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chung_lu Create an undirected Chung-Lu object

Description

To specify a Chung-Lu graph, you must specify the degree-heterogeneity parameters (via n or
theta). We provide reasonable defaults to enable rapid exploration or you can invest the effort for
more control over the model parameters. We strongly recommend setting the expected_degree
or expected_density argument to avoid large memory allocations associated with sampling large,
dense graphs.

Usage

chung_lu(
n = NULL,
theta = NULL,
...,
sort_nodes = TRUE,
poisson_edges = TRUE,
allow_self_loops = TRUE,
force_identifiability = FALSE

)
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Arguments

n (degree heterogeneity) The number of nodes in the graph. Use when you don’t
want to specify the degree-heterogeneity parameters theta by hand. When n is
specified, theta is randomly generated from a LogNormal(2, 1) distribution.
This is subject to change, and may not be reproducible. n defaults to NULL. You
must specify either n or theta, but not both.

theta (degree heterogeneity) A numeric vector explicitly specifying the degree het-
erogeneity parameters. This implicitly determines the number of nodes in the
resulting graph, i.e. it will have length(theta) nodes. Must be positive. Set-
ting to a vector of ones recovers an erdos renyi graph. Defaults to NULL. You
must specify either n or theta, but not both.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Speci-
fying expected_degree simply rescales S to achieve this. Defaults to NULL.
Do not specify both expected_degree and expected_density at the same
time.

expected_density If specified, the desired expected density of the graph. Spec-
ifying expected_density simply rescales S to achieve this. Defaults to
NULL. Do not specify both expected_degree and expected_density at
the same time.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by
block and by theta. Useful for plotting. Defaults to TRUE.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

force_identifiability

Logical indicating whether or not to normalize theta such that it sums to one
within each block. Defaults to FALSE, since this behavior can be surprise when
theta is set to a vector of all ones to recover the DC-SBM case.

Value

An undirected_chung_lu S3 object, a subclass of dcsbm().

See Also

Other undirected graphs: dcsbm(), erdos_renyi(), mmsbm(), overlapping_sbm(), planted_partition(),
sbm()
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Examples

set.seed(27)

cl <- chung_lu(n = 1000, expected_density = 0.01)
cl

theta <- round(stats::rlnorm(100, 2))

cl2 <- chung_lu(
theta = theta,
expected_degree = 5

)

cl2

edgelist <- sample_edgelist(cl)
edgelist

dcsbm Create an undirected degree corrected stochastic blockmodel object

Description

To specify a degree-corrected stochastic blockmodel, you must specify the degree-heterogeneity
parameters (via n or theta), the mixing matrix (via k or B), and the relative block probabilities
(optional, via pi). We provide defaults for most of these options to enable rapid exploration, or
you can invest the effort for more control over the model parameters. We strongly recommend
setting the expected_degree or expected_density argument to avoid large memory allocations
associated with sampling large, dense graphs.

Usage

dcsbm(
n = NULL,
theta = NULL,
k = NULL,
B = NULL,
...,
pi = rep(1/k, k),
sort_nodes = TRUE,
force_identifiability = FALSE,
poisson_edges = TRUE,
allow_self_loops = TRUE

)
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Arguments

n (degree heterogeneity) The number of nodes in the blockmodel. Use when
you don’t want to specify the degree-heterogeneity parameters theta by hand.
When n is specified, theta is randomly generated from a LogNormal(2, 1) dis-
tribution. This is subject to change, and may not be reproducible. n defaults to
NULL. You must specify either n or theta, but not both.

theta (degree heterogeneity) A numeric vector explicitly specifying the degree hetero-
geneity parameters. This implicitly determines the number of nodes in the re-
sulting graph, i.e. it will have length(theta) nodes. Must be positive. Setting
to a vector of ones recovers a stochastic blockmodel without degree correction.
Defaults to NULL. You must specify either n or theta, but not both.

k (mixing matrix) The number of blocks in the blockmodel. Use when you don’t
want to specify the mixing-matrix by hand. When k is specified, the elements
of B are drawn randomly from a Uniform(0, 1) distribution. This is subject
to change, and may not be reproducible. k defaults to NULL. You must specify
either k or B, but not both.

B (mixing matrix) A k by k matrix of block connection probabilities. The proba-
bility that a node in block i connects to a node in community j is Poisson(B[i,
j]). Must be a square matrix. matrix and Matrix objects are both acceptable.
If B is not symmetric, it will be symmetrized via the update B := B + t(B). De-
faults to NULL. You must specify either k or B, but not both.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Speci-
fying expected_degree simply rescales S to achieve this. Defaults to NULL.
Do not specify both expected_degree and expected_density at the same
time.

expected_density If specified, the desired expected density of the graph. Spec-
ifying expected_density simply rescales S to achieve this. Defaults to
NULL. Do not specify both expected_degree and expected_density at
the same time.

pi (relative block probabilities) Relative block probabilities. Must be positive, but
do not need to sum to one, as they will be normalized internally. Must match the
dimensions of B or k. Defaults to rep(1 / k, k), or a balanced blocks.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by
block and by theta. Useful for plotting. Defaults to TRUE.

force_identifiability

Logical indicating whether or not to normalize theta such that it sums to one
within each block. Defaults to FALSE, since this behavior can be surprise when
theta is set to a vector of all ones to recover the DC-SBM case.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.
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allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Value

An undirected_dcsbm S3 object, a subclass of the undirected_factor_model() with the fol-
lowing additional fields:

• theta: A numeric vector of degree-heterogeneity parameters.

• z: The community memberships of each node, as a factor(). The factor will have k levels,
where k is the number of communities in the stochastic blockmodel. There will not always
necessarily be observed nodes in each community.

• pi: Sampling probabilities for each block.

• sorted: Logical indicating where nodes are arranged by block (and additionally by degree
heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a degree-corrected stochastic blockmodel. First, we randomly
chose a block membership for each node in the blockmodel. This is handled by dcsbm(). Then,
given these block memberships, we randomly sample edges between nodes. This second operation
is handled by sample_edgelist(), sample_sparse(), sample_igraph() and sample_tidygraph(),
depending depending on your desired graph representation.

Block memberships:
Let zi represent the block membership of node i. To generate zi we sample from a categorical
distribution (note that this is a special case of a multinomial) with parameter π, such that πi
represents the probability of ending up in the ith block. Block memberships for each node are
independent.

Degree heterogeneity:
In addition to block membership, the DCSBM also allows nodes to have different propensities
for edge formation. We represent this propensity for node i by a positive number θi. Typically
the θi are constrained to sum to one for identifiability purposes, but this doesn’t really matter
during sampling (i.e. without the sum constraint scaling B and θ has the same effect on edge
probabilities, but whether B or θ is responsible for this change is uncertain).

Edge formulation:
Once we know the block memberships z and the degree heterogeneity parameters theta, we need
one more ingredient, which is the baseline intensity of connections between nodes in block i and
block j. Then each edge Ai,j is Poisson distributed with parameter

λ[i, j] = θi ·Bzi,zj · θj .
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See Also

Other stochastic block models: directed_dcsbm(), mmsbm(), overlapping_sbm(), planted_partition(),
sbm()

Other undirected graphs: chung_lu(), erdos_renyi(), mmsbm(), overlapping_sbm(), planted_partition(),
sbm()

Examples

set.seed(27)

lazy_dcsbm <- dcsbm(n = 1000, k = 5, expected_density = 0.01)
lazy_dcsbm

# sometimes you gotta let the world burn and
# sample a wildly dense graph

dense_lazy_dcsbm <- dcsbm(n = 500, k = 3, expected_density = 0.8)
dense_lazy_dcsbm

# explicitly setting the degree heterogeneity parameter,
# mixing matrix, and relative community sizes rather
# than using randomly generated defaults

k <- 5
n <- 1000
B <- matrix(stats::runif(k * k), nrow = k, ncol = k)

theta <- round(stats::rlnorm(n, 2))

pi <- c(1, 2, 4, 1, 1)

custom_dcsbm <- dcsbm(
theta = theta,
B = B,
pi = pi,
expected_degree = 50

)

custom_dcsbm

edgelist <- sample_edgelist(custom_dcsbm)
edgelist

# efficient eigendecompostion that leverages low-rank structure in
# E(A) so that you don't have to form E(A) to find eigenvectors,
# as E(A) is typically dense. computation is
# handled via RSpectra

population_eigs <- eigs_sym(custom_dcsbm)
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directed_dcsbm Create a directed degree corrected stochastic blockmodel object

Description

To specify a degree-corrected stochastic blockmodel, you must specify the degree-heterogeneity
parameters (via n_in or theta_in, and n_out or theta_out), the mixing matrix (via k_in and
k_out, or B), and the relative block probabilities (optional, via p_in and pi_out). We provide de-
faults for most of these options to enable rapid exploration, or you can invest the effort for more
control over the model parameters. We strongly recommend setting the expected_in_degree,
expected_out_degree, or expected_density argument to avoid large memory allocations asso-
ciated with sampling large, dense graphs.

Usage

directed_dcsbm(
n = NULL,
theta_in = NULL,
theta_out = NULL,
k_in = NULL,
k_out = NULL,
B = NULL,
...,
pi_in = rep(1/k_in, k_in),
pi_out = rep(1/k_out, k_out),
sort_nodes = TRUE,
force_identifiability = TRUE,
poisson_edges = TRUE,
allow_self_loops = TRUE

)

Arguments

n (degree heterogeneity) The number of nodes in the blockmodel. Use when
you don’t want to specify the degree-heterogeneity parameters theta_in and
theta_out by hand. When n is specified, theta_in and theta_out are ran-
domly generated from a LogNormal(2, 1) distribution. This is subject to change,
and may not be reproducible. n defaults to NULL. You must specify either n or
theta_in and theta_out together, but not both.

theta_in (degree heterogeneity) A numeric vector explicitly specifying the degree hetero-
geneity parameters. This implicitly determines the number of nodes in the re-
sulting graph, i.e. it will have length(theta_in) nodes. Must be positive. Set-
ting to a vector of ones recovers a stochastic blockmodel without degree correc-
tion. Defaults to NULL. You must specify either n or theta_in and theta_out
together, but not both.
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theta_out (degree heterogeneity) A numeric vector explicitly specifying the degree het-
erogeneity parameters. This implicitly determines the number of nodes in the
resulting graph, i.e. it will have length(theta) nodes. Must be positive. Set-
ting to a vector of ones recovers a stochastic blockmodel without degree correc-
tion. Defaults to NULL. You must specify either n or theta_in and theta_out
together, but not both.

k_in (mixing matrix) The number of blocks in the blockmodel. Use when you don’t
want to specify the mixing-matrix by hand. When k_in is specified, the el-
ements of B are drawn randomly from a Uniform(0, 1) distribution. This is
subject to change, and may not be reproducible. k_in defaults to NULL. You
must specify either k_in and k_out together, or B. You may specify all three at
once, in which case k_in is only used to set pi_in (when pi_in is left at its
default argument value).

k_out (mixing matrix) The number of blocks in the blockmodel. Use when you don’t
want to specify the mixing-matrix by hand. When k_out is specified, the el-
ements of B are drawn randomly from a Uniform(0, 1) distribution. This is
subject to change, and may not be reproducible. k_out defaults to NULL. You
may specify all three at once, in which case k_out is only used to set pi_out
(when pi_out is left at its default argument value).

B (mixing matrix) A k_in by k_out matrix of block connection probabilities.
The probability that a node in block i connects to a node in community j is
Poisson(B[i, j]). matrix and Matrix objects are both acceptable. Defaults
to NULL. You must specify either k_in and k_out together, or B, but not both.

... Arguments passed on to directed_factor_model

expected_in_degree If specified, the desired expected in degree of the graph.
Specifying expected_in_degree simply rescales S to achieve this. De-
faults to NULL. Specify only one of expected_in_degree, expected_out_degree,
and expected_density.

expected_out_degree If specified, the desired expected out degree of the graph.
Specifying expected_out_degree simply rescales S to achieve this. De-
faults to NULL. Specify only one of expected_in_degree, expected_out_degree,
and expected_density.

expected_density If specified, the desired expected density of the graph. Spec-
ifying expected_density simply rescales S to achieve this. Defaults to
NULL. Specify only one of expected_in_degree, expected_out_degree,
and expected_density.

pi_in (relative block probabilities) Relative block probabilities. Must be positive, but
do not need to sum to one, as they will be normalized internally. Must match the
rows of B, or k_in. Defaults to rep(1 / k_in, k_in), or a balanced incoming
blocks.

pi_out (relative block probabilities) Relative block probabilities. Must be positive, but
do not need to sum to one, as they will be normalized internally. Must match
the columns of B, or k_out. Defaults to rep(1 / k_out, k_out), or a balanced
outgoing blocks.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by
block. Useful for plotting. Defaults to TRUE.
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force_identifiability

Logical indicating whether or not to normalize theta_in such that it sums to
one within each incoming block and theta_out such that it sums to one within
each outgoing block. Defaults to TRUE.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Value

A directed_dcsbm S3 object, a subclass of the directed_factor_model() with the following
additional fields:

• theta_in: A numeric vector of incoming community degree-heterogeneity parameters.
• theta_out: A numeric vector of outgoing community degree-heterogeneity parameters.
• z_in: The incoming community memberships of each node, as a factor(). The factor will

have k_in levels, where k_in is the number of incoming communities in the stochastic block-
model. There will not always necessarily be observed nodes in each community.

• z_out: The outgoing community memberships of each node, as a factor(). The factor will
have k_out levels, where k_out is the number of outgoing communities in the stochastic
blockmodel. There will not always necessarily be observed nodes in each community.

• pi_in: Sampling probabilities for each incoming community.
• pi_out: Sampling probabilities for each outgoing community.
• sorted: Logical indicating where nodes are arranged by block (and additionally by degree

heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a directed degree-corrected stochastic blockmodel. First, we
randomly chose a incoming block membership and an outgoing block membership for each node in
the blockmodel. This is handled by directed_dcsbm(). Then, given these block memberships, we
randomly sample edges between nodes. This second operation is handled by sample_edgelist(),
sample_sparse(), sample_igraph() and sample_tidygraph(), depending on your desired graph
representation.

Block memberships:
Let x represent the incoming block membership of a node and y represent the outgoing block
membership of a node. To generate x we sample from a categorical distribution with parameter
πin. To generate y we sample from a categorical distribution with parameter πout. Block mem-
berships are independent across nodes. Incoming and outgoing block memberships of the same
node are also independent.
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Degree heterogeneity:
In addition to block membership, the DCSBM also nodes to have different propensities for incom-
ing and outgoing edge formation. We represent the propensity to form incoming edges for a given
node by a positive number θin. We represent the propensity to form outgoing edges for a given
node by a positive number θout. Typically the θin (and thetaout) across all nodes are constrained
to sum to one for identifiability purposes, but this doesn’t really matter during sampling.

Edge formulation:
Once we know the block memberships x and y and the degree heterogeneity parameters θin and
θout, we need one more ingredient, which is the baseline intensity of connections between nodes
in block i and block j. Then each edge forms independently according to a Poisson distribution
with parameters

λ = θin ∗Bx,y ∗ θout.

See Also

Other stochastic block models: dcsbm(), mmsbm(), overlapping_sbm(), planted_partition(),
sbm()

Other directed graphs: directed_erdos_renyi()

Examples

set.seed(27)

B <- matrix(0.2, nrow = 5, ncol = 8)
diag(B) <- 0.9

ddcsbm <- directed_dcsbm(
n = 1000,
B = B,
k_in = 5,
k_out = 8,
expected_density = 0.01

)

ddcsbm

population_svd <- svds(ddcsbm)

directed_erdos_renyi Create an directed erdos renyi object

Description

Create an directed erdos renyi object
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Usage

directed_erdos_renyi(
n,
...,
p = NULL,
poisson_edges = TRUE,
allow_self_loops = TRUE

)

Arguments

n Number of nodes in graph.

... Arguments passed on to directed_factor_model

expected_in_degree If specified, the desired expected in degree of the graph.
Specifying expected_in_degree simply rescales S to achieve this. De-
faults to NULL. Specify only one of expected_in_degree, expected_out_degree,
and expected_density.

expected_out_degree If specified, the desired expected out degree of the graph.
Specifying expected_out_degree simply rescales S to achieve this. De-
faults to NULL. Specify only one of expected_in_degree, expected_out_degree,
and expected_density.

p Probability of an edge between any two nodes. You must specify either p,
expected_in_degree, or expected_out_degree.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Value

A directed_factor_model S3 class based on a list with the following elements:

• X: The incoming latent positions as a Matrix() object.

• S: The mixing matrix as a Matrix() object.

• Y: The outgoing latent positions as a Matrix() object.

• n: The number of nodes with incoming edges in the network.

• k1: The dimension of the latent node position vectors encoding incoming latent communities
(i.e. in X).
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• d: The number of nodes with outgoing edges in the network. Does not need to match n –
rectangular adjacency matrices are supported.

• k2: The dimension of the latent node position vectors encoding outgoing latent communities
(i.e. in Y).

• poisson_edges: Whether or not the graph is taken to be have Poisson or Bernoulli edges, as
indicated by a logical vector of length 1.

• allow_self_loops: Whether or not self loops are allowed.

See Also

Other erdos renyi: erdos_renyi()

Other directed graphs: directed_dcsbm()

Examples

set.seed(87)

er <- directed_erdos_renyi(n = 10, p = 0.1)
er

big_er <- directed_erdos_renyi(n = 10^6, expected_in_degree = 5)
big_er

A <- sample_sparse(er)
A

directed_factor_model Create a directed factor model graph

Description

A directed factor model graph is a directed generalized Poisson random dot product graph. The
edges in this graph are assumpted to be independent and Poisson distributed. The graph is param-
eterized by its expected adjacency matrix, with is E[A] = X S Y'. We do not recommend that
causal users use this function, see instead directed_dcsbm() and related functions, which will
formulate common variants of the stochastic blockmodels as undirected factor models with lots of
helpful input validation.

Usage

directed_factor_model(
X,
S,
Y,
...,
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expected_in_degree = NULL,
expected_out_degree = NULL,
expected_density = NULL,
poisson_edges = TRUE,
allow_self_loops = TRUE

)

Arguments

X A matrix() or Matrix() representing real-valued latent node positions encoding
community structure of incoming edges. Entries must be positive.

S A matrix() or Matrix() mixing matrix. Entries must be positive.

Y A matrix() or Matrix() representing real-valued latent node positions encoding
community structure of outgoing edges. Entries must be positive.

... Ignored. For internal developer use only.
expected_in_degree

If specified, the desired expected in degree of the graph. Specifying expected_in_degree
simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree,
expected_out_degree, and expected_density.

expected_out_degree

If specified, the desired expected out degree of the graph. Specifying expected_out_degree
simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree,
expected_out_degree, and expected_density.

expected_density

If specified, the desired expected density of the graph. Specifying expected_density
simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree,
expected_out_degree, and expected_density.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Value

A directed_factor_model S3 class based on a list with the following elements:

• X: The incoming latent positions as a Matrix() object.

• S: The mixing matrix as a Matrix() object.

• Y: The outgoing latent positions as a Matrix() object.

• n: The number of nodes with incoming edges in the network.
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• k1: The dimension of the latent node position vectors encoding incoming latent communities
(i.e. in X).

• d: The number of nodes with outgoing edges in the network. Does not need to match n –
rectangular adjacency matrices are supported.

• k2: The dimension of the latent node position vectors encoding outgoing latent communities
(i.e. in Y).

• poisson_edges: Whether or not the graph is taken to be have Poisson or Bernoulli edges, as
indicated by a logical vector of length 1.

• allow_self_loops: Whether or not self loops are allowed.

Examples

n <- 10000

k1 <- 5
k2 <- 3

d <- 5000

X <- matrix(rpois(n = n * k1, 1), nrow = n)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y)
fm

fm2 <- directed_factor_model(X, S, Y, expected_in_degree = 50)
fm2

eigs_sym.undirected_factor_model

Compute the eigendecomposition of the expected adjacency matrix of
an undirected factor model

Description

Compute the eigendecomposition of the expected adjacency matrix of an undirected factor model

Usage

## S3 method for class 'undirected_factor_model'
eigs_sym(A, k = A$k, which = "LM", sigma = NULL, opts = list(), ...)
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Arguments

A An undirected_factor_model().

k Desired rank of decomposition.

which Selection criterion. See Details below.

sigma Shift parameter. See section Shift-And-Invert Mode.

opts Control parameters related to the computing algorithm. See Details below.

... Unused, included only for consistency with generic signature.

Details

The which argument is a character string that specifies the type of eigenvalues to be computed.
Possible values are:

"LM" The k eigenvalues with largest magnitude. Here the magnitude means the Euclidean norm of complex numbers.
"SM" The k eigenvalues with smallest magnitude.
"LR" The k eigenvalues with largest real part.
"SR" The k eigenvalues with smallest real part.
"LI" The k eigenvalues with largest imaginary part.
"SI" The k eigenvalues with smallest imaginary part.
"LA" The k largest (algebraic) eigenvalues, considering any negative sign.
"SA" The k smallest (algebraic) eigenvalues, considering any negative sign.
"BE" Compute k eigenvalues, half from each end of the spectrum. When k is odd, compute more from the high and then from the low end.

eigs() with matrix types "matrix", "dgeMatrix", "dgCMatrix" and "dgRMatrix" can use "LM",
"SM", "LR", "SR", "LI" and "SI".

eigs_sym() with all supported matrix types, and eigs() with symmetric matrix types ("dsyMa-
trix", "dsCMatrix", and "dsRMatrix") can use "LM", "SM", "LA", "SA" and "BE".

The opts argument is a list that can supply any of the following parameters:

ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but
with greater memory use. For general matrix, ncv must satisfy k + 2 ≤ ncv ≤ n, and for
symmetric matrix, the constraint is k < ncv ≤ n. Default is min(n, max(2*k+1, 20)).

tol Precision parameter. Default is 1e-10.

maxitr Maximum number of iterations. Default is 1000.

retvec Whether to compute eigenvectors. If FALSE, only calculate and return eigenvalues.

initvec Initial vector of length n supplied to the Arnoldi/Lanczos iteration. It may speed up the
convergence if initvec is close to an eigenvector of A.

erdos_renyi Create an undirected erdos renyi object

Description

Create an undirected erdos renyi object
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Usage

erdos_renyi(n, ..., p = NULL, poisson_edges = TRUE, allow_self_loops = TRUE)

Arguments

n Number of nodes in graph.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Speci-
fying expected_degree simply rescales S to achieve this. Defaults to NULL.
Do not specify both expected_degree and expected_density at the same
time.

p Probability of an edge between any two nodes. You must specify either p or
expected_degree.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Value

An undirected_factor_model S3 class based on a list with the following elements:

• X: The latent positions as a Matrix() object.

• S: The mixing matrix as a Matrix() object.

• n: The number of nodes in the network.

• k: The rank of expectation matrix. Equivalently, the dimension of the latent node position
vectors.

See Also

Other erdos renyi: directed_erdos_renyi()

Other undirected graphs: chung_lu(), dcsbm(), mmsbm(), overlapping_sbm(), planted_partition(),
sbm()

Examples

set.seed(87)

er <- erdos_renyi(n = 10, p = 0.1)
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er

er <- erdos_renyi(n = 10, expected_density = 0.1)
er

big_er <- erdos_renyi(n = 10^6, expected_degree = 5)
big_er

A <- sample_sparse(er)
A

expected_edges Calculate the expected edges in Poisson RDPG graph

Description

These calculations are conditional on the latent factors X and Y.

Usage

expected_edges(factor_model, ...)

expected_degree(factor_model, ...)

expected_in_degree(factor_model, ...)

expected_out_degree(factor_model, ...)

expected_density(factor_model, ...)

expected_degrees(factor_model, ...)

Arguments

factor_model A directed_factor_model() or undirected_factor_model().

... Ignored. Do not use.

Details

Note that the runtime of the fastRG algorithm is proportional to the expected number of edges in
the graph. Expected edge count will be an underestimate of expected number of edges for Bernoulli
graphs. See the Rohe et al for details.

Value

Expected edge counts, or graph densities.
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References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a
Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13,
2018. https://www.jmlr.org/papers/v19/17-128.html

Examples

##### an undirected blockmodel example

n <- 1000
pop <- n / 2
a <- .1
b <- .05

B <- matrix(c(a,b,b,a), nrow = 2)

b_model <- fastRG::sbm(n = n, k = 2, B = B, poisson_edges = FALSE)

b_model

A <- sample_sparse(b_model)

# compare
mean(rowSums(triu(A)))

pop * a + pop * b # analytical average degree

##### more generic examples

n <- 10000
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

ufm <- undirected_factor_model(X, S)

expected_edges(ufm)
expected_degree(ufm)
eigs_sym(ufm)

n <- 10000
d <- 1000

k1 <- 5
k2 <- 3

X <- matrix(rpois(n = n * k1, 1), nrow = n)
Y <- matrix(rpois(n = d * k2, 1), nrow = d)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1)

https://www.jmlr.org/papers/v19/17-128.html
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dfm <- directed_factor_model(X = X, S = S, Y = Y)

expected_edges(dfm)
expected_in_degree(dfm)
expected_out_degree(dfm)

svds(dfm)

mmsbm Create an undirected degree-corrected mixed membership stochastic
blockmodel object

Description

To specify a degree-corrected mixed membership stochastic blockmodel, you must specify the
degree-heterogeneity parameters (via n or theta), the mixing matrix (via k or B), and the rela-
tive block propensities (optional, via alpha). We provide defaults for most of these options to
enable rapid exploration, or you can invest the effort for more control over the model parameters.
We strongly recommend setting the expected_degree or expected_density argument to avoid
large memory allocations associated with sampling large, dense graphs.

Usage

mmsbm(
n = NULL,
theta = NULL,
k = NULL,
B = NULL,
...,
alpha = rep(1, k),
sort_nodes = TRUE,
force_pure = TRUE,
poisson_edges = TRUE,
allow_self_loops = TRUE

)

Arguments

n (degree heterogeneity) The number of nodes in the blockmodel. Use when
you don’t want to specify the degree-heterogeneity parameters theta by hand.
When n is specified, theta is randomly generated from a LogNormal(2, 1) dis-
tribution. This is subject to change, and may not be reproducible. n defaults to
NULL. You must specify either n or theta, but not both.

theta (degree heterogeneity) A numeric vector explicitly specifying the degree hetero-
geneity parameters. This implicitly determines the number of nodes in the re-
sulting graph, i.e. it will have length(theta) nodes. Must be positive. Setting
to a vector of ones recovers a stochastic blockmodel without degree correction.
Defaults to NULL. You must specify either n or theta, but not both.
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k (mixing matrix) The number of blocks in the blockmodel. Use when you don’t
want to specify the mixing-matrix by hand. When k is specified, the elements
of B are drawn randomly from a Uniform(0, 1) distribution. This is subject
to change, and may not be reproducible. k defaults to NULL. You must specify
either k or B, but not both.

B (mixing matrix) A k by k matrix of block connection probabilities. The proba-
bility that a node in block i connects to a node in community j is Poisson(B[i,
j]). Must be a square matrix. matrix and Matrix objects are both acceptable.
If B is not symmetric, it will be symmetrized via the update B := B + t(B). De-
faults to NULL. You must specify either k or B, but not both.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Speci-
fying expected_degree simply rescales S to achieve this. Defaults to NULL.
Do not specify both expected_degree and expected_density at the same
time.

expected_density If specified, the desired expected density of the graph. Spec-
ifying expected_density simply rescales S to achieve this. Defaults to
NULL. Do not specify both expected_degree and expected_density at
the same time.

alpha (relative block propensities) Relative block propensities, which are parameters
of a Dirichlet distribution. All elments of alpha must thus be positive. Must
match the dimensions of B or k. Defaults to rep(1, k), or balanced membership
across blocks.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by
block and by theta. Useful for plotting. Defaults to TRUE.

force_pure Logical indicating whether or not to force presence of "pure nodes" (nodes that
belong only to a single community) for the sake of identifiability. To include
pure nodes, block membership sampling first proceeds as per usual. Then, after
it is complete, k nodes are chosen randomly as pure nodes, one for each block.
Defaults to TRUE.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Value

An undirected_mmsbm S3 object, a subclass of the undirected_factor_model() with the fol-
lowing additional fields:
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• theta: A numeric vector of degree-heterogeneity parameters.

• Z: The community memberships of each node, a matrix() with k columns, whose row sums
all equal one.

• alpha: Community membership proportion propensities.

• sorted: Logical indicating where nodes are arranged by block (and additionally by degree
heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a degree-corrected stochastic blockmodel. First, we ran-
domly choose how much each node belongs to each block in the blockmodel. Each node is one
unit of block membership to distribute. This is handled by mmsbm(). Then, given these block
memberships, we randomly sample edges between nodes. This second operation is handled by
sample_edgelist(), sample_sparse(), sample_igraph() and sample_tidygraph(), depend-
ing depending on your desired graph representation.

Block memberships:
Let Zi by a vector on the k dimensional simplex representing the block memberships of node i. To
generate zi we sample from a Dirichlet distribution with parameter vector α. Block memberships
for each node are independent.

Degree heterogeneity:
In addition to block membership, the MMSBM also allows nodes to have different propensities
for edge formation. We represent this propensity for node i by a positive number θi.

Edge formulation:
Once we know the block membership vector zi, zj and the degree heterogeneity parameters θ, we
need one more ingredient, which is the baseline intensity of connections between nodes in block
i and block j. This is given by a k× k matrix B. Then each edge Ai,j is Poisson distributed with
parameter

λi,j = θi · zTi Bzj · θj .

See Also

Other stochastic block models: dcsbm(), directed_dcsbm(), overlapping_sbm(), planted_partition(),
sbm()

Other undirected graphs: chung_lu(), dcsbm(), erdos_renyi(), overlapping_sbm(), planted_partition(),
sbm()

Examples

set.seed(27)

lazy_mmsbm <- mmsbm(n = 1000, k = 5, expected_density = 0.01)
lazy_mmsbm

# sometimes you gotta let the world burn and
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# sample a wildly dense graph

dense_lazy_mmsbm <- mmsbm(n = 500, k = 3, expected_density = 0.8)
dense_lazy_mmsbm

# explicitly setting the degree heterogeneity parameter,
# mixing matrix, and relative community sizes rather
# than using randomly generated defaults

k <- 5
n <- 1000
B <- matrix(stats::runif(k * k), nrow = k, ncol = k)

theta <- round(stats::rlnorm(n, 2))

alpha <- c(1, 2, 4, 1, 1)

custom_mmsbm <- mmsbm(
theta = theta,
B = B,
alpha = alpha,
expected_degree = 50

)

custom_mmsbm

edgelist <- sample_edgelist(custom_mmsbm)
edgelist

# efficient eigendecompostion that leverages low-rank structure in
# E(A) so that you don't have to form E(A) to find eigenvectors,
# as E(A) is typically dense. computation is
# handled via RSpectra

population_eigs <- eigs_sym(custom_mmsbm)
svds(custom_mmsbm)$d

overlapping_sbm Create an undirected overlapping degree corrected stochastic block-
model object

Description

To specify a overlapping stochastic blockmodel, you must specify the number of nodes (via n),
the mixing matrix (via k or B), and the block probabilities (optional, via pi). We provide de-
faults for most of these options to enable rapid exploration, or you can invest the effort for more
control over the model parameters. We strongly recommend setting the expected_degree or
expected_density argument to avoid large memory allocations associated with sampling large,
dense graphs.
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Usage

overlapping_sbm(
n,
k = NULL,
B = NULL,
...,
pi = rep(1/k, k),
sort_nodes = TRUE,
force_pure = TRUE,
poisson_edges = TRUE,
allow_self_loops = TRUE

)

Arguments

n The number of nodes in the overlapping SBM.

k (mixing matrix) The number of blocks in the blockmodel. Use when you don’t
want to specify the mixing-matrix by hand. When k is specified, B is set to a
diagonal dominant matrix with value 0.8 along the diagonal and 0.1 / (k - 1)
on the off-diagonal. k defaults to NULL. You must specify either k or B, but not
both.

B (mixing matrix) A k by k matrix of block connection probabilities. The proba-
bility that a node in block i connects to a node in community j is Poisson(B[i,
j]). Must be an invertible, symmetric square matrix. matrix and Matrix ob-
jects are both acceptable. If B is not symmetric, it will be symmetrized via the
update B := B + t(B). Defaults to NULL. You must specify either k or B, but not
both.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Speci-
fying expected_degree simply rescales S to achieve this. Defaults to NULL.
Do not specify both expected_degree and expected_density at the same
time.

expected_density If specified, the desired expected density of the graph. Spec-
ifying expected_density simply rescales S to achieve this. Defaults to
NULL. Do not specify both expected_degree and expected_density at
the same time.

pi (block probabilities) Probability of membership in each block. Membership in
each block is independent under the overlapping SBM. Defaults to rep(1 / k,
k).

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by
block. Useful for plotting. Defaults to TRUE.

force_pure Logical indicating whether or not to force presence of "pure nodes" (nodes that
belong only to a single community) for the sake of identifiability. To include
pure nodes, block membership sampling first proceeds as per usual. Then, after
it is complete, k nodes are chosen randomly as pure nodes, one for each block.
Defaults to TRUE.
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poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Value

An undirected_overlapping_sbm S3 object, a subclass of the undirected_factor_model()
with the following additional fields:

• pi: Sampling probabilities for each block.

• sorted: Logical indicating where nodes are arranged by block (and additionally by degree
heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a degree-corrected overlapping stochastic blockmodel. First,
for each node, we independently determine if that node is a member of each block. This is han-
dled by overlapping_sbm(). Then, given these block memberships, we randomly sample edges
between nodes. This second operation is handled by sample_edgelist(), sample_sparse(),
sample_igraph() and sample_tidygraph(), depending depending on your desired graph repre-
sentation.

Identifiability:
In order to be identifiable, an overlapping SBM must satisfy two conditions:

1. B must be invertible, and

2. the must be at least one "pure node" in each block that belongs to no other blocks.

Block memberships:
Note that some nodes may not belong to any blocks.

TODO

Edge formulation:
Once we know the block memberships, we need one more ingredient, which is the baseline in-
tensity of connections between nodes in block i and block j. Then each edge Ai,j is Poisson
distributed with parameter

TODO
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See Also

Other stochastic block models: dcsbm(), directed_dcsbm(), mmsbm(), planted_partition(),
sbm()

Other undirected graphs: chung_lu(), dcsbm(), erdos_renyi(), mmsbm(), planted_partition(),
sbm()

Examples

set.seed(27)

lazy_overlapping_sbm <- overlapping_sbm(n = 1000, k = 5, expected_density = 0.01)
lazy_overlapping_sbm

# sometimes you gotta let the world burn and
# sample a wildly dense graph

dense_lazy_overlapping_sbm <- overlapping_sbm(n = 500, k = 3, expected_density = 0.8)
dense_lazy_overlapping_sbm

k <- 5
n <- 1000
B <- matrix(stats::runif(k * k), nrow = k, ncol = k)

pi <- c(1, 2, 4, 1, 1) / 5

custom_overlapping_sbm <- overlapping_sbm(
n = 200,
B = B,
pi = pi,
expected_degree = 5

)

custom_overlapping_sbm

edgelist <- sample_edgelist(custom_overlapping_sbm)
edgelist
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# efficient eigendecompostion that leverages low-rank structure in
# E(A) so that you don't have to form E(A) to find eigenvectors,
# as E(A) is typically dense. computation is
# handled via RSpectra

population_eigs <- eigs_sym(custom_overlapping_sbm)

planted_partition Create an undirected planted partition object

Description

To specify a planted partition model, you must specify the number of nodes (via n), the mixing
matrix (optional, either via within_block/between_block or a/b), and the relative block proba-
bilites (optional, via pi). We provide defaults for most of these options to enable rapid exploration,
or you can invest the effort for more control over the model parameters. We strongly recommend
setting the expected_degree or expected_density argument to avoid large memory allocations
associated with sampling large, dense graphs.

Usage

planted_partition(
n,
k,
...,
within_block = NULL,
between_block = NULL,
a = NULL,
b = NULL,
pi = rep(1/k, k),
sort_nodes = TRUE,
poisson_edges = TRUE,
allow_self_loops = TRUE

)

Arguments

n The number of nodes in the network. Must be a positive integer. This argument
is required.

k Number of planted partitions, as a positive integer. This argument is required.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Speci-
fying expected_degree simply rescales S to achieve this. Defaults to NULL.
Do not specify both expected_degree and expected_density at the same
time.
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expected_density If specified, the desired expected density of the graph. Spec-
ifying expected_density simply rescales S to achieve this. Defaults to
NULL. Do not specify both expected_degree and expected_density at
the same time.

within_block Probability of within block edges. Must be strictly between zero and one. Must
specify either within_block and between_block, or a and b to determine edge
probabilities.

between_block Probability of between block edges. Must be strictly between zero and one.
Must specify either within_block and between_block, or a and b to determine
edge probabilities.

a Integer such that a/n is the probability of edges within a block. Useful for sparse
graphs. Must specify either within_block and between_block, or a and b to
determine edge probabilities.

b Integer such that b/n is the probability of edges between blocks. Useful for
sparse graphs. Must specify either within_block and between_block, or a
and b to determine edge probabilities.

pi (relative block probabilities) Relative block probabilities. Must be positive, but
do not need to sum to one, as they will be normalized internally. Must match the
dimensions of B or k. Defaults to rep(1 / k, k), or a balanced blocks.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by
block and by theta. Useful for plotting. Defaults to TRUE.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Details

A planted partition model is stochastic blockmodel in which the diagonal and the off-diagonal of
the mixing matrix B are both constant. This means that edge probabilities depend only on whether
two nodes belong to the same block, or to different blocks, but the particular blocks themselves
don’t have any impact apart from this.

Value

An undirected_planted_partition S3 object, which is a subclass of the sbm() object, with
additional fields:

• within_block: The probability of edge formation within a block.

• between_block: The probability of edge formation between two distinct blocks.
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See Also

Other stochastic block models: dcsbm(), directed_dcsbm(), mmsbm(), overlapping_sbm(),
sbm()

Other undirected graphs: chung_lu(), dcsbm(), erdos_renyi(), mmsbm(), overlapping_sbm(),
sbm()

Examples

set.seed(27)

lazy_pp <- planted_partition(
n = 1000,
k = 5,
expected_density = 0.01,
within_block = 0.1,
between_block = 0.01

)

lazy_pp

sample_edgelist Sample a random edgelist from a random dot product graph

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product
graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this
specification. Then, use sample_*() functions to generate a random graph in your preferred format.

Usage

sample_edgelist(factor_model, ...)

## S3 method for class 'undirected_factor_model'
sample_edgelist(factor_model, ...)

## S3 method for class 'directed_factor_model'
sample_edgelist(factor_model, ...)

Arguments

factor_model A directed_factor_model() or undirected_factor_model().

... Ignored. Do not use.
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Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the
paper (which is short and open access!!) for details.

Value

A single realization of a random Poisson (or Bernoulli) Dot Product Graph, represented as a tibble::tibble()
with two integer columns, from and to.

In the undirected case, from and to do not encode information about edge direction, but we will al-
ways have from <= to for convenience of edge identification. To avoid handling such considerations
yourself, we recommend using sample_sparse(), sample_igraph(), and sample_tidygraph()
over sample_edgelist().

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a
Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13,
2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

Other samplers: sample_edgelist.matrix(), sample_igraph(), sample_sparse(), sample_tidygraph()

Examples

library(igraph)
library(tidygraph)

set.seed(27)

##### undirected examples ----------------------------

n <- 100
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

# S will be symmetrized internal here, or left unchanged if
# it is already symmetric

ufm <- undirected_factor_model(
X, S,
expected_density = 0.1

)

ufm

### sampling graphs as edgelists ----------------------

https://www.jmlr.org/papers/v19/17-128.html
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edgelist <- sample_edgelist(ufm)
edgelist

### sampling graphs as sparse matrices ----------------

A <- sample_sparse(ufm)

inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)

B <- sample_sparse(ufm)

inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)

### sampling graphs as igraph graphs ------------------

sample_igraph(ufm)

### sampling graphs as tidygraph graphs ---------------

sample_tidygraph(ufm)

##### directed examples ----------------------------

n2 <- 100

k1 <- 5
k2 <- 3

d <- 50

X <- matrix(rpois(n = n2 * k1, 1), nrow = n2)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)
fm

### sampling graphs as edgelists ----------------------

edgelist2 <- sample_edgelist(fm)
edgelist2

### sampling graphs as sparse matrices ----------------

A2 <- sample_sparse(fm)

inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)
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B2 <- sample_sparse(fm)

inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)

### sampling graphs as igraph graphs ------------------

# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here

# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups

dig <- sample_igraph(fm)
is_bipartite(dig)

### sampling graphs as tidygraph graphs ---------------

sample_tidygraph(fm)

sample_edgelist.matrix

Low level interface to sample RPDG edgelists

Description

This is a breaks-off, no safety checks interface. We strongly recommend that you do not call
sample_edgelist.matrix() unless you know what you are doing, and even then, we still do not
recommend it, as you will bypass all typical input validation. extremely loud coughing All those
who bypass input validation suffer foolishly at their own hand. extremely loud coughing

Usage

## S3 method for class 'matrix'
sample_edgelist(
factor_model,
S,
Y,
directed,
poisson_edges,
allow_self_loops,
...

)

## S3 method for class 'Matrix'
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sample_edgelist(
factor_model,
S,
Y,
directed,
poisson_edges,
allow_self_loops,
...

)

Arguments

factor_model An n by k1 matrix() or Matrix::Matrix() of latent node positions encoding
incoming edge community membership. The X matrix in Rohe et al (2017).
Naming differs only for consistency with the S3 generic.

S A k1 by k2 mixing matrix() or Matrix::Matrix(). In the undirect case this
is assumed to be symmetric but we do not check that this is the case.

Y A d by k2 matrix() or Matrix::Matrix() of latent node positions encoding
outgoing edge community membership.

directed Logical indicating whether or not the graph should be directed. When directed
= FALSE, symmetrizes S internally. Y = X together with a symmetric S implies a
symmetric expectation (although not necessarily an undirected graph). When
directed = FALSE, samples a directed graph with symmetric expectation, and
then adds edges until symmetry is achieved.

poisson_edges Whether or not to remove duplicate edges after sampling. See Section 2.3 of
Rohe et al. (2017) for some additional details. Defaults to TRUE.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

... Ignored, for generic consistency only.

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the
paper (which is short and open access!!) for details.

Value

A single realization of a random Poisson (or Bernoulli) Dot Product Graph, represented as a tibble::tibble()
with two integer columns, from and to.

In the undirected case, from and to do not encode information about edge direction, but we will al-
ways have from <= to for convenience of edge identification. To avoid handling such considerations
yourself, we recommend using sample_sparse(), sample_igraph(), and sample_tidygraph()
over sample_edgelist().
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References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a
Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13,
2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

Other samplers: sample_edgelist(), sample_igraph(), sample_sparse(), sample_tidygraph()

Examples

set.seed(46)

n <- 10000
d <- 1000

k1 <- 5
k2 <- 3

X <- matrix(rpois(n = n * k1, 1), nrow = n)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1)
Y <- matrix(rpois(n = d * k2, 1), nrow = d)

sample_edgelist(X, S, Y, TRUE, TRUE, TRUE)

sample_igraph Sample a random dot product graph as an igraph graph

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product
graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this
specification. Then, use sample_*() functions to generate a random graph in your preferred format.

Usage

sample_igraph(factor_model, ...)

## S3 method for class 'undirected_factor_model'
sample_igraph(factor_model, ...)

## S3 method for class 'directed_factor_model'
sample_igraph(factor_model, ...)

https://www.jmlr.org/papers/v19/17-128.html
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Arguments

factor_model A directed_factor_model() or undirected_factor_model().

... Ignored. Do not use.

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the
paper (which is short and open access!!) for details.

Value

An igraph::igraph() object that is possibly a multigraph (that is, we take there to be multiple
edges rather than weighted edges).

When factor_model is undirected:

- the graph is undirected and one-mode.

When factor_model is directed and square:

- the graph is directed and one-mode.

When factor_model is directed and rectangular:

- the graph is undirected and bipartite.

Note that working with bipartite graphs in igraph is more complex than working with one-mode
graphs.

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a
Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13,
2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

Other samplers: sample_edgelist.matrix(), sample_edgelist(), sample_sparse(), sample_tidygraph()

Examples

library(igraph)
library(tidygraph)

set.seed(27)

##### undirected examples ----------------------------

n <- 100

https://www.jmlr.org/papers/v19/17-128.html
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k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

# S will be symmetrized internal here, or left unchanged if
# it is already symmetric

ufm <- undirected_factor_model(
X, S,
expected_density = 0.1

)

ufm

### sampling graphs as edgelists ----------------------

edgelist <- sample_edgelist(ufm)
edgelist

### sampling graphs as sparse matrices ----------------

A <- sample_sparse(ufm)

inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)

B <- sample_sparse(ufm)

inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)

### sampling graphs as igraph graphs ------------------

sample_igraph(ufm)

### sampling graphs as tidygraph graphs ---------------

sample_tidygraph(ufm)

##### directed examples ----------------------------

n2 <- 100

k1 <- 5
k2 <- 3

d <- 50

X <- matrix(rpois(n = n2 * k1, 1), nrow = n2)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
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Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)
fm

### sampling graphs as edgelists ----------------------

edgelist2 <- sample_edgelist(fm)
edgelist2

### sampling graphs as sparse matrices ----------------

A2 <- sample_sparse(fm)

inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)

B2 <- sample_sparse(fm)

inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)

### sampling graphs as igraph graphs ------------------

# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here

# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups

dig <- sample_igraph(fm)
is_bipartite(dig)

### sampling graphs as tidygraph graphs ---------------

sample_tidygraph(fm)

sample_sparse Sample a random dot product graph as a sparse Matrix

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product
graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this
specification. Then, use sample_*() functions to generate a random graph in your preferred format.
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Usage

sample_sparse(factor_model, ...)

## S3 method for class 'undirected_factor_model'
sample_sparse(factor_model, ...)

## S3 method for class 'directed_factor_model'
sample_sparse(factor_model, ...)

Arguments

factor_model A directed_factor_model() or undirected_factor_model().

... Ignored. Do not use.

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the
paper (which is short and open access!!) for details.

Value

For undirected factor models, a sparse Matrix::Matrix() of class dsCMatrix. In particular, this
means the Matrix object (1) has double data type, (2) is symmetric, and (3) is in column compressed
storage format.

For directed factor models, a sparse Matrix::Matrix() of class dgCMatrix. This means the
Matrix object (1) has double data type, (2) in not symmetric, and (3) is in column compressed
storage format.

To reiterate: for undirected graphs, you will get a symmetric matrix. For directed graphs, you will
get a general sparse matrix.

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a
Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13,
2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

Other samplers: sample_edgelist.matrix(), sample_edgelist(), sample_igraph(), sample_tidygraph()

Examples

library(igraph)
library(tidygraph)

set.seed(27)

##### undirected examples ----------------------------

https://www.jmlr.org/papers/v19/17-128.html
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n <- 100
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

# S will be symmetrized internal here, or left unchanged if
# it is already symmetric

ufm <- undirected_factor_model(
X, S,
expected_density = 0.1

)

ufm

### sampling graphs as edgelists ----------------------

edgelist <- sample_edgelist(ufm)
edgelist

### sampling graphs as sparse matrices ----------------

A <- sample_sparse(ufm)

inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)

B <- sample_sparse(ufm)

inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)

### sampling graphs as igraph graphs ------------------

sample_igraph(ufm)

### sampling graphs as tidygraph graphs ---------------

sample_tidygraph(ufm)

##### directed examples ----------------------------

n2 <- 100

k1 <- 5
k2 <- 3

d <- 50
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X <- matrix(rpois(n = n2 * k1, 1), nrow = n2)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)
fm

### sampling graphs as edgelists ----------------------

edgelist2 <- sample_edgelist(fm)
edgelist2

### sampling graphs as sparse matrices ----------------

A2 <- sample_sparse(fm)

inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)

B2 <- sample_sparse(fm)

inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)

### sampling graphs as igraph graphs ------------------

# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here

# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups

dig <- sample_igraph(fm)
is_bipartite(dig)

### sampling graphs as tidygraph graphs ---------------

sample_tidygraph(fm)

sample_tidygraph Sample a random dot product graph as a tidygraph graph

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product
graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this
specification. Then, use sample_*() functions to generate a random graph in your preferred format.
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Usage

sample_tidygraph(factor_model, ...)

## S3 method for class 'undirected_factor_model'
sample_tidygraph(factor_model, ...)

## S3 method for class 'directed_factor_model'
sample_tidygraph(factor_model, ...)

Arguments

factor_model A directed_factor_model() or undirected_factor_model().

... Ignored. Do not use.

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the
paper (which is short and open access!!) for details.

Value

A tidygraph::tbl_graph() object that is possibly a multigraph (that is, we take there to be mul-
tiple edges rather than weighted edges).

When factor_model is undirected:

- the graph is undirected and one-mode.

When factor_model is directed and square:

- the graph is directed and one-mode.

When factor_model is directed and rectangular:

- the graph is undirected and bipartite.

Note that working with bipartite graphs in tidygraph is more complex than working with one-mode
graphs.

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a
Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13,
2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

Other samplers: sample_edgelist.matrix(), sample_edgelist(), sample_igraph(), sample_sparse()

https://www.jmlr.org/papers/v19/17-128.html
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Examples

library(igraph)
library(tidygraph)

set.seed(27)

##### undirected examples ----------------------------

n <- 100
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

# S will be symmetrized internal here, or left unchanged if
# it is already symmetric

ufm <- undirected_factor_model(
X, S,
expected_density = 0.1

)

ufm

### sampling graphs as edgelists ----------------------

edgelist <- sample_edgelist(ufm)
edgelist

### sampling graphs as sparse matrices ----------------

A <- sample_sparse(ufm)

inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)

B <- sample_sparse(ufm)

inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)

### sampling graphs as igraph graphs ------------------

sample_igraph(ufm)

### sampling graphs as tidygraph graphs ---------------

sample_tidygraph(ufm)
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##### directed examples ----------------------------

n2 <- 100

k1 <- 5
k2 <- 3

d <- 50

X <- matrix(rpois(n = n2 * k1, 1), nrow = n2)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)
fm

### sampling graphs as edgelists ----------------------

edgelist2 <- sample_edgelist(fm)
edgelist2

### sampling graphs as sparse matrices ----------------

A2 <- sample_sparse(fm)

inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)

B2 <- sample_sparse(fm)

inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)

### sampling graphs as igraph graphs ------------------

# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here

# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups

dig <- sample_igraph(fm)
is_bipartite(dig)

### sampling graphs as tidygraph graphs ---------------

sample_tidygraph(fm)
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sbm Create an undirected stochastic blockmodel object

Description

To specify a stochastic blockmodel, you must specify the number of nodes (via n), the mixing matrix
(via k or B), and the relative block probabilites (optional, via pi). We provide defaults for most of
these options to enable rapid exploration, or you can invest the effort for more control over the
model parameters. We strongly recommend setting the expected_degree or expected_density
argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

sbm(
n,
k = NULL,
B = NULL,
...,
pi = rep(1/k, k),
sort_nodes = TRUE,
poisson_edges = TRUE,
allow_self_loops = TRUE

)

Arguments

n The number of nodes in the network. Must be a positive integer. This argument
is required.

k (mixing matrix) The number of blocks in the blockmodel. Use when you don’t
want to specify the mixing-matrix by hand. When k is specified, the elements
of B are drawn randomly from a Uniform(0, 1) distribution. This is subject
to change, and may not be reproducible. k defaults to NULL. You must specify
either k or B, but not both.

B (mixing matrix) A k by k matrix of block connection probabilities. The proba-
bility that a node in block i connects to a node in community j is Poisson(B[i,
j]). Must be a square matrix. matrix and Matrix objects are both acceptable.
If B is not symmetric, it will be symmetrized via the update B := B + t(B). De-
faults to NULL. You must specify either k or B, but not both.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Speci-
fying expected_degree simply rescales S to achieve this. Defaults to NULL.
Do not specify both expected_degree and expected_density at the same
time.

expected_density If specified, the desired expected density of the graph. Spec-
ifying expected_density simply rescales S to achieve this. Defaults to
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NULL. Do not specify both expected_degree and expected_density at
the same time.

pi (relative block probabilities) Relative block probabilities. Must be positive, but
do not need to sum to one, as they will be normalized internally. Must match the
dimensions of B or k. Defaults to rep(1 / k, k), or a balanced blocks.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by
block and by theta. Useful for plotting. Defaults to TRUE.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Details

A stochastic block is equivalent to a degree-corrected stochastic blockmodel where the degree het-
erogeneity parameters have all been set equal to 1.

Value

An undirected_sbm S3 object, which is a subclass of the dcsbm() object.

See Also

Other stochastic block models: dcsbm(), directed_dcsbm(), mmsbm(), overlapping_sbm(),
planted_partition()

Other undirected graphs: chung_lu(), dcsbm(), erdos_renyi(), mmsbm(), overlapping_sbm(),
planted_partition()

Examples

set.seed(27)

lazy_sbm <- sbm(n = 1000, k = 5, expected_density = 0.01)
lazy_sbm

# by default we get a multigraph (i.e. multiple edges are
# allowed between the same two nodes). using bernoulli edges
# will with an adjacency matrix with only zeroes and ones

bernoulli_sbm <- sbm(
n = 5000,
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k = 300,
poisson_edges = FALSE,
expected_degree = 8

)

bernoulli_sbm

edgelist <- sample_edgelist(bernoulli_sbm)
edgelist

A <- sample_sparse(bernoulli_sbm)

# only zeroes and ones!
sign(A)

svds.directed_factor_model

Compute the singular value decomposition of the expected adjacency
matrix of a directed factor model

Description

Compute the singular value decomposition of the expected adjacency matrix of a directed factor
model

Usage

## S3 method for class 'directed_factor_model'
svds(A, k = min(A$k1, A$k2), nu = k, nv = k, opts = list(), ...)

Arguments

A An undirected_factor_model().

k Desired rank of decomposition.

nu Number of left singular vectors to be computed. This must be between 0 and k.

nv Number of right singular vectors to be computed. This must be between 0 and
k.

opts Control parameters related to the computing algorithm. See Details below.

... Unused, included only for consistency with generic signature.

Details

The opts argument is a list that can supply any of the following parameters:

ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but
with greater memory use. ncv must be satisfy k < ncv ≤ p where p = min(m, n). Default is
min(p, max(2*k+1, 20)).
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tol Precision parameter. Default is 1e-10.

maxitr Maximum number of iterations. Default is 1000.

center Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector c is
supplied, then SVD is computed on the matrix A − 1c′, in an implicit way without actually
forming this matrix. center = TRUE has the same effect as center = colMeans(A). Default is
FALSE.

scale Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector s is supplied,
then SVD is computed on the matrix (A − 1c′)S, where c is the centering vector and S =
diag(1/s). If scale = TRUE, then the vector s is computed as the column norm of A − 1c′.
Default is FALSE.

svds.undirected_factor_model

Compute the singular value decomposition of the expected adjacency
matrix of an undirected factor model

Description

Compute the singular value decomposition of the expected adjacency matrix of an undirected factor
model

Usage

## S3 method for class 'undirected_factor_model'
svds(A, k = A$k, nu = k, nv = k, opts = list(), ...)

Arguments

A An undirected_factor_model().

k Desired rank of decomposition.

nu Number of left singular vectors to be computed. This must be between 0 and k.

nv Number of right singular vectors to be computed. This must be between 0 and
k.

opts Control parameters related to the computing algorithm. See Details below.

... Unused, included only for consistency with generic signature.

Details

The opts argument is a list that can supply any of the following parameters:

ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but
with greater memory use. ncv must be satisfy k < ncv ≤ p where p = min(m, n). Default is
min(p, max(2*k+1, 20)).

tol Precision parameter. Default is 1e-10.
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maxitr Maximum number of iterations. Default is 1000.

center Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector c is
supplied, then SVD is computed on the matrix A − 1c′, in an implicit way without actually
forming this matrix. center = TRUE has the same effect as center = colMeans(A). Default is
FALSE.

scale Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector s is supplied,
then SVD is computed on the matrix (A − 1c′)S, where c is the centering vector and S =
diag(1/s). If scale = TRUE, then the vector s is computed as the column norm of A − 1c′.
Default is FALSE.

undirected_factor_model

Create an undirected factor model graph

Description

An undirected factor model graph is an undirected generalized Poisson random dot product graph.
The edges in this graph are assumed to be independent and Poisson distributed. The graph is
parameterized by its expected adjacency matrix, which is E[A|X] = X S X'. We do not recommend
that casual users use this function, see instead dcsbm() and related functions, which will formulate
common variants of the stochastic blockmodels as undirected factor models with lots of helpful
input validation.

Usage

undirected_factor_model(
X,
S,
...,
expected_degree = NULL,
expected_density = NULL,
poisson_edges = TRUE,
allow_self_loops = TRUE

)

Arguments

X A matrix() or Matrix() representing real-valued latent node positions. Entries
must be positive.

S A matrix() or Matrix() mixing matrix. S is symmetrized if it is not already, as
this is the undirected case. Entries must be positive.

... Ignored. Must be empty.
expected_degree

If specified, the desired expected degree of the graph. Specifying expected_degree
simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree
and expected_density at the same time.
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expected_density

If specified, the desired expected density of the graph. Specifying expected_density
simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree
and expected_density at the same time.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a
pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and
duplicate edges are removed afterwards. Further, when FALSE, we assume that
S specifies a desired between-factor connection probability, and back-transform
this S to the appropriate Poisson intensity parameter to approximate Bernoulli
factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some
additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with
themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-
loops, and these are then removed after the fact.

Value

An undirected_factor_model S3 class based on a list with the following elements:

• X: The latent positions as a Matrix() object.

• S: The mixing matrix as a Matrix() object.

• n: The number of nodes in the network.

• k: The rank of expectation matrix. Equivalently, the dimension of the latent node position
vectors.

Examples

n <- 10000
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

ufm <- undirected_factor_model(X, S)
ufm

ufm2 <- undirected_factor_model(X, S, expected_degree = 50)
ufm2

svds(ufm2)
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