Package 'ftsa'

October 13, 2022

Type Package

Title Functional Time Series Analysis

Version 6.1

Date 2021-11-2

Depends R (>= 3.5.0), forecast, rainbow, sde

Suggests fds, R2jags, meboot

Imports colorspace, MASS, pcaPP, fda, pdfCluster, ecp, strucchange, e1071, psych, fGarch, KernSmooth, vars, boot, fdapace, LaplacesDemon, evgam, ROOPSD, glue

LazyLoad yes

LazyData yes

ByteCompile TRUE

Maintainer Han Lin Shang <hanlin.shang@mq.edu.au>

Description

Functions for visualizing, modeling, forecasting and hypothesis testing of functional time series.

License GPL-3

NeedsCompilation no

Author Rob Hyndman [aut] (<https://orcid.org/0000-0002-2140-5352>), Han Lin Shang [aut, cre, cph] (<https://orcid.org/0000-0003-1769-6430>)

Repository CRAN

Date/Publication 2021-11-02 06:00:14 UTC

R topics documented:

tsa-package	3
entre	5
CoDa_BayesNW	6
CoDa_FPCA	7
liff.fts	9
DJI_return	9

dmfpca	. 10
dynamic_FLR	. 12
dynupdate	. 14
error	. 16
ER_GR	. 18
extract	. 19
facf	. 20
farforecast	. 21
fbootstrap	. 22
forecast.ftsm	. 24
forecast.hdfpca	. 26
forecastfplsr	. 28
fplsr	
ftsm	
ftsmiterativeforecasts	
ftsmweightselect	
•	
GAEVforecast	
hdfpca	
hd_data	
Horta_Ziegelmann_FPCA	
is.fts	
isfe.fts	
long_run_covariance_estimation	
LQDT_FPCA	
MAF_multivariate	
mean.fts	
median.fts	
MFDM	. 53
MFPCA	. 55
mftsc	. 56
pcscorebootstrapdata	. 58
plot.fm	. 60
plot.fmres	. 61
plot.ftsf	. 62
plot.ftsm	. 64
plotfplsr	. 65
pm_10_GR	
quantile	. 67
quantile.fts	. 68
residuals.fm	. 68
sd	. 69
sd.fts	. 70
sim ex cluster	. 72
skew t fun	. 73
stop_time_detect	. 73
stop_time_sim_data	. 74
	. 75
summary.fm	
	. 70

ftsa-package

Index

var																																											
var.fts	• •	• •	•	•	•	•	•	·	•	•	•	·	•	•	•	•	•	·	·	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	79
																																											81

3

ftsa-package

Functional Time Series Analysis

Description

This package presents descriptive statistics of functional data; implements principal component regression and partial least squares regression to provide point and distributional forecasts for functional data; utilizes functional linear regression, ordinary least squares, penalized least squares, ridge regression, and moving block approaches to dynamically update point and distributional forecasts when partial data points in the most recent curve are observed; performs stationarity test for a functional time series; estimates a long-run covariance function by kernel sandwich estimator.

Author(s)

Rob J Hyndman and Han Lin Shang

Maintainer: Han Lin Shang < hanlin.shang@anu.edu.au>

References

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series (with discussion)", *Journal of the Korean Statistical Society*, **38**(3), 199-221.

R. J. Hyndman and H. L. Shang (2010) "Rainbow plots, bagplots, and boxplots for functional data", *Journal of Computational and Graphical Statistics*, **19**(1), 29-45.

H. L. Shang and R. J. Hyndman (2011) "Nonparametric time series forecasting with dynamic updating", *Mathematics and Computers in Simulation*, **81**(7), 1310-1324.

H. L. Shang (2011) "rainbow: an R package for visualizing functional time series, *The R Journal*, **3**(2), 54-59.

H. L. Shang (2013) "Functional time series approach for forecasting very short-term electricity demand", *Journal of Applied Statistics*, **40**(1), 152-168.

H. L. Shang (2013) "ftsa: An R package for analyzing functional time series", *The R Journal*, **5**(1), 64-72.

H. L. Shang (2014) "A survey of functional principal component analysis", *Advances in Statistical Analysis*, **98**(2), 121-142.

H. L. Shang (2014) "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density", *Journal of Nonparametric Statistics*, **26**(3), 599-615.

H. L. Shang (2014) "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density", *Computational Statistics*, **29**(3-4), 829-848.

H. L. Shang (2015) "Resampling techniques for estimating the distribution of descriptive statistics of functional data", *Communications in Statistics - Simulation and Computation*, **44**(3), 614-635.

H. L. Shang (2016) "Mortality and life expectancy forecasting for a group of populations in developed countries: A robust multilevel functional data method", in C. Agostinelli, A. Basu, P. Filzmoser, D. Mukherjee (ed.), Recent Advances in Robust Statistics: Theory and Applications, Springer, India, pp. 169-184.

H. L. Shang (2016) "Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method", *Annals of Applied Statistics*, **10**(3), 1639-1672.

H. L. Shang (2016) "A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data", *Journal of Multivariate Analysis*, **146**, 95-104.

H. L. Shang (2017) "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration", *Econometrics and Statistics*, **1**, 184-200.

H. L. Shang (2017) "Forecasting Intraday S&P 500 Index Returns: A Functional Time Series Approach", *Journal of Forecasting*, **36**(7), 741-755.

H. L. Shang and R. J. Hyndman (2017) "Grouped functional time series forecasting: An application to age-specific mortality rates", *Journal of Computational and Graphical Statistics*, **26**(2), 330-343.

G. Rice and H. L. Shang (2017) "A plug-in bandwidth selection procedure for long-run covariance estimation with stationary functional time series", *Journal of Time Series Analysis*, **38**(4), 591-609.

P. Reiss, J. Goldsmith, H. L. Shang and R. T. Ogden (2017) "Methods for scalar-on-function regression", *International Statistical Review*, **85**(2), 228-249.

P. Kokoszka, G. Rice and H. L. Shang (2017) "Inference for the autocovariance of a functional time series under conditional heteroscedasticity", *Journal of Multivariate Analysis*, **162**, 32-50.

Y. Gao, H. L. Shang and Y. Yang (2017) "High-dimensional functional time series forecasting", in G. Aneiros, E. Bongiorno, R. Cao and P. Vieu (ed.), Functional Statistics and Related Fields, Springer, Cham, pp. 131-136.

Y. Gao and H. L. Shang (2017) "Multivariate functional time series forecasting: An application to age-specific mortality rates", *Risks*, **5**(2), Article 21.

H. L. Shang (2018) "Visualizing rate of change: An application to age-specific fertility rates", *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, **182**(1), 249-262.

H. L. Shang (2018) "Bootstrap methods for stationary functional time series", *Statistics and Computing*, **28**(1), 1-10.

Y. Gao, H. L. Shang and Y. Yang (2019) "High-dimensional functional time series forecasting: An application to age-specific mortality rates", *Journal of Multivariate Analysis*, **170**, 232-243.

D. Li, P. M. Robinson and H. L. Shang (2019) "Long-range dependent curve time series", *Journal of the American Statistical Association: Theory and Methods*, forthcoming.

H. L. Shang, H. Booth and R. J. Hyndman (2011) "Point and interval forecasts of mortality rates and life expectancy: a comparison of ten principal component methods, *Demographic Research*, **25**(5), 173-214.

H. L. Shang (2012) "Point and interval forecasts of age-specific fertility rates: a comparison of functional principal component methods", *Journal of Population Research*, **29**(3), 249-267.

centre

H. L. Shang (2012) "Point and interval forecasts of age-specific life expectancies: a model averaging", *Demographic Research*, **27**, 593-644.

H. L. Shang, A. Wisniowski, J. Bijak, P. W. F. Smith and J. Raymer (2014) "Bayesian functional models for population forecasting", in M. Marsili and G. Capacci (eds), Proceedings of the Sixth Eurostat/UNECE Work Session on Demographic Projections, Istituto nazionale di statistica, Rome, pp. 313-325.

H. L. Shang (2015) "Selection of the optimal Box-Cox transformation parameter for modelling and forecasting age-specific fertility", *Journal of Population Research*, **32**(1), 69-79.

H. L. Shang (2015) "Forecast accuracy comparison of age-specific mortality and life expectancy: Statistical tests of the results", *Population Studies*, 69(3), 317-335.

H. L. Shang, P. W. F. Smith, J. Bijak, A. Wisniowski (2016) "A multilevel functional data method for forecasting population, with an application to the United Kingdom, *International Journal of Forecasting*, 32(3), 629-649.

H. L. Shang (2017) "Reconciling forecasts of infant mortality rates at national and sub-national levels: Grouped time-series method", *Population Research and Policy Review*, 36(1), 55-84.

H. L. Shang and S. Haberman (2017) "Grouped multivariate and functional time series forecasting: An application to annuity pricing", Presented at the Living to 100 Symposium, Orlando Florida, January 4-6, 2017.

H. L. Shang and S. Haberman (2017) "Grouped multivariate and functional time series forecasting: An application to annuity pricing", *Insurance: Mathematics and Economics*, **75**, 166-179.

H. L. Shang and S. Haberman (2018) "Model confidence sets and forecast combination: An application to age-specific mortality", *Genus - Journal of Population Sciences*, forthcoming.

F. Kearney and H. L. Shang (2019) "Uncovering predictability in the evolution of the WTI oil futures curve", *European Financial Management*, forthcoming.

centre	Mean function, variance function, median function, trim mean func-
	tion of functional data

Description

Mean function, variance function, median function, trim mean function of functional data

Usage

centre(x, type)

Arguments

х	An object of class matrix.
type	Mean, variance, median or trim mean?

Value

Return mean function, variance function, median function or trim mean function.

Author(s)

Han Lin Shang

See Also

pcscorebootstrapdata, mean.fts, median.fts, sd.fts, var.fts

Examples

```
# mean function is often removed in the functional principal component analysis.
# trimmed mean function is sometimes employed for robustness in the presence of outliers.
# In calculating trimmed mean function, several functional depth measures were employed.
centre(x = ElNino_ERSST_region_1and2$y, type = "mean")
centre(x = ElNino_ERSST_region_1and2$y, type = "var")
centre(x = ElNino_ERSST_region_1and2$y, type = "median")
centre(x = ElNino_ERSST_region_1and2$y, type = "median")
```

CoDa_BayesNW	Compositional data analytic approach and nonparametric function-
	on-function regression for forecasting density

Description

Log-ratio transformation from constrained space to unconstrained space, where a standard nonparametric function-on-function regression can be applied.

Usage

```
CoDa_BayesNW(data, normalization, m = 5001,
band_choice = c("Silverman", "DPI"),
kernel = c("gaussian", "epanechnikov"))
```

Arguments

data	Densities or raw data matrix of dimension N by p, where N denotes sample size and p denotes dimensionality
normalization	If a standardization should be performed?
m	Grid points within the data range
band_choice	Selection of optimal bandwidth
kernel	Type of kernel function

CoDa_FPCA

Details

1) Compute the geometric mean function 2) Apply the centered log-ratio transformation 3) Apply a nonparametric function-on-function regression to the transformed data 4) Transform forecasts back to the compositional data 5) Add back the geometric means, to obtain the forecasts of the density function

Value

Out-of-sample density forecasts

Author(s)

Han Lin Shang

References

Egozcue, J. J., Diaz-Barrero, J. L. and Pawlowsky-Glahn, V. (2006) 'Hilbert space of probability density functions based on Aitchison geometry', *Acta Mathematica Sinica*, **22**, 1175-1182.

Ferraty, F. and Shang, H. L. (2021) 'Nonparametric density-on-density regression', working paper.

See Also

CoDa_FPCA

Examples

```
## Not run:
CoDa_BayesNW(data = DJI_return, normalization = "TRUE",
band_choice = "DPI", kernel = "epanechnikov")
```

End(Not run)

CoDa_FPCA

Compositional data analytic approach and functional principal component analysis for forecasting density

Description

Log-ratio transformation from constrained space to unconstrained space, where a standard functional principal component analysis can be applied.

Usage

```
CoDa_FPCA(data, normalization, h_scale = 1, m = 5001,
band_choice = c("Silverman", "DPI"),
kernel = c("gaussian", "epanechnikov"),
varprop = 0.99, fmethod)
```

Arguments

data	Densities or raw data matrix of dimension n by p, where n denotes sample size and p denotes dimensionality
normalization	If a standardization should be performed?
h_scale	Scaling parameter in the kernel density estimator
m	Grid point within the data range
band_choice	Selection of optimal bandwidth
kernel	Type of kernel functions
varprop	Proportion of variance explained
fmethod	Univariate time series forecasting method

Details

1) Compute the geometric mean function 2) Apply the centered log-ratio transformation 3) Apply FPCA to the transformed data 4) Forecast principal component scores 5) Transform forecasts back to the compositional data 6) Add back the geometric means, to obtain the forecasts of the density function

Value

Out-of-sample forecast densities

Author(s)

Han Lin Shang

References

Boucher, M.-P. B., Canudas-Romo, V., Oeppen, J. and Vaupel, J. W. (2017) 'Coherent forecasts of mortality with compositional data analysis', *Demographic Research*, **37**, 527-566.

Egozcue, J. J., Diaz-Barrero, J. L. and Pawlowsky-Glahn, V. (2006) 'Hilbert space of probability density functions based on Aitchison geometry', *Acta Mathematica Sinica*, **22**, 1175-1182.

See Also

Horta_Ziegelmann_FPCA, LQDT_FPCA, skew_t_fun

Examples

```
## Not run:
CoDa_FPCA(data = DJI_return, normalization = "TRUE", band_choice = "DPI",
kernel = "epanechnikov", varprop = 0.9, fmethod = "ETS")
```

End(Not run)

diff.fts

Description

Computes differences of a fts object at each variable.

Usage

```
## S3 method for class 'fts'
diff(x, lag = 1, differences = 1, ...)
```

Arguments

Х	An object of class fts.
lag	An integer indicating which lag to use.
differences	An integer indicating the order of the difference.
	Other arguments.

Value

An object of class fts.

Author(s)

Rob J Hyndman

Examples

```
# ElNino is an object of sliced functional time series.
# Differencing is sometimes used to achieve stationarity.
diff(x = ElNino_ERSST_region_1and2)
```

DJI_return

Dow Jones Industrial Average (DJIA)

Description

Dow Jones Industrial Average (DJIA) is a stock market index that shows how 30 large publicly owned companies based in the United States have traded during a standard NYSE trading session. We consider monthly cross-sectional returns from April 2004 to December 2017. The data were obtained from the CRSP (Center for Research in Security Prices) database.

Usage

data("DJI_return")

Format

A data matrix

References

Kokoszka, P., Miao, H., Petersen, A. and Shang, H. L. (2019) 'Forecasting of density functions with an application to cross-sectional and intraday returns', *International Journal of Forecasting*, **35**(4), 1304-1317.

Examples

data(DJI_return)

dmfpca

Dynamic multilevel functional principal component analysis

Description

Functional principal component analysis is used to decompose multiple functional time series. This function uses a functional panel data model to reduce dimensions for multiple functional time series.

Usage

dmfpca(y, M = NULL, J = NULL, N = NULL, tstart = 0, tlength = 1)

Arguments

У		A data matrix containing functional responses. Each row contains measure- ments from a function at a set of grid points, and each column contains mea- surements of all functions at a particular grid point
М		Number of fts obejcts
J		Number of functions in each object
Ν		Number of grid points per function
ts	tart	Start point of the grid points
tle	ength	Length of the interval that the functions are evaluated at

Value

K1	Number of components for the common time-trend
K2	Number of components for the residual component
lambda1	A vector containing all common time-trend eigenvalues in non-increasing order
lambda2	A vector containing all residual component eigenvalues in non-increasing order
phi1	A matrix containing all common time-trend eigenfunctions. Each row contains an eigenfunction evaluated at the same set of grid points as the input data. The eigenfunctions are in the same order as the corresponding eigenvalues

dmfpca

phi2	A matrix containing all residual component eigenfunctions. Each row contains an eigenfunction evaluated at the same set of grid points as the input data. The eigenfunctions are in the same order as the corresponding eigenvalues.
scores1	A matrix containing estimated common time-trend principal component scores. Each row corresponding to the common time-trend scores for a particular subject in a cluster. The number of rows is the same as that of the input matrix y. Each column contains the scores for a common time-trend component for all subjects.
scores2	A matrix containing estimated residual component principal component scores. Each row corresponding to the level 2 scores for a particular subject in a cluster. The number of rows is the same as that of the input matrix y. Each column contains the scores for a residual component for all subjects.
mu	A vector containing the overall mean function.
eta	A matrix containing the deviation from overall mean function to country specific mean function. The number of rows is the number of countries.

Author(s)

Chen Tang and Han Lin Shang

References

Rice, G. and Shang, H. L. (2017) "A plug-in bandwidth selection procedure for long-run covariance estimation with stationary functional time series", *Journal of Time Series Analysis*, **38**, 591-609.

Shang, H. L. (2016) "Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method", *The Annals of Applied Statistics*, **10**, 1639-1672.

Di, C.-Z., Crainiceanu, C. M., Caffo, B. S. and Punjabi, N. M. (2009) "Multilevel functional principal component analysis", *The Annals of Applied Statistics*, **3**, 458-488.

See Also

mftsc

Examples

End(Not run)

dynamic_FLR

Description

A functional linear regression is used to address the problem of dynamic updating, when partial data in the most recent curve are observed.

Usage

```
dynamic_FLR(dat, newdata, holdoutdata, order_k_percent = 0.9, order_m_percent = 0.9,
    pcd_method = c("classical", "M"), robust_lambda = 2.33, bootrep = 100,
    pointfore, level = 80)
```

Arguments

dat	An object of class sfts.
newdata	A data vector of newly arrived observations.
holdoutdata	A data vector of holdout sample to evaluate point forecast accuracy.
order_k_percent	t
	Select the number of components that explains at least 90 percent of the total variation.
order_m_percent	
	Select the number of components that explains at least 90 percent of the total variation.
pcd_method	Method to use for principal components decomposition. Possibilities are "M", "rapca" and "classical".
robust_lambda	Tuning parameter in the two-step robust functional principal component analy- sis, when pcdmethod = "M".
bootrep	Number of bootstrap samples.
pointfore	If pointfore = TRUE, point forecasts are produced.
level	Nominal coverage probability.

Details

This function is designed to dynamically update point and interval forecasts, when partial data in the most recent curve are observed.

Value

update_forecast		
	Updated forecasts.	
holdoutdata	Holdout sample.	
err	Forecast errors.	

dynamic_FLR

order_k	Number of principal components in the first block of functions.	
order_m	Number of principal components in the second block of functions.	
update_comb	Bootstrapped forecasts for the dynamically updating time period.	
update_comb_lb_ub		
	By taking corresponding quantiles, obtain lower and upper prediction bounds.	
err_boot	Bootstrapped in-sample forecast error for the dynamically updating time period.	

Author(s)

Han Lin Shang

References

H. Shen and J. Z. Huang (2008) "Interday forecasting and intraday updating of call center arrivals", *Manufacturing and Service Operations Management*, **10**(3), 391-410.

H. Shen (2009) "On modeling and forecasting time series of curves", *Technometrics*, **51**(3), 227-238.

H. L. Shang and R. J. Hyndman (2011) "Nonparametric time series forecasting with dynamic updating", Mathematics and Computers in Simulation, **81**(7), 1310-1324.

J-M. Chiou (2012) "Dynamical functional prediction and classification with application to traffic flow prediction", *Annals of Applied Statistics*, **6**(4), 1588-1614.

H. L. Shang (2013) "Functional time series approach for forecasting very short-term electricity demand", *Journal of Applied Statistics*, **40**(1), 152-168.

H. L. Shang (2015) "Forecasting Intraday S&P 500 Index Returns: A Functional Time Series Approach", *Journal of Forecasting*, **36**(7), 741-755.

H. L. Shang (2017) "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration", *Econometrics and Statistics*, **1**, 184-200.

See Also

dynupdate

Examples

```
dynamic_FLR_point = dynamic_FLR(dat = ElNino_ERSST_region_1and2$y[,1:68],
newdata = ElNino_ERSST_region_1and2$y[1:4,69],
holdoutdata = ElNino_ERSST_region_1and2$y[5:12,69], pointfore = TRUE)
dynamic_FLR_interval = dynamic_FLR(dat = ElNino_ERSST_region_1and2$y[,1:68],
newdata = ElNino_ERSST_region_1and2$y[1:4,69],
```

holdoutdata = ElNino_ERSST_region_1and2\$y[5:12,69], pointfore = FALSE)

```
dynupdate
```

Description

Four methods, namely block moving (BM), ordinary least squares (OLS) regression, ridge regression (RR), penalized least squares (PLS) regression, were proposed to address the problem of dynamic updating, when partial data in the most recent curve are observed.

Usage

```
dynupdate(data, newdata = NULL, holdoutdata, method = c("ts", "block",
 "ols", "pls", "ridge"), fmethod = c("arima", "ar", "ets", "ets.na",
 "rwdrift", "rw"), pcdmethod = c("classical", "M", "rapca"),
 ngrid = max(1000, ncol(data$y)), order = 6,
 robust_lambda = 2.33, lambda = 0.01, value = FALSE,
 interval = FALSE, level = 80,
 pimethod = c("parametric", "nonparametric"), B = 1000)
```

Arguments

data	An object of class sfts.	
newdata	A data vector of newly arrived observations.	
holdoutdata	A data vector of holdout sample to evaluate point forecast accuracy.	
method	Forecasting methods. The latter four can dynamically update point forecasts.	
fmethod	Univariate time series forecasting methods used in method = "ts" or method = "block".	
pcdmethod	Method to use for principal components decomposition. Possibilities are "M", "rapca" and "classical".	
ngrid	Number of grid points to use in calculations. Set to maximum of 1000 and $ncol(data$y)$.	
order	Number of principal components to fit.	
robust_lambda	Tuning parameter in the two-step robust functional principal component analysis, when pcdmethod = "M".	
lambda	Penalty parameter used in method = "pls" or method = "ridge".	
value	When value = TRUE, returns forecasts or when value = FALSE, returns forecast errors.	
interval	When interval = TRUE, produces distributional forecasts.	
level	Nominal coverage probability.	
pimethod	Parametric or nonparametric method to construct prediction intervals.	
В	Number of bootstrap samples.	

dynupdate

Details

This function is designed to dynamically update point and interval forecasts, when partial data in the most recent curve are observed.

If method = "classical", then standard functional principal component decomposition is used, as described by Ramsay and Dalzell (1991).

If method = "rapca", then the robust principal component algorithm of Hubert, Rousseeuw and Verboven (2002) is used.

If method = "M", then the hybrid algorithm of Hyndman and Ullah (2005) is used.

Value

forecasts	An object of class fts containing the dynamic updated point forecasts.
bootsamp	An object of class fts containing the bootstrapped point forecasts, which are updated by the PLS method.
low	An object of class fts containing the lower bound of prediction intervals.
up	An object of class fts containing the upper bound of prediction intervals.

Author(s)

Han Lin Shang

References

J. O. Ramsay and C. J. Dalzell (1991) "Some tools for functional data analysis (with discussion)", *Journal of the Royal Statistical Society: Series B*, **53**(3), 539-572.

M. Hubert and P. J. Rousseeuw and S. Verboven (2002) "A fast robust method for principal components with applications to chemometrics", *Chemometrics and Intelligent Laboratory Systems*, **60**(1-2), 101-111.

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics and Data Analysis*, **51**(10), 4942-4956.

H. Shen and J. Z. Huang (2008) "Interday forecasting and intraday updating of call center arrivals", *Manufacturing and Service Operations Management*, **10**(3), 391-410.

H. Shen (2009) "On modeling and forecasting time series of curves", *Technometrics*, **51**(3), 227-238.

H. L. Shang and R. J. Hyndman (2011) "Nonparametric time series forecasting with dynamic updating", Mathematics and Computers in Simulation, **81**(7), 1310-1324.

H. L. Shang (2013) "Functional time series approach for forecasting very short-term electricity demand", *Journal of Applied Statistics*, **40**(1), 152-168.

H. L. Shang (2017) "Forecasting Intraday S&P 500 Index Returns: A Functional Time Series Approach", *Journal of Forecasting*, **36**(7), 741-755.

H. L. Shang (2017) "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration", *Econometrics and Statistics*, **1**, 184-200.

See Also

ftsm, forecast.ftsm, plot.fm, residuals.fm, summary.fm

Examples

ElNino is an object of sliced functional time series, constructed from a univariate time series. # When we observe some newly arrived information in the most recent time period, this function # allows us to update the point and interval forecasts for the remaining time period. dynupdate(data = ElNino_ERSST_region_1and2, newdata = ElNino_ERSST_region_1and2\$y[1:4,69], holdoutdata = ElNino_ERSST_region_1and2\$y[5:12,57], method = "block", interval = FALSE)

error

Forecast error measure

Description

Computes the forecast error measure.

Usage

```
error(forecast, forecastbench, true, insampletrue, method = c("me", "mpe", "mae",
  "mse", "sse", "rmse", "mdae", "mdse", "mape", "mdape", "smape",
    "smdape", "rmspe", "rmdspe", "mrae", "mdrae", "gmrae",
    "relmae", "relmse", "mase", "mdase", "rmsse"), giveall = FALSE)
```

Arguments

forecast	Out-of-sample forecasted values.
forecastbench	Forecasted values using a benchmark method, such as random walk.
true	Out-of-sample holdout values.
insampletrue	Insample values.
method	Method of forecast error measure.
giveall	If giveal1 = TRUE, all error measures are provided.

Details

Bias measure:

If method = "me", the forecast error measure is mean error.

If method = "mpe", the forecast error measure is mean percentage error.

Forecast accuracy error measure:

If method = "mae", the forecast error measure is mean absolute error.

If method = "mse", the forecast error measure is mean square error.

If method = "sse", the forecast error measure is sum square error.

If method = "rmse", the forecast error measure is root mean square error.

If method = "mdae", the forecast error measure is median absolute error.

If method = "mape", the forecast error measure is mean absolute percentage error.

If method = "mdape", the forecast error measure is median absolute percentage error.

If method = "rmspe", the forecast error measure is root mean square percentage error.

If method = "rmdspe", the forecast error measure is root median square percentage error.

Forecast accuracy symmetric error measure:

If method = "smape", the forecast error measure is symmetric mean absolute percentage error.

If method = "smdape", the forecast error measure is symmetric median absolute percentage error.

Forecast accuracy relative error measure:

If method = "mrae", the forecast error measure is mean relative absolute error.

If method = "mdrae", the forecast error measure is median relative absolute error.

If method = "gmrae", the forecast error measure is geometric mean relative absolute error.

If method = "relmae", the forecast error measure is relative mean absolute error.

If method = "relmse", the forecast error measure is relative mean square error.

Forecast accuracy scaled error measure:

If method = "mase", the forecast error measure is mean absolute scaled error.

If method = "mdase", the forecast error measure is median absolute scaled error.

If method = "rmsse", the forecast error measure is root mean square scaled error.

Value

A numeric value.

Author(s)

Han Lin Shang

References

P. A. Thompson (1990) "An MSE statistic for comparing forecast accuracy across series", *International Journal of Forecasting*, **6**(2), 219-227.

C. Chatfield (1992) "A commentary on error measures", *International Journal of Forecasting*, **8**(1), 100-102.

S. Makridakis (1993) "Accuracy measures: theoretical and practical concerns", *International Journal of Forecasting*, **9**(4), 527-529.

R. J. Hyndman and A. Koehler (2006) "Another look at measures of forecast accuracy", *International Journal of Forecasting*, **22**(3), 443-473.

Examples

```
# Forecast error measures can be categorized into three groups: (1) scale-dependent,
# (2) scale-independent but with possible zero denominator,
# (3) scale-independent with non-zero denominator.
error(forecast = 1:2, true = 3:4, method = "mae")
error(forecast = 1:5, forecastbench = 6:10, true = 11:15, method = "mrae")
error(forecast = 1:5, forecastbench = 6:10, true = 11:15, insampletrue = 16:20,
giveall = TRUE)
```

```
ER_GR
```

Selection of the number of principal components

Description

Eigenvalue ratio and growth ratio

Usage

ER_GR(data)

Arguments

data	An n by p matrix, where n denotes sample size and p denotes the number of
	discretized data points in a curve

Value

k_ER	The number of components selected by the eigenvalue ratio
k_GR	The number of components selected by the growth ratio

Author(s)

Han Lin Shang

References

Lam, C. and Yao, Q. (2012). Factor modelling for high-dimensional time series: Inference for the number of factors. The Annals of Statistics, 40, 694-726.

Ahn, S. and Horenstein, A. (2013). Eigenvalue ratio test for the number of factors. Econometrica, 81, 1203-1227.

See Also

ftsm

Examples

ER_GR(pm_10_GR\$y)

18

extract

Description

Creates subsets of a fts object.

Usage

```
extract(data, direction = c("time", "x"), timeorder, xorder)
```

Arguments

data	An object of fts.
direction	In time direction or x variable direction?
timeorder	Indexes of time order.
xorder	Indexes of x variable order.

Value

When xorder is specified, it returns a fts object with same argument as data but with a subset of x variables.

When timeorder is specified, it returns a fts object with same argument as data but with a subset of time variables.

Author(s)

Han Lin Shang

Examples

```
# ElNino is an object of class sliced functional time series.
# This function truncates the data series rowwise or columnwise.
extract(data = ElNino_ERSST_region_1and2, direction = "time",
timeorder = 1980:2006) # Last 27 curves
extract(data = ElNino_ERSST_region_1and2, direction = "x",
xorder = 1:8) # First 8 x variables
```

Description

Compute functional autocorrelation function at various lags

Usage

```
facf(fun_data, lag_value_range = seq(0, 20, by = 1))
```

Arguments

fun_data A data matrix of dimension (n by p), where n denotes sample size; and p denotes dimensionality

lag_value_range Lag value

Details

The autocovariance at lag *i* is estimated by the function $\widehat{\gamma}_i(t, s)$, a functional analog of the autocorrelation is defined as

$$\widehat{\rho}_i = \frac{\|\widehat{\gamma}_i\|}{\int \widehat{\gamma}_0(t,t)dt}.$$

Value

A vector of functional autocorrelation function at various lags

Author(s)

Han Lin Shang

References

L. Horv\'ath, G. Rice and S. Whipple (2016) Adaptive bandwidth selection in the long run covariance estimator of functional time series, *Computational Statistics and Data Analysis*, **100**, 676-693.

Examples

facf_value = facf(fun_data = t(ElNino_ERSST_region_1and2\$y))

facf

farforecast

Description

The coefficients from the fitted object are forecasted using a multivariate time-series forecasting method. The forecast coefficients are then multiplied by the functional principal components to obtain a forecast curve.

Usage

```
farforecast(object, h = 10, var_type = "const", Dmax_value, Pmax_value,
level = 80, PI = FALSE)
```

Arguments

object	An object of fds.
h	Forecast horizon.
var_type	Type of multivariate time series forecasting method; see VAR for details.
Dmax_value	Maximum number of components considered.
Pmax_value	Maximum order of VAR model considered.
level	Nominal coverage probability of prediction error bands.
PI	When PI = TRUE, a prediction interval will be given along with the point fore- cast.

Details

1. Decompose the smooth curves via a functional principal component analysis (FPCA).

2. Fit a multivariate time-series model to the principal component score matrix.

3. Forecast the principal component scores using the fitted multivariate time-series models. The order of VAR is selected optimally via an information criterion.

4. Multiply the forecast principal component scores by estimated principal components to obtain forecasts of $f_{n+h}(x)$.

5. Prediction intervals are constructed by taking quantiles of the one-step-ahead forecast errors.

Value

point_fore	Point forecast
order_select	Selected VAR order and number of components
PI_lb	Lower bound of a prediction interval
PI_ub	Upper bound of a prediction interval

Author(s)

Han Lin Shang

References

A. Aue, D. D. Norinho and S. Hormann (2015) "On the prediction of stationary functional time series", *Journal of the American Statistical Association*, **110**(509), 378-392.

J. Klepsch, C. Kl\"uppelberg and T. Wei (2017) "Prediction of functional ARMA processes with an application to traffic data", *Econometrics and Statistics*, **1**, 128-149.

See Also

forecast.ftsm, forecastfplsr

Examples

```
sqrt_pm10 = sqrt(pm_10_GR$y)
multi_forecast_sqrt_pm10 = farforecast(object = fts(seq(0, 23.5, by = 0.5), sqrt_pm10),
h = 1, Dmax_value = 5, Pmax_value = 3)
```

```
fbootstrap
```

Bootstrap independent and identically distributed functional data

Description

Computes bootstrap or smoothed bootstrap samples based on independent and identically distributed functional data.

Usage

```
fbootstrap(data, estad = func.mean, alpha = 0.05, nb = 200, suav = 0,
media.dist = FALSE, graph = FALSE, ...)
```

Arguments

data	An object of class fds or fts.
estad	Estimate function of interest. Default is to estimate the mean function. Other options are func.mode or func.var.
alpha	Significance level used in the smooth bootstrapping.
nb	Number of bootstrap samples.
suav	Smoothing parameter.
media.dist	Estimate mean function.
graph	Graphical output.
	Other arguments.

fbootstrap

Value

A list containing the following components is returned.

estimate	Estimate function.
max.dist	Max distance of bootstrap samples.
rep.dist	Distances of bootstrap samples.
resamples	Bootstrap samples.
center	Functional mean.

Author(s)

Han Lin Shang

References

A. Cuevas and M. Febrero and R. Fraiman (2006), "On the use of the bootstrap for estimating functions with functional data", *Computational Statistics and Data Analysis*, **51**(2), 1063-1074.

A. Cuevas and M. Febrero and R. Fraiman (2007), "Robust estimation and classification for functional data via projection-based depth notions", *Computational Statistics*, **22**(3), 481-496.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2007) "A functional analysis of NOx levels: location and scale estimation and outlier detection", *Computational Statistics*, **22**(3), 411-427.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2008) "Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels", *Environmetrics*, **19**(4), 331-345.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2010) "Measures of influence for the functional linear model with scalar response", *Journal of Multivariate Analysis*, **101**(2), 327-339.

J. A. Cuesta-Albertos and A. Nieto-Reyes (2010) "Functional classification and the random Tukey depth. Practical issues", Combining Soft Computing and Statistical Methods in Data Analysis, *Advances in Intelligent and Soft Computing*, **77**, 123-130.

D. Gervini (2012) "Outlier detection and trimmed estimation in general functional spaces", *Statistica Sinica*, **22**(4), 1639-1660.

H. L. Shang (2015) "Re-sampling techniques for estimating the distribution of descriptive statistics of functional data", *Communication in Statistics–Simulation and Computation*, **44**(3), 614-635.

H. L. Shang (2018) Bootstrap methods for stationary functional time series, *Statistics and Computing*, **28**(1), 1-10.

See Also

pcscorebootstrapdata

Examples

Bootstrapping the distribution of a summary statistics of functional data. fbootstrap(data = ElNino_ERSST_region_1and2) forecast.ftsm

Description

The coefficients from the fitted object are forecasted using either an ARIMA model (method = "arima"), an AR model (method = "ar"), an exponential smoothing method (method = "ets"), a linear exponential smoothing method allowing missing values (method = "ets.na"), or a random walk with drift model (method = "rwdrift"). The forecast coefficients are then multiplied by the principal components to obtain a forecast curve.

Usage

```
## S3 method for class 'ftsm'
forecast(object, h = 10, method = c("ets", "arima", "ar", "ets.na",
    "rwdrift", "rw", "struct", "arfima"), level = 80, jumpchoice = c("fit",
    "actual"), pimethod = c("parametric", "nonparametric"), B = 100,
    usedata = nrow(object$coeff), adjust = TRUE, model = NULL,
    damped = NULL, stationary = FALSE, ...)
```

Arguments

object	Output from ftsm.
h	Forecast horizon.
method	Univariate time series forecasting methods. Current possibilities are "ets", "arima", "ets.na", "rwdrift" and "rw".
level	Coverage probability of prediction intervals.
jumpchoice	Jump-off point for forecasts. Possibilities are "actual" and "fit". If "actual", the forecasts are bias-adjusted by the difference between the fit and the last year of observed data. Otherwise, no adjustment is used. See Booth et al. (2006) for the detail on jump-off point.
pimethod	Indicates if parametric method is used to construct prediction intervals.
В	Number of bootstrap samples.
usedata	Number of time periods to use in forecasts. Default is to use all.
adjust	If adjust = TRUE, adjusts the variance so that the one-step forecast variance matches the empirical one-step forecast variance.
model	If the ets method is used, model allows a model specification to be passed to ets().
damped	If the ets method is used, damped allows the damping specification to be passed to ets().
stationary	If stationary = TRUE, method is set to method = "ar" and only stationary AR models are used.
	Other arguments passed to forecast routine.

forecast.ftsm

Details

- 1. Obtain a smooth curve $f_t(x)$ for each t using a nonparametric smoothing technique.
- 2. Decompose the smooth curves via a functional principal component analysis.
- 3. Fit a univariate time series model to each of the principal component scores.
- 4. Forecast the principal component scores using the fitted time series models.

5. Multiply the forecast principal component scores by fixed principal components to obtain forecasts of $f_{n+h}(x)$.

6. The estimated variances of the error terms (smoothing error and model residual error) are used to compute prediction intervals for the forecasts.

Value

List with the following components:

mean	An object of class fts containing point forecasts.
lower	An object of class fts containing lower bound for prediction intervals.
upper	An object of class fts containing upper bound for prediction intervals.
fitted	An object of class fts of one-step-ahead forecasts for historical data.
error	An object of class fts of one-step-ahead errors for historical data.
coeff	List of objects of type forecast containing the coefficients and their forecasts.
coeff.error	One-step-ahead forecast errors for each of the coefficients.
var	List containing the various components of variance: model, error, mean, total and coeff.
model	Fitted ftsm model.
bootsamp	An array of $dimension = c(p, B, h)$ containing the bootstrapped point fore- casts. p is the number of variables. B is the number of bootstrap samples. h is the forecast horizon.

Author(s)

Rob J Hyndman

References

H. Booth and R. J. Hyndman and L. Tickle and P. D. Jong (2006) "Lee-Carter mortality forecasting: A multi-country comparison of variants and extensions", *Demographic Research*, **15**, 289-310.

B. Erbas and R. J. Hyndman and D. M. Gertig (2007) "Forecasting age-specific breast cancer mortality using functional data model", *Statistics in Medicine*, **26**(2), 458-470.

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics and Data Analysis*, **51**(10), 4942-4956.

R. J. Hyndman and H. Booth (2008) "Stochastic population forecasts using functional data models for mortality, fertility and migration", *International Journal of Forecasting*, **24**(3), 323-342.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series" (with discussion), *Journal of the Korean Statistical Society*, **38**(3), 199-221.

H. L. Shang (2012) "Functional time series approach for forecasting very short-term electricity demand", *Journal of Applied Statistics*, **40**(1), 152-168.

H. L. Shang (2013) "ftsa: An R package for analyzing functional time series", *The R Journal*, **5**(1), 64-72.

H. L. Shang, A. Wisniowski, J. Bijak, P. W. F. Smith and J. Raymer (2014) "Bayesian functional models for population forecasting", in M. Marsili and G. Capacci (eds), Proceedings of the Sixth Eurostat/UNECE Work Session on Demographic Projections, Istituto nazionale di statistica, Rome, pp. 313-325.

H. L. Shang (2015) "Selection of the optimal Box-Cox transformation parameter for modelling and forecasting age-specific fertility", *Journal of Population Research*, **32**(1), 69-79.

H. L. Shang (2015) "Forecast accuracy comparison of age-specific mortality and life expectancy: Statistical tests of the results", *Population Studies*, **69**(3), 317-335.

H. L. Shang, P. W. F. Smith, J. Bijak, A. Wisniowski (2016) "A multilevel functional data method for forecasting population, with an application to the United Kingdom", *International Journal of Forecasting*, **32**(3), 629-649.

See Also

ftsm, forecastfplsr, plot.ftsf, plot.fm, residuals.fm, summary.fm

Examples

- # ElNino is an object of class sliced functional time series.
- # Via functional principal component decomposition, the dynamic was captured
- # by a few principal components and principal component scores.
- # By using an exponential smoothing method,
- # the principal component scores are forecasted.
- # The forecasted curves are constructed by forecasted principal components
- # times fixed principal components plus the mean function.

```
forecast(object = ftsm(ElNino_ERSST_region_1and2), h = 10, method = "ets")
```

```
forecast(object = ftsm(ElNino_ERSST_region_1and2, weight = TRUE))
```

forecast.hdfpca

Forecasting via a high-dimensional functional principal component regression

Description

Forecast high-dimensional functional principal component model.

Usage

```
## S3 method for class 'hdfpca'
forecast(object, h = 3, level = 80, B = 50, ...)
```

forecast.hdfpca

Arguments

object	An object of class 'hdfpca'
h	Forecast horizon
level	Prediction interval level, the default is 80 percent
В	Number of bootstrap replications
	Other arguments passed to forecast routine.

Details

The low-dimensional factors are forecasted with autoregressive integrated moving average (ARIMA) models separately. The forecast functions are then calculated using the forecast factors. Bootstrap prediction intervals are constructed by resampling from the forecast residuals of the ARIMA models.

Value

forecast	A list containing the h-step-ahead forecast functions for each population
upper	Upper confidence bound for each population
lower	Lower confidence bound for each population

Author(s)

Y. Gao and H. L. Shang

References

Y. Gao, H. L. Shang and Y. Yang (2018) High-dimensional functional time series forecasting: An application to age-specific mortality rates, *Journal of Multivariate Analysis*, forthcoming.

See Also

hdfpca, hd_data

Examples

```
## Not run:
hd_model = hdfpca(hd_data, order = 2, r = 2)
hd_model_fore = forecast.hdfpca(object = hd_model, h = 1)
```

End(Not run)

forecastfplsr

Description

The decentralized response is forecasted by multiplying the estimated regression coefficient with the new decentralized predictor

Usage

forecastfplsr(object, components, h)

Arguments

object	An object of class fts.
components	Number of optimal components.
h	Forecast horizon.

Value

A fts class object, containing forecasts of responses.

Author(s)

Han Lin Shang

References

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series" (with discussion), *Journal of the Korean Statistical Society*, **38**(3), 199-221.

See Also

forecast.ftsm, ftsm, plot.fm, plot.ftsf, residuals.fm, summary.fm

Examples

A set of functions are decomposed by functional partial least squares decomposition. # By forecasting univariate partial least squares scores, the forecasted curves are # obtained by multiplying the forecasted scores by fixed functional partial least # squares function plus fixed mean function. forecastfplsr(object = ElNino_ERSST_region_1and2, components = 2, h = 5) fplsr

Description

Fits a functional partial least squares (PLSR) model using nonlinear partial least squares (NIPALS) algorithm or simple partial least squares (SIMPLS) algorithm.

Usage

```
fplsr(data, order = 6, type = c("simpls", "nipals"), unit.weights =
TRUE, weight = FALSE, beta = 0.1, interval = FALSE, method =
c("delta", "boota"), alpha = 0.05, B = 100, adjust = FALSE,
backh = 10)
```

Arguments

data	An object of class fts.
order	Number of principal components to fit.
type	When type = "nipals", uses the NIPALS algorithm; when type = "simpls", uses the SIMPLS algorithm.
unit.weights	Constrains predictor loading weights to have unit norm.
weight	When weight = TRUE, a set of geometrically decaying weights is applied to the decentralized data.
beta	When weight = TRUE, the speed of geometric decay is governed by a weight parameter.
interval	When interval = TRUE, produces distributional forecasts.
method	Method used for computing prediction intervals.
alpha	1-alpha gives the nominal coverage probability.
В	Number of replications.
adjust	When adjust = TRUE, an adjustment is performed.
backh	When adjust = TRUE, an adjustment is performed by evaluating the difference between predicted and actual values in a testing set. backh specifies the testing set.

Details

Point forecasts:

The NIPALS function implements the orthogonal scores algorithm, as described in Martens and Naes (1989). This is one of the two classical PLSR algorithms, the other is the simple partial least squares regression in DeJong (1993). The difference between these two approaches is that the NIPALS deflates the original predictors and responses, while the SIMPLS deflates the covariance

matrix of original predictors and responses. Thus, SIMPLS is more computationally efficient than NIPALS.

In a functional data set, the functional PLSR can be performed by setting the functional responses to be 1 lag ahead of the functional predictors. This idea has been adopted from the Autoregressive Hilbertian processes of order 1 (ARH(1)) of Bosq (2000).

Distributional forecasts:

Parametric method:

Influenced by the works of Denham (1997) and Phatak et al. (1993), one way of constructing prediction intervals in the PLSR is via a local linearization method (also known as the Delta method). It can be easily understood as the first two terms in a Taylor series expansion. The variance of coefficient estimators can be approximated, from which an analytic-formula based prediction intervals are constructed.

Nonparametric method:

After discretizing and decentralizing functional data $f_t(x)$ and $g_s(y)$, a PLSR model with K latent components is built. Then, the fit residuals $o_s(y_i)$ between $g_s(y_i)$ and $\hat{g}_s(y_i)$ are calculated as

$$o_s(y_i) = g_s(y_i) - \hat{g}_s(y_i), i = 1, ..., p.$$

The next step is to generate B bootstrap samples $o_s^b(y_i)$ by randomly sampling with replacement from $[o_1(y_i), ..., o_n(y_i)]$. Adding bootstrapped residuals to the original response variables in order to generate new bootstrap responses,

$$g_s^b(y_i) = g_s(y_i) + o_s^b(y_i).$$

Then, the PLSR models are constructed using the centered and discretized predictors and bootstrapped responses to obtain the boostrapped regression coefficients and point forecasts, from which the empirical prediction intervals and kernel density plots are constructed.

Value

A list containing the following components is returned.

В	$(p \times m)$ matrix containing the regression coefficients. p is the number of variables in the predictors and m is the number of variables in the responses.
Ρ	$(p \times order)$ matrix containing the predictor loadings.
Q	$(m \times order)$ matrix containing the response loadings.
Т	(ncol(data\$y)-1) x order matrix containing the predictor scores.
R	$(p \times order)$ matrix containing the weights used to construct the latent components of predictors.
Yscores	(ncol(data\$y)-1) x order matrix containing the response scores.
projection	$(p \times order)$ projection matrix used to convert predictors to predictor scores.
meanX	An object of class fts containing the column means of predictors.
meanY	An object of class fts containing the column means of responses.

fplsr

Ypred	An object of class fts containing the 1-step-ahead predicted values of the responses.
fitted	An object of class fts containing the fitted values.
residuals	An object of class fts containing the regression residuals.
Xvar	A vector with the amount of predictor variance explained by each number of component.
Xtotvar	Total variance in predictors.
weight	When weight = TRUE, a set of geometrically decaying weights is given. When weight = FALSE, weights are all equal 1.
x1	Time period of a fts object, which can be obtained from colnames(data\$y).
y1	Variables of a fts object, which can be obtained from data\$x.
ypred	Returns the original functional predictors.
У	Returns the original functional responses.
bootsamp	Bootstrapped point forecasts.
lb	Lower bound of prediction intervals.
ub	Upper bound of prediction intervals.
lbadj	Adjusted lower bound of prediction intervals.
ubadj	Adjusted upper bound of prediction intervals.
lbadjfactor	Adjusted lower bound factor, which lies generally between 0.9 and 1.1.
ubadjfactor	Adjusted upper bound factor, which lies generally between 0.9 and 1.1.

Author(s)

Han Lin Shang

References

S. Wold and A. Ruhe and H. Wold and W. J. Dunn (1984) "The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses", *SIAM Journal of Scientific and Statistical Computing*, **5**(3), 735-743.

S. de Jong (1993) "SIMPLS: an alternative approach to partial least square regression", *Chemometrics and Intelligent Laboratory Systems*, **18**(3), 251-263.

C J. F. Ter Braak and S. de Jong (1993) "The objective function of partial least squares regression", *Journal of Chemometrics*, **12**(1), 41-54.

B. Dayal and J. MacGregor (1997) "Recursive exponentially weighted PLS and its applications to adaptive control and prediction", *Journal of Process Control*, **7**(3), 169-179.

B. D. Marx (1996) "Iteratively reweighted partial least squares estimation for generalized linear regression", *Technometrics*, **38**(4), 374-381.

L. Xu and J-H. Jiang and W-Q. Lin and Y-P. Zhou and H-L. Wu and G-L. Shen and R-Q. Yu (2007) "Optimized sample-weighted partial least squares", *Talanta*, **71**(2), 561-566.

A. Phatak and P. Reilly and A. Penlidis (1993) "An approach to interval estimation in partial least squares regression", *Analytica Chimica Acta*, **277**(2), 495-501.

M. Denham (1997) "Prediction intervals in partial least squares", *Journal of Chemometrics*, **11**(1), 39-52.

D. Bosq (2000) Linear Processes in Function Spaces, New York: Springer.

N. Faber (2002) "Uncertainty estimation for multivariate regression coefficients", *Chemometrics and Intelligent Laboratory Systems*, **64**(2), 169-179.

J. A. Fernandez Pierna and L. Jin and F. Wahl and N. M. Faber and D. L. Massart (2003) "Estimation of partial least squares regression prediction uncertainty when the reference values carry a sizeable measurement error", *Chemometrics and Intelligent Laboratory Systems*, **65**(2), 281-291.

P. T. Reiss and R. T. Ogden (2007), "Functional principal component regression and functional partial least squares", *Journal of the American Statistical Association*, **102**(479), 984-996.

C. Preda, G. Saporta (2005) "PLS regression on a stochastic process", *Computational Statistics and Data Analysis*, **48**(1), 149-158.

C. Preda, G. Saporta, C. Leveder (2007) "PLS classification of functional data", *Computational Statistics*, **22**, 223-235.

A. Delaigle and P. Hall (2012), "Methodology and theory for partial least squares applied to functional data", *Annals of Statistics*, **40**(1), 322-352.

M. Febrero-Bande, P. Galeano, W. Gonz\'alez-Manteiga (2017), "Functional principal component regression and functional partial least-squares regression: An overview and a comparative study", *International Statistical Review*, **85**(1), 61-83.

See Also

ftsm, forecast.ftsm, plot.fm, summary.fm, residuals.fm, plot.fmres

Examples

```
# When weight = FALSE, all observations are assigned equally.
# When weight = TRUE, all observations are assigned geometrically decaying weights.
fplsr(data = ElNino_ERSST_region_1and2, order = 6, type = "nipals")
fplsr(data = ElNino_ERSST_region_1and2, order = 6)
fplsr(data = ElNino_ERSST_region_1and2, weight = TRUE)
fplsr(data = ElNino_ERSST_region_1and2, unit.weights = FALSE)
fplsr(data = ElNino_ERSST_region_1and2, unit.weights = FALSE, weight = TRUE)
# The prediction intervals are calculated numerically.
fplsr(data = ElNino_ERSST_region_1and2, interval = TRUE, method = "delta")
# The prediction intervals are calculated by bootstrap method.
```

ftsm

Fit functional time series model

fplsr(data = ElNino_ERSST_region_1and2, interval = TRUE, method = "boota")

Description

Fits a principal component model to a fts object. The function uses optimal orthonormal principal components obtained from a principal components decomposition.

ftsm

Usage

```
ftsm(y, order = 6, ngrid = max(500, ncol(y$y)), method = c("classical",
 "M", "rapca"), mean = TRUE, level = FALSE, lambda = 3,
 weight = FALSE, beta = 0.1, ...)
```

Arguments

У	An object of class fts.
order	Number of principal components to fit.
ngrid	Number of grid points to use in calculations. Set to maximum of 500 and ncol(y\$y).
method	Method to use for principal components decomposition. Possibilities are "M", "rapca" and "classical".
mean	If mean = TRUE, it will estimate mean term in the model before computing basis terms. If mean = FALSE, the mean term is assumed to be zero.
level	If mean = TRUE, it will include an additional (intercept) term that depends on t but not on x .
lambda	Tuning parameter for robustness when method = "M".
weight	When weight = TRUE, a set of geometrically decaying weights is applied to the decentralized data.
beta	When weight = TRUE, the speed of geometric decay is governed by a weight parameter.
	Additional arguments controlling the fitting procedure.

Details

If method = "classical", then standard functional principal component decomposition is used, as described by Ramsay and Dalzell (1991).

If method = "rapca", then the robust principal component algorithm of Hubert, Rousseeuw and Verboven (2002) is used.

If method = "M", then the hybrid algorithm of Hyndman and Ullah (2005) is used.

Value

Object of class "ftsm" with the following components:

x1	Time period of a fts object, which can be obtained from colnames(y\$y).
y1	Variables of a fts object, which can be obtained from y\$x.
У	Original functional time series or sliced functional time series.
basis	Matrix of principal components evaluated at value of y\$x (one column for each principal component). The first column is the fitted mean or median.
basis2	Matrix of principal components excluded from the selected model.
coeff	Matrix of coefficients (one column for each coefficient series). The first column is all ones.

coeff2	Matrix of coefficients associated with the principal components excluded from the selected model.
fitted	An object of class fts containing the fitted values.
residuals	An object of class fts containing the regression residuals (difference between observed and fitted).
varprop	Proportion of variation explained by each principal component.
wt	Weight associated with each time period.
v	Measure of variation for each time period.
mean.se	Measure of standar error associated with the mean.

Author(s)

Rob J Hyndman

References

J. O. Ramsay and C. J. Dalzell (1991) "Some tools for functional data analysis (with discussion)", Journal of the Royal Statistical Society: Series B, 53(3), 539-572.

M. Hubert and P. J. Rousseeuw and S. Verboven (2002) "A fast robust method for principal components with applications to chemometrics", Chemometrics and Intelligent Laboratory Systems, 60(1-2), 101-111.

B. Erbas and R. J. Hyndman and D. M. Gertig (2007) "Forecasting age-specific breast cancer mortality using functional data model", Statistics in Medicine, 26(2), 458-470.

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", Computational Statistics and Data Analysis, 51(10), 4942-4956.

R. J. Hyndman and H. Booth (2008) "Stochastic population forecasts using functional data models for mortality, fertility and migration", *International Journal of Forecasting*, **24**(3), 323-342.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series (with discussion)", Journal of the Korean Statistical Society, 38(3), 199-221.

See Also

ftsmweightselect, forecast.ftsm, plot.fm, plot.ftsf, residuals.fm, summary.fm

Examples

ElNino is an object of class sliced functional time series, constructed # from a univariate time series. # By default, all observations are assigned with equal weighting. ftsm(y = ElNino_ERSST_region_1and2, order = 6, method = "classical", weight = FALSE) # When weight = TRUE, geometrically decaying weights are used. ftsm(y = ElNino_ERSST_region_1and2, order = 6, method = "classical", weight = TRUE)

ftsmiterativeforecasts

Forecast functional time series

Description

The coefficients from the fitted object are forecasted using either an ARIMA model (method = "arima"), an AR model (method = "ar"), an exponential smoothing method (method = "ets"), a linear exponential smoothing method allowing missing values (method = "ets.na"), or a random walk with drift model (method = "rwdrift"). The forecast coefficients are then multiplied by the principal components to obtain a forecast curve.

Usage

```
ftsmiterativeforecasts(object, components, iteration = 20)
```

Arguments

object	An object of class fts.
components	Number of principal components.
iteration	Number of iterative one-step-ahead forecasts.

Details

- 1. Obtain a smooth curve $f_t(x)$ for each t using a nonparametric smoothing technique.
- 2. Decompose the smooth curves via a functional principal component analysis.
- 3. Fit a univariate time series model to each of the principal component scores.
- 4. Forecast the principal component scores using the fitted time series models.

5. Multiply the forecast principal component scores by fixed principal components to obtain forecasts of $f_{n+h}(x)$.

6. The estimated variances of the error terms (smoothing error and model residual error) are used to compute prediction intervals for the forecasts.

Value

List with the following components:

mean	An object of class fts containing point forecasts.
lower	An object of class fts containing lower bound for prediction intervals.
upper	An object of class fts containing upper bound for prediction intervals.
fitted	An object of class fts of one-step-ahead forecasts for historical data.
error	An object of class fts of one-step-ahead errors for historical data.
coeff	List of objects of type forecast containing the coefficients and their forecasts.

coeff.error	One-step-ahead forecast errors for each of the coefficients.
var	List containing the various components of variance: model, error, mean, total and coeff.
model	Fitted ftsm model.
bootsamp	An array of $dim = c(p, B, h)$ containing the bootstrapped point forecasts. p is the number of variables. B is the number of bootstrap samples. h is the forecast horizon.

Author(s)

Han Lin Shang

References

H. Booth and R. J. Hyndman and L. Tickle and P. D. Jong (2006) "Lee-Carter mortality forecasting: A multi-country comparison of variants and extensions", *Demographic Research*, **15**, 289-310.

B. Erbas and R. J. Hyndman and D. M. Gertig (2007) "Forecasting age-specific breast cancer mortality using functional data model", *Statistics in Medicine*, **26**(2), 458-470.

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics and Data Analysis*, **51**(10), 4942-4956.

R. J. Hyndman and H. Booth (2008) "Stochastic population forecasts using functional data models for mortality, fertility and migration", *International Journal of Forecasting*, **24**(3), 323-342.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series" (with discussion), *Journal of the Korean Statistical Society*, **38**(3), 199-221.

See Also

ftsm, plot.ftsf, plot.fm, residuals.fm, summary.fm

Examples

Iterative one-step-ahead forecasts via functional principal component analysis.
ftsmiterativeforecasts(object = Australiasmoothfertility, components = 2, iteration = 5)

ftsmweightselect Selection of the weight parameter used in the weighted functional time series model.

Description

The geometrically decaying weights are used to estimate the mean curve and functional principal components, where more weights are assigned to the more recent data than the data from the distant past.

Usage

ftsmweightselect(data, ncomp = 6, ntestyear, errorcriterion = c("mae", "mse", "mape"))

GAEVforecast

Arguments

data	An object of class fts.
ncomp	Number of components.
ntestyear	Number of holdout observations used to assess the forecast accuracy.
errorcriterion	Error measure.

Details

The data set is split into a fitting period and forecasting period. Using the data in the fitting period, we compute the one-step-ahead forecasts and calculate the forecast error. Then, we increase the fitting period by one, and carry out the same forecasting procedure until the fitting period covers entire data set. The forecast accuracy is determined by the averaged forecast error across the years in the forecasting period. By using an optimization algorithm, we select the optimal weight parameter that would result in the minimum forecast error.

Value

Optimal weight parameter.

Note

Can be computational intensive, as it takes about half-minute to compute. For example, ftsmweight-select(ElNinosmooth, ntestyear = 1).

Author(s)

Han Lin Shang

References

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series (with discussion)", *Journal of the Korean Statistical Society*, **38**(3), 199-221.

See Also

ftsm, forecast.ftsm

GAEVforecast	Fit a generalized additive extreme value model to the functional data
	with given basis numbers

Description

One-step-ahead forecast for any given quantile(s) of functional time sereies of extreme values using a generalized additive extreme value (GAEV) model.

Usage

Arguments

data	a n by p data matrix, where n denotes the number of functional objects and p denotes the number of realizations on each functional object
q	a required scalar or vector of GEV quantiles that are of forecasting interest
d.loc.max	the maximum number of basis functions considered for the location parameter
d.logscale.max	the maximum number of basis functions considered for the (log-)scale parameter

Details

For the functional time seres $\{X_t(u), t = 1, ..., T, u \in \mathcal{I}\}$, the GAEV model is given as

$$X_t(u) \ GEV[\mu_t(u), \sigma_t(u), \xi_t],$$

where

$$\mu_t(u) = \beta_{t,0}^{(\mu)} + \sum_{i=1}^{a_1} \beta_{t,i}^{(\mu)} b_i^{(\mu)}(u),$$
$$\ln(\sigma_t(u)) = \beta_{t,0}^{(\sigma)} + \sum_{i=1}^{d_2} \beta_{t,i}^{(\sigma)} b_i^{(\sigma)}(u), \xi_t \in [0,\infty),$$

where d_j , j = 1, 2 are positive integers of basis numbers, $\{b_i^{(\mu)}(u), i = 1, ..., d_1\}$ and $\{b_i^{(\sigma)}(u), i = 1, ..., d_2\}$ are the cubic regression spline basis functions.

The optimal number of basis functions (d_1, d_2) are chosen by minimizing the Kullback-Leibler divergence on the test set using a leave-one-out cross-validation technique.

The one-step-ahead forecast of the joint coefficients $(\widehat{\beta^{(\mu)}}_{T+1,i}, \widehat{\beta^{(\sigma)}}_{T+1,j}, \widehat{\xi}_{T+1}, i = 0, ..., d_1, j = 0, ..., d_2)$ are produced using a vector autoregressive model, whose order is selected via the corrected Akaike information criterion. Then the one-step-ahead forecast of the GEV parameter $(\widehat{\mu}_{T+1}(u), \widehat{\sigma}_{T+1}(u), \widehat{\xi}_{T+1})$ can be computed accordingly.

The one-step-ahead forecast for the τ -th quantile of the extreme values $\widehat{X}_{T+1}(u)$ is computed by

$$Q_{\tau}(u|\widehat{\mu}_{T+1},\widehat{\sigma}_{T+1},\widehat{\xi}_{T+1})$$

=

$$\widehat{\mu}_{T+1}(u) + \frac{\widehat{\sigma}_{T+1}(u) \left[(-\ln(\tau))^{-\widehat{\xi}_{T+1}} - 1 \right]}{\widehat{\xi}_{T+1}}, \xi > 0, \tau \in [0,1); \, \xi < 0, \tau \in (0,1], \, \widehat{\mu}_{T+1}(u) - \widehat{\sigma}_{T+1}(u) \cdot \ln[-\ln\left(\tau\right)], \xi = 0, \tau \in [0,1], \, \xi < 0, \tau \in [0,1], \, \xi$$

Value

kdf.location the optimal number of basis functions considered for the location parameter

kdf.logscale the optimal number of basis functions considered for the (log-)scale parameter

basis.location the basis functions for the location parameter

hdfpca

basis.logscale	the basis functions for the (log-)scale parameter
para.location.p	red
	the predicted location function
para.scale.pred	
	the predicted scale function
para.shape.pred	
	the predicted shape parameter
density.pred	the prediced density function(s) for the given quantile(s)

Author(s)

Ruofan Xu and Han Lin Shang

References

Shang, H. L. and Xu, R. (2021) 'Functional time series forecasting of extreme values', *Communications in Statistics Case Studies Data Analysis and Applications*, in press.

Examples

```
## Not run:
library(evd)
data = matrix(rgev(1000),ncol=50)
GAEVforecast(data = data, q = c(0.02,0.7), d.loc.max = 5, d.logscale.max = 5)
```

End(Not run)

hdfpca

High-dimensional functional principal component analysis

Description

Fit a high dimensional functional principal component analysis model to a multiple-population of functional time series data.

Usage

```
hdfpca(y, order, q = sqrt(dim(y[[1]])[2]), r)
```

Arguments

У	A list, where each item is a population of functional time series. Each item is a data matrix of dimension p by n, where p is the number of discrete points in each function and n is the sample size
order	The number of principal component scores to retain in the first step dimension reduction
q	The tuning parameter used in the first step dimension reduction, by default it is equal to the square root of the sample size
r	The number of factors to retain in the second step dimension reduction

Details

In the first step, dynamic functional principal component analysis is performed on each population and then in the second step, factor models are fitted to the resulting principal component scores. The high-dimensional functional time series are thus reduced to low-dimensional factors.

Value

У	The input data
р	The number of discrete points in each function
fitted	A list containing the fitted functions for each population
m	The number of populations
model	Model 1 includes the first step dynamic functional principal component analysis models, model 2 includes the second step high-dimensional principal component analysis models
order	Input order
r	Input r

Author(s)

Y. Gao and H. L. Shang

References

Y. Gao, H. L. Shang and Y. Yang (2018) High-dimensional functional time series forecasting: An application to age-specific mortality rates, *Journal of Multivariate Analysis*, **forthcoming**.

See Also

forecast.hdfpca,hd_data

Examples

hd_model = hdfpca(hd_data, order = 2, r = 2)

hd_data

Simulated high-dimensional functional time series

Description

We generate N populations of functional time series. For each $i \in \{1, ..., N\}$, the *i*th function at time $t \in \{1, ..., T\}$ is given by

$$X_t^{(i)}(u) = \sum_{p=1}^2 \beta_{p,t}^{(i)} \gamma_p^{(i)}(u) + \theta_t^{(i)}(u),$$

where $\theta_t^{(i)}(u) = \sum_{p=3}^{\infty} \beta_{p,t}^{(i)} \gamma_p^{(i)}(u).$

hd_data

Usage

data("hd_data")

Details

The coefficients $\beta_{p,t}^{(i)}$ for all N populations are combined and generated, for all $p \in N$, by

$$\boldsymbol{\beta}_{p,t} = \boldsymbol{A}_p \boldsymbol{f}_{p,t},$$

where $\beta_{p,t} = {\beta_{p,t}^1, \ldots, \beta_{p,t}^N}$. Here, A_p is an $N \times N$ matrix, and $f_{p,t}$ is an $N \times 1$ vector. Furthermore, we assume that the $\beta_{p,t}^{(i)}$ s have mean 0 and variance 0 when p > 3, so we only construct the coefficients $\beta_{p,t}$ for $p \in \{1, 2, 3\}$.

The first set of coefficients $\beta_{1,t}$ for N populations are generated with $\beta_{1,t} = A_1 f_{1,t}$. Each element in the matrix A_1 is generated by $a_{ij} = N^{-1/4} \times b_{ij}$, where $b_{ij} \sim N(2,4)$.

The factors $f_{1,t}$ are generated using an autoregressive model of order 1, i.e., AR(1). Define the *i*th element in vector $f_{1,t}$ as $f_{1,t}^{(i)}$. Then, $f_{1,t}^1$ is generated by $f_{1,t}^1 = 0.5 \times f_{1,t-1}^1 + \omega_t$, where ω_t are independent N(0,1) random variables. We generate $f_{1,t}^{(i)}$ for all $i \in \{2,\ldots,N\}$ by $f_{1,t}^{(i)} = (1/N) \times g_t^{(i)}$, where $g_t^{(2)}, \ldots, g_t^{(N)}$ are also AR(1) and follow $g_t^{(i)} = 0.2 \times g_{t-1}^{(i)} + \omega_t$. It is then ensured that most of the variance of $\beta_{1,t}$ can be explained by one factor. The second coefficient $\beta_{2,t}$ are constructed the same way as $\beta_{1,t}$.

We also generate the third functional principal component scores $\beta_{3,t}$ but with small values. Moreover, A_3 is generated by $a_{ij} = N^{-1/4} \times b_{ij}$, where $b_{ij} \sim N(0, 0.04)$. The factors $bmf_{3,t}$ are generated as $f_{1,t}$.

The three basis functions are constructed by $\gamma_1^{(i)}(u) = \sin(2\pi u + \pi i/2), \gamma_2^{(i)}(u) = \cos(2\pi u + \pi i/2)$ and $\gamma_3^{(i)}(u) = \sin(4\pi u + \pi i/2)$, where $u \in [0, 1]$. Finally, the functional time series for the *i*th population is constructed by

$$\boldsymbol{X}_{t}^{(i)}(u) = \boldsymbol{\beta}_{1,t} \gamma_{1}^{(i)}(u) + \boldsymbol{\beta}_{2,t} \gamma_{2}^{(i)}(u) + \boldsymbol{\beta}_{3,t} \gamma_{3}^{(i)}(u),$$

where $(\cdot)_i$ denotes the *i*th element of the vector.

References

Y. Gao, H. L. Shang and Y. Yang (2018) High-dimensional functional time series forecasting: An application to age-specific mortality rates, *Journal of Multivariate Analysis*, **forthcoming**.

See Also

hdfpca, forecast.hdfpca

Examples

data(hd_data)

Horta_Ziegelmann_FPCA Dynamic functional principal component analysis for density forecasting

Description

Implementation of a dynamic functional principal component analysis to forecast densities.

Usage

```
Horta_Ziegelmann_FPCA(data, gridpoints, h_scale = 1, p = 5, m = 5001,
kernel = c("gaussian", "epanechnikov"), band_choice = c("Silverman", "DPI"),
VAR_type = "both", lag_maximum = 6, no_boot = 1000, alpha_val = 0.1,
ncomp_select = "TRUE", D_val = 10)
```

Arguments

data	Densities or raw data matrix of dimension N by p, where N denotes sample size and p denotes dimensionality
gridpoints	Grid points
h_scale	Scaling parameter in the kernel density estimator
р	Number of backward parameters
m	Number of grid points
kernel	Type of kernel function
band_choice	Selection of optimal bandwidth
VAR_type	Type of vector autoregressive process
lag_maximum	A tuning parameter in the super_fun function
no_boot	A tuning parameter in the super_fun function
alpha_val	A tuning parameter in the super_fun function
<pre>ncomp_select</pre>	A tuning parameter in the super_fun function
D_val	A tuning parameter in the super_fun function

Details

1) Compute a kernel covariance function 2) Via eigen-decomposition, a density can be decomposed into a set of functional principal components and their associated scores 3) Fit a vector autoregressive model to the scores with the order selected by Akaike information criterion 4) By multiplying the estimated functional principal components with the forecast scores, obtain forecast densities 5) Since forecast densities may neither be non-negative nor sum to one, normalize the forecast densities accordingly

Value

Yhat.fix_den	Forecast density	
u	Grid points	
du	Distance between two successive grid points	
Ybar_est	Mean of density functions	
psihat_est	Estimated functional principal components	
etahat_est	Estimated principal component scores	
etahat_pred_val		
	Forecast principal component scores	
selected_d0	Selected number of components	
selected_d0_pvalues		
	p-values associated with the selected functional principal components	
thetahat_val	Estimated eigenvalues	

Author(s)

Han Lin Shang

References

Horta, E. and Ziegelmann, F. (2018) 'Dynamics of financial returns densities: A functional approach applied to the Bovespa intraday index', *International Journal of Forecasting*, **34**, 75-88.

Bathia, N., Yao, Q. and Ziegelmann, F. (2010) 'Identifying the finite dimensionality of curve time series', *The Annals of Statistics*, **38**, 3353-3386.

See Also

CoDa_FPCA, LQDT_FPCA, skew_t_fun

Examples

```
## Not run:
Horta_Ziegelmann_FPCA(data = DJI_return, kernel = "epanechnikov",
band_choice = "DPI", ncomp_select = "FALSE")
```

End(Not run)

is.fts

Description

Tests whether an object is of class fts.

Usage

is.fts(x)

Arguments

x Arbitrary R object.

Author(s)

Rob J Hyndman

Examples

check if ElNino is the class of the functional time series. is.fts(x = ElNino_ERSST_region_1and2)

isfe.fts

Integrated Squared Forecast Error for models of various orders

Description

Computes integrated squared forecast error (ISFE) values for functional time series models of various orders.

Usage

```
isfe.fts(data, max.order = N - 3, N = 10, h = 5:10, method =
c("classical", "M", "rapca"), mean = TRUE, level = FALSE,
fmethod = c("arima", "ar", "ets", "ets.na", "struct", "rwdrift",
    "rw", "arfima"), lambda = 3, ...)
```

isfe.fts

Arguments

data	An object of class fts.
max.order	Maximum number of principal components to fit.
Ν	Minimum number of functional observations to be used in fitting a model.
h	Forecast horizons over which to average.
method	Method to use for principal components decomposition. Possibilities are "M", "rapca" and "classical".
mean	Indicates if mean term should be included.
level	Indicates if level term should be included.
fmethod	Method used for forecasting. Current possibilities are "ets", "arima", "ets.na", "struct", "rwdrift" and "rw".
lambda	Tuning parameter for robustness when method = "M".
	Additional arguments controlling the fitting procedure.

Value

Numeric matrix with (max.order+1) rows and length(h) columns containing ISFE values for models of orders 0: (max.order).

Note

This function can be very time consuming for data with large dimensionality or large sample size. By setting max.order small, computational speed can be dramatically increased.

Author(s)

Rob J Hyndman

References

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics and Data Analysis*, **51**(10), 4942-4956.

See Also

ftsm, forecast.ftsm, plot.fm, plot.fmres, summary.fm, residuals.fm

long_run_covariance_estimation

Estimating long-run covariance function for a functional time series

Description

Bandwidth estimation in the long-run covariance function for a functional time series, using different types of kernel function

Usage

```
long_run_covariance_estimation(dat, C0 = 3, H = 3)
```

Arguments

dat	A matrix of p by n, where p denotes the number of grid points and n denotes sample size
C0	A tuning parameter used in the adaptive bandwidth selection algorithm of Rice
Н	A tuning parameter used in the adaptive bandwidth selection algorithm of Rice

Value

An estimated covariance function of size (p by p)

Author(s)

Han Lin Shang

References

L. Horvath, G. Rice and S. Whipple (2016) Adaptive bandwidth selection in the long run covariance estimation of functional time series, *Computational Statistics and Data Analysis*, **100**, 676-693.

G. Rice and H. L. Shang (2017) A plug-in bandwidth selection procedure for long run covariance estimation with stationary functional time series, *Journal of Time Series Analysis*, **38**(4), 591-609.

D. Li, P. M. Robinson and H. L. Shang (2018) Long-range dependent curve time series, *Journal of the American Statistical Association: Theory and Methods*, under revision.

See Also

fts

Examples

dum = long_run_covariance_estimation(dat = ElNino_OISST_region_1and2\$y[,1:5])

LQDT_FPCA

Description

Probability density function, cumulative distribution function and quantile density function are three characterizations of a distribution. Of these three, quantile density function is the least constrained. The only constrain is nonnegative. By taking a log transformation, there is no constrain.

Usage

```
LQDT_FPCA(data, gridpoints, h_scale = 1, M = 3001, m = 5001, lag_maximum = 4,
no_boot = 1000, alpha_val = 0.1, p = 5,
band_choice = c("Silverman", "DPI"),
kernel = c("gaussian", "epanechnikov"),
forecasting_method = c("uni", "multi"),
varprop = 0.85, fmethod, VAR_type)
```

Arguments

data	Densities or raw data matrix of dimension N by p, where N denotes sample size and p denotes dimensionality
gridpoints	Grid points
h_scale	Scaling parameter in the kernel density estimator
Μ	Number of grid points between 0 and 1
m	Number of grid points within the data range
lag_maximum	A tuning parameter in the super_fun function
no_boot	A tuning parameter in the super_fun function
alpha_val	A tuning parameter in the super_fun function
р	Number of backward parameters
band_choice	Selection of optimal bandwidth
kernel	Type of kernel function
forecasting_me	thod
	Univariate or multivariate time series forecasting method
varprop	Proportion of variance explained
fmethod	If forecasting_method = "uni", specify a particular forecasting method
VAR_type	If forecasting_method = "multi", specify a particular type of vector autore- gressive model

Details

1) Transform the densities f into log quantile densities Y and c specifying the value of the cdf at 0 for the target density f. 2) Compute the predictions for future log quantile density and c value. 3) Transform the forecasts in Step 2) into the predicted density f.

Value

L2Diff	L2 norm difference between reconstructed and actual densities	
unifDiff	Uniform Metric excluding missing boundary values (due to boundary cutoff)	
density_reconstruct		
	Reconstructed densities	
density_original		
	Actual densities	
dens_fore	Forecast densities	
totalMass	Assess loss of mass incurred by boundary cutoff	
u	m number of grid points	

Author(s)

Han Lin Shang

References

Petersen, A. and Muller, H.-G. (2016) 'Functional data analysis for density functions by transformation to a Hilbert space', *The Annals of Statistics*, **44**, 183-218.

Jones, M. C. (1992) 'Estimating densities, quantiles, quantile densities and density quantiles', *Annals of the Institute of Statistical Mathematics*, **44**, 721-727.

See Also

CoDa_FPCA, Horta_Ziegelmann_FPCA, skew_t_fun

Examples

```
## Not run:
LQDT_FPCA(data = DJI_return, band_choice = "DPI", kernel = "epanechnikov",
forecasting_method = "uni", fmethod = "ets")
```

End(Not run)

MAF_multivariate Maximum autocorrelation factors

Description

Dimension reduction via maximum autocorrelation factors

Usage

MAF_multivariate(data, threshold)

mean.fts

Arguments

data	A p by n data matrix, where p denotes the number of variables and n denotes the sample size
threshold	A threshold level for retaining the optimal number of factors

Value

MAF	Maximum autocorrelation factor scores	
MAF_loading	Maximum autocorrelation factors	
Z	Standardized original data	
recon	Reconstruction via maximum autocorrelation factors	
recon_err	Reconstruction errors between the standardized original data and reconstruction via maximum autocorrelation factors	
ncomp_threshold		
	Number of maximum autocorrelation factors selected by explaining autocorre- lation at and above a given level of threshold	
ncomp_eigen_ratio		
	Number of maximum autocorrelation factors selected by eigenvalue ratio tests	

Author(s)

Han Lin Shang

References

M. A. Haugen, B. Rajaratnam and P. Switzer (2015). Extracting common time trends from concurrent time series: Maximum autocorrelation factors with applications, arXiv paper https://arxiv.org/abs/1502.01073.

See Also

ftsm

Examples

MAF_multivariate(data = pm_10_GR_sqrt\$y, threshold = 0.85)

mean.fts

Mean functions for functional time series

Description

Computes mean of functional time series at each variable.

Usage

```
## S3 method for class 'fts'
mean(x, method = c("coordinate", "FM", "mode", "RP", "RPD", "radius"),
na.rm = TRUE, alpha, beta, weight, ...)
```

Arguments

х	An object of class fts.
method	Method for computing the mean function.
na.rm	A logical value indicating whether NA values should be stripped before the computation proceeds.
alpha	Tuning parameter when method="radius".
beta	Trimming percentage, by default it is 0.25, when method="radius".
weight	Hard thresholding or soft thresholding.
	Other arguments.

Details

If method = "coordinate", it computes the coordinate-wise functional mean.

If method = "FM", it computes the mean of trimmed functional data ordered by the functional depth of Fraiman and Muniz (2001).

If method = "mode", it computes the mean of trimmed functional data ordered by h-modal functional depth.

If method = "RP", it computes the mean of trimmed functional data ordered by random projection depth.

If method = "RPD", it computes the mean of trimmed functional data ordered by random projection derivative depth.

If method = "radius", it computes the mean of trimmed functional data ordered by the notion of alpha-radius.

Value

A list containing x = variables and y = mean rates.

Author(s)

Rob J Hyndman, Han Lin Shang

References

O. Hossjer and C. Croux (1995) "Generalized univariate signed rank statistics for testing and estimating a multivariate location parameter", *Journal of Nonparametric Statistics*, **4**(3), 293-308.

A. Cuevas and M. Febrero and R. Fraiman (2006) "On the use of bootstrap for estimating functions with functional data", *Computational Statistics* & *Data Analysis*, **51**(2), 1063-1074.

median.fts

A. Cuevas and M. Febrero and R. Fraiman (2007), "Robust estimation and classification for functional data via projection-based depth notions", *Computational Statistics*, **22**(3), 481-496.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2007) "A functional analysis of NOx levels: location and scale estimation and outlier detection", *Computational Statistics*, **22**(3), 411-427.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2008) "Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels", *Environmetrics*, **19**(4), 331-345.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2010) "Measures of influence for the functional linear model with scalar response", *Journal of Multivariate Analysis*, **101**(2), 327-339.

J. A. Cuesta-Albertos and A. Nieto-Reyes (2010) "Functional classification and the random Tukey depth. Practical issues", Combining Soft Computing and Statistical Methods in Data Analysis, *Advances in Intelligent and Soft Computing*, **77**, 123-130.

D. Gervini (2012) "Outlier detection and trimmed estimation in general functional spaces", *Statistica Sinica*, **22**(4), 1639-1660.

See Also

median.fts, var.fts, sd.fts, quantile.fts

Examples

```
# Calculate the mean function by the different depth measures.
mean(x = ElNino_ERSST_region_1and2, method = "coordinate")
mean(x = ElNino_ERSST_region_1and2, method = "FM")
mean(x = ElNino_ERSST_region_1and2, method = "mode")
mean(x = ElNino_ERSST_region_1and2, method = "RP")
mean(x = ElNino_ERSST_region_1and2, method = "RPD")
mean(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, beta = 0.25, weight = "hard")
mean(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, beta = 0.25, weight = "soft")
```

median.fts

Median functions for functional time series

Description

Computes median of functional time series at each variable.

Usage

```
## S3 method for class 'fts'
median(x, na.rm, method = c("hossjercroux", "coordinate", "FM", "mode",
    "RP", "RPD", "radius"), alpha, beta, weight, ...)
```

Arguments

Х	An object of class fts.
na.rm	Remove any missing value.
method	Method for computing median.
alpha	Tuning parameter when method="radius".
beta	Trimming percentage, by default it is 0.25, when method="radius".
weight	Hard thresholding or soft thresholding.
	Other arguments.

Details

If method = "coordinate", it computes a coordinate-wise median.

If method = "hossjercroux", it computes the L1-median using the Hossjer-Croux algorithm.

If method = "FM", it computes the median of trimmed functional data ordered by the functional depth of Fraiman and Muniz (2001).

If method = "mode", it computes the median of trimmed functional data ordered by h-modal functional depth.

If method = "RP", it computes the median of trimmed functional data ordered by random projection depth.

If method = "RPD", it computes the median of trimmed functional data ordered by random projection derivative depth.

If method = "radius", it computes the mean of trimmed functional data ordered by the notion of alpha-radius.

Value

A list containing x = variables and y = median rates.

Author(s)

Rob J Hyndman, Han Lin Shang

References

O. Hossjer and C. Croux (1995) "Generalized univariate signed rank statistics for testing and estimating a multivariate location parameter", *Journal of Nonparametric Statistics*, **4**(3), 293-308.

A. Cuevas and M. Febrero and R. Fraiman (2006) "On the use of bootstrap for estimating functions with functional data", *Computational Statistics* & *Data Analysis*, **51**(2), 1063-1074.

A. Cuevas and M. Febrero and R. Fraiman (2007), "Robust estimation and classification for functional data via projection-based depth notions", *Computational Statistics*, **22**(3), 481-496.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2007) "A functional analysis of NOx levels: location and scale estimation and outlier detection", *Computational Statistics*, **22**(3), 411-427.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2008) "Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels", *Environmetrics*, **19**(4), 331-345.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2010) "Measures of influence for the functional linear model with scalar response", *Journal of Multivariate Analysis*, **101**(2), 327-339.

J. A. Cuesta-Albertos and A. Nieto-Reyes (2010) "Functional classification and the random Tukey depth. Practical issues", Combining Soft Computing and Statistical Methods in Data Analysis, *Advances in Intelligent and Soft Computing*, **77**, 123-130.

D. Gervini (2012) "Outlier detection and trimmed estimation in general functional spaces", *Statistica Sinica*, **22**(4), 1639-1660.

See Also

mean.fts, var.fts, sd.fts, quantile.fts

Examples

```
# Calculate the median function by the different depth measures.
median(x = ElNino_ERSST_region_1and2, method = "hossjercroux")
median(x = ElNino_ERSST_region_1and2, method = "coordinate")
median(x = ElNino_ERSST_region_1and2, method = "FM")
median(x = ElNino_ERSST_region_1and2, method = "mode")
median(x = ElNino_ERSST_region_1and2, method = "RP")
median(x = ElNino_ERSST_region_1and2, method = "RPD")
median(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, beta = 0.25, weight = "hard")
median(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, beta = 0.25, weight = "soft")
```

MFDM

Multilevel functional data method

Description

Fit a multilevel functional principal component model. The function uses two-step functional principal component decompositions.

Usage

Arguments

mort_female	Female mortality (p by n matrix), where p denotes the dimension and n denotes the sample size.
mort_male	Male mortality (p by n matrix).
mort_ave	Total mortality (p by n matrix).
percent_1	Cumulative percentage used for determining the number of common functional principal components.
percent_2	Cumulative percentage used for determining the number of sex-specific func- tional principal components.
fh	Forecast horizon.
level	Nominal coverage probability of a prediction interval.
alpha	1 - Nominal coverage probability.
MCMCiter	Number of MCMC iterations.
fmethod	Univariate time-series forecasting method.
BC	If Box-Cox transformation is performed.
lambda	If BC = TRUE, specify a Box-Cox transformation parameter.

Details

The basic idea of multilevel functional data method is to decompose functions from different subpopulations into an aggregated average, a sex-specific deviation from the aggregated average, a common trend, a sex-specific trend and measurement error. The common and sex-specific trends are modelled by projecting them onto the eigenvectors of covariance operators of the aggregated and sex-specific centred stochastic process, respectively.

Value

first_percent	Percentage of total variation explained by the first common functional principal component.	
female_percent	Percentage of total variation explained by the first female functional principal component in the residual.	
male_percent	Percentage of total variation explained by the first male functional principal component in the residual.	
mort_female_fore		
	Forecast female mortality in the original scale.	
<pre>mort_male_fore</pre>	Forecast male mortality in the original scale.	

Note

It can be quite time consuming, especially when MCMCiter is large.

Author(s)

Han Lin Shang

MFPCA

References

C. M. Crainiceanu and J. Goldsmith (2010) "Bayesian functional data analysis using WinBUGS", *Journal of Statistical Software*, **32**(11).

C-Z. Di and C. M. Crainiceanu and B. S. Caffo and N. M. Punjabi (2009) "Multilevel functional principal component analysis", *The Annals of Applied Statistics*, **3**(1), 458-488.

V. Zipunnikov and B. Caffo and D. M. Yousem and C. Davatzikos and B. S. Schwartz and C. Crainiceanu (2015) "Multilevel functional principal component analysis for high-dimensional data", *Journal of Computational and Graphical Statistics*, **20**, 852-873.

H. L. Shang, P. W. F. Smith, J. Bijak, A. Wisniowski (2016) "A multilevel functional data method for forecasting population, with an application to the United Kingdom", *International Journal of Forecasting*, **32**(3), 629-649.

See Also

ftsm, forecast.ftsm, fplsr, forecastfplsr

MFPCA

Multilevel functional principal component analysis for clustering

Description

A multilevel functional principal component analysis for performing clustering analysis

Usage

MFPCA(y, M = NULL, J = NULL, N = NULL)

Arguments

У	A data matrix containing functional responses. Each row contains measure-
	ments from a function at a set of grid points, and each column contains mea- surements of all functions at a particular grid point
М	Number of countries
J	Number of functional responses in each country
Ν	Number of grid points per function

Value

K1	Number of components at level 1
K2	Number of components at level 2
К3	Number of components at level 3
lambda1	A vector containing all level 1 eigenvalues in non-increasing order
lambda2	A vector containing all level 2 eigenvalues in non-increasing order
lambda3	A vector containing all level 3 eigenvalues in non-increasing order

phi1	A matrix containing all level 1 eigenfunctions. Each row contains an eigenfunc- tion evaluated at the same set of grid points as the input data. The eigenfunctions are in the same order as the corresponding eigenvalues
phi2	A matrix containing all level 2 eigenfunctions. Each row contains an eigenfunc- tion evaluated at the same set of grid points as the input data. The eigenfunctions are in the same order as the corresponding eigenvalues
phi3	A matrix containing all level 3 eigenfunctions. Each row contains an eigenfunc- tion evaluated at the same set of grid points as the input data. The eigenfunctions are in the same order as the corresponding eigenvalues
scores1	A matrix containing estimated level 1 principal component scores. Each row corresponds to the level 1 scores for a particular subject in a cluster. The number of rows is the same as that of the input matrix y. Each column contains the scores for a level 1 component for all subjects
scores2	A matrix containing estimated level 2 principal component scores. Each row corresponds to the level 2 scores for a particular subject in a cluster. The number of rows is the same as that of the input matrix y. Each column contains the scores for a level 2 component for all subjects.
scores3	A matrix containing estimated level 3 principal component scores. Each row corresponds to the level 3 scores for a particular subject in a cluster. The number of rows is the same as that of the input matrix y. Each column contains the scores for a level 3 component for all subjects.
mu	A vector containing the overall mean function
eta	A matrix containing the deviation from overall mean function to country-specific mean function. The number of rows is the number of countries
Rj	Common trend
Uij	Country-specific mean function

Author(s)

Chen Tang, Yanrong Yang and Han Lin Shang

See Also

mftsc

mftsc

Multiple funtional time series clustering

Description

Clustering the multiple functional time series. The function uses the functional panel data model to cluster different time series into subgroups

mftsc

Usage

mftsc(X, alpha)

Arguments

Х	A list of sets of smoothed functional time series to be clustered, for each object, it is a p x q matrix, where p is the sample size and q is the number of grid points of the function
alpha	A value input for adjusted rand index to measure similarity of the memberships with last iteration, can be any value big than 0.9

Details

As an initial step, conventional k-means clustering is performed on the dynamic FPC scores, then an iterative membership updating process is applied by fitting the MFPCA model.

Value

iteration	the number of iterations until convergence
memebership	a list of all the membership matrices at each iteration
member.final	the final membership

Author(s)

Chen Tang, Yanrong Yang and Han Lin Shang

See Also

MFPCA

Examples

```
## Not run:
data(sim_ex_cluster)
cluster_result<-mftsc(X=sim_ex_cluster, alpha=0.99)
cluster_result$member.final
```

End(Not run)

pcscorebootstrapdata Bootstrap independent and identically distributed functional data or functional time series

Description

Computes bootstrap or smoothed bootstrap samples based on either independent and identically distributed functional data or functional time series.

Usage

```
pcscorebootstrapdata(dat, bootrep, statistic, bootmethod = c("st", "sm",
"mvn", "stiefel", "meboot"), smo)
```

Arguments

dat	An object of class matrix.
bootrep	Number of bootstrap samples.
statistic	Summary statistics.
bootmethod	Bootstrap method. When bootmethod = "st", the sampling with replacement is implemented. To avoid the repeated bootstrap samples, the smoothed boost- rap method can be implemented by adding multivariate Gaussian random noise. When bootmethod = "mvn", the bootstrapped principal component scores are drawn from a multivariate Gaussian distribution with the mean and covariance matrices of the original principal component scores. When bootmethod = "stiefel", the bootstrapped principal component scores are drawn from a Stiefel mani- fold with the mean and covariance matrices of the original principal component scores. When bootmethod = "meboot", the bootstrapped principal component scores are drawn from a maximum entropy algorithm of Vinod (2004).
smo	Smoothing parameter.

Details

We will presume that each curve is observed on a grid of T points with $0 \le t_1 < t_2 \ldots < t_T \le \tau$. Thus, the raw data set (X_1, X_2, \ldots, X_n) of n observations will consist of an n by T data matrix. By applying the singular value decomposition, X_1, X_2, \ldots, X_n can be decomposed into $X = ULR^{\top}$, where the crossproduct of U and R is identity matrix.

Holding the mean and L and R fixed at their realized values, there are four re-sampling methods that differ mainly by the ways of re-sampling U.

(a) Obtain the re-sampled singular column matrix by randomly sampling with replacement from the original principal component scores.

(b) To avoid the appearance of repeated values in bootstrapped principal component scores, we adapt a smooth bootstrap procedure by adding a white noise component to the bootstrap.

(c) Because principal component scores follow a standard multivariate normal distribution asymptotically, we can randomly draw principal component scores from a multivariate normal distribution with mean vector and covariance matrix of original principal component scores.

(d) Because the crossproduct of U is identity matrix, U is considered as a point on the Stiefel manifold, that is the space of n orthogonal vectors, thus we can randomly draw principal component scores from the Stiefel manifold.

Value

bootdata	Bootstrap samples. If the original data matrix is p by n , then the bootstrapped data are p by n by <i>bootrep</i> .
meanfunction	Bootstrap summary statistics. If the original data matrix is p by n , then the bootstrapped summary statistics is p by <i>bootrep</i> .

Author(s)

Han Lin Shang

References

H. D. Vinod (2004), "Ranking mutual funds using unconventional utility theory and stochastic dominance", *Journal of Empirical Finance*, **11**(3), 353-377.

A. Cuevas, M. Febrero, R. Fraiman (2006), "On the use of the bootstrap for estimating functions with functional data", *Computational Statistics and Data Analysis*, **51**(2), 1063-1074.

D. S. Poskitt and A. Sengarapillai (2013), "Description length and dimensionality reduction in functional data analysis", *Computational Statistics and Data Analysis*, **58**, 98-113.

H. L. Shang (2015), "Re-sampling techniques for estimating the distribution of descriptive statistics of functional data", *Communications in Statistics–Simulation and Computation*, **44**(3), 614-635.

H. L. Shang (2018), "Bootstrap methods for stationary functional time series", *Statistics and Computing*, **28**(1), 1-10.

See Also

fbootstrap

Examples

```
# Bootstrapping the distribution of a summary statistics of functional data.
boot1 = pcscorebootstrapdata(dat = ElNino_ERSST_region_1and2$y, bootrep = 200,
statistic = "mean", bootmethod = "st")
boot2 = pcscorebootstrapdata(dat = ElNino_ERSST_region_1and2$y, bootrep = 200,
statistic = "mean", bootmethod = "sm", smo = 0.05)
boot3 = pcscorebootstrapdata(dat = ElNino_ERSST_region_1and2$y, bootrep = 200,
statistic = "mean", bootmethod = "mvn")
boot4 = pcscorebootstrapdata(dat = ElNino_ERSST_region_1and2$y, bootrep = 200,
statistic = "mean", bootmethod = "stiefel")
boot5 = pcscorebootstrapdata(dat = ElNino_ERSST_region_1and2$y, bootrep = 200,
statistic = "mean", bootmethod = "stiefel")
```

plot.fm

Description

When class(x)[1] = ftsm, plot showing the principal components in the top row of plots and the coefficients in the bottom row of plots.

When class(x)[1] = fm, plot showing the predictor scores in the top row of plots and the response loadings in the bottom row of plots.

Usage

Arguments

х	Output from ftsm or fplsr.
order	Number of principal components to plot. Default is all principal components in a model.
xlab1	x-axis label for principal components.
xlab2	x-axis label for coefficient time series.
ylab1	y-axis label for principal components.
ylab2	y-axis label for coefficient time series.
mean.lab	Label for mean component.
level.lab	Label for level component.
main.title interaction.ti	Title for main effects.
	Title for interaction terms.
basiscol	Colors for principal components if plot.type = "components".
coeffcol	Colors for time series coefficients if plot.type = "components".
outlier.col	Colors for outlying years.
outlier.pch	Plotting character for outlying years.
outlier.cex	Size of plotting character for outlying years.
	Plotting parameters.

Value

Function produces a plot.

plot.fmres

Author(s)

Rob J Hyndman

References

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics* & *Data Analysis*, **51**(10), 4942-4956.

R. J. Hyndman and H. Booth (2008) "Stochastic population forecasts using functional data models for mortality, fertility and migration", *International Journal of Forecasting*, **24**(3), 323-342.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series (with discussion)", *Journal of the Korean Statistical Society*, **38**(3), 199-221.

See Also

ftsm, forecast.ftsm, residuals.fm, summary.fm, plot.fmres, plot.ftsf

Examples

plot(x = ftsm(y = ElNino_ERSST_region_1and2))

plot.fmres

Plot residuals from a fitted functional model.

Description

Functions to produce a plot of residuals from a fitted functional model.

Usage

```
## S3 method for class 'fmres'
plot(x, type = c("image", "fts", "contour", "filled.contour",
    "persp"), xlab = "Year", ylab = "Age", zlab = "Residual", ...)
```

Arguments

Х	Generated by residuals(fit), where fit is the output from ftsm or fplsr.
type	Type of plot to use. Possibilities are image, fts, contour, filled.contour and persp.
xlab	Label for x-axis.
ylab	Label for y-axis.
zlab	Label for z-axis.
	Plotting parameters.

Value

Produces a plot.

Author(s)

Rob J Hyndman

See Also

```
ftsm, forecast.ftsm, plot.fm, plot.fmres, residuals.fm, summary.fm
```

Examples

```
# colorspace package was used to provide a more coherent color option.
plot(residuals(ftsm(y = ElNino_ERSST_region_1and2)), type = "filled.contour", xlab = "Month",
    ylab = "Residual sea surface temperature")
```

plot.ftsf

```
Plot fitted model components for a functional time series model
```

Description

Plot fitted model components for a fts object.

Usage

```
## S3 method for class 'ftsf'
plot(x, plot.type = c("function", "components", "variance"),
components, xlab1 = fit$y$xname, ylab1 = "Basis function",
xlab2 = "Time", ylab2 = "Coefficient", mean.lab = "Mean",
level.lab = "Level", main.title = "Main effects",
    interaction.title = "Interaction", vcol = 1:3, shadecols = 7,
    fcol = 4, basiscol = 1, coeffcol = 1, outlier.col = 2,
    outlier.pch = 19, outlier.cex = 0.5,...)
```

Arguments

Х	Output from forecast.ftsm.
plot.type	Type of plot.
components	Number of principal components.
xlab1	x-axis label for principal components.
xlab2	x-axis label for coefficient time series.
ylab1	y-axis label for principal components.
ylab2	y-axis label for coefficient time series.
mean.lab	Label for mean component.
level.lab	Label for level component.
main.title	Title for main effects.
interaction.tit	le
	Title for interestion tomas

Title for interaction terms.

plot.ftsf

vcol	Colors to use if plot.type = "variance".
shadecols	Color for shading of prediction intervals when plot.type = "components".
fcol	Color of point forecasts when plot.type = "components".
basiscol	Colors for principal components if plot.type = "components".
coeffcol	Colors for time series coefficients if plot.type = "components".
outlier.col	Colors for outlying years.
outlier.pch	Plotting character for outlying years.
outlier.cex	Size of plotting character for outlying years.
	Plotting parameters.

Details

When plot.type = "function", it produces a plot of the forecast functions;

When plot.type = "components", it produces a plot of the principla components and coefficients with forecasts and prediction intervals for each coefficient;

When plot.type = "variance", it produces a plot of the variance components.

Value

Function produces a plot.

Author(s)

Rob J Hyndman

References

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics and Data Analysis*, **51**(10), 4942-4956.

R. J. Hyndman and H. Booth (2008) "Stochastic population forecasts using functional data models for mortality, fertility and migration", *International Journal of Forecasting*, **24**(3), 323-342.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series (with discussion)", *Journal of the Korean Statistical Society*, **38**(3), 199-221.

H. L. Shang, H. Booth and R. J. Hyndman (2011) "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods", *Demographic Research*, **25**(5), 173-214.

See Also

ftsm, plot.fm, plot.fmres, residuals.fm, summary.fm

Examples

plot(x = forecast(object = ftsm(y = ElNino_ERSST_region_1and2)))

```
plot.ftsm
```

Description

Plot showing the basis functions in the top row of plots and the coefficients in the bottom row of plots.

Usage

```
## S3 method for class 'ftsm'
plot(x, components, components.start = 0, xlab1 = x$y$xname, ylab1 = "Basis function",
xlab2 = "Time", ylab2 = "Coefficient", mean.lab = "Mean",
level.lab = "Level", main.title = "Main effects",
interaction.title = "Interaction", basiscol = 1, coeffcol = 1,
outlier.col = 2, outlier.pch = 19, outlier.cex = 0.5, ...)
```

Arguments

х	Output from ftsm.
components	Number of principal components to plot.
components.star	rt
	Plotting specified component.
xlab1	x-axis label for basis functions.
xlab2	x-axis label for coefficient time series.
ylab1	y-axis label for basis functions.
ylab2	y-axis label for coefficient time series.
mean.lab	Label for mean component.
level.lab	Label for level component.
main.title	Title for main effects.
interaction.title	
	Title for interaction terms.
basiscol	Colors for basis functions if plot.type="components".
coeffcol	Colors for time series coefficients if plot.type="components".
outlier.col	Colour for outlying years.
outlier.pch	Plotting character for outlying years.
outlier.cex	Size of plotting character for outlying years.
	Plotting parameters.

Value

None. Function produces a plot.

plotfplsr

Author(s)

Rob J Hyndman

References

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics and Data Analysis*, **51**(10), 4942-4956.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series" (with discussion), *Journal of the Korean Statistical Society*, **38**(3), 199-221.

See Also

forecast.ftsm, ftsm, plot.fm, plot.ftsf, residuals.fm, summary.fm

Examples

```
# plot different principal components.
plot.ftsm(ftsm(y = ElNino_ERSST_region_1and2, order = 2), components = 2)
```

plotfplsr

Plot fitted model components for a functional time series model

Description

Plot showing the basis functions of the predictors in the top row, followed by the basis functions of the responses in the second row, then the coefficients in the bottom row of plots.

Usage

```
plotfplsr(x, xlab1 = x$ypred$xname, ylab1 = "Basis function", xlab2 = "Time",
ylab2 = "Coefficient", mean.lab = "Mean", interaction.title = "Interaction")
```

Arguments

х	Output from fplsr.
xlab1	x-axis label for basis functions.
ylab1	y-axis label for basis functions.
xlab2	x-axis label for coefficient time series.
ylab2	y-axis label for coefficient time series.
mean.lab	Label for mean component.
interaction.ti	tle

Title for interaction terms.

Value

None. Function produces a plot.

Author(s)

Han Lin Shang

References

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics and Data Analysis*, **51**(10), 4942-4956.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series" (with discussion), *Journal of the Korean Statistical Society*, **38**(3), 199-221.

See Also

forecast.ftsm, ftsm, plot.fm, plot.ftsf, residuals.fm, summary.fm

Examples

```
# Fit the data by the functional partial least squares.
ausfplsr = fplsr(data = ElNino_ERSST_region_1and2, order = 2)
plotfplsr(x = ausfplsr)
```

pm_10_GR

Particulate Matter Concentrations (pm10)

Description

This data set consists of half-hourly measurement of the concentrations (measured in ug/m3) of particular matter with an aerodynamic diameter of less than 10um, abbreviated PM10, in ambient air taken in Graz-Mitte, Austria from October 1, 2010 until March 31, 2011. To stabilise the variance, a square-root transformation can be applied to the data.

Usage

data(pm_10_GR)

Details

As epidemiological and toxicological studies have pointed to negative health effects, European Union (EU) regulation sets pollution standards for the level of the concentration. Policy makers have to ensure compliance with these EU rules and need reliable statistical tools to determine, and justify the public, appropriate measures such as partial traffic regulation (see Stadlober, Hormann and Pfeiler, 2008).

Source

Thanks Professor Siegfried. Hormann for providing this data set. The original data source is https: //www.umwelt.steiermark.at/cms/

quantile

References

A. Aue, D. D. Norinho, S. Hormann (2015) "On the prediction of stationary functional time series", *Journal of the American Statistical Association*, **110**(509), 378-392.

E. Stadlober, S. Hormann, B. Pfeiler (2008) "Quality and performance of a PM10 daily forecasting model", *Atmospheric Environment*, **42**, 1098-1109.

S. Hormann, B. Pfeiler, E. Stadlober (2005) "Analysis and prediction of particulate matter PM10 for the winter season in Graz", *Austrian Journal of Statistics*, **34**(4), 307-326.

H. L. Shang (2017) "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration", *Econometrics and Statistics*, **1**, 184-200.

Examples

plot(pm_10_GR)

quantile

Quantile

Description

Generic functions for quantile.

Usage

quantile(x, ...)

Arguments

х	Numeric vector whose sample quantiles are wanted, or an object of a class for
	which a method has been defined.
	Arguments passed to specific methods.

Value

Refer to specific methods. For numeric vectors, see the quantile functions in the stats package.

Author(s)

Han Lin Shang

See Also

quantile.fts

quantile.fts

Description

Computes quantiles of functional time series at each variable.

Usage

```
## S3 method for class 'fts'
quantile(x, probs, ...)
```

Arguments

х	An object of class fts.
probs	Quantile percentages.
	Other arguments.

Value

Return quantiles for each variable.

Author(s)

Han Lin Shang

See Also

mean.fts, median.fts, var.fts, sd.fts

Examples

quantile(x = ElNino_ERSST_region_1and2)

residuals.fm Compute residuals from a functional model

Description

After fitting a functional model, it is useful to inspect the residuals. This function extracts the relevant information from the fit object and puts it in a form suitable for plotting with image, persp, contour, filled.contour, etc.

Usage

```
## S3 method for class 'fm'
residuals(object, ...)
```

sd

Arguments

object	Output from ftsm or fplsr.
	Other arguments.

Value

Produces an object of class "fmres" containing the residuals from the model.

Author(s)

Rob J Hyndman

References

B. Erbas and R. J. Hyndman and D. M. Gertig (2007) "Forecasting age-specific breast cancer mortality using functional data model", *Statistics in Medicine*, **26**(2), 458-470.

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", *Computational Statistics* & *Data Analysis*, **51**(10), 4942-4956.

R. J. Hyndman and H. Booth (2008) "Stochastic population forecasts using functional data models for mortality, fertility and migration", *International Journal of Forecasting*, **24**(3), 323-342.

H. L. Shang (2012) "Point and interval forecasts of age-specific fertility rates: a comparison of functional principal component methods", *Journal of Population Research*, **29**(3), 249-267.

H. L. Shang (2012) "Point and interval forecasts of age-specific life expectancies: a model averaging", *Demographic Research*, **27**, 593-644.

See Also

ftsm, forecast.ftsm, summary.fm, plot.fm, plot.fmres

Examples

```
plot(residuals(object = ftsm(y = ElNino_ERSST_region_1and2)),
xlab = "Year", ylab = "Month")
```

sd

Standard deviation

Description

Generic functions for standard deviation.

Usage

sd(...)

Arguments

... Arg

Arguments passed to specific methods.

Details

The sd functions in the stats package are replaced by sd.default.

Value

Refer to specific methods. For numeric vectors, see the sd functions in the stats package.

Author(s)

Han Lin Shang

See Also

sd.fts

sd.fts

Description

Computes standard deviation of functional time series at each variable.

Usage

```
## S3 method for class 'fts'
sd(x, method = c("coordinate", "FM", "mode", "RP", "RPD", "radius"),
trim = 0.25, alpha, weight,...)
```

Arguments

х	An object of class fts.
method	Method for computing median.
trim	Percentage of trimming.
alpha	Tuning parameter when method="radius".
weight	Hard thresholding or soft thresholding.
	Other arguments.

sd.fts

Details

If method = "coordinate", it computes coordinate-wise standard deviation functions.

If method = "FM", it computes the standard deviation functions of trimmed functional data ordered by the functional depth of Fraiman and Muniz (2001).

If method = "mode", it computes the standard deviation functions of trimmed functional data ordered by h-modal functional depth.

If method = "RP", it computes the standard deviation functions of trimmed functional data ordered by random projection depth.

If method = "RPD", it computes the standard deviation functions of trimmed functional data ordered by random projection with derivative depth.

If method = "radius", it computes the standard deviation function of trimmed functional data ordered by the notion of alpha-radius.

Value

A list containing x = variables and y = standard deviation rates.

Author(s)

Han Lin Shang

References

O. Hossjer and C. Croux (1995) "Generalized univariate signed rank statistics for testing and estimating a multivariate location parameter", *Nonparametric Statistics*, **4**(3), 293-308.

A. Cuevas and M. Febrero and R. Fraiman (2006) "On the use of bootstrap for estimating functions with functional data", *Computational Statistics* & *Data Analysis*, **51**(2), 1063-1074.

A. Cuevas and M. Febrero and R. Fraiman (2007), "Robust estimation and classification for functional data via projection-based depth notions", *Computational Statistics*, **22**(3), 481-496.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2007) "A functional analysis of NOx levels: location and scale estimation and outlier detection", *Computational Statistics*, **22**(3), 411-427.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2008) "Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels", *Environmetrics*, **19**(4), 331-345.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2010) "Measures of influence for the functional linear model with scalar response", *Journal of Multivariate Analysis*, **101**(2), 327-339.

J. A. Cuesta-Albertos and A. Nieto-Reyes (2010) "Functional classification and the random Tukey depth. Practical issues", Combining Soft Computing and Statistical Methods in Data Analysis, *Advances in Intelligent and Soft Computing*, **77**, 123-130.

D. Gervini (2012) "Outlier detection and trimmed estimation in general functional spaces", *Statistica Sinica*, **22**(4), 1639-1660.

See Also

mean.fts, median.fts, var.fts, quantile.fts

Examples

```
# Fraiman-Muniz depth was arguably the oldest functional depth.
sd(x = ElNino_ERSST_region_1and2, method = "FM")
sd(x = ElNino_ERSST_region_1and2, method = "coordinate")
sd(x = ElNino_ERSST_region_1and2, method = "mode")
sd(x = ElNino_ERSST_region_1and2, method = "RP")
sd(x = ElNino_ERSST_region_1and2, method = "RPD")
sd(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, weight = "hard")
sd(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, weight = "soft")
```

sim_ex_cluster Simulated multiple sets of functional time series

Description

We generate 2 groups of m functional time series. For each i in $\{1, ..., m\}$ in a given cluster c, c in $\{1,2\}$, the t th function, t in $\{1,..., T\}$, is given by

$$Y_{it}^{(c)}(x) = \mu^{(c)}(x) + \sum_{k=1}^{2} \xi_{tk}^{(c)} \rho_{k}^{(c)}(x) + \sum_{l=1}^{2} \zeta_{itl}^{(c)} \psi_{l}^{(c)}(x) + \upsilon_{it}^{(c)}(x)$$

Usage

data("sim_ex_cluster")

Details

The mean functions for each of these two clusters are set to be $\mu^{(1)}(x) = 2(x-0.25)^2$ and $\mu^{(2)}(x) = 2(x-0.4)^2 + 0.1$.

While the variates $\xi_{\mathbf{tk}}^{(\mathbf{c})} = (\xi_{1k}^{(c)}, \xi_{2k}^{(c)}, \dots, \xi_{Tk}^{(c)})^{\top}$ for both clusters, are generated from autoregressive of order 1 with parameter 0.7, while the variates $\zeta_{it1}^{(c)}$ and $\zeta_{it2}^{(c)}$ for both clusters, are generated from independent and identically distributed N(0, 0.5) and N(0, 0.25), respectively.

The basis functions for the common-time trend for the first cluster, $\rho_k^{(1)}(x)$, for k in {1,2} are $sqrt(2) * sin(\pi * (0:200/200))$ and $sqrt(2) * cos(\pi * (0:200/200))$ respectively; and the basis functions for the common-time trend for the second cluster, $\rho_k^{(2)}(x)$, for k in {1,2} are $sqrt(2) * sin(2\pi * (0:200/200))$ and $sqrt(2) * cos(2\pi * (0:200/200))$ respectively.

The basis functions for the residual for the first cluster, $\psi_l^{(1)}(x)$, for l in $\{1,2\}$ are $sqrt(2) * sin(3\pi * (0:200/200))$ and $sqrt(2) * cos(3\pi * (0:200/200))$ respectively; and the basis functions for the residual for the second cluster, $\psi_l^{(2)}(x)$, for l in $\{1,2\}$ are $sqrt(2) * sin(4\pi * (0:200/200))$ and $sqrt(2) * cos(4\pi * (0:200/200))$ respectively.

The measurement error v_{it} for each continuum x is generated from independent and identically distributed $N(0, 0.2^2)$

72

skew_t_fun

Examples

data(sim_ex_cluster)

skew_t_fun Skewed t distribution

Description

Fitting a parametric skewed t distribution of Fernandez and Steel's (1998) method

Usage

skew_t_fun(data, gridpoints, M = 5001)

Arguments

data	a data matrix of dimension n by p
gridpoints	Grid points
М	number of grid points

Details

1) Fit a skewed t distribution to data, and obtain four latent parameters; 2) Transform the four latent parameters so that they are un-constrained; 3) Fit a vector autoregressive model to these transformed latent parameters; 4) Obtain their forecasts, and then back-transform them to the original scales; 5) Via the skewed t distribution in Step 1), we obtain forecast density using the forecast latent parameters.

Value

m

Grid points within data range

skewed_t_den_fore

Density forecasts via a skewed t distribution

Note

This is a parametric approach for fitting and forecasting density.

Author(s)

Han Lin Shang

References

Fernandez, C. and Steel, M. F. J. (1998), 'On Bayesian modeling of fat tails and skewness', *Journal of the American Statistical Association: Theory and Methods*, **93**(441), 359-371.

See Also

CoDa_FPCA, Horta_Ziegelmann_FPCA, LQDT_FPCA

Examples

```
skew_t_fun(DJI_return)
```

stop_time_detect Detection of the optimal stopping time in a curve time series

Description

Detecting the optimal stopping time for the glue curing of wood panels in an automatic process environment.

Usage

```
stop_time_detect(data, forecasting_method = c("ets", "arima", "rw"))
```

Arguments

data An object of class fts forecasting_method A univariate time series forecasting method

Value

rucchange		
Breakpoints detected by the regression approach		
cp		
Breakpoints detected by the distance-based approach		
Forward integrated squared forecast errors		
Backward integrated squared forecast errors (ISFEs)		
<pre>ncomp_select_forward</pre>		
Number of components selected by the eigenvalue ratio tests based on the forward ISFEs		
ackward		
Number of components selected by the eigenvalue ratio tests based on the back- ward ISFEs		

Author(s)

Han Lin Shang

74

References

Bekhta, P., Ortynska, G. and Sedliacik, J. (2014). Properties of modified phenol-formaldehyde adhesive for plywood panels manufactured from high moisture content veneer. Drvna Industrija 65(4), 293-301.

stop_time_sim_data Simulated functional time series from a functional autoregression of order one

Description

For detecting the optimal stopping time, we simulate a curve time series that follows a functional autoregression of order 1, with a breakpoint in the middle point of the entire sample.

Usage

```
stop_time_sim_data(sample_size, omega, seed_number)
```

Arguments

sample_size	Number of curves
omega	Noise level
seed_number	Random seed number

Value

An object of class fts

Author(s)

Han Lin Shang

See Also

stop_time_detect

Examples

```
stop_time_sim_data(sample_size = 401, omega = 0.1, seed_number = 123)
```

summary.fm

Description

Summarizes a basis function model fitted to a functional time series. It returns various measures of goodness-of-fit.

Usage

S3 method for class 'fm'
summary(object, ...)

Arguments

object	Output from ftsm or fplsr.
	Other arguments.

Value

None.

Author(s)

Rob J Hyndman

See Also

ftsm, forecast.ftsm, residuals.fm, plot.fm, plot.fmres

Examples

summary(object = ftsm(y = ElNino_ERSST_region_1and2))

T_stationary	Testing stationarity of functional time series

Description

A hypothesis test for stationarity of functional time series.

Usage

```
T_stationary(sample, L = 49, J = 500, MC_rep = 1000, cumulative_var = .90,
Ker1 = FALSE, Ker2 = TRUE, h = ncol(sample)^.5, pivotal = FALSE,
use_table = FALSE, significance)
```

T_stationary

Arguments

sample	A matrix of discretised curves of dimension (p by n), where p represents the dimensionality and n represents sample size.
L	Number of Fourier basis functions.
J	Truncation level used to approximate the distribution of the squared integrals of Brownian bridges that appear in the limit distribution.
MC_rep	Number of replications.
cumulative_var	Amount of variance explained.
Ker1	Flat top kernel in (4.1) of Horvath et al. (2014).
Ker2	Flat top kernel in (7) of Politis (2003).
h	Kernel bandwidth.
pivotal	If pivotal = TRUE, a pivotal statistic is used.
use_table	If use_table = TRUE, use the critical values that are available in the book titled Inference for Functional Data (Table 6.1, page 88).
significance	Level of significance. Possibilities are "10%", "5%", "1%".

Details

As in traditional (scalar and vector) time series analysis, many inferential procedures for functional time series assume stationarity. Stationarity is required for functional dynamic regression models, for bootstrap and resampling methods for functional time series and for the functional analysis of volatility.

Value

p-value	When p-value is less than any level of significance, we reject the null hypoth-
	esis and conclude that the tested functional time series is not stationary.

Author(s)

Greg. Rice and Han Lin Shang

References

L. Horvath and Kokoszka, P. (2012) Inference for Functional Data with Applications, Springer, New York.

L. Horvath, P. Kokoszka, G. Rice (2014) "Testing stationarity of functional time series", *Journal of Econometrics*, **179**(1), 66-82.

D. N. Politis (2003) "Adaptive bandwidth choice", *Journal of Nonparametric Statistics*, **15**(4-5), 517-533.

A. Aue, G. Rice, O. S\"onmez (2018) "Detecting and dating structural breaks in functional data without dimension reduction", *Journal of the Royal Statistical Society: Series B*, **80**(3), 509-529.

See Also

farforecast

Examples

```
result = T_stationary(sample = pm_10_GR_sqrt$y)
result_pivotal = T_stationary(sample = pm_10_GR_sqrt$y, J = 100, MC_rep = 5000,
h = 20, pivotal = TRUE)
```

var

Variance

Description

Generic functions for variance.

Usage

var(...)

Arguments

... Arguments passed to specific methods.

Details

The cor functions in the stats package are replaced by var.default.

Value

Refer to specific methods. For numeric vectors, see the cor functions in the stats package.

Author(s)

Rob J Hyndman and Han Lin Shang

See Also

var.fts

var.fts

Description

Computes variance functions of functional time series at each variable.

Usage

```
## S3 method for class 'fts'
var(x, method = c("coordinate", "FM", "mode", "RP", "RPD", "radius"),
trim = 0.25, alpha, weight, ...)
```

Arguments

х	An object of class fts.
method	Method for computing median.
trim	Percentage of trimming.
alpha	Tuning parameter when method="radius".
weight	Hard thresholding or soft thresholding.
	Other arguments.

Details

If method = "coordinate", it computes coordinate-wise variance.

If method = "FM", it computes the variance of trimmed functional data ordered by the functional depth of Fraiman and Muniz (2001).

If method = "mode", it computes the variance of trimmed functional data ordered by h-modal functional depth.

If method = "RP", it computes the variance of trimmed functional data ordered by random projection depth.

If method = "RPD", it computes the variance of trimmed functional data ordered by random projection derivative depth.

If method = "radius", it computes the standard deviation function of trimmed functional data ordered by the notion of alpha-radius.

Value

A list containing x = variables and y = variance rates.

Author(s)

Han Lin Shang

References

O. Hossjer and C. Croux (1995) "Generalized univariate signed rank statistics for testing and estimating a multivariate location parameter", *Nonparametric Statistics*, **4**(3), 293-308.

A. Cuevas and M. Febrero and R. Fraiman (2006) "On the use of bootstrap for estimating functions with functional data", *Computational Statistics* & *Data Analysis*, **51**(2), 1063-1074.

A. Cuevas and M. Febrero and R. Fraiman (2007), "Robust estimation and classification for functional data via projection-based depth notions", *Computational Statistics*, **22**(3), 481-496.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2007) "A functional analysis of NOx levels: location and scale estimation and outlier detection", *Computational Statistics*, **22**(3), 411-427.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2008) "Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels", *Environmetrics*, **19**(4), 331-345.

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2010) "Measures of influence for the functional linear model with scalar response", *Journal of Multivariate Analysis*, **101**(2), 327-339.

J. A. Cuesta-Albertos and A. Nieto-Reyes (2010) "Functional classification and the random Tukey depth. Practical issues", Combining Soft Computing and Statistical Methods in Data Analysis, *Advances in Intelligent and Soft Computing*, **77**, 123-130.

D. Gervini (2012) "Outlier detection and trimmed estimation in general functional spaces", *Statistica Sinica*, **22**(4), 1639-1660.

See Also

mean.fts, median.fts, sd.fts, quantile.fts

Examples

```
# Fraiman-Muniz depth was arguably the oldest functional depth.
var(x = ElNino_ERSST_region_1and2, method = "FM")
var(x = ElNino_ERSST_region_1and2, method = "coordinate")
var(x = ElNino_ERSST_region_1and2, method = "mode")
var(x = ElNino_ERSST_region_1and2, method = "RP")
var(x = ElNino_ERSST_region_1and2, method = "RPD")
var(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, weight = "hard")
var(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, weight = "soft")
```

Index

* datasets DJI_return, 9 hd_data, 40 pm_10_GR, 66 sim_ex_cluster, 72 stop_time_sim_data, 75 * distribution skew_t_fun, 73 * hplot plot.fm, 60 plot.fmres, 61 plot.ftsf, 62 * methods CoDa_BayesNW, 6 CoDa_FPCA, 7 dmfpca, 10 ER_GR, 18 error, 16 facf, 20ftsmweightselect, 36 GAEVforecast, 37 Horta_Ziegelmann_FPCA, 42 LQDT_FPCA, 47 MAF_multivariate, 48 mean.fts, 49median.fts, 51 MFPCA, 55 quantile.fts, 68 sd.fts,70 stop_time_detect, 74 var.fts,79 * method long_run_covariance_estimation, 46 * models centre, 5 dynamic_FLR, 12 dynupdate, 14 extract, 19 farforecast, 21

forecast.ftsm, 24 forecast.hdfpca, 26 forecastfplsr, 28 fplsr, 29 ftsm, 32ftsmiterativeforecasts, 35 hdfpca, 39 isfe.fts,44 MFDM, 53 pcscorebootstrapdata, 58 plot.ftsm, 64 plotfplsr, 65 quantile, 67 residuals.fm, 68 sd, 69 skew_t_fun, 73 summary.fm,76 T_stationary, 76 var, 78 * multivariate fbootstrap, 22 * package ftsa-package, 3 * ts diff.fts,9 is.fts,44 centre, 5 CoDa_BayesNW, 6 CoDa_FPCA, 7, 7, 43, 48, 74 contour, 61 cor, 78 diff.fts,9 DJI_return, 9 dmfpca, 10 dynamic_FLR, 12 dynupdate, 13, 14 ER_GR, 18

error, 16 ets, 24 extract, 19

facf. 20 farforecast, 21, 77 fbootstrap, 22, 59 fds, 21 filled.contour, 61 forecast.ftsm, 16, 22, 24, 28, 32, 34, 37, 45, 55, 61, 62, 65, 66, 69, 76 forecast.hdfpca, 26, 40, 41 forecastfplsr, 22, 26, 28, 55 fplsr, 29, 55, 60, 61, 65, 69, 76 fts, 46 ftsa (ftsa-package), 3 ftsa-package, 3 ftsm, 16, 18, 24-26, 28, 32, 32, 36, 37, 45, 49, 55, 60-66, 69, 76 ftsmiterativeforecasts, 35 ftsmweightselect, 34, 36

GAEVforecast, 37

hd_data, 27, 40, 40 hdfpca, 27, 39, 41 Horta_Ziegelmann_FPCA, 8, 42, 48, 74

image, 61
is.fts, 44
isfe.fts, 44

long_run_covariance_estimation, 46 LQDT_FPCA, 8, 43, 47, 74

MAF_multivariate, 48 mean.fts, 6, 49, 53, 68, 71, 80 median.fts, 6, 51, 51, 68, 71, 80 MFDM, 53 MFPCA, 55, 57 mftsc, 11, 56, 56

pm_10_GR, 66 pm_10_GR_sqrt (pm_10_GR), 66 quantile, 67, 67 quantile.fts, 51, 53, 67, 68, 71, 80 residuals.fm, 16, 26, 28, 32, 34, 36, 45, 61-63, 65, 66, 68, 76 sd, 69, 70 sd.fts, 6, 51, 53, 68, 70, 70, 80 sim_ex_cluster, 72 skew_t_fun, 8, 43, 48, 73 stop_time_detect, 74, 75 stop_time_sim_data, 75 summary.fm, 16, 26, 28, 32, 34, 36, 45, 61-63, 65, 66, 69, 76 T_stationary, 76 VAR, 21 var, 78

var.fts, 6, 51, 53, 68, 71, 78, 79

82