may or may not
overlap and calculates the spectral ratio for each of these windows. It returns a matrix with the
ratios for each time slice. Thus, it is a wrapper for the function signal_hvratio. For further
information about the technique and function arguments see the description of signal_hvratio.

Usage

aux_hvanalysis(
data,
time,
window,
overlap = 0,
dt,
method = "periodogram",
kernel,
order = "xyz",
plot = FALSE,
...

)

Arguments

data List, data frame or matrix, seismic componenents to be processed. If data
is a matrix, the components must be organised as columns. Also, data can be a
list of eseis objects.

time POSIXct vector with time values. If omitted, an synthetic time vector will be
created, based on dt.

window Numeric scalar, time window length in seconds used to calculate individual
spectral ratios. Set to 10 percent of the time series length by default.

overlap Numeric value, fraction of window overlap.

dt Numeric value, sampling period.

method Character value, method for calculating the spectra. One out of "periodogram"
, "autoregressive" and "multitaper", default is "periodogram".

kernel Numeric value, window size (defined by number of samples) of the moving
window used for smoothing the spectra. By default no smoothing is performed.

order Character value, order of the seismic components. Describtion must contain
the letters "x","y" and "z" in the order according to the input data set. Default
is "xyz" (NW-SE-vertical).

plot Logical value, toggle plot output. Default is FALSE.

... Additional arguments passed to the plot function.

18 aux_hvanalysis

Value

A matrix with the h-v-frequency ratios for each time slice.

Author(s)

Michael Dietze

Examples

load example data set
data(earthquake)

ATTENTION, THIS EXAMPLE DATA SET IS FAR FROM IDEAL FOR THIS PURPOSE

detrend data
s <- signal_detrend(data = s)

calculate the HV ratios straightforward
HV <- aux_hvanalysis(data = s,

dt = 1 / 200,
kernel = 100)

calculate the HV ratios with plot output, userdefined palette
plot_col <- colorRampPalette(colors = c("grey", "darkblue", "blue", "orange"))
HV <- aux_hvanalysis(data = s,

dt = 1 / 200,
kernel = 100,
plot = TRUE,
col = plot_col(100))

calculate the HV ratios with optimised method settings
HV <- aux_hvanalysis(data = s,

time = t,
dt = 1 / 200,
window = 10,
overlap = 0.9,
method = "autoregressive",
plot = TRUE,
col = plot_col(100),
xlab = "Time (UTC)",
ylab = "f (Hz)")

calculate and plot stack (mean and sd) of all spectral ratios
HV_mean <- apply(X = HV, MARGIN = 1, FUN = mean)
HV_sd <- apply(X = HV, MARGIN = 1, FUN = sd)
HV_f <- as.numeric(rownames(HV))

plot(x = HV_f, y = HV_mean, type = "l", ylim = c(0, 50))
lines(x = HV_f, y = HV_mean + HV_sd, col = 2)
lines(x = HV_f, y = HV_mean - HV_sd, col = 2)

aux_initiateeseis 19

aux_initiateeseis Initiate an eseis object

Description

The function generates an empty eseis object, starting with processing step 0. The object contains
no data and the history only contains the system information.

Usage

aux_initiateeseis()

Details

The S3 object class eseis contains the data vector ($signal), a meta information list ($meta) with
all essential seismic meta data - such as sampling interval, station ID, component, start time of the
stream or file name of the input file - a list with header data of the seismic source file ($header), and
a history list ($history), which records all data manipulation steps of an (eseis) object. The ele-
ment ($meta) will be used by functions of the package to look for essential information to perform
data manipulations (e.g., the sampling interval). Thus, working with (eseis) objects is convenient
and less prone to user related errors/bugs, given that the meta information is correct and does not
change during the processing chain; package functions will update the meta information whenever
necessary (e.g., signal_aggregate). The element $header will only be present if a seismic source
file has been imported.

The history element is the key feature for transparent and reproducable research using this R pack-
age. An eseis object records a history of every function it has been subject to, including the time
stamp, the function call, all used function arguments and their associated values, and the overall
processing duration in seconds. The history is updated whenever an eseis object is manipulated
with one of the functions of this package (with a few exceptions, mainly from the aux_... category).

Value

S3 list object of class eseis.

Author(s)

Michael Dietze

Examples

initiate eseis object
aux_initiateeseis()

20 aux_obspyeseis

aux_obspyeseis Convert ObsPy object to eseis object

Description

The function converts an ObsPy stream object to an eseis object. The functionality is mainly useful
when running ObsPy through R using the package ’reticulate’.

Usage

aux_obspyeseis(data, simplify = TRUE)

Arguments

data obspy stream object, list element, created by running ObsPy through R using
the package ’reticulate’.

simplify Logical value, option to simplify output when possible. This basically means
that if there is only trace object in the ObsPy stream, the list object will have one
level less. Default is TRUE.

Details

Initiation of the reticulate-based python toolbox support can be cumbersome. The following sug-
gestions from Guthub (https://github.com/rstudio/reticulate/issues/578) helped in a case study:

library(reticulate) use_condaenv("r-reticulate") py_install("obspy", pip = TRUE)

Value

eseis object.

Author(s)

Michael Dietze

Examples

Not run:

load ObsPy library with package 'reticulate'
(requires ObsPy to be installed on the computer)
obspy <- reticulate::import("obspy")

set seismic data directory
dir_data <- paste0(system.file("extdata", package="eseis"), "/")

read miniseed file to stream object via ObsPy
x <- obspy$read(pathname_or_url = "dir_data/2017/99/RUEG1.17.99.00.00.00.BHZ.SAC")

aux_organisecentaurfiles 21

convert ObsPy stream object to eseis object
y <- aux_obspyeseis(data = x)

plot eseis object
plot_signal(y)

End(Not run)

aux_organisecentaurfiles

Reorganise seismic files recorded by Nanometrics Centaur loggers

Description

This function optionally converts mseed files to sac files and organises these in a coherent directory
structure, by year, Julian day, (station, hour and channel). It depends on the cubetools or gipptools
software package (see details). The function is at an experimental stage and only used for data
processing at the GFZ Geomorphology section, currently.

Usage

aux_organisecentaurfiles(
stationfile,
input_dir,
output_dir,
format = "sac",
channel_name = "bh",
cpu,
gipptools,
file_key = "miniseed",
network

)

Arguments

stationfile Character value, file name of the station info file, with extension. See aux_stationinfofile.

input_dir Character value, path to directory where all files to be processed as stored.
Each set of files from one logger must be stored in a separate sub-directory
named after the logger ID (which in turn must be the four digit number of the
logger).

output_dir Character value, path to directory where output data is written to.

format Character value, output file format. One out of "mseed" and "sac". Default is
"sac".

channel_name Character value, output file extension. One out of "bh" and "p". Default is
"bh".

22 aux_organisecentaurfiles

cpu Numeric value, fraction of CPUs to use for parallel processing. If omitted, one
CPU is used.

gipptools Character value, path to gipptools or cubetools directory.

file_key Character value, file name extension of the files to process. Only files with this
extension will be processed. Default is "miniseed".

network Character value, optional seismic network code.

Details

The function assumes that the Nanometrics Centaur data logger directory contains only hourly
mseed files. These hourly files are organised in a coherent directory structure which is organised by
year and Julian day. In each Julian day directory the hourly files are placed and named according to
the following scheme: STATIONID.YEAR.JULIANDAY.HOUR.MINUTE.SECOND.CHANNEL.
The function requires that the software cubetools (http://www.omnirecs.de/documents.html)
or gipptools (http://www.gfz-potsdam.de/en/section/geophysical-deep-sounding/infrastructure/geophysical-instrument-pool-potsdam-gipp/software/gipptools/)
are installed.
Specifying an input directory (input_dir) is mandatory. This input directory must only contain
the subdirectories with mseed data for each Centaur logger. The subdirectory must be named after
the four digit Centaur ID and contain only mseed files, regardless if further subdirectories are used
(e.g., for calendar days).

In the case a six-channel Centaur is used to record signals from two sensors, in the station info file
(cf. aux_stationinfofile()) the logger ID field must contain the four digit logger ID and the
channel qualifiers, e.g., "AH" (first three channels) or "BH" (last three channels), separated by an
underscore.

Value

A set of hourly seismic files written to disk.

Author(s)

Michael Dietze

Examples

Not run:

basic example with minimum effort
aux_organisecentaurfiles(stationfile = "output/stationinfo.txt",

input_dir = "input",
gipptools = "software/gipptools-2015.225/")

End(Not run)

aux_organisecubefiles 23

aux_organisecubefiles Convert Omnirecs/Digos Datacube files to mseed or sac files and or-
ganise in directory structure.

Description

This function converts Omnirecs/Digos Datacube files to hourly mseed or sac files and organises
these in a coherent directory structure, by year, Julian day, (station, hour and channel). It depends
on the cubetools or gipptools software package (see details).

Usage

aux_organisecubefiles(
stationfile,
input_dir,
output_dir,
format = "sac",
channel_name = "bh",
cpu,
fringe = "constant",
verbose = FALSE,
gipptools,
heapspace,
mseed_manual = FALSE,
mseed_keep = FALSE

)

Arguments

stationfile Character value, file name of the station info file, with extension. See aux_stationinfofile.

input_dir Character value, path to directory where all cube files to be processed are
stored. Each set of files from one logger must be stored in a separate sub-
directory named after the cube ID.

output_dir Character value, path to directory where output data is written to.

format Character value, output file format. One out of "mseed" and "sac". Default is
"sac".

channel_name Character value, output file extension. One out of "bh" and "p". Default is
"bh".

cpu Numeric value, fraction of CPUs to use for parallel processing. If omitted, one
CPU is used.

fringe Character value, option to handle data outside the GPS-tagged time span. One
out of "skip", "nominal" or "constant". Default is "constant".

verbose Logical value, option to enable extended screen output of cubetools operations.
Default is FALSE. This option might not work with Windows operating systems.

gipptools Character value, path to gipptools or cubetools directory.

24 aux_organisecubefiles

heapspace Numeric value, heap space assigned to the Java Runtime Environment, e.g.,
4096. Should be increased if the cube to mseed conversion fails (announced
if verbose = TRUE). Please note that this argument fails on Windows machines,
and also in other operating systems, it should only be used if the function returns
an error caused by Java running out of memory.

mseed_manual Logical value, option to convert mseed files manually. See details. Default is
FALSE, i.e., the function converts cube files to mseed files using the GIPP tools.

mseed_keep Logical value, option to keep mseed files instead of deleting them. Default is
FALSE.

Details

The function converts seismic data from the cube file format to either mseed (cf. read_mseed)
or sac (cf. read_sac) and cuts the daily cube files to hourly files. These hourly files are or-
ganised in a coherent directory structure which is organised by year and Julian day. In each
Julian day directory the hourly files are placed and named after the following scheme: STA-
TIONID.YEAR.JULIANDAY.HOUR.MINUTE.SECOND.CHANNEL.
The function requires that the software cubetools (http://www.omnirecs.de/documents.html)
or gipptools (http://www.gfz-potsdam.de/en/section/geophysical-deep-sounding/infrastructure/geophysical-instrument-pool-potsdam-gipp/software/gipptools/)
are installed.
Specifying an input directory (input_dir) is mandatory. This input directory must only contain
the subdirectories with the cube files to process, each set of cube files must be located in a sepa-
rate subdirectory and these subdiretories must have the same name as specified by the logger IDs
(logger_ID). An appropriate structure would be something like:

1. input

(a) A1A
i. file1.A1A

ii. file2.A1A
(b) A1B

i. file1.A1B
ii. file2.A1B

With one of the latest updates of either R or Java the cache size for converting cube files to mseed
files has been reduced. Thus, in several cases the conversion stops due to buffer overruns. This ef-
fect has been particularly observed when trying to convert more than about 20 consecutive days of
cube files at once. In such a case, it is appropriate to set the function argument mseed_manual
to TRUE. This will stop the function just at the point where the function would call the GIPP-
tools function cube2mseed. The user will see a confirmation command line in the R console,
which asks to first copy all manually converted mseed files to the directory mseed_raw before
confirming to continue with the R function. To convert all cube files to mseed files it is advised to
open a terminal and run the function GIPPtools/bin/cube2mseed with the following parameters:
GIPPtools/bin/cube2mseed --verbose --output-dir=./mseed_raw/ ./input_dir/ without fur-
ther adjustments, except for the fringe sample option, as specified in aux_organisecubefiles.
Please also see the documentation of the cube2mseed program from the gipptools for further infor-
mation.

aux_psdpanels 25

Alternatively, increasing the heap space of the Java Runtime Environment, required for converting
the cube files, can solve the above mentioned issue. To increase the heap space, use the argument
heapspace. By default, this argument is set to 4096.

Value

A set of hourly seismic files written to disk.

Author(s)

Michael Dietze

Examples

Not run:

basic example with minimum effort
aux_organisecubefiles(stationfile = "output/stationinfo.txt",

input_dir = "input",
gipptools = "software/gipptools-2015.225/")

End(Not run)

aux_psdpanels Generate spectrogram panels for a seismic network

Description

The function generates a set of spectrogram (PSD) panels on single to several hours basis. It
depends on seismic files being organised in a coherent structure as, for example generated by
aux_organisecubefiles. The function is similar to aux_psdsummary but arranges PSDs of all
stations by time, rather than creating individual PSDs by time and station.

Usage

aux_psdpanels(
station,
component = "BHZ",
period,
span = 1,
input_dir,
output_dir,
cpu,
aggregate = c(1, 5),
n_dates = 2000,

26 aux_psdpanels

jpg_dim = c(4444, 2500, 300, 90),
verbose = FALSE,
...

)

Arguments

station Character value, seismic station ID, which must correspond to the ID in the
file name of the data directory structure (cf. aux_organisecubefiles).

component Character value, seismic component, which must correspond to the component
name in the file name of the data directory structure (cf. aux_organisecubefiles).
Default is "BHZ" (vertical component).

period POSIXct vector of length two, time period to be processed.

span Numeric vector, time span per PSD in hours. Value can range between 1 and 24.
For each time span a separate jpeg-file will be produced. Default is 1 hour.

input_dir Character value, path to directory where the seismic files are stored.

output_dir Character value, path to directory where PSD image files are saved to.

cpu Numeric value, fraction of CPUs to use for parallel processing. If omitted, one
CPU is used.

aggregate Numeric vector of length two, aggregation factors for the processed PSD matrics.
First entry denotes time aggregation, second entry frequency aggregation. De-
fault is c(1, 5).

n_dates Numeric value, final number of spectra per output PSD. Default is 2000.

jpg_dim Numeric vector of length four, JPEG image properties in the form c(width,
height, resolution, quality). Default is c(4444, 2500, 300, 90).

verbose Logical value, optional screen output of processing progress. Default is FALSE.

... Additional arguments passed to different functions. See details section for de-
fault values.

Details

The function calls a series of other functions, partly with modified default values, which can be
changed by the ...-argument. By default, the seismic files are imported as eseis objects using
aux_getevent(..., eseis = TRUE). The signals are deconvolved with signal_deconvolve() us-
ing the default options, i.e., sensor = "TC120s" and logger = "Cube3extBOB". Then, the signals
are bandpass filtered with signal_filter, using f = c(1, 90). The PSDs are calculated with
signal_spectrogram using Welch = TRUE, window = 30 and window_sub = 15.

This and all other aux-functions are primarily written for internal use in the GFZ Geomorphology
Section group members and their usual data handling scheme. Thus, they may be of limited use
when adopted for other scopes. However, many of these functions are internally consistent in usage.

Value

A set of JPEG images wirtten to disk

aux_psdsummary 27

Author(s)

Michael Dietze

Examples

Not run:

PSD generation with minimum input arguments
aux_psdpanels(station = stations$ID,

input_dir = "input/")

End(Not run)

aux_psdsummary Generate spectrograms for seismic stations at different time periods

Description

The function generates a set of spectrograms (PSDs) for all seismic stations provided, for daily,
weekly, monthly and total time periods. It depends on seismic files being organised in a coherent
structure as, for example, generated by aux_Organisecubefiles.

Usage

aux_psdsummary(
station,
component = "BHZ",
period,
output = c("daily", "weekly", "monthly", "total"),
input_dir,
output_dir,
aggregate = c(1, 5),
n_dates = 2000,
jpg_dim = c(4444, 2500, 300, 90),
verbose = FALSE,
...

)

Arguments

station Character value, seismic station ID, which must correspond to the ID in the
file name of the data directory structure (cf. aux_organisecubefiles()).

component Character value, seismic component, which must correspond to the component
name in the file name of the data directory structure (cf. aux_organisecubefiles()).
Default is "BHZ" (vertical component of a sac file).

28 aux_psdsummary

period POSIXct vector of length two, time period to be processed.

output Character vector, output PSD types. One or more out of "daily", "weekly",
"monthly", "total". Default is c("daily", "weekly", "monthly", "total").

input_dir Character value, path to directory where the seismic files are stored.

output_dir Character value, path to directory where PSD image files are saved to.

aggregate Numeric vector of length two, aggregation factors for the processed PSD matrics.
First entry denotes time aggregation, second entry frequency aggregation. De-
fault is c(1, 5).

n_dates Numeric value, final number of spectra per output PSD. Default is 2000.

jpg_dim Numeric vector of length four, JPEG image properties in the form c(width,
height, resolution, quality). Default is c(4444, 2500, 300, 90).

verbose Logical value, optional screen output of processing progress. Default is FALSE.

... Additional arguments passed to different functions. See details section for de-
fault values.

Details

The function calls a series of other functions, partly with modified default values, which can be
changed by the ...-argument. By default, the seismic files are imported as eseis objects using
aux_getevent(..., eseis = TRUE). The signals are deconvolved with signal_deconvolve() us-
ing the default options, i.e., sensor = "TC120s" and logger = "Cube3extBOB". Then, the signals
are bandpass filtered with signal_filter, using f = c(1, 90). The PSDs are calculated with
signal_spectrogram using Welch = TRUE, window = 90 and window_sub = 30.

This and all other aux-functions are primarily written for internal use amongst the GFZ Geomor-
phology Section group members and their usual data handling scheme. Thus, they may be of limited
use when adopted for other scopes. However, many of these functions are internally consistent in
usage.

Value

A set of JPEG images wirtten to disk

Author(s)

Michael Dietze

Examples

Not run:

PSD generation with minimum input arguments
aux_psdsummary(station = c("STA01", "STA02"),

period = as.POSIXct(x = c("2017-04-01",
"2017-04-03"),

tz = "UTC"),
input_dir = "~/data/seismic/sac/")

aux_sonifysignal 29

PSD generation with some more arguments
aux_psdsummary(station = c("STA01", "STA02"),

component = "BHZ",
period = as.POSIXct(x = c("2017-04-01",

"2017-04-03"),
tz = "UTC"),

output = c("daily", "monthly"),
input_dir = "~/data/seismic/sac/",
aggregate = c(2, 10),
n_dates = 1000,
jpg_dim = c(1600, 900, 300, 50),
verbose = TRUE)

End(Not run)

aux_sonifysignal Convert seismic signal to sound (sonification)

Description

The function converts a seismic signal to sound and saves it as a wav file.

Usage

aux_sonifysignal(
data,
file,
aggregate = 1,
amplification = 10^6,
speed = 1,
dt

)

Arguments

data eseis object to be converted to sound file

file Character value, file name under which the sonified signal is saved.

aggregate Numeric value, factor by which the seismic file is aggregated before conversion.
Aggregation is performed by linear interpolation.

amplification Numeric value, amplification factor. Default is 10^6.

speed Numeric value, factor by which sampling rate is increased to make sound sen-
sible. The higher the speed value, the higher is the tone. Default is 1 (100 Hz
seismic signal becomes 100 Hz sound signal).

dt Numeric value, samplig rate. Only needed if data is not an eseis object.

30 aux_stationinfofile

Value

Sound file in wav format, written to disk.

Author(s)

Michael Dietze

Examples

Not run:

load example data
data(rockfall)

deconvolve and taper signal
s <- signal_deconvolve(data = rockfall_eseis)
s <- signal_taper(data = s, p = 0.05)

sonify as is (barely sensible, due to too low frequency)
aux_sonifysignal(data = s,

file = "~/Downloads/r1.wav")

sonify at 20-fold speed
aux_sonifysignal(data = s,

file = "~/Downloads/r1.wav",
speed = 20)

End(Not run)

aux_stationinfofile Create station info file from cube files.

Description

This function reads GPS tags from Omnirecs/Digos Datacube files and creates a station info file
from additional input data. It depends on the cubetools or gipptools software package (see details).

Usage

aux_stationinfofile(
name,
input_dir,
output_dir,
station_ID,
station_name,
station_z,

aux_stationinfofile 31

station_d,
sensor_type,
logger_type,
sensor_ID,
logger_ID,
unit = "dd",
n,
quantile = 0.95,
random = TRUE,
cpu,
gipptools,
write_file = TRUE,
write_raw = FALSE,
write_data = FALSE

)

Arguments

name Character value, file name of the output station info file, without extention (will
be added as *.txt).

input_dir Character value, path to directory where all cube files to be processed as stored.
Each set of files from one logger must be stored in a separate sub-directory
named after the cube ID.

output_dir Character value, path to directory where output data is written to.

station_ID Character vector, seismic station ID. Each value must not contain more than
5 characters. Longer entries will be clipped. If omitted, a default ID will be
created.

station_name Character vector, seismic station name. If omitted, the station ID is used as
name.

station_z Numeric vector, elevation of the seismic stations.

station_d Numeric vector, deployment depth of the seismic sensor.

sensor_type Character vector, sensor type.

logger_type Character vector, logger type.

sensor_ID Character vector, sensor ID.

logger_ID Character vector, logger ID.

unit Character value, coordinates unit of the location. One out of "dd" (decimal
degrees) and "utm" (metric in UTM zone). Default is "dd".

n Numeric value, number of cube file to process for GPS coordinate extraction. If
omitted, all files are processed.

quantile Numeric value, quantile size to which the extracted coordinate sample size is
restricted. This is mainly used to remove coordinate outliers, due to spurious
GPS signals. Default is 0.95. Set to 1 to omit any sample rejection.

random Logical value, option to draw n cube files randomly instead of ordered by date.
Default is TRUE.

32 aux_stationinfofile

cpu Numeric value, fraction of CPUs to use for parallel processing. If omitted, one
CPU is used.

gipptools Character value, path to gipptools or cubetools directory.

write_file Logical value, option to write station info file to disk. Default is TRUE.

write_raw Logical value, option to write (keep) raw ASCII GPS data. Default is FALSE.

write_data Logical value, option to write gps raw data as rda-file. File name will be the
same as for file. Default is FALSE.

Details

A station info file is an ASCII file that contains all relevant information about the individual stations
of a seismic network. The variables contain a station ID (containing not more than 5 characters),
station name, latitude, longitude, elevation, deployment depth, sensor type, logger type, sensor ID
and logger ID.
The function requires that the software cubetools (http://www.omnirecs.de/documents.html)
or gipptools (http://www.gfz-potsdam.de/en/section/geophysical-deep-sounding/infrastructure/geophysical-instrument-pool-potsdam-gipp/software/gipptools/)
are installed. Note that GPS tag extraction may take several minutes per cube file. Hence, depend-
ing on the number of files and utilised CPUs the processing may take a while.
Specifying an input directory (input_dir) is mandatory. This input directory must only contain
the subdirectories with the cube files to process, each set of cube files must be located in a sepa-
rate subdirectory and these subdiretories must have the same name as specified by the logger IDs
(logger_ID). An appropriate structure would be something like:

1. input

(a) A1A
i. file1.A1A

ii. file2.A1A
(b) A1B

i. file1.A1B
ii. file2.A1B

Value

A set of files written to disk and a data frame with seismic station information.

Author(s)

Michael Dietze

Examples

Not run:

basic example with minimum effort
aux_stationinfofile(name = "stationinfo",

input_dir = "input",

earthquake 33

logger_ID = c("864", "876", "AB1"),
gipptools = "software/gipptools-2015.225")

example with more adjustments
aux_stationinfofile(name = "stationinfo",

input_dir = "input",
logger_ID = c("864", "876", "AB1"),
station_name = c("KTZ01", "KTZ02", "KTZ03"),
station_z = c(30, 28, 29),
station_d = rep(0.5, 3),
sensor_type = rep("TC120s", 3),
logger_type = rep("Cube3ext", 3),
unit = "utm",
n = 1,
cpu = 0.9,
gipptools = "software/gipptools-2015.225",
write_raw = TRUE,
write_data = TRUE)

End(Not run)

earthquake Seismic traces of a small earthquake

Description

The dataset comprises the seismic signal (all three components) of a small earthquake. The data
have been recorded at 200 Hz sampling frequency with an Omnirecs Cube ext 3 data logger.

The dataset comprises the time vector associated with the data set earthquake.

Usage

s

t

Format

The format is: List of 3 $ BHE: num [1:8001] -3.95e-07 ... $ BHN: num [1:8001] -2.02e-07 ... $
BHZ: num [1:8001] -1.65e-07 ...

The format is: POSIXct[1:98400], format: "2015-04-06 13:16:54" ...

34 fmi_inversion

Examples

load example data set
data(earthquake)

plot signal vector
plot(x = t, y = s$BHZ, type = "l")

load example data set
data(earthquake)

show range of time vector
range(t)

eseis eseis: Environmental Seismology Toolbox

Description

Environmental seismoloy is a scientific field that studies the seismic signals, emitted by Earth sur-
face processes. This package eseis provides all relevant functions to read/write seismic data files,
prepare, analyse and visualise seismic data, and generate reports of the processing history.

Details

Package: eseis
Type: Package
Version: 0.4.0
Date: 2021-11-23
License: GPL-3

Author(s)

Michael Dietze

fmi_inversion Invert fluvial data set based on reference spectra catalogue

fmi_inversion 35

Description

The fluvial model inversion (FMI) routine uses a predefined look-up table with reference spectra
to identify those spectra that fit the empirical data set best, and returns the corresponding target
variables and fit errors.

Usage

fmi_inversion(reference, data, n_cores = 1)

Arguments

reference List containing lists with precalculated model spectra.

data eseis object or numeric matrix (spectra organised by columns), empiric spectra
which are used to identify the best matching target parameters of the reference
data set.

n_cores Numeric value, number of CPU cores to use. Disabled by setting to 1. Default
is 1.

Details

Note that the frequencies of the empiric and modelled data sets must match.

Value

List object containing the inversion results.

Author(s)

Michael Dietze

Examples

NOTE THAT THE EXAMPLE IS OF BAD QUALITY BECAUSE ONLY 10 REFERENCE
PARAMETER SETS AND SPECTRA ARE CALCULATED, DUE TO COMPUATATION TIME
CONSTRAINTS. SET THE VALUE TO 1000 FOR MORE MEANINGFUL RESULTS.

create 100 example reference parameter sets
ref_pars <- fmi_parameters(n = 10,

h_w = c(0.02, 1.20),
q_s = c(0.001, 8.000) / 2650,
d_s = 0.01,
s_s = 1.35,
r_s = 2650,
w_w = 6,
a_w = 0.0075,
f_min = 5,
f_max = 80,
r_0 = 6,
f_0 = 1,

36 fmi_inversion

q_0 = 10,
v_0 = 350,
p_0 = 0.55,
e_0 = 0.09,
n_0_a = 0.6,
n_0_b = 0.8,
res = 100)

create corresponding reference spectra
ref_spectra <- fmi_spectra(parameters = ref_pars)

define water level and bedload flux time series
h <- c(0.01, 1.00, 0.84, 0.60, 0.43, 0.32, 0.24, 0.18, 0.14, 0.11)
q <- c(0.05, 5.00, 4.18, 3.01, 2.16, 1.58, 1.18, 0.89, 0.69, 0.54) / 2650
hq <- as.list(as.data.frame(rbind(h, q)))

calculate synthetic spectrogram
psd <- do.call(cbind, lapply(hq, function(hq) {

psd_turbulence <- eseis::model_turbulence(h_w = hq[1],
d_s = 0.01,
s_s = 1.35,
r_s = 2650,
w_w = 6,
a_w = 0.0075,
f = c(10, 70),
r_0 = 5.5,
f_0 = 1,
q_0 = 18,
v_0 = 450,
p_0 = 0.34,
e_0 = 0.0,
n_0 = c(0.5, 0.8),
res = 100,
eseis = FALSE)$spectrum

psd_bedload <- eseis::model_bedload(h_w = hq[1],
q_s = hq[2],
d_s = 0.01,
s_s = 1.35,
r_s = 2650,
w_w = 6,
a_w = 0.0075,
f = c(10, 70),
r_0 = 5.5,
f_0 = 1,
q_0 = 18,
v_0 = 450,
x_0 = 0.34,
e_0 = 0.0,
n_0 = 0.5,
res = 100,
eseis = FALSE)$spectrum

fmi_parameters 37

combine spectra
psd_sum <- psd_turbulence + psd_bedload

return output
return(10 * log10(psd_sum))

}))

graphics::image(t(psd))

invert empiric data set
X <- fmi_inversion(reference = ref_spectra,

data = psd)

plot model results
plot(X$parameters$q_s * 2650,

type = "l")
plot(X$parameters$h_w,

type = "l")

fmi_parameters Create reference model reference parameter catalogue

Description

In order to run the fluvial model inversion (FMI) routine, a set of randomised target parameter
combinations needs to be created. This function does this job.

Usage

fmi_parameters(
n,
d_s,
s_s,
r_s,
q_s,
h_w,
w_w,
a_w,
f_min,
f_max,
r_0,
f_0,
q_0,
v_0,
p_0,
e_0,
n_0_a,

38 fmi_parameters

n_0_b,
res

)

Arguments

n Numeric value, number of output reference spectra.

d_s Numeric value, mean sediment grain diameter (m). Alternative to gsd.

s_s Numeric value, standard deviation of sediment grain diameter (m). Alternative
to gsd.

r_s Numeric value, specific sediment density (kg / m^3)

q_s Numeric value, unit sediment flux (m^2 / s)

h_w Numeric value, fluid flow depth (m)

w_w Numeric value, fluid flow width (m)

a_w Numeric value, fluid flow inclination angle (radians)

f_min Numeric value, lower boundary of the frequency range to be modelled.

f_max Numeric value, upper boundary of the frequency range to be modelled.

r_0 Numeric value, distance of seismic station to source

f_0 Numeric value, reference frequency (Hz)

q_0 Numeric value, ground quality factor at f_0. "Reasonable value may be 20"
(Tsai et al. 2012).

v_0 Numeric value, phase speed of the Rayleigh wave at f_0 (m/s). Assuming a
shear wave velocity of about 2200 m/s, Tsai et al. (2012) yield a value of 1295
m/s for this parameter.

p_0 Numeric value, variation exponent of Rayleigh wave velocities with frequency
(dimensionless)

e_0 Numeric value, exponent characterizing quality factor increase with frequency
(dimensionless). "Reasonable value may be 0" (Tsai et al. 2012).

n_0_a Numeric value, lower Greens function displacement amplitude coefficients. Cf.
N_ij in eq. 36 in Gimbert et al. (2014)

n_0_b Numeric value, lower Greens function displacement amplitude coefficients. Cf.
N_ij in eq. 36 in Gimbert et al. (2014)

res Numeric value, output resolution, i.e. length of the spectrum vector.

Details

All parameters must be provided as single values, except for those parameters that shall be ran-
domised, which must be provided as a vector of length two. This vector defines the range within
which uniformly distributed random values will be generated and assigned.

Value

List object with model reference parameters.

fmi_spectra 39

Author(s)

Michael Dietze

Examples

create two parameter sets where h_w (water level) and q_s (sediment
flux) are randomly varied.

ref_pars <- fmi_parameters(n = 2,
h_w = c(0.02, 2.00),
q_s = c(0.001, 50.000) / 2650,
d_s = 0.01,
s_s = 1.35,
r_s = 2650,
w_w = 6,
a_w = 0.0075,
f_min = 5,
f_max = 80,
r_0 = 6,
f_0 = 1,
q_0 = 10,
v_0 = 350,
p_0 = 0.55,
e_0 = 0.09,
n_0_a = 0.6,
n_0_b = 0.8,
res = 100)

fmi_spectra Create reference model spectra catalogue

Description

In order to run the fluvial model inversion (FMI) routine, a look-up table with reference spectra
needs to be created (based on predefined model parameters). This function does this job.

Usage

fmi_spectra(parameters, n_cores = 1)

Arguments

parameters List containing lists with model parameters for which the spectra shall be cal-
culated.

n_cores Numeric value, number of CPU cores to use. Disabled by setting to 1. Default
is 1.

40 gui_models

Value

List object containing the calculated reference spectra and the corresponding input parameters.

Author(s)

Michael Dietze

Examples

create 2 example reference parameter sets
ref_pars <- fmi_parameters(n = 2,

h_w = c(0.02, 2.00),
q_s = c(0.001, 50.000) / 2650,
d_s = 0.01,
s_s = 1.35,
r_s = 2650,
w_w = 6,
a_w = 0.0075,
f_min = 5,
f_max = 80,
r_0 = 6,
f_0 = 1,
q_0 = 10,
v_0 = 350,
p_0 = 0.55,
e_0 = 0.09,
n_0_a = 0.6,
n_0_b = 0.8,
res = 100)

create corresponding reference spectra
ref_spectra <- fmi_spectra(parameters = ref_pars)

gui_models Start GUI with seismic models

Description

This function starts a browser-based graphic user interface to explore the parameter space of seismic
models that predict the spectra of turbulent water flow and bedload flux.

Usage

gui_models(...)

Arguments

... further arguments to pass to runApp

list_logger 41

Author(s)

Michael Dietze

See Also

runApp

Examples

Not run:
Start the GUI
gui_models()

End(Not run)

list_logger List library with data logger information.

Description

The function returns the list of supported data loggers to extract signal deconvolution parameters.

Usage

list_logger()

Details

The value AD is the analogue-digital conversion factor.

Value

List object, supported loggers with their parameters.

Author(s)

Michael Dietze

Examples

show documented loggers
list_logger()

show names of loggers in list
names(list_logger())

42 list_sensor

list_sacparameters List all header parameters of a sac file.

Description

The function returns a data frame with all header values of a sac file. It may be used for advanced
modifications by the user.

Usage

list_sacparameters()

Value

List object, parameters supported by a sac file.

Author(s)

Michael Dietze

Examples

show sac parameters
list_sacparameters()

list_sensor List sensor library.

Description

The function returns the list of supported sensors to extract signal deconvolution parameters.

Usage

list_sensor()

Details

Poles and zeros must be given in rad/s. Characteristics of further sensors can be added manually.
See examples of signal_deconvolve for further information. The value s is the generator constant
(sensitivity) given in Vs/m. The value k is the normalisation factor of the sensor.

Value

List object, supported sensors with their parameters.

model_amplitude 43

Author(s)

Michael Dietze

Examples

show sensors
list_sensor()

model_amplitude Model source amplitude by amplitude-distance model fitting

Description

The function fits one of several models of signal amplitude attenuation and returns a set of model
parameters, including the source amplitude (a_0).

Usage

model_amplitude(
data,
model = "SurfSpreadAtten",
distance,
source,
d_map,
coupling,
v,
q,
f,
k,
a_0

)

Arguments

data Numeric matrix or eseis object, seismic signals to work with. Since the func-
tion will calculate the maxima of the data it is usually the envolopes of the data
that should be used here. In an extreme case, a vector with just the maximum
amplitudes recorded at each station can be provided, as well.

model Character value, model to fit the data. One out of the list in the details section.
Default is "SurfSpreadAtten".

distance Numeric vector with distance of station locations to source. Alternatively, the
distance can be calculated by providing the source coordinates (xy) and distance
maps (d_map)

source Numeric vector of length two, location of the seismic source to model (x and y
coordinates).

44 model_amplitude

d_map List object, distance maps for each station (i.e., SpatialGridDataFrame ob-
jects). Output of distance_map.

coupling Numeric vector, coupling efficiency factors for each seismic station. The best
coupled station (or the one with the highest amplification) must receive 1, the
others must be scaled relatively to this one.

v Numeric value, mean velocity of seismic waves (m/s). Only relevant for models
accounting for unelastic attenuation (see details).

q Numeric value, quality factor of the ground. Only relevant for models account-
ing for unelastic attenuation (see details).

f Numeric value, frequency for which to model the attenuation. Only relevant for
models accounting for unelastic attenuation (see details).

k Numeric value, fraction of surface wave contribution to signals. Only relevant
for models that include mixture of surface and body waves (see details).

a_0 Logical value, start parameter of the source amplitude, if not provided, a best
guess is made as 100 times the maximum amplitude value of the data set.

Details

Depending on the choice of the model to fit, several parameters can (or should) be provided, e.g.
f,q, v, k, and most importantly, a_0. If more signals than free parameters are available, the missing
parameters may be estimated during the fit, but without any checks of quality and meaningfulness.
The parameter a_0 will be defined as 100 times the maximum input amplitude, by default. The
parameters f will be set to 10 Hz, q to 50, v to 1000 m/s and k to 0.5.

ISSUES: account for non-fixed parameters, especially k

The following amplitude-distance models are available:

• "SurfSpreadAtten", Surface waves including geometric spreading and unelastic attenuation

• "BodySpreadAtten", Body waves including geometric spreading and unelastic attenuation

• "SurfBodySpreadAtten", Surface and body waves including geometric spreading and un-
elastic attenuation

• "SurfSpread", Surface waves including geometric spreading, only

• "BodySpread", Body waves including geometric spreading, only

• "SurfBodySpread", Surface and body waves including geometric spreading, only

SurfSpreadAtten The model is based on Eq. 17 from Burtin et al. (2016):

ad = a0/sqrt(d) ∗ exp(−(pi ∗ f ∗ d)/(q ∗ v))

where a_0 is the source amplitude, a_d the amplitude as recorded by a sensor at distance d, f is the
center frequency of the signal, q the ground quality factor and v the seismic wave velocity.

BodySpreadAtten The model is based on Eq. 16 from Burtin et al. (2016):

ad = a0/d ∗ exp(−(pi ∗ f ∗ d)/(q ∗ v))

model_amplitude 45

where a_0 is the source amplitude, a_d the amplitude as recorded by a sensor at distance d, f is the
center frequency of the signal, q the ground quality factor and v the seismic wave velocity.

SurfBodySpreadAtten The model based on Eqs. 16 and 17 from Burtin et al. (2016):

ad = k ∗ a0/sqrt(d) ∗ exp(−(pi ∗ f ∗ d)/(q ∗ v)) + (1− k) ∗ a0/d ∗ exp(−(pi ∗ f ∗ d)/(q ∗ v))

where a_0 is the source amplitude, a_d the amplitude as recorded by a sensor at distance d, f is the
center frequency of the signal, q the ground quality factor, v the seismic wave velocity, and n and
m two factors determining the relative contributions of the two wave types, thus summing to 1.

BodySpread The model is simply accounting for geometric spreading

ad = a0/d

where a_0 is the source amplitude, a_d the amplitude as recorded by a sensor at distance d.

SurfSpread The model is simply accounting for geometric spreading

ad = a0/sqrt(d)

where a_0 is the source amplitude, a_d the amplitude as recorded by a sensor at distance d.

SurfBodySpread The model is simply accounting for geometric spreading

ad = k ∗ (a0/d) + (1− k) ∗ ad/sqrt(d)

where a_0 is the source amplitude, a_d the amplitude as recorded by a sensor at distance d, and n
and m two factors determining the relative contributions of the two wave types, thus summing to 1.

References - Burtin, A., Hovius, N., and Turowski, J. M.: Seismic monitoring of torrential and
fluvial processes, Earth Surf. Dynam., 4, 285–307, https://doi.org/10.5194/esurf-4-285-2016, 2016.

Value

List with model results, including a_0 (source amplitude), residuals (model residuals), coefficients
model coefficients.

Author(s)

Michael Dietze

Examples

Not run:

create synthetic DEM
dem <- raster::raster(nrows = 20, ncols = 20,

xmn = 0, xmx = 10000,
ymn= 0, ymx = 10000,
vals = rep(0, 400))

46 model_bedload

define station coordinates
sta <- data.frame(x = c(1000, 9000, 5000, 9000),

y = c(1000, 1000, 9000, 9000),
ID = c("A", "B", "C", "D"))

create synthetic signal (source in towards lower left corner of the DEM)
s <- rbind(dnorm(x = 1:1000, mean = 500, sd = 50) * 50,

dnorm(x = 1:1000, mean = 500, sd = 50) * 2,
dnorm(x = 1:1000, mean = 500, sd = 50) * 1,
dnorm(x = 1:1000, mean = 500, sd = 50) * 0.5)

calculate spatial distance maps and inter-station distances
D <- eseis::spatial_distance(stations = sta[,1:2],

dem = dem)

model_amplitude(data = s,
source = c(500, 600),
d_map = D$maps,
v = 500,
q = 50,
f = 10)

model_amplitude(data = s,
distance = c(254, 8254, 9280, 11667),
model = "SurfBodySpreadAtten",
v = 500,
q = 50,
f = 10,
k = 0.5)

End(Not run)

model_bedload Model the seismic spectrum due to bedload transport in rivers

Description

The function calculates a seismic spectrum as predicted by the model of Tsai et al. (2012) for river
bedload transport. The code was written to R by Sophie Lagarde and integrated to the R package
’eseis’ by Michael Dietze.

Usage

model_bedload(
gsd,
d_s,
s_s,

model_bedload 47

r_s,
q_s,
h_w,
w_w,
a_w,
f = c(1, 100),
r_0,
f_0,
q_0,
e_0,
v_0,
x_0,
n_0,
n_c,
res = 100,
adjust = TRUE,
eseis = FALSE,
...

)

Arguments

gsd data frame grain-size distribution function. Must be provided as data frame
with two variables: grain-size class (in m, first column) and wgt/vol percentage
per class (second column). See examples for details.

d_s Numeric value, mean sediment grain diameter (m). Alternative to gsd.
s_s Numeric value, standard deviation of sediment grain diameter (m). Alternative

to gsd.
r_s Numeric value, specific sediment density (kg / m^3)
q_s Numeric value, unit sediment flux (m^2 / s)
h_w Numeric value, fluid flow depth (m)
w_w Numeric value, fluid flow width (m)
a_w Numeric value, fluid flow inclination angle (radians)
f Numeric vector, frequency range to be modelled. If of length two the argument

is interpreted as representing the lower and upper limit and the final length of the
frequency vector is set by the argument res. If f contains more than two values
it is interpreted as the actual frequency vector and the value of res is ignored.

r_0 Numeric value, distance of seismic station to source
f_0 Numeric value, reference frequency (Hz)
q_0 Numeric value, ground quality factor at f_0. "Reasonable value may be 20"

(Tsai et al. 2012).
e_0 Numeric value, exponent characterizing quality factor increase with frequency

(dimensionless). "Reasonable value may be 0" (Tsai et al. 2012).
v_0 Numeric value, phase speed of the Rayleigh wave at f_0 (m/s). Assuming a

shear wave velocity of about 2200 m/s, Tsai et al. (2012) yield a value of 1295
m/s for this parameter.

48 model_bedload

x_0 Numeric value, exponent of the power law variation of Rayleigh wave velocities
with frequency

n_0 Numeric vector of length two, Greens function displacement amplitude coeffi-
cients. Cf. N_ij in eq. 36 in Gimbert et al. (2014)

n_c Numeric value, option to include single particle hops coherent in time, causing
spectrum modulation due to secondary effects. Omitted is no value is specified,
here. Usual values may be between 2 and 4.

res Numeric value, output resolution, i.e. length of the spectrum vector. Default is
1000.

adjust Logical value, option to adjust PSD for wide grain-size distributions, according
to implementation by Tsai et al. (2012).

eseis Character value, option to return an eseis object instead of a data frame. De-
fault is FALSE.

... Further arguments passed to the function.

Details

The model uses a set of predefined constants. These can also be changed by the user, using the ...
argument:

• g = 9.81, gravitational acceleration (m/s^2)

• r_w = 1000, fluid specific density (kg/m^3)

• k_s = 3 * d_50, roughness length (m)

• log_lim = c(0.0001, 100), limits of grain-size distribution function template (m)

• log_length = 10000, length of grain-size distribution function template

• nu = 10^(-6), specific density of the fluid (kg/m^3)

• power_d = 3, grain-size power exponent

• gamma = 0.9, gamma parameter, after Parker (1990)

• s_c = 0.8, drag coefficient parameter

• s_p = 3.5, drag coefficient parameter

• c_1 = 2 / 3, inter-impact time scaling, after Sklar & Dietrich (2004)

When no user defined grain-size distribution function is provided,the function calculates the raised
cosine distribution function as defined in Tsai et al. (2012) using the default range and resolution
as specified by log_lim and log_length (see additional arguments list above). These default
values are appropriate for mean sediment sizes between 0.001 and 10 m and log standard deivations
between 0.05 and 1. When more extreme distributions are to be used, it is necessary to either adjust
the arguments log_lim and log_length or use a user defined distribution function.

The adjustment option (implemented with package version 0.6.0) is only relevant for wide grain-
size distributions, i.e., s_s > 0.2. In such cases, the unadjusted version tends to underestimate
seismic power.

Value

eseis object containing the modelled spectrum.

model_bedload 49

Author(s)

Sophie Lagarde, Michael Dietze

References

Tsai, V. C., B. Minchew, M. P. Lamb, and J.-P. Ampuero (2012), A physical model for seismic noise
generation from sediment transport in rivers, Geophys. Res. Lett., 39, L02404, doi:10.1029/2011GL050255.

Examples

calculate spectrum (i.e., fig. 1b in Tsai et al., 2012)
p_bedload <- model_bedload(d_s = 0.7,

s_s = 0.1,
r_s = 2650,
q_s = 0.001,
h_w = 4,
w_w = 50,
a_w = 0.005,
f = c(0.1, 20),
r_0 = 600,
f_0 = 1,
q_0 = 20,
e_0 = 0,
v_0 = 1295,
x_0 = 0.374,
n_0 = 1,
res = 100,
eseis = TRUE)

plot spectrum
plot_spectrum(data = p_bedload,

ylim = c(-170, -110))

define empiric grain-size distribution
gsd_empiric <- data.frame(d = c(0.70, 0.82, 0.94, 1.06, 1.18, 1.30),

p = c(0.02, 0.25, 0.45, 0.23, 0.04, 0.00))

calculate spectrum
p_bedload <- model_bedload(gsd = gsd_empiric,

r_s = 2650,
q_s = 0.001,
h_w = 4,
w_w = 50,
a_w = 0.005,
f = c(0.1, 20),
r_0 = 600,
f_0 = 1,
q_0 = 20,
e_0 = 0,
v_0 = 1295,
x_0 = 0.374,

50 model_turbulence

n_0 = 1,
res = 100,
eseis = TRUE)

plot spectrum
plot_spectrum(data = p_bedload,

ylim = c(-170, -110))

define mean and sigma for parametric distribution function
d_50 <- 1
sigma <- 0.1

define raised cosine distribution function following Tsai et al. (2012)
d_1 <- 10^seq(log10(d_50 - 5 * sigma),

log10(d_50 + 5 * sigma),
length.out = 20)

sigma_star <- sigma / sqrt(1 / 3 - 2 / pi^2)

p_1 <- (1 / (2 * sigma_star) *
(1 + cos(pi * (log(d_1) - log(d_50)) / sigma_star))) / d_1

p_1[log(d_1) - log(d_50) > sigma_star] <- 0
p_1[log(d_1) - log(d_50) < -sigma_star] <- 0
p_1 <- p_1 / sum(p_1)

gsd_raised_cos <- data.frame(d = d_1,
p = p_1)

model_turbulence Model the seismic spectrum due to hydraulic turbulence

Description

The function calculates the seismic spectrum as predicted by the model of Gimbert et al. (2014) for
hydraulic turbulence. The code was written to R by Sophie Lagarde and integrated to the R package
’eseis’ by Michael Dietze.

Usage

model_turbulence(
d_s,
s_s,
r_s = 2650,
h_w,
w_w,
a_w,
f = c(1, 100),
r_0,

model_turbulence 51

f_0,
q_0,
v_0,
p_0,
n_0,
res = 1000,
eseis = FALSE,
...

)

Arguments

d_s Numeric value, mean sediment grain diameter (m)

s_s Numeric value, standard deviation of sediment grain diameter (m)

r_s Numeric value, specific sediment density (kg / m^3)

h_w Numeric value, fluid flow depth (m)

w_w Numeric value, fluid flow width (m)

a_w Numeric value, fluid flow inclination angle (radians)

f Numeric vector, frequency range to be modelled. If of length two the argument
is interpreted as representing the lower and upper limit and the final length of the
frequency vector is set by the argument res. If f contains more than two values
it is interpreted as the actual frequency vector and the value of res is ignored.

r_0 Numeric value, distance of seismic station to source

f_0 Numeric value, reference frequency (Hz)

q_0 Numeric value, ground quality factor at f_0

v_0 Numeric value, phase speed of the Rayleigh wave at f_0 (m/s)

p_0 Numeric value, variation exponent of Rayleigh wave velocities with frequency
(dimensionless)

n_0 Numeric vector of length two, Greens function displacement amplitude coeffi-
cients. Cf. N_ij in eq. 36 in Gimbert et al. (2014)

res Numeric value, output resolution, i.e. length of the spectrum vector. Default is
1000.

eseis Character value, option to return an eseis object instead of a data frame. De-
fault is FALSE.

... Further arguments passed to the function.

Details

The model uses a set of predefined constants. These can also be changed by the user, using the ...
argument:

• c = 0.5, instantaneous fluid-grain friction coefficient (dimensionless)

• g = 9.81, gravitational acceleration (m/s^2)

• k = 0.5, Kolmogrov constant (dimensionless)

52 pick_correlation

• k_s = 3 * d_s, roughness length (m)

• h = k_s / 2, reference height of the measurement (m)

• e_0 = 0, exponent of Q increase with frequency (dimensionless)

• r_w = 1000, specific density of the fluid (kg/m^3)

• c_w = 0.5, instantaneous fluid-grain friction coefficient (dimensionless)

Value

eseis object containing the modelled spectrum.

Author(s)

Sophie Lagarde, Michael Dietze

Examples

model the turbulence-related power spectrum
P <- model_turbulence(d_s = 0.03, # 3 cm mean grain-size

s_s = 1.35, # 1.35 log standard deviation
r_s = 2650, # 2.65 g/cm^3 sediment density
h_w = 0.8, # 80 cm water level
w_w = 40, # 40 m river width
a_w = 0.0075, # 0.0075 rad river inclination
f = c(1, 200), # 1-200 Hz frequency range
r_0 = 10, # 10 m distance to the river
f_0 = 1, # 1 Hz Null frequency
q_0 = 10, # 10 quality factor at f = 1 Hz
v_0 = 2175, # 2175 m/s phase velocity
p_0 = 0.48, # 0.48 power law variation coefficient
n_0 = c(0.6, 0.8), # Greens function estimates
res = 1000) # 1000 values build the output resolution

plot the power spectrum
plot_spectrum(data = P)

pick_correlation Signal correlation based event picking

Description

The function picks (identifies) events from continuous data by comparing the data patterns against
a template signal using Pearson’s correlation coefficient, defining an event when that coefficient is
above a threshold value.

Usage

pick_correlation(data, on, template, dur_min, time, dt)

pick_correlation 53

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

on Numeric value, minimum correlation coefficient to define event occurence.

template eseis object or signal vector, template event with which the data set is corre-
lated.

dur_min Numeric value, minimum duration of the event. This is required as the routine
tends to identify multipe picks with similarly high correlation coefficients due to
autocorrelation effects. If omitted, dur_min is set to 0, i.e., all picks are returned.

time POSIXct vector, time vector of the signal(s). If not provided, a synthetic time
vector will be created.

dt Numeric value, sampling period. If omitted, either estimated from time or set
to 0.01 s (i.e., f = 100 Hz).

Value

data.frame, picked events.

Author(s)

Michael Dietze

Examples

create synthetic event signal
p <- sin(seq(0, 10 * pi, by = 0.35)) * 0.2 *

(1 + sin(seq(0, pi, length.out = 90)))^5

show event signal
plot(p, type = "l")

create synthetic noise signal
x <- runif(n = 1000, min = -1, max = 1)
t <- seq(from = Sys.time(), length.out = length(x), by = 1/200)
ii <- floor(runif(n = 3, min = 100, max = 900))

add events to noise
for(k in 1:length(ii)) {

nn <- ii[k]:(ii[k] + 89)
x[nn] <- x[nn] + p

}

show resulting time series
plot(x = t, y = x, type = "l")

pick events based on template
picks <- eseis::pick_correlation(data = x,

on = 0.8,

54 pick_kurtosis

template = p,
time = t,
dt = 1/200)

show result
print(picks)

pick_kurtosis Kutosis based event picking

Description

The function picks (identifies) events from continuous data using the kurtosis of the signal, and
when it reaches beyond a defined threshold value. The end of an event is determined by the signal-
to-noise ratio (SNR)

Usage

pick_kurtosis(
data,
on,
off = 1,
dur_min = 0,
dur_max,
window_kurt,
window_amp,
time,
dt

)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

on Numeric value, kurtosis threshold that defines the onset of an event.

off Numeric value, ratio of average post and pre event signal amplitude inside a
running window. Default is 1.

dur_min Numeric value, minimum duration of the event. This is required as the kurtosis
routine tends to identify multipe picks in the beginning of an event.

dur_max Numeric value, maximum duration of the event. This value can be omitted but
would increase computational speed as it determines the length of samples to
look for the amplitude ratio that signals the end of an event

window_kurt Numeric value, size of the running window (in number of samples) in which the
kurtosis is calculated.

window_amp Numeric value, size of the running window (in number of samples) in which the
running mean is calculated.

pick_kurtosis 55

time POSIXct vector, time vector of the signal(s). If not provided, a synthetic time
vector will be created.

dt Numeric value, sampling period. If omitted, either estimated from time or set
to 0.01 s (i.e., f = 100 Hz).

Details

Further reading:

Baillard, C., Crawford, W.C., Ballu, V., Hibert, C., Mangeney, A., 2014. An automatic kurtosis-
based p- and s-phase picker designed for local seismic networks. Bull. Seismol. Soc. Am. 104 (1),
394–409.

Hibert, C., Mangeney, A., Grandjean, G., Baillard, C., Rivet, D., Shapiro, N.M., Satriano, C.,
Maggi, A., Boissier, P., Ferrazzini, V., Crawford, W., 2014. Automated identification, location, and
volume estimation of rockfalls at Piton de la Fournaise Volcano. J. Geophys. Res. Earth Surf. 119
(5), 1082–1105. http://dx.doi.org/10.1002/2013JF002970.

Value

data.frame, picked events.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

preprocess signal (aggregate to increase speed, filter, envelope)
s <- signal_aggregate(data = rockfall_eseis, n = 5)
s <- signal_filter(data = s, f = c(5, 20), lazy = TRUE)
e <- signal_envelope(data = s)

pick events based on signal kurtosis
p <- eseis::pick_kurtosis(data = e,

window_kurt = 200,
on = 15,
off = 5,
dur_min = 10,
dur_max = 90,
window_amp = 300)

p$picks

56 pick_stalta

pick_stalta Calculate stal-lta-ratio.

Description

The function calculates the ratio of the short-term-average and long-term-average of the input sig-
nal.

Usage

pick_stalta(data, time, dt, sta, lta, freeze = FALSE, on, off)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

time POSIXct vector, time vector of the signal(s). If not provided, a synthetic time
vector will be created.

dt Numeric value, sampling period. If omitted, either estimated from time or set
to 0.01 s (i.e., f = 100 Hz).

sta Numeric value, number of samples for short-term window.

lta Numeric value, number of samples for long-term window.

freeze Logical value, option to freeze lta value at start of an event. Useful to avoid
self-adjustment of lta for long-duration events.

on Numeric value, threshold value for event onset.

off Numeric value, threshold value for event end.

Value

data frame, detected events (ID, start time, duration in seconds, STA-LTA vaue).

Author(s)

Michael Dietze

Examples

load example data
data(rockfall)

filter signal
rockfall_f <- signal_filter(data = rockfall_eseis,

f = c(1, 90),
p = 0.05)

calculate signal envelope

plot_components 57

rockfall_e <- signal_envelope(data = rockfall_f)

pick earthquake and rockfall event
p <- pick_stalta(data = rockfall_e,

sta = 100,
lta = 18000,
freeze = TRUE,
on = 5,
off = 3)

p$picks

plot_components Plot three seismic components against each other

Description

The function visualises the time evolution of three seismic components of the same signal against
each other as line graphs. There are three different visualisation types available: 2D (a panel of three
2D plots), 3D (a perspective threedimensional plot) and scene (an interactive threedimensional plot,
mainly for exploratory purpose).

Usage

plot_components(data, type = "2D", order = "xyz", ...)

Arguments

data List, data frame or matrix, seismic componenents to be processed. If data
is a matrix, the components must be organised as columns. Also, data can be a
list of eseis objects.

type Character value, plot type. One out of "2D" (panel of three 2-dimensional
plots), "3D" (perspective 3D plot) and "scene" (interactive 3D plot). Default is
"2D".

order Caracter value, order of the seismic components. Describtion must contain the
letters "x","y" and "z" in the order according to the input data set. Default is
"xyz" (NW-SE-vertical).

... Further arguments passed to the plot function.

Details

The plot type type = "3D" requires the package plot3D being installed. The plot type type =
"scene" requires the package rgl being installed.

Value

A plot

58 plot_ppsd

Author(s)

Michael Dietze

Examples

load example data set
data(earthquake)

filter seismic signals
s <- eseis::signal_filter(data = s,

dt = 1/200,
f = c(0.05, 0.1))

integrate signals to get displacement
s_d <- eseis::signal_integrate(data = s, dt = 1/200)

plot components in 2D
plot_components(data = s_d,

type = "2D")

plot components with time colour-coded
plot_components(data = s_d,

type = "2D",
col = rainbow(n = length(s$BHE)))

plot components with used defined coulour ramp
col_user <- colorRampPalette(colors = c("grey20", "darkblue", "blue",

"green", "red", "orange"))

plot_components(data = s_d,
type = "2D",
col = col_user(n = length(s$BHE)))

plot components as 3D plot, uncomment to use
#plot_components(data = s_d,
type = "3D",
col = rainbow(n = length(s$BHE)))

plot_ppsd Plot a probabilistic power spectral density estimate (PPSD)

Description

The function uses the output of signal_spectrogram() to plot a probabilistic power spectral den-
sity estimate.

plot_ppsd 59

Usage

plot_ppsd(data, res = c(500, 500), n, ...)

Arguments

data List object, spectrogram to be plotted. Must be output of signal_spectrogram()
or of equivalent structure.

res Integer vector of length two, factors of image resolution in pixels, i.e. in time
and frequency dimension. Default is c(100, 100).

n Integer vector of length two, factors by which the image will be smoothend by
a running average. n sets the filter window size, in x and y direction, respec-
tively. By default, the window sizes are set to one percent of the input data set
dimension.

... Additional arguments passed to the plot function.

Value

Graphic output of a spectrogram.

Author(s)

Michael Dietze

See Also

signal_spectrogram

Examples

load example data set
data(rockfall)

deconvolve data set
r <- signal_deconvolve(data = rockfall_eseis)

calculate PSD
p <- signal_spectrogram(data = r)

plot PPSD
plot_ppsd(data = p$PSD)

plot PPSD with lower resolution, more smoothing and other colour
ppsd_color <- colorRampPalette(c("white", "black", "red"))

plot_ppsd(data = p$PSD,
res = c(200, 200),
n = c(15, 20),
col = ppsd_color(200))

60 plot_signal

plot_signal Plot a seismic signal

Description

This function plots a line graph of a seismic signal. To avoid long plot preparation times the signal
is reduced to a given number of points.

Usage

plot_signal(data, time, n = 10000, ...)

Arguments

data eseis object or numeric vector, data set to be plotted.

time POSIXct vector, corresponding time vector.

n Numeric value, number of values to which the dataset is reduced. Default is
10000.

... Further arguments passed to the plot function.

Details

The format argument is based on hints provided by Sebastian Kreutzer and Christoph Burow.
It allows plotting time axis units in user defined formats. The time format must be provided as
character string using the POSIX standard (see documentation of strptime for a list of available
keywords), e.g., " "

Value

A line plot of a seismic wave form.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

plot data set straightforward
plot_signal(data = rockfall_eseis)

plot data set with lower resolution
plot_signal(data = rockfall_eseis, n = 100)

plot data set but not as an eseis object

plot_spectrogram 61

plot_signal(data = rockfall_z, time = rockfall_t)

load earthquake data set
data(earthquake)

plot all three components (after changing plot options)
pars <- par(no.readonly = TRUE)
par(mfcol = c(3, 1))

plt <- lapply(s, plot_signal, t = t)

par(pars)

plot_spectrogram Plot spectrograms (power spectral density estimates)

Description

This function plots spectrograms of seismic signals. It uses the output of signal_spectrogram.

Usage

plot_spectrogram(data, legend = FALSE, keep_par = FALSE, agg = c(1, 1), ...)

Arguments

data List object, spectrogram to be plotted. Must be output of signal_spectrogram
or of equivalent structure.

legend Logical value, option to add colour bar legend. Legend label can be changed
by zlab.

keep_par Logical value, option to omit resetting plot parameters after function execution.
Useful for adding further data to the PSD plot. Default is FALSE (parameters are
reset to original values).

agg Integer vector of length two, factors of image aggregation, i.e. in time and
frequency dimension. Useful to decrease image size. Default is c(1, 1) (no
aggregation).

... Additional arguments passed to the plot function.

Value

Graphic output of a spectrogram.

Author(s)

Michael Dietze

62 plot_spectrum

See Also

signal_spectrogram

Examples

load example data set
data(rockfall)

deconvolve signal
rockfall <- signal_deconvolve(data = rockfall_eseis)

calculate spectrogram
PSD <- signal_spectrogram(data = rockfall)

plot spectrogram
plot_spectrogram(data = PSD)

plot spectrogram with legend and labels in rainbow colours
plot_spectrogram(data = PSD,

xlab = "Time (min)",
ylab = "f (Hz)",
main = "Power spectral density estimate",
legend = TRUE,
zlim = c(-220, -70),
col = rainbow(100))

plot_spectrum Plot a spectrum of a seismic signal

Description

This function plots a line graph of the spectrum of a seismic signal.

Usage

plot_spectrum(data, unit = "dB", n = 10000, ...)

Arguments

data eseis object or data frame with two elements, frequency vector and spectrum
vector.

unit Character value. One out of "linear", "log", "dB". Default is "dB".

n Numeric value, number of values to which the dataset is reduced. Default is
10000.

... Further arguments passed to the plot function.

read_mseed 63

Value

A line plot.

Author(s)

Michael Dietze

See Also

signal_spectrum

Examples

load example data set
data(rockfall)

calculate spectrum
spectrum_rockfall <- signal_spectrum(data = rockfall_eseis)

plot data set with lower resolution
plot_spectrum(data = spectrum_rockfall)

read_mseed Read mseed files.

Description

This function reads mseed files. If append = TRUE, all files will be appended to the first one in
the order as they are provided. In the append-case the function returns a either a list with the
elements signal, time, meta and header or a list of the class eseis (see documentation of
aux_initiateeseis()). If append = FALSE and more than one file is provided, the function re-
turns a list of the length of the input files, each containing the above elements.

The mseed data format is read using the function readMiniseedFile from the package IRISSeismic.

Usage

read_mseed(
file,
append = TRUE,
signal = TRUE,
time = TRUE,
meta = TRUE,
header = TRUE,
eseis = TRUE,
type = "waveform"

)

64 read_mseed

Arguments

file Character vector, input file name(s), with extension.

append Logical value, option to append single files to one continuous file, keeping only
the hedaer information of the first file, default is TRUE.

signal Logical value, option to import the signal vector, default is TRUE.

time Logical value, option to create the time vector. The timezone is automatically
set to "UTC", default is TRUE.

meta Logical value, option to append the meta data part, default is TRUE.

header Logical value, option to append the header part, default is TRUE.

eseis Logical value, option to read data to an eseis object (recommended, see doc-
umentation of aux_initiateeseis), default is TRUE

type Character value, type keyword of the data. One out of "waveform", "envelope",
"fft", "spectrum", "spectrogram", "other", hilbert, hvratio. Default is
"waveform".

Value

List object, optionally of class eseis

Author(s)

Michael Dietze

Examples

Not run:
read mseed file with default options
x <- read_mseed(file = "input.miniseed")

read mseed file, only signal trace, not as eseis object
x <- read_mseed(file = "input.miniseed",

time = FALSE,
meta = FALSE,
header = FALSE,
eseis = FALSE)

read more than one mseed files and append traces
x <- read_mseed(file = c("input_1.miniseed", "input_2.miniseed"))

End(Not run)

read_sac 65

read_sac Read sac files.

Description

This function reads sac files.

Usage

read_sac(
file,
append = TRUE,
signal = TRUE,
time = TRUE,
meta = TRUE,
header = TRUE,
eseis = TRUE,
get_instrumentdata = FALSE,
endianness = "little",
biglong = FALSE,
type = "waveform"

)

Arguments

file Character vector, input file name(s), with extension.

append Logical value, option append single files to one continuous file, keeping only
the header information of the first file, default is TRUE.

signal Logical value, option to import the signal vector, default is TRUE.

time Logical value, option to create the time vector. The timezone is automatically
set to "UTC", default is TRUE.

meta Logical value, option to append the meta data part, default is TRUE.

header Logical value, option to append the header part, default is TRUE.

eseis Logical value, option to read data to an eseis object (recommended, see doc-
umentation of aux_initiateeseis), default is TRUE

get_instrumentdata

Logical value, option to fill meta information (sensor name, logger name, log-
ger gain) from SAC user fields (field 127-129, KUSER0-KUSER2). Default is
FALSE.

endianness Logical value, endianness of the sac file. One out of "little", "big" and
"swap". Default is "little".

biglong Logical value, number coding format. Default is FALSE.

type Character value, type keyword of the data. One out of "waveform", "envelope",
"fft", "spectrum", "spectrogram", "other", hilbert, hvratio. Default is
"waveform".

66 rockfall

Details

The function reads one or more sac-files. If append = TRUE, all files will be appended to the first
one in the order as they are provided. In the append-case the function returns a either a list with
the elements signal, time, meta and header or a list of the class eseis (see documentation of
aux_initiateeseis). If append = FALSE and more than one file is provided, the function returns
a list of the length of the input files, each containing the above elements.

The sac data format is implemented as descibed on the IRIS website (https://ds.iris.edu/files/sac-
manual/manual/file_format.html).

Value

List object, optionally of class eseis.

Author(s)

Michael Dietze

Examples

Not run:
read one file
file1 <- "~/Data/sac/EXMP01.14.213.01.00.00.BHE.SAC"

sac1 <- read_sac(file = file1)

read two (or more files) without meta and header parts
file2 <- c("~/Data/sac/EXMP01.14.213.01.00.00.BHE.SAC",

"~/Data/sac/EXMP01.14.213.02.00.00.BHE.SAC")

sac2 <- read_sac(file = file2,
meta = FALSE,
header = FALSE,
eseis = FALSE)

End(Not run)

rockfall Seismic trace of a rockfall event.

Description

The dataset comprises the seismic signal (vertical component) of a rockfall event, preceeded by an
earthquake. The data have been recorded at 200 Hz sampling frequency with an Omnirecs Cube ext
3 data logger.

signal_aggregate 67

The dataset comprises the time vector corresponding the to seismic signal of the rockfall event from
the example data set "rockfall".

The dataset comprises the seismic signal (vertical component) of a rockfall event, preceeded by an
earthquake. The data have been recorded at 200 Hz sampling frequency with an Omnirecs Cube ext
3 data logger.

Usage

rockfall_z

rockfall_t

rockfall_eseis

Format

The format is: num [1:98400] 65158 65176 65206 65194 65155 ...

The format is: POSIXct[1:98400], format: "2015-04-06 13:16:54" ...

List of 4 $ signal : num [1:98399] 65211 65192 65158 65176 65206 ... $ meta :List of 12 ..$ station
: chr "789 " ..$ network : chr "XX " ..$ component: chr "p0 " ..$ n : int 98399

Examples

load example data set
data(rockfall)

plot signal vector using base functionality
plot(x = rockfall_t, y = rockfall_z, type = "l")

plot signal vector using the package plot function
plot_signal(data = rockfall_z, time = rockfall_t)

load example data set
data(rockfall)

load example data set
data(rockfall)

signal_aggregate Aggregate a signal vector

Description

The signal vector data is aggregated by an integer factor n. If an eseis object is provided, the meta
data is updated. The function is a wrapper for the funcion decimate of the package signal.

68 signal_aggregate

Usage

signal_aggregate(data, n = 2, type = "iir")

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

n Numeric value, number of samples to be aggregated to one new data value. Must
be an integer value greater than 1. Default is 2.

type Character value, filter type used for aggregation. For details see documentation
of signal::decimate. Default is "iir".

Value

Aggregated data set.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

aggregate signal by factor 4 (i.e., dt goes from 1/200 to 1/50)
rockfall_agg <- signal_aggregate(data = rockfall_z,

n = 4)

create example data set
s <- 1:10

aggregate x by factor 2
s_agg_2 <- signal_aggregate(data = s,

n = 2)

aggregate x by factor 3
s_agg_3 <- signal_aggregate(data = s,

n = 3)

plot results
plot(x = s,

y = rep(x = 1, times = length(s)),
ylim = c(1, 3))

points(x = s_agg_2,
y = rep(x = 2, times = length(s_agg_2)),
col = 2)

points(x = s_agg_3,
y = rep(x = 3, times = length(s_agg_3)),

signal_clip 69

col = 3)

abline(v = s_agg_2,
col = 2)

abline(v = s_agg_3,
col = 3)

create signal matrix
X <- rbind(1:100, 1001:1100, 10001:10100)

aggregate signal matrix by factor 4
X_agg <- signal_aggregate(data = X,
n = 4)

signal_clip Clip signal based on time vector.

Description

The function clips a seismic signal based on the corresponding time vector.

Usage

signal_clip(data, time, limits)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

time POSIXct vector, corresponding time vector. Only needed if data is no eseis
object.

limits POSIXct vector of length two, time limits for clipping.

Value

Numeric data set clipped to provided time interval.

Author(s)

Michael Dietze

70 signal_cut

Examples

load example data
data(rockfall)

define limits (second 10 to 20 of the signal)
limits <- c(rockfall_t[1] + 10, rockfall_t[1] + 20)

clip signal
rockfall_clip <- signal_clip(data = rockfall_z,

time = rockfall_t,
limits = limits)

clip signal using the eseis object
rockfall_clip <- signal_clip(data = rockfall_eseis,

limits = limits)

signal_cut Cut signal amplitude at standard deviation-defined level.

Description

This function cuts the amplitude of signal parts that exceede a user defined threshold set by k times
the standard deviation of the signal.

Usage

signal_cut(data, k = 1)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

k Numeric value, multiplier of the standard deviation threshold used to cut the
signal amplitude. Default is 1 (1 sd).

Value

Numeric vector or list of vectors, cut signal.

Author(s)

Michael Dietze

signal_deconvolve 71

Examples

load example data
data(rockfall)

cut signal
rockfall_cut <- signal_cut(data = rockfall_eseis)

signal_deconvolve Deconvolve a signal vector.

Description

The function removes the instrument response from a signal vector.

Usage

signal_deconvolve(
data,
sensor = "TC120s",
logger = "Cube3BOB",
gain = 1,
use_metadata = FALSE,
dt,
p = 10^-6,
waterlevel = 10^-6,
na.replace = FALSE

)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

sensor Character value or list object, seismic sensor name. Must be present in the
sensor library (list_sensor) or parameters must be added manually (see ex-
amples). Default is "TC120s".

logger Character value, seismic logger name. Must be present in the logger library
(list_logger) or parameters must be added manually. Default is "Cube3extBOB".

gain Numeric value, signal gain level of the logger. Default is 1.

use_metadata Logical value, option to take keywords for sensor, logger and gain from
eseis object meta data element instead of using explicitly provided arguments.
Default is FALSE.

dt Numeric value, sampling rate. Only needed if data is not an eseis object

p Numeric value, proportion of signal to be tapered. Default is10^-6.

waterlevel Numeric value, waterlevel value for frequency division, default is 10^-6.

72 signal_deconvolve

na.replace Logical value, option to replace NA values in the data set by zeros. Default
is FALSE. Attention, the zeros will create artifacts in the deconvolved data set.
However, NA values will result in no deconvolution at all.

Details

The function requires a set of input parameters, apart from the signal vector. These parameters are
contained in and read from the function list_sensor() and list_logger(). Poles and zeros are
used to build the transfer function. The value s is the generator constant in Vs/m. The value k is the
normalisation factor. AD is the analogue-digital conversion factor. If the signal was recorded with
a gain value other than 1, the resulting signal needs to be corrected for this, as well.

Value

Numeric vector or list of vectors, deconvolved signal.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

deconvolve signal with minimum effort
rockfall_decon <- signal_deconvolve(data = rockfall_eseis)

plot time series
plot_signal(data = rockfall_decon,

main = "Rockfall, deconvolved signal",
ylab = "m/s")

add new logger manually
logger_new <- list_logger()[[1]]

add logger data
logger_new$ID <- "logger_new"
logger_new$name <- "logger_new"
logger_new$AD <- 2.4414e-07

deconvolve signal with new logger
rockfall_decon <- signal_deconvolve(data = rockfall_eseis,

sensor = "TC120s",
logger = logger_new)

Change the setup of a logger, here: Centaur AD is changed due to
other than default Vpp value, according to AD = V / (2^24).

extract default Centaur logger
Centaur_10V <- list_logger()[[2]]

signal_demean 73

replace AD value
Centaur_10V$AD <- 20/(2^24)

signal_demean Remove mean of signal vector.

Description

The function removes the mean from a signal vector.

Usage

signal_demean(data)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

Value

Numeric vector or list of vectors, data set with mean subtracted.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

remove mean from data set
rockfall_demean <- signal_demean(data = rockfall_eseis)

compare data ranges
range(rockfall_eseis$signal)
range(rockfall_demean$signal)

show mean of initial signal
mean(rockfall_eseis$signal)

74 signal_detrend

signal_detrend Detrend a signal vector.

Description

The function removes a trend from a signal vector.

Usage

signal_detrend(data, method = "linear")

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

method Character value, method used for detrending. One out of "simple" and "linear".
Default is "linear".

Details

The method "simple" subtracts a linear trend built from the first and last sample of the data set.
The method "linear" uses the linear function as implemented in pracma::detrend.

Value

Numeric vector or list of vectors, detrended data set.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

remove linear trend from data set
rockfall_detrend <- signal_detrend(data = rockfall_eseis)

compare data ranges
range(rockfall_eseis$signal)
range(rockfall_detrend$signal)

signal_envelope 75

signal_envelope Calculate signal envelope.

Description

The function calculates envelopes of the input signals as cosine-tapered envelope of the Hilbert-
transformed signal. The signal should be detrended and/or the mean should be removed before
processing.

Usage

signal_envelope(data, p = 0)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

p Numeric value, proportion of the signal to be tapered, default is 0.

Value

Numeric vector or list of vectors, signal envelope.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

detrend data set
rockfall_detrend <- signal_detrend(data = rockfall_eseis)

calculate envelope
rockfall_envelope <- signal_envelope(data = rockfall_detrend)

plot envelope
plot_signal(data = rockfall_envelope)

76 signal_fill

signal_fill Fill NA-gaps of a signal

Description

This function performs linear interpolation of NA values.

Usage

signal_fill(data)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

Details

Note that the procedure will contaminate the signal by artefacts as increasingly larger data gaps are
filled with interpolated values.

Value

eseis object, numeric vector or list of objects, interpolated data set(s).

Author(s)

Michael Dietze

Examples

create synthetic data set and add NA-gaps
x <- eseis::signal_detrend(data = runif(1000))
x_gap <- x
x_gap[100:102] <- NA
x_gap[500:530] <- NA

fill gaps
y <- signal_fill(data = x_gap)

filter both data sets
x <- signal_filter(data = x, f = c(1, 3), dt = 1/200)
y <- signal_filter(data = y, f = c(1, 3), dt = 1/200)

plot both data sets
plot(y, type = "l", col = "grey", lwd = 3)
lines(x, col = "red")

signal_filter 77

signal_filter Filter a seismic signal in the time or frequency domain

Description

The function filters the input signal vector in the time or frequency domain.

Usage

signal_filter(
data,
f,
fft = FALSE,
dt,
type,
shape = "butter",
order = 2,
p = 0,
lazy = FALSE

)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

f Numeric value or vector of length two, lower and/or upper cutoff frequencies
(Hz).

fft Logical value, option to filter in the time domain (fft = FALSE) or the fre-
quency domain (fft = TRUE). Default is (fft = FALSE).

dt Numeric value, sampling period. If omitted, dt is set to 1/200.

type Character value, type of filter, one out of "LP" (low pass), "HP" (high pass),
"BP" (band pass) and "BR" (band rejection). If omitted, the type is interpreted
from f. If f is of length two, type is set to "BP". If f is of length one, type is
set to "HP".

shape Character value, one out of "butter" (Butterworth), default is "butter".

order Numeric value, order of the filter, default is 2. Only needed if data is no eseis
object.

p Numeric value, fraction of the signal to be tapered.

lazy Logical value, option to pre- and post-process data, including detrending, de-
meaning and tapering (p = 0.02). Default if FALSE.

Value

Numeric vector or list of vectors, filtered signal vector.

78 signal_hilbert

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

filter data set by bandpass filter between 1 and 90 Hz
rockfall_bp <- signal_filter(data = rockfall_eseis,

f = c(1, 90))

taper signal to account for edge effects
rockfall_bp <- signal_taper(data = rockfall_bp,

n = 2000)

plot filtered signal
plot_signal(data = rockfall_bp)

compare time domain versus frequency domain filtering
rockfall_td <- signal_filter(data = rockfall_eseis,

f = c(10, 40),
fft = FALSE)

rockfall_td_sp <- signal_spectrum(data = rockfall_td)

rockfall_fd <- signal_filter(data = rockfall_eseis,
f = c(10, 40),
fft = TRUE)

rockfall_fd_sp <- signal_spectrum(data = rockfall_fd)

plot_spectrum(data = rockfall_td_sp)
plot_spectrum(data = rockfall_fd_sp)

signal_hilbert Calculate Hilbert transform.

Description

The function calculates the Hilbert transform of the input signal vector.

Usage

signal_hilbert(data)

signal_hvratio 79

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

Value

Numeric vector or list of vectors, Hilbert transform.

Author(s)

Michael Dietze

Examples

load example data
data(rockfall)

calculate hilbert transform
rockfall_h <- signal_hilbert(data = rockfall_eseis)

signal_hvratio Calculate h-v-ratio of seismic components

Description

This function uses three components of a seismic signal, evaluates their spectra and builds the ratio
of horizontal to vertical power. For details see http://www.geopsy.org/documentation/geopsy/hv.html.

Usage

signal_hvratio(
data,
dt,
log = FALSE,
method = "periodogram",
kernel,
order = "xyz"

)

Arguments

data List, data frame or matrix, seismic componenents to be processed. If data
is a matrix, the components must be organised as columns. Also, data can be a
list of eseis objects.

dt Numeric value, sampling period.

80 signal_hvratio

log Logical value, unit of spectral power. If set to TRUE power will be used in dB,
if set to FALSE, power is used in amplitude squared. Default is FALSE.

method Character value, method for calculating the spectra. One out of "periodogram"
, "autoregressive" and "multitaper", default is "periodogram".

kernel Numeric value, window size (number of samples) of the moving window used
for smoothing the spectra. By default no smoothing is performed.

order Character value, order of the seismic components. Describtion must contain
the letters "x","y" and "z" in the order according to the input data set. Default
is "xyz" (EW-SN-vertical).

Details

The spectra should be smoothed. This can either be done directly during their calculation or before
the calculation of the ratio. For the former case set method = "autoregressive". For the latter
case provide a value for "kernel", which is the smoothing window size. Smoothing is performed
with the logarithms of the spectral power data, using caTools::runmean() with the endrule =
"NA". After smoothing the data is re-linearised.

Value

A data frame with the h-v-frequency ratio.

Author(s)

Michael Dietze

Examples

load example data set
data(earthquake)

ATTENTION, THIS EXAMPLE DATA SET IS FAR FROM IDEAL FOR THIS PURPOSE

detrend data
s <- signal_detrend(data = s)

calculate h-v-ratio, will be very rugged
hv <- signal_hvratio(data = s,

dt = 1 / 200)
plot(hv$ratio,

type = "l")

calculate h-v-ratio using the autogressive spectrum method
hv <- signal_hvratio(data = s,

dt = 1 / 200,
method = "autoregressive")

plot(hv, type = "l")

calculate h-v-ratio with a smoothing window equivalent to dt
hv <- signal_hvratio(data = s,

signal_integrate 81

dt = 1 / 200,
kernel = 200)

plot(hv, type = "l")

signal_integrate Integrate a seismic signal

Description

The function integrates a signal vector to convert values from velocity to displacement. Two meth-
ods are available

Usage

signal_integrate(data, dt, method = "fft", waterlevel = 10^-6)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.
dt Numeric scalar, sampling rate.
method Character scalar, method used for integration. One out of "fft" (convert in

the frequency domain) and "trapezoid" (integrate using the trapezoidal rule).
Default is "fft".

waterlevel Numeric scalar, waterlevel value for frequency division, default is 10^-6. Only
used when method = "fft".

Value

Numeric vector or list of vectors, integrated signal.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

deconvolve signal
rockfall_decon <- signal_deconvolve(data = rockfall_eseis)

integrate signal
rockfall_int <- signal_integrate(data = rockfall_decon)

Note that usually the signal should be filtered prior to integration.

82 signal_motion

signal_motion Calculate particle motion parameters

Description

The function calculates from a data set of three seismic components of the same signal the following
particle motion paramters using a moving window approach: horizontal-vertical eigenvalue ratio,
azimuth and inclination.

Usage

signal_motion(data, time, dt, window, step, order = "xyz")

Arguments

data List, data frame or matrix, seismic componenents to be processed. If data
is a matrix, the components must be organised as columns. Also, data can be a
list of eseis objects.

time POSIXct vector, time vector corresponding to the seismic signal components.
If omitted, a synthetic time vector will be generated. If omitted, the sampling
period (dt) must be provided.

dt Numeric value, sampling period. Only needed if time is omitted or if data is
no eseis object.

window Numeric value, time window length (given as number of samples) used to cal-
culate the particle motion parameters. If value is even, it will be set to the next
smaller odd value. If omitted, the window size is set to 1 percent of the time
series length by default.

step Numeric value, step size (given as number of samples), by which the window
is shifted over the data set. If omitted, the step size is set to 50 percent of the
window size by default.

order Character value, order of the seismic components. Describtion must contain
the letters "x","y" and "z" in the order according to the input data set. Default
is "xyz" (EW-NS-vertical).

Details

The function code is loosely based on the function GAZI() from the package RSEIS with removal
of unnecessary content and updated or rewritten loop functionality.

Value

A List object with eigenvalue ratios (eigen), azimuth (azimuth) and inclination (inclination) as
well as the corresponding time vector for these values.

Author(s)

Michael Dietze

signal_pad 83

Examples

load example data set
data(earthquake)

filter seismic signals
s <- eseis::signal_filter(data = s,

dt = 1/200,
f = c(1, 3))

integrate signals to get displacement
s_d <- eseis::signal_integrate(data = s, dt = 1/200)

calculate particle motion parameters
pm <- signal_motion(data = s_d,

time = t,
dt = 1 / 200,
window = 100,
step = 10)

plot function output
par_original <- par(no.readonly = TRUE)
par(mfcol = c(2, 1))

plot(x = t, y = s$BHZ, type = "l")
plot(x = pm$time, y = pm$azimuth, type = "l")

par(par_original)

signal_pad Pad signal with zeros.

Description

The function adds zeros to the input vector to reach a length, corresponding to the next higher power
of two.

Usage

signal_pad(data)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

Value

Numeric vector or list of vectors, signal vector with added zeros.

84 signal_rotate

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

pad with zeros
rockfall_pad <- signal_pad(data = rockfall_eseis)

compare lengths
rockfall_eseis$meta$n
rockfall_pad$meta$n

signal_rotate Rotate signal vectors using a 3-D rotation matrix.

Description

The function rotates the horizontal components of the input data according to the specified angle.

Usage

signal_rotate(data, angle)

Arguments

data List, data frame or matrix, seismic componenents to be processed. If data is
a matrix, the components must be organised as rows. Also, data can be a list of
eseis objects. If a matrix, this matrix must contain either two columns (x- and
y-component) or three columns (x-, y-, and z-component), in exactly that order
of the components.

angle Numeric value, rotation angle in degrees.

Value

Numeric matrix, the 3-dimensional rotation matrix.

Author(s)

Michael Dietze

signal_sign 85

Examples

create synthetic data set
data <- rbind(x = sin(seq(0, pi, length.out = 10)),
y = sin(seq(0, pi, length.out = 10)),
z = rep(0, 10))

rotate the data set
x_rot <- signal_rotate(data = data,

angle = 15)

plot the rotated data set
plot(x_rot[1,], col = 1, ylim = c(-2, 2))
points(x_rot[2,], col = 2)
points(x_rot[3,], col = 3)

signal_sign Convert amplitude signal to one bit signed signal

Description

This function assigns 1 for positive values and -1 for negative input values of a signal.

Usage

signal_sign(data)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

Value

Numeric vector or list of vectors, sign-cut signal.

Author(s)

Michael Dietze

Examples

load example data
data(rockfall)

sign-cut signal
rockfall_sign <- signal_sign(data = rockfall_eseis)

86 signal_snr

signal_snr Calculate signal-to-noise-ratio.

Description

The function calculates the signal-to-noise ratio of an input signal vector as the ratio between mean
and max.

Usage

signal_snr(data, detrend = FALSE)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

detrend Logical value, optionally detrend data set before calcualting snr.

Value

Numeric value, signal-to-noise ratio.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

calculate snr with detrend option off and on
snr <- signal_snr(data = rockfall_eseis)
print(snr$snr)

snr <- signal_snr(data = rockfall_eseis,
detrend = TRUE)

print(snr$snr)

signal_spectrogram 87

signal_spectrogram Calculate spectrograms (power spectral density estimates) from time
series.

Description

This function creates spectrograms from seismic signals. It supports the standard spectrogram ap-
proach, multitaper, and the Welch method.

Usage

signal_spectrogram(
data,
time,
dt,
Welch = FALSE,
window,
overlap = 0.5,
window_sub,
overlap_sub = 0.5,
method = "periodogram",
nw = 4,
k = 7,
n_cores = 1,
plot = FALSE,
...

)

Arguments

data Numeric vector or list of vectors, seismic signal to be processed.

time POSIX.ct vector with time values. If omitted, an artificial time vector will be
created, based on dt. Only needed if data is no eseis object.

dt Numeric value, sampling period. If omitted, either estimated from time or set
to 0.01 s (i.e., f = 100 Hz). Only needed if data is no eseis object.

Welch Logical value, option to use the Welch method for calculations.

window Numeric value, time window length in seconds used to calculate individual spec-
tra. Set to 1 percent of the time series length by default.

overlap Numeric value, fraction of window overlap.

window_sub Numeric value, length of the sub-window in seconds used to calculate spectra.
Only relevant if Welch = TRUE. If omitted, the sub-window length is set to 10
percent of the main window length.

overlap_sub Numeric value, fraction of sub-window overlap.

method Character value, method to calculate the spectra. One out of "periodogram",
"autoregressive" and "multitaper". Default is "periodogram".

88 signal_spectrogram

nw Numeric value, multitaper time-bandwidth parameter, default is 4.0.

k Numeric value, multitaper number of tapers, default is 7.

n_cores Numeric value, number of CPU cores to use. Disabled by setting to 1. Default
is 1.

plot Logical value, toggle plot output. Default is FALSE. For more customised plot-
ting see plot_spectrogram.

... Additional arguments passed to the function.

Details

Data containing NA values is replaced by zeros and set to NA in the output data set.

Value

List with spectrogram matrix, time and frequency vectors.

Author(s)

Michael Dietze

See Also

spectrum, spec.pgram, spec.mtm

Examples

load example data set
data("earthquake")

calculate and plot PSD straight away
P <- signal_spectrogram(data = s$BHZ,

time = t,
dt = 1 / 200,
plot = TRUE)

calculate and plot PSD with defined window sizes and the Welch method
P <- signal_spectrogram(data = s$BHZ,

time = t,
dt = 1 / 200,
window = 5,
overlap = 0.9,
window_sub = 3,
overlap_sub = 0.9,
Welch = TRUE,
plot = TRUE)

calculate and plot PSD with even smaller window sizes, the Welch
method and using multitapers, uncomment to use.
P <- signal_spectrogram(data = s$BHZ,

signal_spectrum 89

time = t,
dt = 1 / 200,
window = 2,
overlap = 0.9,
window_sub = 1,
overlap_sub = 0.9,
Welch = TRUE,
method = "multitaper",
plot = TRUE)

signal_spectrum Calculate the spectrum of a time series

Description

The power spectral density estimate of the time series is calculated using different approaches.

Usage

signal_spectrum(data, dt, method = "periodogram", ...)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

dt Numeric value, sampling period. If omitted, dt is set to 1/200. Only needed if
data is no eseis object.

method Character value, calculation method. One out of "periodogram" , "autoregressive"
and "multitaper", default is "periodogram".

... Additional arguments passed to the function. See spec.pgram, spec.ar, spec.mtm.

Value

Data frame with spectrum and frequency vector

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

calculate spectrum with standard setup
s <- signal_spectrum(data = rockfall_eseis)

90 signal_stats

plot spectrum
plot_spectrum(data = s)

signal_stats Calculate signal statistics

Description

This function calculates a set of statistics for the seismic signal submitted.

Usage

signal_stats(data, stats, range_f, res_psd = 1, dt, cut = TRUE)

Arguments

data eseis object, data set to be processed.

stats Character vector, keywords of statistics to be calculated. If omitted, all statis-
tics will be calculated. Wrongly spelled keywords will be omitted without warn-
ing.

range_f Numerical vector of length two, range of the frequency spectra used to calculate
spectral properties. This is recommended to account for spurious or unwanted
frequency pars, for example caused by ocean micro seism or high frequency
effects.

res_psd Numerical value, resolution of the spectrogram used to calculate statistics, in
seconds. Default is 1 sec. The spectrogram will be calculated with 90 running
window of 5 sec.

dt Numeric value, sampling period. If omitted, dt is set to 1/200.

cut Logical value, option to cut output vector to the required statistics, instead of
returning the full length of statistics, filled with NA values where no statistic
was calculated. Default is TRUE.

Details

Available statistics keywords are: - (1) ‘"t_duration"‘ (Duration of the signal) - (2) ‘"f_rise"‘ (Sig-
nal rise time, time from start to maximum amplitude) - (3) ‘"f_fall"‘ (Signal fall time, tme from
maximum amplitude to end) - (4) ‘"t_risefall"‘ (Ratio of rise to fall time) - (5) ‘"a_skewness"‘
(Skewness of the signal amplitude, see seewave::specprop) - (6) ‘"a_kurtosis"‘ (Kurtosis of the
signal amplitude, see seewave::specprop) - (7) ‘"a1_kurtosis"‘ (Kurtosis of the filtered (0.1-1
Hz) signal amplitude, see seewave::specprop) - (8) ‘"a2_kurtosis"‘ (Kurtosis of the filtered (1-
3 Hz) signal amplitude, see seewave::specprop) - (9) ‘"a3_kurtosis"‘ (Kurtosis of the filtered
(3-10 Hz) signal amplitude, see seewave::specprop) - (10) ‘"a4_kurtosis"‘ (Kurtosis of the fil-
tered (10-20 Hz) signal amplitude, see seewave::specprop) - (11) ‘"a5_kurtosis"‘ (Kurtosis of
the filtered (20-50 Hz) signal amplitude, see seewave::specprop) - (12) ‘"e_maxmean"‘ (Ratio of
maximum and mean envelope value, see Hibert et al. (2017)) - (13) ‘"e_maxmedian"‘ (Ratio of

signal_stats 91

maximum and median envelope value, see Hibert et al. (2017)) - (14) ‘"e_skewness"‘ (Skewness
of the signal envelope, see seewave::specprop) - (15) ‘"e_kurtosis"‘ (Kurtosis of the signal enve-
lope, see seewave::specprop) - (16) ‘"e1_logsum"‘ (Logarithm of the filtered (0.1-1 Hz) envelope
sum, see Hibert et al. (2017)) - (17) ‘"e2_logsum"‘ (Logarithm of the filtered (1-3 Hz) envelope
sum, see Hibert et al. (2017)) - (18) ‘"e3_logsum"‘ (Logarithm of the filtered (3-10 Hz) envelope
sum, see Hibert et al. (2017)) - (19) ‘"e4_logsum"‘ (Logarithm of the filtered (10-20 Hz) enve-
lope sum, see Hibert et al. (2017)) - (20) ‘"e5_logsum"‘ (Logarithm of the filtered (20-50 Hz)
envelope sum, see Hibert et al. (2017)) - (21) ‘"e_rmsdecphaseline"‘ (RMS of envelope from lin-
ear decrease, see Hibert et al. (2017)) - (22) ‘"c_peaks"‘ (Number of peaks (excursions above 75
- (23) ‘"c_energy1"‘ (Sum of the first third of the signal cross correlation function, see Hibert et
al. (2017)) - (24) ‘"c_energy2"‘ (Sum of the last two thirds of the signal cross correlation func-
tion, see Hibert et al. (2017)) - (25) ‘"c_energy3"‘ (Ratio of c_energy1 and c_energy2, see Hibert
et al. (2017)) - (26) ‘"s_peaks"‘ (Number of peaks (excursions above 75 - (27) ‘"s_peakpower"‘
(Mean power of spectral peaks, see Hibert et al. (2017)) - (28) ‘"s_mean"‘ (Mean spectral power,
see Hibert et al. (2017)) - (29) ‘"s_median"‘ (Median spectral power, see Hibert et al. (2017))
- (30) ‘"s_max"‘ (Maximum spectral power, see Hibert et al. (2017)) - (31) ‘"s_var"‘ (Variance
of the spectral power, see Hibert et al. (2017)) - (32) ‘"s_sd"‘ (Standard deviation of the spec-
tral power, see seewave::specprop) - (33) ‘"s_sem"‘ (Standard error of the mean of the spectral
power, see seewave::specprop) - (34) ‘"s_flatness"‘ (Spectral flatness, see seewave::specprop)
- (35) ‘"s_entropy"‘ (Spectral entropy, see seewave::specprop) - (36) ‘"s_precision"‘ (Spectral
precision, see seewave::specprop) - (37) ‘"s1_energy"‘ (Energy of the filtered (0.1-1 Hz) spec-
trum, see Hibert et al. (2017)) - (38) ‘"s2_energy"‘ (Energy of the filtered (1-3 Hz) spectrum,
see Hibert et al. (2017)) - (39) ‘"s3_energy"‘ (Energy of the filtered (3-10 Hz) spectrum, see
Hibert et al. (2017)) - (40) ‘"s4_energy"‘ (Energy of the filtered (10-20 Hz) spectrum, see Hib-
ert et al. (2017)) - (41) ‘"s5_energy"‘ (Energy of the filtered (20-30 Hz) spectrum, see Hibert et
al. (2017)) - (42) ‘"s_gamma1"‘ (Gamma 1, spectral centroid, see Hibert et al. (2017)) - (43)
‘"s_gamma2"‘ (Gamma 2, spectral gyration radius, see Hibert et al. (2017)) - (44) ‘"s_gamma3"‘
(Gamma 3, spectral centroid width, see Hibert et al. (2017)) - (45) ‘"f_modal"‘ (Modal fre-
quency, see seewave::specprop) - (46) ‘"f_mean"‘ (Mean frequency (aka central frequency),
see seewave::specprop) - (47) ‘"f_median"‘ (Median frequency, see seewave::specprop) - (48)
‘"f_q05"‘ (Quantile 0.05 of the spectrum, see seewave::specprop) - (49) ‘"f_q25"‘ (Quantile 0.25
of the spectrum, see seewave::specprop) - (50) ‘"f_q75"‘ (Quantile 0.75 of the spectrum, see
seewave::specprop) - (51) ‘"f_q95"‘ (Quantile 0.95 of the spectrum, see seewave::specprop) -
(52) ‘"f_iqr"‘ (Inter quartile range of the spectrum, see seewave::specprop) - (53) ‘"f_centroid"‘
(Spectral centroid, see seewave::specprop) - (54) ‘"p_kurtosismax"‘ (Kurtosis of the maximum
spectral power over time, see Hibert et al. (2017)) - (55) ‘"p_kurtosismedian"‘ (Kurtosis of the me-
dian spectral power over time, see Hibert et al. (2017)) - (56) ‘"p_maxmean"‘ (Mean of the ratio of
max to mean spectral power over time, see Hibert et al. (2017)) - (57) ‘"p_maxmedian"‘ (Mean of
the ratio of max to median spectral power over time, see Hibert et al. (2017)) - (58) ‘"p_peaksmean"‘
(Number of peaks in normalised mean spectral power over time, see Hibert et al. (2017)) - (59)
‘"p_peaksmedian"‘ (Number of peaks in normalised median spectral power over time, see Hibert et
al. (2017)) - (60) ‘"p_peaksmax"‘ (Number of peaks in normalised max spectral power over time,
see Hibert et al. (2017)) - (61) ‘"p_peaksmaxmean"‘ (Ratio of number of peaks in normalised max
and mean spectral power over time, see Hibert et al. (2017)) - (62) ‘"p_peaksmaxmedian"‘ (Ratio of
number of peaks in normalised max and median spectral power over time, see Hibert et al. (2017))
- (63) ‘"p_peaksfcentral"‘ (Number of peaks in spectral power at central frequency over time, see
Hibert et al. (2017)) - (64) ‘"p_diffmaxmean"‘ (Mean difference between max and mean power, see
Hibert et al. (2017)) - (65) ‘"p_diffmaxmedian"‘ (Mean difference between max and median power,

92 signal_sum

see Hibert et al. (2017)) - (66) ‘"p_diffquantile21"‘ (Mean difference between power quantiles 2
and 1, see Hibert et al. (2017)) - (67) ‘"p_diffquantile32"‘ (Mean difference between power quan-
tiles 3 and 2, see Hibert et al. (2017)) - (68) ‘"p_diffquantile31"‘ (Mean difference between power
quantiles 3 and 1, see Hibert et al. (2017))

References: - Hibert C, Provost F, Malet J-P, Maggi A, Stumpf A, Ferrazzini V. 2017. Automatic
identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano
using a Random Forest algorithm. Journal of Volcanology and Geothermal Research 340, 130-142.

Value

data frame with calculated statsitics

Author(s)

Michael Dietze

Examples

load example data
data(rockfall)

clip data to event of interest
eq <- signal_clip(data = rockfall_eseis,

limits = as.POSIXct(c("2015-04-06 13:18:50",
"2015-04-06 13:20:10"),

tz = "UTC"))

calculate full statistics
eq_stats <- signal_stats(data = eq)

show names of statistics
names(eq_stats)

calculate and show selected statistics, with truncated frequency range
eq_stats_sub <- signal_stats(data = eq,

stats = c("t_rise",
"c_peaks",
"f_centroid"),

range_f = c(1, 90))
print(eq_stats_sub)

signal_sum Calculate signal vector sum.

Description

The function calculates the vector sum of the input signals.

signal_taper 93

Usage

signal_sum(...)

Arguments

... Numeric vectors or eseis objects, input signal, that must be of the same length.

Value

Numeric vector, signal vector sum.

Author(s)

Michael Dietze

Examples

create random vectors
x <- runif(n = 1000, min = -1, max = 1)
y <- runif(n = 1000, min = -1, max = 1)
z <- runif(n = 1000, min = -1, max = 1)

calculate vector sums
xyz <- signal_sum(x, y, z)

signal_taper Taper a signal vector.

Description

The function tapers a signal vector with a cosine bell taper, either of a given proportion or a discrete
number of samples.

Usage

signal_taper(data, p = 0, n)

Arguments

data eseis object, numeric vector or list of objects, data set to be processed.

p Numeric value, proportion of the signal vector to be tapered. Alternative to n.

n Numeric value, number of samples to be tapered at each end of the signal vector.

Value

Data frame, tapered signal vector.

94 signal_whiten

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

remove mean from data set
rockfall <- signal_demean(data = rockfall_eseis)

create artefact at the beginning
rockfall_eseis$signal[1:100] <- runif(n = 100, min = -5000, max = 5000)

taper signal
rockfall_taper <- signal_taper(data = rockfall, n = 1000)

plot both data sets
plot_signal(data = rockfall_eseis)
plot_signal(rockfall_taper)

signal_whiten Perform spectral whitening of a signal vector

Description

The function normalises the input signal within a given frequency window. If a time series is
provided, it is converted to the spectral domain, whitening is performed, and it is transformed back
to the time domain.

Usage

signal_whiten(data, f, dt)

Arguments

data eseis object, or complex vector, data set to be processed.

f Numeric vector of length two, frequency window within which to normalise. If
omitted, the entire bandwidth is normalised.

dt Numeric value, sampling period. Only needed if the input object is not an eseis
object

Value

Numeric vector or eseis object, whitened signal vector.

spatial_amplitude 95

Author(s)

Michael Dietze

Examples

load example data set
data("rockfall")

whiten data set between 10 and 30 Hz
rockfall_2 <- signal_whiten(data = rockfall_eseis,

f = c(10, 30))

plot whitened data set
plot(rockfall_2)

spatial_amplitude Locate the source of a seismic event by modelling amplutide attenua-
tion

Description

The function fits a model of signal amplitude attenuation for all grid cells of the distance data sets
and returns the residual sum as measure of the most likely source location of an event.

Usage

spatial_amplitude(
data,
coupling,
d_map,
aoi,
v,
q,
f,
a_0,
normalise = TRUE,
output = "variance",
n_cores = 1

)

Arguments

data Numeric matrix or eseis object, seismic signals to work with. Since the func-
tion will calculate the maxima of the data it is usually the envolopes of the data
that should be used here.

96 spatial_amplitude

coupling Numeric vector, coupling efficiency factors for each seismic station. The best
coupled station (or the one with the highest amplification) must receive 1, the
others must be scaled relatively to this one.

d_map List object, distance maps for each station (i.e., SpatialGridDataFrame ob-
jects). Output of spatial_distance.

aoi raster object that defines which pixels are used to locate the source. If omitted,
the entire distance map extent is used. aoi and d_map objects must have the same
extents, projections and pixel sizes. The aoi map must be of logical values.

v Numeric value, mean velocity of seismic waves (m/s).

q Numeric value, quality factor of the ground.

f Numeric value, frequency for which to model the attenuation.

a_0 Logical value, start parameter of the source amplitude, if not provided, a best
guess is made as 100 times the maximum amplitude value of the data set.

normalise Logical value, option to normalise sum of residuals between 0 and 1. Default
is TRUE.

output Character value, type of metric the function returns. One out of "residuals"
(sums of the squared model residuals) or "variance" (variance reduction, cf.
Walter et al. (2017)). Default is "variance".

n_cores Numeric value, number of CPU cores to use. Disabled by setting to 1. Default
is 1.

Value

A raster object with the location output metrics for each grid cell.

Author(s)

Michael Dietze

Examples

Not run:

create synthetic DEM
dem <- raster::raster(nrows = 20, ncols = 20,

xmn = 0, xmx = 10000,
ymn= 0, ymx = 10000,
vals = rep(0, 400))

define station coordinates
sta <- data.frame(x = c(1000, 9000, 5000),

y = c(1000, 1000, 9000),
ID = c("A", "B", "C"))

create synthetic signal (source in towards lower left corner of the DEM)
s <- rbind(dnorm(x = 1:1000, mean = 500, sd = 50) * 100,

dnorm(x = 1:1000, mean = 500, sd = 50) * 2,

spatial_clip 97

dnorm(x = 1:1000, mean = 500, sd = 50) * 1)

plot DEM and stations
raster::plot(dem)
text(x = sta$x,

y = sta$y,
labels = sta$ID)

calculate spatial distance maps and inter-station distances
D <- eseis::spatial_distance(stations = sta[,1:2],

dem = dem)

locate signal
e <- spatial_amplitude(data = s,

d_map = D$maps,
v = 500,
q = 50,
f = 10)

get most likely location coordinates (example contains two equal points)
xy <- matrix(sp::coordinates(e)[raster::values(e) == max(raster::values(e))],

ncol = 2)[1,]

plot output
raster::plot(e)
points(xy[1],

xy[2],
pch = 20)

points(sta[,1:2])

End(Not run)

spatial_clip Clip values of spatial data.

Description

The function replaces raster values based on different thresholds.

Usage

spatial_clip(data, quantile, replace = NA, normalise = TRUE)

Arguments

data raster object, spatial data set to be processed.

quantile Numeric value, quantile value below which raster values are clipped.

98 spatial_convert

replace Numeric value, replacement value, default is NA.

normalise Logical value, optionally normalise values above threshold quantile between 0
and 1. Default is TRUE.

Value

raster object, data set with clipped values.

Author(s)

Michael Dietze

Examples

load example data set
data(volcano)

convert matrix to raster object
volcano <- raster::raster(volcano)

clip values to those > quantile 0.5
volcano_clip <- spatial_clip(data = volcano,

quantile = 0.5)

plot clipped data set
raster::plot(volcano_clip)

spatial_convert Convert coordinates between reference systems

Description

Coordinates are converted between reference systems.

Usage

spatial_convert(data, to)

Arguments

data Numeric vector of length two or data frame, x-, y-coordinates to be converted.

to Character value, proj4 string of the output reference system.

Value

Numeric data frame with converted coordinates.

spatial_crop 99

Author(s)

Michael Dietze

Examples

create lat lon coordinates
xy <- c(13, 55)

define output coordinate system
proj_out <- "+proj=utm +zone=32 +datum=WGS84"

convert coordinate pair
spatial_convert(data = xy,

to = proj_out)

define set of coordinates
xy <- data.frame(x = c(10, 11),

y = c(54, 55))

convert set of coordinates
spatial_convert(data = xy,

to = proj_out)

spatial_crop Crop extent of spatial data.

Description

The function crops the spatial extent of raster objects or other spatial objects based on bounding
box coordinates.

Usage

spatial_crop(data, bbox)

Arguments

data raster object, spatial data set to be processed.

bbox Numeric vector of length four, bounding box coordinates in the form c(xmin,
xmax, ymin, ymax)

Value

spatial object, cropped to bounding box

100 spatial_distance

Author(s)

Michael Dietze

Examples

create example data set
x <- raster::raster(nrows = 100,

ncols = 100,
xmn = 0,
xmx = 10,
ymn = 0,
ymx = 10)

raster::values(x) <- 1:10000

create crop extent vector
bbox <- c(3, 7, 3, 7)

crop spatial object
y <- spatial_crop(data = x,

bbox = bbox)

plot both objects
raster::plot(x)
raster::plot(y, add = TRUE)

spatial_distance Calculate topography-corrected distances for seismic waves.

Description

The function calculates topography-corrected distances either between seismic stations or from
seismic stations to pixels of an input raster.

Usage

spatial_distance(
stations,
dem,
topography = TRUE,
cores = 1,
dmap = TRUE,
dstation = TRUE,
aoi

)

spatial_distance 101

Arguments

stations Numeric matrix of length two, x- and y-coordinates of the seismic stations to
be processed (column-wise orgnaised).The coordinates must be in metric units,
such as the UTM system and match with the reference system of the dem.

dem raster object, the digital elevation model (DEM) to be processed. The DEM
must be in metric units, such as the UTM system and match with the reference
system of the coordinates of stations. See raster for supported types and
how to read these to R.

topography Logical scalar, option to enable topography correction, default is TRUE.

cores Numeric scalar, number of CPU cores to use, only relevant for multicore com-
puters. Default is 1.

dmap Logical scalar, option to enable/disable calculation of distance maps. Default
is TRUE.

dstation Logical scalar, option to enable/disable calculation of interstation distances.
Default is TRUE.

aoi Numeric vector of length four, bounding coordinates of the area of interest to
process, in the form c(x0, x1, y0, y1). Only implemented for single core
mode (i.e., cores = 1).

Details

Topography correction is necessary because seismic waves can only travel on the direct path as long
as they are within solid matter. When the direct path is through air, the wave can only travel along
the surface of the landscape. The function accounts for this effect and returns the corrected travel
distance data set.

Value

List object with distance maps list and station distance matrix.

Author(s)

Michael Dietze

Examples

Not run:
load and aggregate example DEM
data("volcano")
dem <- raster::raster(volcano)
dem <- raster::aggregate(x = dem, 2) * 10
dem@extent <- dem@extent * 1000
dem@extent <- dem@extent + c(510, 510, 510, 510)

define example stations
stations <- cbind(c(200, 700), c(220, 700))

plot example data

102 spatial_migrate

raster::plot(dem)
points(stations[,1], stations[,2])

calculate distance matrices and stations distances
D <- spatial_distance(stations = stations,

dem = dem,
topography = TRUE,
cores = 1)

plot distance map for station 2
raster::plot(D$maps[[2]])

show station distance matrix
print(D$stations)

run with small aoi
D <- spatial_distance(stations = stations,

dem = dem,
topography = TRUE,
cores = 1,
aoi = c(400, 600, 600, 800))

End(Not run)

spatial_migrate Migrate signals of a seismic event through a grid of locations.

Description

The function performs signal migration in space in order to determine the location of a seismic
signal.

Usage

spatial_migrate(
data,
d_stations,
d_map,
snr,
v,
dt,
normalise = TRUE,
silent = FALSE

)

Arguments

data Numeric matrix or eseis object, seismic signals to cross-correlate.

spatial_migrate 103

d_stations Numeric matrix, inter-station distances. Output of spatial_distance.

d_map List object, distance maps for each station (i.e., SpatialGridDataFrame ob-
jects). Output of spatial_distance.

snr Numeric vector, optional signal-to-noise-ratios for each signal trace, used for
normalisation. If omitted it is calculated from input signals.

v Numeric value, mean velocity of seismic waves (m/s).

dt Numeric value, sampling period.

normalise Logical value, option to normalise stations correlations by signal-to-noise-ratios.

silent Logical value, option to suppress messages during function execution. Default
is FALSE.

Value

A SpatialGridDataFrame-object with Gaussian probability density function values for each grid
cell.

Author(s)

Michael Dietze

Examples

Not run:

create synthetic DEM
dem <- raster::raster(nrows = 20, ncols = 20,

xmn = 0, xmx = 10000,
ymn= 0, ymx = 10000,
vals = rep(0, 400))

define station coordinates
sta <- data.frame(x = c(1000, 9000, 5000),

y = c(1000, 1000, 9000),
ID = c("A", "B", "C"))

create synthetic signal (source in the center of the DEM)
s <- rbind(dnorm(x = 1:1000, mean = 500, sd = 50),

dnorm(x = 1:1000, mean = 500, sd = 50),
dnorm(x = 1:1000, mean = 500, sd = 50))

plot DEM and stations
raster::plot(dem)

text(x = sta$x,
y = sta$y,
labels = sta$ID)

calculate spatial distance maps and inter-station distances
D <- eseis::spatial_distance(stations = sta[,1:2],

104 spatial_pmax

dem = dem)

locate signal
e <- eseis::spatial_migrate(data = s,

d_stations = D$stations,
d_map = D$maps,
v = 1000,
dt = 1/100)

get most likely location coordinates (example contains two equal points)
xy <- matrix(sp::coordinates(e)[raster::values(e) == max(raster::values(e))],

ncol = 2)[1,]

plot location estimate, most likely location estimate and stations
raster::plot(e)
points(xy[1],

xy[2],
pch = 20)

points(sta[,1:2])

End(Not run)

spatial_pmax Get most likely source location

Description

The function identifies the location of a seismic source with the heighest likelihood (P_max).

Usage

spatial_pmax(data)

Arguments

data raster object, spatial data set with source location estimates.

Value

data.frame, coordinates (x and y) of the most likely s ource location(s).

Author(s)

Michael Dietze

spatial_track 105

Examples

create example source location likelihood raster
x <- raster::raster(nrows = 10,

ncols = 10,
xmn = 0,
xmx = 10,
ymn = 0,
ymx = 10)

raster::values(x) <- runif(n = 100)

identify location of highest likelihood
p_max <- spatial_pmax(data = x)

show result
print(p_max)

spatial_track Track a spatially mobile seismic source

Description

This function allows tracking a spatially mobile seismic source and thereby estimating the source
amplitude and the model’s variance reduction as a measure of quality or robustness of the time-
resolved estimates.

Usage

spatial_track(
data,
coupling,
window,
overlap = 0,
d_map,
aoi,
v,
q,
f,
k,
qt = 1,
dt,
model = "SurfSpreadAtten",
cpu,
verbose = FALSE,
plot = FALSE

)

106 spatial_track

Arguments

data Numeric matrix or eseis object, seismic signals used for source tracking. Note
that the function will start tracking within a smaller time window, narrows be
the maximum signal arrival time differences as defined by the maximum inter
station distance and the seismic velocity. The signals should be the envelopes of
waveforms.

coupling Numeric vector, coupling efficiency factors for each seismic station. The best
coupled station (or the one with the highest amplification) must receive 1, the
others must be scaled relatively to this one.Numeric vector, coupling efficiency
factors for each seismic station. The best coupled station (or the one with the
highest amplification) must receive 1, the others must be scaled relatively to this
one.

window Numeric value, time window for which the source is tracked. If omitted, ten
time steps are generated.

overlap Numeric value between 0 and 1, fraction of overlap of time windows used for
source tracking. Default is 0.

d_map List object, distance maps for each station (i.e., SpatialGridDataFrame ob-
jects). Output of spatial_distance.

aoi Raster object (optional) that defines which pixels are used to locate the source.
If omitted, the entire distance map extent is used. aoi and d_map objects must
have the same extents, projections and pixel sizes. The aoi map must be of
logical values.

v Numeric value, mean velocity of seismic waves (m/s).

q Numeric value, quality factor of the ground.

f Numeric value, frequency for which to model the attenuation.

k Numeric value, fraction of surface wave contribution to signals. Only relevant
for models that include mixture of surface and body waves (see model_amplitude).

qt Numeric value, quantile threshold that defines acceptable location estimates.
Default is 1 (only single best estimate is kept).

dt Numeric value, sampling frequency. Only required if input signals are no eseis
objects.

model Character value,

cpu Numeric value, fraction of CPUs to use for parallel processing. If omitted, one
CPU is used

verbose Logical value, optional screen output of processing progress. Default is FALSE.

plot Logical value, enable graphical output of key results. Default is FALSE.

Details

The method is based on ideas published by Burtin et al. (2016), Walter et al. 82017) and Perez-
Guillen et al. (2019) and implemented in the R package eseis by Dietze (2018). It is related to the
function spatial_amplitude, which can be used to locate spatially stable seismic sources by the
same technique, and it resuires prepared input data as delivered by the function spatial_distance.

spatial_track 107

The input data (data) should ideally be a list of eseis objects (alternatively a matrix with seismic
signal traces) containing the envelopes of the seismic event to track (i.e., describe by its location and
amplitude as a function of propagation time). The temporal resolution of the track is defined by the
arguments window and overlap (as a fraction between 0 and 1). The approach is based on fitting
known amplitude-distance functions (for an overview of available functions see model_amplitude)
to the envelope time snippets for each pixel of a grid, which provides the distance from a pixel
to each seismic station, i.e., the distance map set d_map. To avoid fitting each of the pixels of
the distance map, one can provide an area of interest, AOI (aoi), which has the same extent and
resolution as the distance map set and pixel values are either TRUE or FALSE. Depending on which
amplitude-distance function is chosen, further arguments need to be provided (ground quality factor
q, center frequency of the signal f). The apparent seismic wave velocity v is required regardless,
either as fit model parameter or to correct the amplitude time snippets for the travel time delay from
the source to the respective pixel of the distance map set. The output of the function can be provided
with uncertainty estimates on all output values. The uncertainty is based on the size of accepted
location estimates per time step, as defined by the variance reduction quantile threshold qt (i.e., all
locations above this quantile will be assumed to be valid location estimates, whose parameters will
be used to estimate the uncertainty). Note that usually, qt should be set to around 0.99, a value that
depends on the number of pixels in the distance map set and that affects the location uncertainty,
which in many cases is about 10 Note however, that this value is purely arbitrary and should be
based on field-based control data. It is possible to run the function in a multi-CPU mode, to speed
up computational time, using the argument cpu. Also, the function can generate generic plot output
of the results, a panel of three plots: source trajectory, source amplitude and variance reduction.

Note that depending on the resolution of the distance map set, number of included seismic stations,
and number of time windows, the function can take significant processing time. 50 time steps for
5 stations and 5000 pixels per distance map requires about 10 minutes time on a normal grade
computer using a single CPU.

Value

A List object with summarising statistics of the fits.

References

Burtin, A., Hovius, N., and Turowski, J. M.: Seismic monitoring of torrential and fluvial processes,
Earth Surf. Dynam., 4, 285–307, https://doi.org/10.5194/esurf-4-285-2016, 2016.

Dietze, M.: The R package ’eseis’ – a software toolbox for environmental seismology, Earth Surf.
Dynam., 6, 669–686, https://doi.org/10.5194/esurf-6-669-2018, 2018.

Perez-Guillen, C., Tsunematsu, K., Nishimura, K., and Issler, D.: Seismic location and track-
ing of snow avalanches and slush flows on Mt. Fuji, Japan, Earth Surf. Dynam., 7, 989–1007,
https://doi.org/10.5194/esurf-7-989-2019, 2019.

Walter, F., Burtin, A., McArdell, B. W., Hovius, N., Weder, B., and Turowski, J. M.: Testing seismic
amplitude source location for fast debris-flow detection at Illgraben, Switzerland, Nat. Hazards
Earth Syst. Sci., 17, 939–955, https://doi.org/10.5194/nhess-17-939-2017, 2017.

Examples

Not run:

108 time_aggregate

x <- spatial_track(data = data,
window = 5,
overlap = 0.5,
d_map = D$maps,
aoi = aoi,
v = 800,
q = 40,
f = 12,
qt = 0.99)

End(Not run)

time_aggregate Aggregate a time series

Description

The time series x is aggregated by an integer factor n.

Usage

time_aggregate(data, n = 2)

Arguments

data POSIXct vector, time to be processed.

n Numeric value, number of samples to be aggregated to one new data value. Must
be an integer value greater than 1. Default is 2.

Value

POSIXct vector, aggregated data.

Author(s)

Michael Dietze

Examples

load example data set
data(rockfall)

aggregate time series
rockfall_t_agg <- time_aggregate(data = rockfall_t,

n = 2)

compare results

time_clip 109

range(rockfall_t)
diff(rockfall_t)

range(rockfall_t_agg)
diff(rockfall_t_agg)

time_clip Clip time vector.

Description

The function clips a time vector based on provided limits.

Usage

time_clip(time, limits)

Arguments

time POSIXct vector, time vector.

limits POSIXct vector of length two, time limits for clipping.

Value

POSIXct vector, clipped time vector.

Author(s)

Michael Dietze

Examples

load example data
data(rockfall)

define limits to clip to
limits <- c(min(rockfall_t) + 10,

max(rockfall_t) - 10)

clip data set
rockfall_t_clip <- time_clip(time = rockfall_t,

limits = limits)

compare time ranges
range(rockfall_t)
range(rockfall_t_clip)

110 time_convert

time_convert Convert Julian Day to Date and vice versa

Description

The function converts a Julian Day value to a date, to POSIXct if a year is provided, otherwise to
POSIXlt.

Usage

time_convert(input, output, timezone = "UTC", year)

Arguments

input Numeric vector, input time Supported formats are YYYY-MM-DD, JD and POSIXct.

output Numeric vector, output time. Supported formats are YYYY-MM-DD, JD and POSIXct.

timezone Character vector, time zone of the output date. Default is "UTC".

year Character vector, year of the date. Only used when input is JD. If omitted, the
current year is used.

Value

Numeric vector,

Author(s)

Michael Dietze

Examples

convert Julian Day 18 to POSIXct
time_convert(input = 18, output = "POSIXct")

convert Julian Day 18 to yyyy-mm-dd
time_convert(input = 18, output = "yyyy-mm-dd")

convert yyyy-mm-dd to Julian Day
time_convert(input = "2016-01-18", output = "JD")

convert a vector of Julian Days to yyyy-mm-dd
time_convert(input = 18:21, output = "yyyy-mm-dd")

write_mseed 111

write_mseed Write seismic traces as mseed file to disk.

Description

This function converts seismic traces to mseed files and writes them to disk. It makes use of the
Python library ’ObsPy’. Thus, this software must be installed, to make use of this function.

Usage

write_mseed(data, file, time, component, station, location, network, dt)

Arguments

data eseis object or numeric vector, data set to be processed. Most other arguments
can be omitted if data is an eseis object.

file Character scalar, mseed file name with extension.

time POSIXct vector, time vector corresponding to the seismic trace. Alternatively,
the start time stamp can be provided as POSIXct value and a value for dt must
be given.

component Character value, component ID, optional.

station Character value, station ID, optional.

location Character vector of length four, station location data (latitude, longitude, ele-
vation, depth), optional.

network Character value, network ID, optional.

dt Numeric value, sampling period. Only needed if no time vector is provided.

Details

The ObsPy Python library can be installed following the information provided here: "https://github.com/obspy/obspy/wiki".

Since the ObsPy functionality through R is not able to interpret path definitions using the tilde
symbol, e.g. "~/Downloads", this Linux type definition must be avoided.

Value

A binary file written to disk.

Author(s)

Michael Dietze

112 write_report

Examples

Not run:
load example data
data("rockfall")

write as mseed file
write_mseed(data = rockfall_eseis, file = "rockfall.mseed")

End(Not run)

write_report Create a HTML report for (RLum) objects

Description

This function creates a HTML report for a given eseis object, listing its complete processing history.
The report serves both as a convenient way of browsing through objects and as a proper approach
to documenting and saving scientific data and workflows.

Usage

write_report(object, file, title = "eseis report", browser = FALSE, css)

Arguments

object, eseis object to be reported on

file Character value, name of the output file (without extension)

title Character value, title of the report

browser Logical value, optionally open the HTML file in the default web browser after
it has been rendered.

css Character value, path to a CSS file to change the default styling of the HTML
document.

Details

The function heavily lends ideas from the function report_RLum() written by Christoph Burow,
which is contained in the package Luminescence. This function here is a truncated, tailored version
with minimised availabilities.

Value

HTML and .Rds file.

write_sac 113

Author(s)

Michael Dietze

Examples

Not run:
load example data set
data(rockfall)

make report for rockfall object
write_report(object = rockfall_eseis,

browser = TRUE)

End(Not run)

write_sac Write seismic traces as sac file to disk.

Description

This function converts seismic traces to sac files and writes them to disk.

Usage

write_sac(
data,
file,
time,
component,
unit,
station,
location,
network,
dt,
autoname = FALSE,
parameters,
biglong = FALSE

)

Arguments

data eseis object or numeric vector, data set to be processed. Most other arguments
can be omitted if data is an eseis object.

file Character scalar, sac file name with extension.

114 write_sac

time POSIXct vector, time vector corresponding to the seismic trace. Alternatively,
the start time stamp can be provided as POSIXct value and a value for dt must
be given.

component Character value, component ID, optional.

unit Character value, unit of the signal, optional. One out of "unknown", "displacement",
"velocity", "volts", "acceleration". Default is "unknown".

station Character value, station ID, optinal.

location Character vector of length four, station location data (latitude, longitude, ele-
vation, depth), optional.

network Character value, network ID, optional.

dt Numeric value, sampling period. Only needed if no time vector is provided.

autoname Logical value, option to let the function generate the file name automatically.
Default is FALSE.

parameters Data frame sac parameter list, as obtained from list_sacparameters. Allows
user-specific modifications. If this data frame is provided, it overrides all other
arguments.

biglong Logical value, biglong option, default is FALSE

Details

For description of the sac file format see https://ds.iris.edu/files/sac-manual/manual/file_format.html.
Currently the following parameters are not supported when writing the sac file: LAT, LON, ELE-
VATION, NETWORK.

Value

A binary file written to disk.

Author(s)

Michael Dietze

Examples

Not run:
load example data
data("rockfall")

write as sac file
write_sac(data = rockfall_eseis)

End(Not run)

Index

∗ datasets
earthquake, 33
rockfall, 66

∗ eseis
aux_commondt, 3
aux_cubeinfo, 4
aux_eseisobspy, 5
aux_fixmseed, 6
aux_getevent, 7
aux_getFDSNdata, 9
aux_getFDSNstation, 11
aux_getIRISdata, 13
aux_getIRISstation, 14
aux_gettemperature, 16
aux_hvanalysis, 17
aux_initiateeseis, 19
aux_obspyeseis, 20
aux_organisecentaurfiles, 21
aux_organisecubefiles, 23
aux_psdpanels, 25
aux_psdsummary, 27
aux_sonifysignal, 29
aux_stationinfofile, 30
fmi_inversion, 34
fmi_parameters, 37
fmi_spectra, 39
list_logger, 41
list_sacparameters, 42
list_sensor, 42
model_bedload, 46
model_turbulence, 50
pick_correlation, 52
pick_kurtosis, 54
pick_stalta, 56
plot_components, 57
plot_ppsd, 58
plot_signal, 60
plot_spectrogram, 61
plot_spectrum, 62

signal_aggregate, 67
signal_clip, 69
signal_cut, 70
signal_deconvolve, 71
signal_demean, 73
signal_detrend, 74
signal_envelope, 75
signal_fill, 76
signal_filter, 77
signal_hilbert, 78
signal_hvratio, 79
signal_integrate, 81
signal_motion, 82
signal_pad, 83
signal_rotate, 84
signal_sign, 85
signal_snr, 86
signal_spectrogram, 87
signal_spectrum, 89
signal_stats, 90
signal_sum, 92
signal_taper, 93
signal_whiten, 94
spatial_clip, 97
spatial_convert, 98
spatial_crop, 99
spatial_distance, 100
spatial_pmax, 104
time_aggregate, 108
time_clip, 109
time_convert, 110

∗ package
eseis, 34

aux_commondt, 3
aux_cubeinfo, 4
aux_eseisobspy, 5
aux_fixmseed, 6
aux_getevent, 7
aux_getFDSNdata, 9

115

116 INDEX

aux_getFDSNstation, 11
aux_getIRISdata, 13
aux_getIRISstation, 14
aux_gettemperature, 16
aux_hvanalysis, 17
aux_initiateeseis, 19
aux_obspyeseis, 20
aux_organisecentaurfiles, 21
aux_organisecubefiles, 23
aux_psdpanels, 25
aux_psdsummary, 27
aux_sonifysignal, 29
aux_stationinfofile, 30

earthquake, 33
eseis, 34
eseis-package (eseis), 34

fmi_inversion, 34
fmi_parameters, 37
fmi_spectra, 39

gui_models, 40

list_logger, 41
list_sacparameters, 42
list_sensor, 42

model_amplitude, 43
model_bedload, 46
model_turbulence, 50

pick_correlation, 52
pick_kurtosis, 54
pick_stalta, 56
plot_components, 57
plot_ppsd, 58
plot_signal, 60
plot_spectrogram, 61
plot_spectrum, 62

read_mseed, 63
read_sac, 65
rockfall, 66
rockfall_eseis (rockfall), 66
rockfall_t (rockfall), 66
rockfall_z (rockfall), 66
runApp, 40, 41

s (earthquake), 33

signal_aggregate, 67
signal_clip, 69
signal_cut, 70
signal_deconvolve, 71
signal_demean, 73
signal_detrend, 74
signal_envelope, 75
signal_fill, 76
signal_filter, 77
signal_hilbert, 78
signal_hvratio, 79
signal_integrate, 81
signal_motion, 82
signal_pad, 83
signal_rotate, 84
signal_sign, 85
signal_snr, 86
signal_spectrogram, 59, 62, 87
signal_spectrum, 63, 89
signal_stats, 90
signal_sum, 92
signal_taper, 93
signal_whiten, 94
spatial_amplitude, 95
spatial_clip, 97
spatial_convert, 98
spatial_crop, 99
spatial_distance, 100
spatial_migrate, 102
spatial_pmax, 104
spatial_track, 105
spec.ar, 89
spec.mtm, 88, 89
spec.pgram, 88, 89
spectrum, 88

t (earthquake), 33
time_aggregate, 108
time_clip, 109
time_convert, 110

write_mseed, 111
write_report, 112
write_sac, 113

	aux_commondt
	aux_cubeinfo
	aux_eseisobspy
	aux_fixmseed
	aux_getevent
	aux_getFDSNdata
	aux_getFDSNstation
	aux_getIRISdata
	aux_getIRISstation
	aux_gettemperature
	aux_hvanalysis
	aux_initiateeseis
	aux_obspyeseis
	aux_organisecentaurfiles
	aux_organisecubefiles
	aux_psdpanels
	aux_psdsummary
	aux_sonifysignal
	aux_stationinfofile
	earthquake
	eseis
	fmi_inversion
	fmi_parameters
	fmi_spectra
	gui_models
	list_logger
	list_sacparameters
	list_sensor
	model_amplitude
	model_bedload
	model_turbulence
	pick_correlation
	pick_kurtosis
	pick_stalta
	plot_components
	plot_ppsd
	plot_signal
	plot_spectrogram
	plot_spectrum
	read_mseed
	read_sac
	rockfall
	signal_aggregate
	signal_clip
	signal_cut
	signal_deconvolve
	signal_demean
	signal_detrend
	signal_envelope
	signal_fill
	signal_filter
	signal_hilbert
	signal_hvratio
	signal_integrate
	signal_motion
	signal_pad
	signal_rotate
	signal_sign
	signal_snr
	signal_spectrogram
	signal_spectrum
	signal_stats
	signal_sum
	signal_taper
	signal_whiten
	spatial_amplitude
	spatial_clip
	spatial_convert
	spatial_crop
	spatial_distance
	spatial_migrate
	spatial_pmax
	spatial_track
	time_aggregate
	time_clip
	time_convert
	write_mseed
	write_report
	write_sac
	Index

