
Package ‘finetune’
October 12, 2022

Title Additional Functions for Model Tuning

Version 1.0.1

Description The ability to tune models is important. 'finetune' enhances
the 'tune' package by providing more specialized methods for finding
reasonable values of model tuning parameters. Two racing methods
described by Kuhn (2014) <arXiv:1405.6974> are included. An iterative
search method using generalized simulated annealing (Bohachevsky,
Johnson and Stein, 1986) <doi:10.1080/00401706.1986.10488128> is also
included.

License MIT + file LICENSE

URL https://github.com/tidymodels/finetune,

https://finetune.tidymodels.org

BugReports https://github.com/tidymodels/finetune/issues

Depends R (>= 3.4), tune (>= 1.0.1)

Imports cli, dials (>= 0.1.0), dplyr, ggplot2, parsnip (>= 1.0.2),
purrr, rlang, tibble, tidyr, tidyselect, utils, workflows (>=
0.2.6), vctrs

Suggests BradleyTerry2, covr, discrim, kknn, klaR, lme4, modeldata,
ranger, recipes (>= 0.2.0), rpart, rsample, spelling, testthat,
yardstick

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.2.1.9000

NeedsCompilation no

Author Max Kuhn [aut, cre] (<https://orcid.org/0000-0003-2402-136X>),
RStudio [cph, fnd]

Maintainer Max Kuhn <max@rstudio.com>

Repository CRAN

Date/Publication 2022-10-12 06:22:24 UTC

1

https://arxiv.org/abs/1405.6974
https://doi.org/10.1080/00401706.1986.10488128
https://github.com/tidymodels/finetune
https://finetune.tidymodels.org
https://github.com/tidymodels/finetune/issues
https://orcid.org/0000-0003-2402-136X


2 collect_predictions

R topics documented:
collect_predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
control_race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
control_sim_anneal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
plot_race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
show_best.tune_race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
tune_race_anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
tune_race_win_loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
tune_sim_anneal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Index 21

collect_predictions Obtain and format results produced by racing functions

Description

Obtain and format results produced by racing functions

Usage

## S3 method for class 'tune_race'
collect_predictions(
x,
summarize = FALSE,
parameters = NULL,
all_configs = FALSE,
...

)

## S3 method for class 'tune_race'
collect_metrics(x, summarize = TRUE, all_configs = FALSE, ...)

Arguments

x The results of tune_grid(), tune_bayes(), fit_resamples(), or last_fit().
For collect_predictions(), the control option save_pred = TRUE should have
been used.

summarize A logical; should metrics be summarized over resamples (TRUE) or return the
values for each individual resample. Note that, if x is created by last_fit(),
summarize has no effect. For the other object types, the method of summarizing
predictions is detailed below.

parameters An optional tibble of tuning parameter values that can be used to filter the pre-
dicted values before processing. This tibble should only have columns for each
tuning parameter identifier (e.g. "my_param" if tune("my_param") was used).

all_configs A logical: should we return the complete set of model configurations or just
those that made it to the end of the race (the default).

... Not currently used.



control_race 3

Details

For collect_metrics() and collect_predictions(), when unsummarized, there are columns
for each tuning parameter (using the id from tune(), if any). collect_metrics() also has
columns .metric, and .estimator. When the results are summarized, there are columns for mean,
n, and std_err. When not summarized, the additional columns for the resampling identifier(s) and
.estimate.

For collect_predictions(), there are additional columns for the resampling identifier(s), columns
for the predicted values (e.g., .pred, .pred_class, etc.), and a column for the outcome(s) using
the original column name(s) in the data.

collect_predictions() can summarize the various results over replicate out-of-sample predic-
tions. For example, when using the bootstrap, each row in the original training set has multiple
holdout predictions (across assessment sets). To convert these results to a format where every train-
ing set same has a single predicted value, the results are averaged over replicate predictions.

For regression cases, the numeric predictions are simply averaged. For classification models, the
problem is more complex. When class probabilities are used, these are averaged and then re-
normalized to make sure that they add to one. If hard class predictions also exist in the data,
then these are determined from the summarized probability estimates (so that they match). If only
hard class predictions are in the results, then the mode is used to summarize.

For racing results, it is best to only collect model configurations that finished the race (i.e., were
completely resampled). Comparing performance metrics for configurations averaged with different
resamples is likely to lead to inappropriate results.

Value

A tibble. The column names depend on the results and the mode of the model.

control_race Control aspects of the grid search racing process

Description

Control aspects of the grid search racing process

Usage

control_race(
verbose = FALSE,
verbose_elim = FALSE,
allow_par = TRUE,
extract = NULL,
save_pred = FALSE,
burn_in = 3,
num_ties = 10,
alpha = 0.05,
randomize = TRUE,



4 control_race

pkgs = NULL,
save_workflow = FALSE,
event_level = "first",
parallel_over = "everything",
backend_options = NULL

)

Arguments

verbose A logical for logging results (other than warnings and errors, which are always
shown) as they are generated during training in a single R process. When using
most parallel backends, this argument typically will not result in any logging.
If using a dark IDE theme, some logging messages might be hard to see; try
setting the tidymodels.dark option with options(tidymodels.dark = TRUE)
to print lighter colors.

verbose_elim A logical for whether logging of the elimination of tuning parameter combina-
tions should occur.

allow_par A logical to allow parallel processing (if a parallel backend is registered).

extract An optional function with at least one argument (or NULL) that can be used to
retain arbitrary objects from the model fit object, recipe, or other elements of the
workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each
model evaluated.

burn_in An integer for how many resamples should be completed for all grid combina-
tions before parameter filtering begins.

num_ties An integer for when tie-breaking should occur. If there are two final parameter
combinations being evaluated, num_ties specified how many more resampling
iterations should be evaluated. After num_ties more iterations, the parameter
combination with the current best results is retained.

alpha The alpha level for a one-sided confidence interval for each parameter combina-
tion.

randomize Should the resamples be evaluated in a random order? By default, the resamples
are evaluated in a random order so the random number seed should be control
prior to calling this method (to be reproducible). For repeated cross-validation
the randomization occurs within each repeat.

pkgs An optional character string of R package names that should be loaded (by
namespace) during parallel processing.

save_workflow A logical for whether the workflow should be appended to the output as an
attribute.

event_level A single string containing either "first" or "second". This argument is passed
on to yardstick metric functions when any type of class prediction is made, and
specifies which level of the outcome is considered the "event".

parallel_over A single string containing either "resamples" or "everything" describing how
to use parallel processing. Alternatively, NULL is allowed, which chooses be-
tween "resamples" and "everything" automatically.



control_sim_anneal 5

If "resamples", then tuning will be performed in parallel over resamples alone.
Within each resample, the preprocessor (i.e. recipe or formula) is processed
once, and is then reused across all models that need to be fit.
If "everything", then tuning will be performed in parallel at two levels. An
outer parallel loop will iterate over resamples. Additionally, an inner parallel
loop will iterate over all unique combinations of preprocessor and model tuning
parameters for that specific resample. This will result in the preprocessor being
re-processed multiple times, but can be faster if that processing is extremely fast.
If NULL, chooses "resamples" if there are more than one resample, otherwise
chooses "everything" to attempt to maximize core utilization.
Note that switching between parallel_over strategies is not guaranteed to use
the same random number generation schemes. However, re-tuning a model us-
ing the same parallel_over strategy is guaranteed to be reproducible between
runs.

backend_options

An object of class "tune_backend_options" as created by tune::new_backend_options(),
used to pass arguments to specific tuning backend. Defaults to NULL for default
backend options.

Value

An object of class control_race that echos the argument values.

Examples

control_race()

control_sim_anneal Control aspects of the simulated annealing search process

Description

Control aspects of the simulated annealing search process

Usage

control_sim_anneal(
verbose = FALSE,
verbose_iter = TRUE,
no_improve = Inf,
restart = 8L,
radius = c(0.05, 0.15),
flip = 3/4,
cooling_coef = 0.02,
extract = NULL,
save_pred = FALSE,
time_limit = NA,



6 control_sim_anneal

pkgs = NULL,
save_workflow = FALSE,
save_history = FALSE,
event_level = "first",
parallel_over = NULL,
allow_par = TRUE,
backend_options = NULL

)

Arguments

verbose A logical for logging results (other than warnings and errors, which are always
shown) as they are generated during training in a single R process. When using
most parallel backends, this argument typically will not result in any logging.
If using a dark IDE theme, some logging messages might be hard to see; try
setting the tidymodels.dark option with options(tidymodels.dark = TRUE)
to print lighter colors.

verbose_iter A logical for logging results of the search process. Defaults to FALSE. If us-
ing a dark IDE theme, some logging messages might be hard to see; try set-
ting the tidymodels.dark option with options(tidymodels.dark = TRUE) to
print lighter colors.

no_improve The integer cutoff for the number of iterations without better results.

restart The number of iterations with no improvement before new tuning parameter
candidates are generated from the last, overall best conditions.

radius Two real numbers on (0, 1) describing what a value "in the neighborhood" of
the current result should be. If all numeric parameters were scaled to be on the
[0, 1] scale, these values set the min. and max. of a radius of a circle used to
generate new numeric parameter values.

flip A real number between [0, 1] for the probability of changing any non-numeric
parameter values at each iteration.

cooling_coef A real, positive number to influence the cooling schedule. Larger values de-
crease the probability of accepting a sub-optimal parameter setting.

extract An optional function with at least one argument (or NULL) that can be used to
retain arbitrary objects from the model fit object, recipe, or other elements of the
workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each
model evaluated.

time_limit A number for the minimum number of minutes (elapsed) that the function should
execute. The elapsed time is evaluated at internal checkpoints and, if over
time, the results at that time are returned (with a warning). This means that
the time_limit is not an exact limit, but a minimum time limit.

pkgs An optional character string of R package names that should be loaded (by
namespace) during parallel processing.

save_workflow A logical for whether the workflow should be appended to the output as an
attribute.



plot_race 7

save_history A logical to save the iteration details of the search. These are saved to tempdir()
named sa_history.RData. These results are deleted when the R session ends.
This option is only useful for teaching purposes.

event_level A single string containing either "first" or "second". This argument is passed
on to yardstick metric functions when any type of class prediction is made, and
specifies which level of the outcome is considered the "event".

parallel_over A single string containing either "resamples" or "everything" describing how
to use parallel processing. Alternatively, NULL is allowed, which chooses be-
tween "resamples" and "everything" automatically.
If "resamples", then tuning will be performed in parallel over resamples alone.
Within each resample, the preprocessor (i.e. recipe or formula) is processed
once, and is then reused across all models that need to be fit.
If "everything", then tuning will be performed in parallel at two levels. An
outer parallel loop will iterate over resamples. Additionally, an inner parallel
loop will iterate over all unique combinations of preprocessor and model tuning
parameters for that specific resample. This will result in the preprocessor being
re-processed multiple times, but can be faster if that processing is extremely fast.
If NULL, chooses "resamples" if there are more than one resample, otherwise
chooses "everything" to attempt to maximize core utilization.
Note that switching between parallel_over strategies is not guaranteed to use
the same random number generation schemes. However, re-tuning a model us-
ing the same parallel_over strategy is guaranteed to be reproducible between
runs.

allow_par A logical to allow parallel processing (if a parallel backend is registered).
backend_options

An object of class "tune_backend_options" as created by tune::new_backend_options(),
used to pass arguments to specific tuning backend. Defaults to NULL for default
backend options.

Value

An object of class control_sim_anneal that echos the argument values.

Examples

control_sim_anneal()

plot_race Plot racing results

Description

Plot the model results over stages of the racing results. A line is given for each submodel that was
tested.



8 show_best.tune_race

Usage

plot_race(x)

Arguments

x A object with class tune_results

Value

A ggplot object.

show_best.tune_race Investigate best tuning parameters

Description

show_best() displays the top sub-models and their performance estimates.

Usage

## S3 method for class 'tune_race'
show_best(x, metric = NULL, n = 5, ...)

Arguments

x The results of tune_grid() or tune_bayes().

metric A character value for the metric that will be used to sort the models. (See https:
//yardstick.tidymodels.org/articles/metric-types.html for more de-
tails). Not required if a single metric exists in x. If there are multiple metric and
none are given, the first in the metric set is used (and a warning is issued).

n An integer for the maximum number of top results/rows to return.

... For select_by_one_std_err() and select_by_pct_loss(), this argument is
passed directly to dplyr::arrange() so that the user can sort the models from
most simple to most complex. See the examples below. At least one term is
required for these two functions.

Details

For racing results (from the finetune package), it is best to only report configurations that finished
the race (i.e., were completely resampled). Comparing performance metrics for configurations
averaged with different resamples is likely to lead to inappropriate results.

https://yardstick.tidymodels.org/articles/metric-types.html
https://yardstick.tidymodels.org/articles/metric-types.html


tune_race_anova 9

tune_race_anova Efficient grid search via racing with ANOVA models

Description

tune_race_anova() computes a set of performance metrics (e.g. accuracy or RMSE) for a pre-
defined set of tuning parameters that correspond to a model or recipe across one or more resamples
of the data. After an initial number of resamples have been evaluated, the process eliminates tuning
parameter combinations that are unlikely to be the best results using a repeated measure ANOVA
model.

Usage

tune_race_anova(object, ...)

## S3 method for class 'model_spec'
tune_race_anova(
object,
preprocessor,
resamples,
...,
param_info = NULL,
grid = 10,
metrics = NULL,
control = control_race()

)

## S3 method for class 'workflow'
tune_race_anova(
object,
resamples,
...,
param_info = NULL,
grid = 10,
metrics = NULL,
control = control_race()

)

Arguments

object A parsnip model specification or a workflows::workflow().

... Not currently used.

preprocessor A traditional model formula or a recipe created using recipes::recipe().
This is only required when object is not a workflow.

resamples An rset() object that has multiple resamples (i.e., is not a validation set).



10 tune_race_anova

param_info A dials::parameters() object or NULL. If none is given, a parameters set
is derived from other arguments. Passing this argument can be useful when
parameter ranges need to be customized.

grid A data frame of tuning combinations or a positive integer. The data frame should
have columns for each parameter being tuned and rows for tuning parameter
candidates. An integer denotes the number of candidate parameter sets to be
created automatically.

metrics A yardstick::metric_set() or NULL.

control An object used to modify the tuning process. See control_race() for more
details.

Details

The technical details of this method are described in Kuhn (2014).

Racing methods are efficient approaches to grid search. Initially, the function evaluates all tuning
parameters on a small initial set of resamples. The burn_in argument of control_race() sets the
number of initial resamples.

The performance statistics from these resamples are analyzed to determine which tuning parameters
are not statistically different from the current best setting. If a parameter is statistically different, it
is excluded from further resampling.

The next resample is used with the remaining parameter combinations and the statistical analysis is
updated. More candidate parameters may be excluded with each new resample that is processed.

This function determines statistical significance using a repeated measures ANOVA model where
the performance statistic (e.g., RMSE, accuracy, etc.) is the outcome data and the random effect is
due to resamples. The control_race() function contains are parameter for the significance cutoff
applied to the ANOVA results as well as other relevant arguments.

There is benefit to using racing methods in conjunction with parallel processing. The following
section shows a benchmark of results for one dataset and model.

Benchmarking results:
To demonstrate, we use a SVM model with the kernlab package.

library(kernlab)
library(tidymodels)
library(finetune)
library(doParallel)

## -----------------------------------------------------------------------------

data(cells, package = "modeldata")
cells <- cells %>% select(-case)

## -----------------------------------------------------------------------------

set.seed(6376)
rs <- bootstraps(cells, times = 25)



tune_race_anova 11

We’ll only tune the model parameters (i.e., not recipe tuning):

## -----------------------------------------------------------------------------

svm_spec <-
svm_rbf(cost = tune(), rbf_sigma = tune()) %>%
set_engine("kernlab") %>%
set_mode("classification")

svm_rec <-
recipe(class ~ ., data = cells) %>%
step_YeoJohnson(all_predictors()) %>%
step_normalize(all_predictors())

svm_wflow <-
workflow() %>%
add_model(svm_spec) %>%
add_recipe(svm_rec)

set.seed(1)
svm_grid <-
svm_spec %>%
parameters() %>%
grid_latin_hypercube(size = 25)

We’ll get the times for grid search and ANOVA racing with and without parallel processing:

## -----------------------------------------------------------------------------
## Regular grid search

system.time({
set.seed(2)
svm_wflow %>% tune_grid(resamples = rs, grid = svm_grid)

})

## user system elapsed
## 741.660 19.654 761.357

## -----------------------------------------------------------------------------
## With racing

system.time({
set.seed(2)
svm_wflow %>% tune_race_anova(resamples = rs, grid = svm_grid)

})

## user system elapsed
## 133.143 3.675 136.822

Speed-up of 5.56-fold for racing.



12 tune_race_anova

## -----------------------------------------------------------------------------
## Parallel processing setup

cores <- parallel::detectCores(logical = FALSE)
cores

## [1] 10

cl <- makePSOCKcluster(cores)
registerDoParallel(cl)

## -----------------------------------------------------------------------------
## Parallel grid search

system.time({
set.seed(2)
svm_wflow %>% tune_grid(resamples = rs, grid = svm_grid)

})

## user system elapsed
## 1.112 0.190 126.650

Parallel processing with grid search was 6.01-fold faster than sequential grid search.

## -----------------------------------------------------------------------------
## Parallel racing

system.time({
set.seed(2)
svm_wflow %>% tune_race_anova(resamples = rs, grid = svm_grid)

})

## user system elapsed
## 1.908 0.261 21.442

Parallel processing with racing was 35.51-fold faster than sequential grid search.
There is a compounding effect of racing and parallel processing but its magnitude depends on the
type of model, number of resamples, number of tuning parameters, and so on.

Value

An object with primary class tune_race in the same standard format as objects produced by
tune::tune_grid().

References

Kuhn, M 2014. "Futility Analysis in the Cross-Validation of Machine Learning Models." https:
//arxiv.org/abs/1405.6974.

See Also

tune::tune_grid(), control_race(), tune_race_win_loss()

https://arxiv.org/abs/1405.6974
https://arxiv.org/abs/1405.6974


tune_race_win_loss 13

Examples

library(parsnip)
library(rsample)
library(dials)

## -----------------------------------------------------------------------------

if (rlang::is_installed(c("discrim", "lme4", "modeldata"))) {
library(discrim)
data(two_class_dat, package = "modeldata")

set.seed(6376)
rs <- bootstraps(two_class_dat, times = 10)

## -----------------------------------------------------------------------------

# optimize an regularized discriminant analysis model
rda_spec <-
discrim_regularized(frac_common_cov = tune(), frac_identity = tune()) %>%
set_engine("klaR")

## -----------------------------------------------------------------------------

ctrl <- control_race(verbose_elim = TRUE)
set.seed(11)
grid_anova <-

rda_spec %>%
tune_race_anova(Class ~ ., resamples = rs, grid = 10, control = ctrl)

# Shows only the fully resampled parameters
show_best(grid_anova, metric = "roc_auc", n = 2)

plot_race(grid_anova)
}

tune_race_win_loss Efficient grid search via racing with win/loss statistics

Description

tune_race_win_loss() computes a set of performance metrics (e.g. accuracy or RMSE) for a
pre-defined set of tuning parameters that correspond to a model or recipe across one or more resam-
ples of the data. After an initial number of resamples have been evaluated, the process eliminates
tuning parameter combinations that are unlikely to be the best results using a statistical model. For
each pairwise combinations of tuning parameters, win/loss statistics are calculated and a logistic
regression model is used to measure how likely each combination is to win overall.



14 tune_race_win_loss

Usage

tune_race_win_loss(object, ...)

## S3 method for class 'model_spec'
tune_race_win_loss(
object,
preprocessor,
resamples,
...,
param_info = NULL,
grid = 10,
metrics = NULL,
control = control_race()

)

## S3 method for class 'workflow'
tune_race_win_loss(
object,
resamples,
...,
param_info = NULL,
grid = 10,
metrics = NULL,
control = control_race()

)

Arguments

object A parsnip model specification or a workflows::workflow().
... Not currently used. The technical details of this method are described in Kuhn

(2014).
Racing methods are efficient approaches to grid search. Initially, the function
evaluates all tuning parameters on a small initial set of resamples. The burn_in
argument of control_race() sets the number of initial resamples.
The performance statistics from the current set of resamples are converted to
win/loss/tie results. For example, for two parameters (j and k) in a classification
model that have each been resampled three times:

| area under the ROC curve |
-----------------------------

resample | parameter j | parameter k | winner
---------------------------------------------

1 | 0.81 | 0.92 | k
2 | 0.95 | 0.94 | j
3 | 0.79 | 0.81 | k

---------------------------------------------

After the third resample, parameter k has a 2:1 win/loss ratio versus j. Pa-
rameters with equal results are treated as a half-win for each setting. These



tune_race_win_loss 15

statistics are determined for all pairwise combinations of the parameters and a
Bradley-Terry model is used to model these win/loss/tie statistics. This model
can compute the ability of a parameter combination to win overall. A confidence
interval for the winning ability is computed and any settings whose interval in-
cludes zero are retained for future resamples (since it is not statistically different
form the best results).
The next resample is used with the remaining parameter combinations and the
statistical analysis is updated. More candidate parameters may be excluded with
each new resample that is processed.
The control_race() function contains are parameter for the significance cutoff
applied to the Bradley-Terry model results as well as other relevant arguments.

preprocessor A traditional model formula or a recipe created using recipes::recipe().

resamples An rset() object that has multiple resamples (i.e., is not a validation set).

param_info A dials::parameters() object or NULL. If none is given, a parameters set
is derived from other arguments. Passing this argument can be useful when
parameter ranges need to be customized.

grid A data frame of tuning combinations or a positive integer. The data frame should
have columns for each parameter being tuned and rows for tuning parameter
candidates. An integer denotes the number of candidate parameter sets to be
created automatically.

metrics A yardstick::metric_set() or NULL.

control An object used to modify the tuning process.

Value

An object with primary class tune_race in the same standard format as objects produced by
tune::tune_grid().

References

Kuhn, M 2014. "Futility Analysis in the Cross-Validation of Machine Learning Models." https:
//arxiv.org/abs/1405.6974.

See Also

tune::tune_grid(), control_race(), tune_race_anova()

Examples

library(parsnip)
library(rsample)
library(dials)

## -----------------------------------------------------------------------------

if (rlang::is_installed(c("discrim", "modeldata"))) {
library(discrim)

https://arxiv.org/abs/1405.6974
https://arxiv.org/abs/1405.6974


16 tune_sim_anneal

data(two_class_dat, package = "modeldata")

set.seed(6376)
rs <- bootstraps(two_class_dat, times = 10)

## -----------------------------------------------------------------------------

# optimize an regularized discriminant analysis model
rda_spec <-

discrim_regularized(frac_common_cov = tune(), frac_identity = tune()) %>%
set_engine("klaR")

## -----------------------------------------------------------------------------

ctrl <- control_race(verbose_elim = TRUE)

set.seed(11)
grid_wl <-

rda_spec %>%
tune_race_win_loss(Class ~ ., resamples = rs, grid = 10, control = ctrl)

# Shows only the fully resampled parameters
show_best(grid_wl, metric = "roc_auc")

plot_race(grid_wl)
}

tune_sim_anneal Optimization of model parameters via simulated annealing

Description

tune_sim_anneal() uses an iterative search procedure to generate new candidate tuning parameter
combinations based on previous results. It uses the generalized simulated annealing method of
Bohachevsky, Johnson, and Stein (1986).

Usage

tune_sim_anneal(object, ...)

## S3 method for class 'model_spec'
tune_sim_anneal(
object,
preprocessor,
resamples,
...,
iter = 10,
param_info = NULL,



tune_sim_anneal 17

metrics = NULL,
initial = 1,
control = control_sim_anneal()

)

## S3 method for class 'workflow'
tune_sim_anneal(
object,
resamples,
...,
iter = 10,
param_info = NULL,
metrics = NULL,
initial = 1,
control = control_sim_anneal()

)

Arguments

object A parsnip model specification or a workflows::workflow().

... Not currently used.

preprocessor A traditional model formula or a recipe created using recipes::recipe().
This is only required when object is not a workflow.

resamples An rset() object.

iter The maximum number of search iterations.

param_info A dials::parameters() object or NULL. If none is given, a parameter set is
derived from other arguments. Passing this argument can be useful when pa-
rameter ranges need to be customized.

metrics A yardstick::metric_set() object containing information on how models
will be evaluated for performance. The first metric in metrics is the one that
will be optimized.

initial An initial set of results in a tidy format (as would the result of tune_grid(),
tune_bayes(), tune_race_win_loss(), or tune_race_anova()) or a posi-
tive integer. If the initial object was a sequential search method, the simulated
annealing iterations start after the last iteration of the initial results.

control The results of control_sim_anneal().

Details

Simulated annealing is a global optimization method. For model tuning, it can be used to iteratively
search the parameter space for optimal tuning parameter combinations. At each iteration, a new
parameter combination is created by perturbing the current parameters in some small way so that
they are within a small neighborhood. This new parameter combination is used to fit a model and
that model’s performance is measured using resampling (or a simple validation set).

If the new settings have better results than the current settings, they are accepted and the process
continues.



18 tune_sim_anneal

If the new settings has worse performance, a probability threshold is computed for accepting these
sub-optimal values. The probability is a function of how sub-optimal the results are as well as how
many iterations have elapsed. This is referred to as the "cooling schedule" for the algorithm. If
the sub-optimal results are accepted, the next iterations settings are based on these inferior results.
Otherwise, new parameter values are generated from the previous iteration’s settings.

This process continues for a pre-defined number of iterations and the overall best settings are recom-
mended for use. The control_sim_anneal() function can specify the number of iterations without
improvement for early stopping. Also, that function can be used to specify a restart threshold; if no
globally best results have not be discovered within a certain number if iterations, the process can
restart using the last known settings that globally best.

Creating new settings:
For each numeric parameter, the range of possible values is known as well as any transformations.
The current values are transformed and scaled to have values between zero and one (based on the
possible range of values). A candidate set of values that are on a sphere with random radii between
rmin and rmax are generated. Infeasible values are removed and one value is chosen at random.
This value is back transformed to the original units and scale and are used as the new settings.
The argument radius of control_sim_anneal() controls the range neighborhood sizes.
For categorical and integer parameters, each is changes with a pre-defined probability. The flip
argument of control_sim_anneal() can be used to specify this probability. For integer parame-
ters, a nearby integer value is used.
Simulated annealing search may not be the preferred method when many of the parameters are
non-numeric or integers with few unique values. In these cases, it is likely that the same candidate
set may be tested more than once.

Cooling schedule:
To determine the probability of accepting a new value, the percent difference in performance is
calculated. If the performance metric is to be maximized, this would be d = (new-old)/old*100.
The probability is calculated as p = exp(d * coef * iter) were coef is a user-defined constant
that can be used to increase or decrease the probabilities.
The cooling_coef of control_sim_anneal() can be used for this purpose.

Termination criterion:
The restart counter is reset when a new global best results is found.
The termination counter resets when a new global best is located or when a suboptimal result is
improved.

Parallelism:
The tune and finetune packages currently parallelize over resamples. Specifying a parallel
back-end will improve the generation of the initial set of sub-models (if any). Each iteration of
the search are also run in parallel if a parallel backend is registered.

Value

A tibble of results that mirror those generated by tune_grid(). However, these results contain
an .iter column and replicate the rset object multiple times over iterations (at limited additional
memory costs).



tune_sim_anneal 19

References

Bohachevsky, Johnson, and Stein (1986) "Generalized Simulated Annealing for Function Optimiza-
tion", Technometrics, 28:3, 209-217

See Also

tune::tune_grid(), control_sim_anneal(), yardstick::metric_set()

Examples

library(finetune)
library(rpart)
library(dplyr)
library(tune)
library(rsample)
library(parsnip)
library(workflows)
library(ggplot2)

## -----------------------------------------------------------------------------
if (rlang::is_installed("modeldata")) {

data(two_class_dat, package = "modeldata")

set.seed(5046)
bt <- bootstraps(two_class_dat, times = 5)

## -----------------------------------------------------------------------------

cart_mod <-
decision_tree(cost_complexity = tune(), min_n = tune()) %>%
set_engine("rpart") %>%
set_mode("classification")

## -----------------------------------------------------------------------------

# For reproducibility, set the seed before running.
set.seed(10)
sa_search <-

cart_mod %>%
tune_sim_anneal(Class ~ ., resamples = bt, iter = 10)

autoplot(sa_search, metric = "roc_auc", type = "parameters") +
theme_bw()

## -----------------------------------------------------------------------------
# More iterations. `initial` can be any other tune_* object or an integer
# (for new values).

set.seed(11)
more_search <-

cart_mod %>%



20 tune_sim_anneal

tune_sim_anneal(Class ~ ., resamples = bt, iter = 10, initial = sa_search)

autoplot(more_search, metric = "roc_auc", type = "performance") +
theme_bw()

}



Index

collect_metrics(), 3
collect_metrics.tune_race

(collect_predictions), 2
collect_predictions, 2
collect_predictions(), 2, 3
control_race, 3
control_race(), 10, 12, 15
control_sim_anneal, 5
control_sim_anneal(), 18, 19

dials::parameters(), 10, 15, 17
dplyr::arrange(), 8

fit_resamples(), 2

last_fit(), 2

plot_race, 7

recipes::recipe(), 9, 15, 17

select_by_one_std_err(), 8
select_by_pct_loss(), 8
show_best(), 8
show_best.tune_race, 8

tune(), 3
tune::tune_grid(), 12, 15, 19
tune_bayes(), 2, 8, 17
tune_grid(), 2, 8, 17, 18
tune_race_anova, 9
tune_race_anova(), 9, 15, 17
tune_race_win_loss, 13
tune_race_win_loss(), 12, 13, 17
tune_sim_anneal, 16
tune_sim_anneal(), 16

workflows::workflow(), 9, 14, 17

yardstick::metric_set(), 10, 15, 17, 19

21


	collect_predictions
	control_race
	control_sim_anneal
	plot_race
	show_best.tune_race
	tune_race_anova
	tune_race_win_loss
	tune_sim_anneal
	Index

