
Gasper: GrAph Signal ProcEssing in R

Basile de Loynes, Fabien Navarro, Baptiste Olivier

2023-01-06

Abstract

We present a short tutorial on to the use of the R gasper package. Gasper is a package
dedicated to signal processing on graphs. It also provides an interface to the SuiteSparse Matrix
Collection.

1 Introduction

The emerging field of Graph Signal Processing (GSP) aims to bridge the gap between signal
processing and spectral graph theory. One of the objectives is to generalize fundamental analysis
operations from regular grid signals to irregular structures in the form of graphs. There is an
abundant literature on GSP, in particular we refer the reader to Shuman et al. [2013] and Ortega
et al. [2018] for an introduction to this field and an overview of recent developments, challenges
and applications. GSP has also given rise to numerous applications in machine/deep learning:
convolutional neural networks (CNN) on graphs Bruna et al. [2014], Henaff et al. [2015], Defferrard
et al. [2016], semi-supervised classification with graph CNN Kipf and Welling [2017], Hamilton et al.
[2017], community detection Tremblay and Borgnat [2014], to name just a few.

Different software programs exist for processing signals on graphs, in different languages. The Graph
Signal Processing toolbox (GSPbox) is an easy to use matlab toolbox that performs a wide variety
of operations on graphs. This toolbox was port to Python as the PyGSP Perraudin et al. [2014].
There is also another matlab toolbox the Spectral Graph Wavelet Transform (SGWT) toolbox
dedicated to the implementation of the SGWT developed in Hammond et al. [2011]. However, to
our knowledge, there are not yet any tools dedicated to GSP in R. A first version of the gasper

package is available online1. In particular, it includes the methodology and codes2 developed in de
Loynes et al. [2021] and provides an interface to the SuiteSparse Matrix Collection Davis and Hu
[2011].

2 Graphs Collection and Visualization

A certain number of graphs are present in the package. They are stored as an Rdata file which
contains a list consisting of the graph’s weight matrix W (in the form of a sparse matrix denoted by
sA) and the coordinates associated with the graph (if it has any).

1https://github.com/fabnavarro/gasper
2https://github.com/fabnavarro/SGWT-SURE

1

An interface is also provided. It allows to retrieve the matrices related to many problems provided
by the SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix
Collection) Davis and Hu [2011]. This collection is a large and actively growing set of sparse matrices
that arise in real applications (as structural engineering, computational fluid dynamics, computer
graphics/vision, optimization, economic and financial modeling, mathematics and statistics, to name
just a few). For more details see https://sparse.tamu.edu/.

The download_graph function allows to download a graph from this collection, based on the name
of the graph and the name of the group that provides it. An example is given below

matrixname <- "grid1"

groupname <- "AG-Monien"

download_graph(matrixname, groupname)

attributes(grid1)

#> $names

#> [1] "sA" "xy" "dim" "info"

The output is stored (in a temporary folder) as a list composed of:

• “sA” the corresponding sparse matrix (in compressed sparse column format);

str(grid1$sA)

#> Formal class 'dsCMatrix' [package "Matrix"] with 7 slots

#> ..@ i : int [1:476] 173 174 176 70 71 74 74 75 77 77 ...

#> ..@ p : int [1:253] 0 3 6 9 12 15 18 21 24 27 ...

#> ..@ Dim : int [1:2] 252 252

#> ..@ Dimnames:List of 2

#>$: NULL

#>$: NULL

#> ..@ x : num [1:476] 1 1 1 1 1 1 1 1 1 1 ...

#> ..@ uplo : chr "L"

#> ..@ factors : list()

• possibly coordinates “xy” (stored in a data.frame);

head(grid1$xy, 3)

#> x y

#> [1,] 0.00000 0.00000

#> [2,] 2.88763 3.85355

#> [3,] 3.14645 4.11237

• “dim” the numbers of rows, columns and numerically nonzero elements and

grid1$dim

#> NumRows NumCols NonZeros

#> 1 252 252 476

• “info” information about the matrix that can be display via file.show(grid1$info) for
example or in the console:

cat(readLines(grid1$info, n=14), sep = "\n")

#> %%MatrixMarket matrix coordinate pattern symmetric

2

https://sparse.tamu.edu/

#> %---

#> % UF Sparse Matrix Collection, Tim Davis

#> % http://www.cise.ufl.edu/research/sparse/matrices/AG-Monien/grid1

#> % name: AG-Monien/grid1

#> % [2D finite element problem]

#> % id: 2416

#> % date: 1998

#> % author: R. Diekmann, R. Preis

#> % ed: R. Diekmann, R. Preis

#> % fields: name title A id date author ed kind notes aux

#> % aux: coord

#> % kind: 2D/3D problem

#> %---

The package also allows to plot a (planar) graph using the function plot_graph. It also contains a
function to plot signals defined on top of the graph plot_signal.

f <- rnorm(nrow(grid1$sA))

plot_graph(grid1)

plot_signal(grid1, f, size = 2)

−2

−1

0

1

2

f

3 Example of application to denoising

We give an example of an application in the case of the denoising of a noisy signal f ∈ R
V defined

on a graph G with set of vertices V . More precisely, the (unnormalized) graph Laplacian matrix
L ∈ R

V ×V associated with G is the symmetric matrix defined as L = D − W , where W is the
matrix of weights with coefficients (wij)i,j∈V , and D the diagonal matrix with diagonal coefficients
Dii =

∑
j∈V wij . A signal f on the graph G is a function f : V → R.

The degradation model can be written as

f̃ = f + ξ,

3

where ξ ∼ N (0, σ2). The purpose of denoising is to build an estimator f̂ of f that depends only on
f̃ .

A simple way to construct an effective non-linear estimator is obtained by thresholding the SGWT
coefficients of f on a frame (see Hammond et al. [2011] for details about the SGWT).

A general thresholding operator τ with threshold parameter t ≥ 0 applied to some signal f is defined
as

τ(x, t) = xmax{1 − tβ |x|−β, 0}, (1)

with β ≥ 1. The most popular choices are the soft thresholding (β = 1), the James-Stein thresholding
(β = 2) and the hard thresholding (β = ∞).

Given the Laplacian and a given frame, denoising in this framework can be summarized as follows:

• Analysis: compute the SGWT transform W f̃ ;

• Thresholding: apply a given thresholding operator to the coefficients W f̃ ;

• Synthesis: apply the inverse SGWT transform to obtain an estimation f̂ of the original signal.

Each of these steps can be performed via one of the functions analysis, synthesis, beta_thresh.
Laplacian is given by the function laplacian_mat. The tight_frame function allows the construc-
tion of a tight frame based on Göbel et al. [2018] and Coulhon et al. [2012]. In order to select a
threshold value, we consider the method developed in de Loynes et al. [2021] which consists in
determining the threshold that minimizes the Stein unbiased risk estimator (SURE) in a graph
setting (see de Loynes et al. [2021] for more details).

We give an illustrative example on the grid1 graph from the previous section. We start by
calculating, the Laplacian matrix (from the adjacency matrix), its eigendecomposition and the
frame coefficients.

A <- grid1$sA

L <- laplacian_mat(A)

val1 <- eigensort(L)

evalues <- val1$evalues

evectors <- val1$evectors

#- largest eigenvalue

lmax <- max(evalues)

#- parameter that controls the scale number

b <- 2

tf <- tight_frame(evalues, evectors, b=b)

Wavelet frames can be seen as special filter banks. The tight-frame considered here is a finite
collection (ψj)j=0,...,J forming a finite partition of unity on the compact [0, λ1], where λ1 is the largest
eigenvalue of the Laplacian spectrum sp(L). This partition is defined as follows: let ω : R+ → [0, 1]
be some function with support in [0, 1], satisfying ω ≡ 1 on [0, b−1], for some b > 1, and set

ψ0(x) = ω(x) and ψj(x) = ω(b−jx) − ω(b−j+1x) for j = 1, . . . , J, where J =

⌊
log λ1

log b

⌋
+ 2.

Thanks to Parseval’s identity, the following set of vectors is a tight frame:

F =
{√

ψj(L)δi, j = 0, . . . , J, i ∈ V
}
.

4

The plot_filter function allows to represent the elements (filters) of this partition.

plot_filter(lmax,b)

0 2 4 6 8

0
.0

0
.4

0
.8

λ

The SGWT of a signal f ∈ R
V is given by

Wf =
(√

ψ0(L)fT , . . . ,
√
ψJ(L)fT

)T
∈ R

n(J+1).

The adjoint linear transformation W∗ of W is:

W∗
(
ηT

0 , η
T
1 , . . . , η

T
J

)T
=

∑

j≥0

√
ψj(L)ηj .

The tightness of the underlying frame implies that W∗W = IdRV so that a signal f ∈ R
V can be

recovered by applying W∗ to its wavelet coefficients ((Wf)i)i=1,...,n(J+1) ∈ R
n(J+1).

Then, noisy observations f̃ are generated from a random signal f .

n <- nrow(L)

f <- randsignal(0.01, 3, A)

sigma <- 0.01

noise <- rnorm(n, sd = sigma)

tilde_f <- f + noise

Below is a graphical representation of the original signal and its noisy version.

plot_signal(grid1, f, size = 2)

plot_signal(grid1, tilde_f, size = 2)

5

0.00

0.05

0.10

f

0.00

0.05

0.10

0.15

f

We compute the SGWT transforms W f̃ and Wf .

wcn <- analysis(tilde_f,tf)

wcf <- analysis(f,tf)

An alternative to avoid frame calculation is given by the forward_sgwt function which provides a
fast forward SGWT. For exemple:

wcf <- forward_sgwt(f, evalues, evectors, b=b)

The optimal threshold is then determined by minimizing the SURE (using Donoho and Johnstone’s
trick Donoho and Johnstone [1995] which remains valid here, see de Loynes et al. [2021]). More
precisely, the SURE for a general thresholding process h is given by the following identity

SURE(h) = −nσ2 + ‖h(F̃) − F̃‖2 + 2

n(J+1)∑

i,j=1

γ2
i,j∂jhi(F̃), (2)

where γ2
i,j = σ2(WW∗)i,j that can be computed from the frame (or estimated via Monte-Carlo

simulation). The SURE_thresh/SURE_MSEthreshallow to evaluate the SURE (in a global fashion)
considering the general thresholding operator τ (1) (the parameter b stands for β in the definition).
These functions provide two different ways of applying the threshold, “uniform” and “dependent”
(i.e., the same threshold for each coefficient vs a threshold normalized by the variance of each
coefficient). The second approach generally provides better results (especially when the weights
have been calculated via the frame). A comparative example of these two approaches is given below
(with β = 2 James-Stein attenuation threshold).

diagWWt <- colSums(t(tf)ˆ2)

thresh <- sort(abs(wcn))

opt_thresh_d <- SURE_MSEthresh(wcn,

wcf,

thresh,

diagWWt,

b=2,

sigma,

6

NA,

policy = "dependent",

keepwc = TRUE)

opt_thresh_u <- SURE_MSEthresh(wcn,

wcf,

thresh,

diagWWt,

b=2,

sigma,

NA,

policy = "uniform",

keepwc = TRUE)

We can plot MSE risks and their SUREs estimates as a function of the threshold parameter (assuming
that σ is known).

plot(thresh, opt_thresh_uresMSE,

type="l", xlab = "t", ylab = "risk", log="x")

lines(thresh, opt_thresh_uresSURE-n*sigmaˆ2, col="red")

lines(thresh, opt_thresh_dresMSE, lty=2)

lines(thresh, opt_thresh_dresSURE-n*sigmaˆ2, col="red", lty=2)

legend("topleft", legend=c("MSE_u", "SURE_u",

"MSE_d", "SURE_d"),

col=rep(c("black", "red"), 2),

lty=c(1,1,2,2), cex = 1)

1e−05 1e−04 1e−03 1e−02 1e−01

0
.0

5
0
.1

0
0
.1

5

t

ri
s
k

MSE_u

SURE_u

MSE_d

SURE_d

Finally, the synthesis allows us to determine the resulting estimators of f , i.e., the ones that
minimize the unknown MSE risks and the ones that minimizes the SUREs.

wc_oracle_u <- opt_thresh_u$wc[, opt_thresh_u$min[1]]

wc_oracle_d <- opt_thresh_d$wc[, opt_thresh_d$min[1]]

7

wc_SURE_u <- opt_thresh_u$wc[, opt_thresh_u$min[2]]

wc_SURE_d <- opt_thresh_d$wc[, opt_thresh_d$min[2]]

hatf_oracle_u <- synthesis(wc_oracle_u, tf)

hatf_oracle_d <- synthesis(wc_oracle_d, tf)

hatf_SURE_u <- synthesis(wc_SURE_u, tf)

hatf_SURE_d <- synthesis(wc_SURE_d, tf)

res <- data.frame("Input_SNR"=round(SNR(f,tilde_f),2),

"MSE_u"=round(SNR(f,hatf_oracle_u),2),

"SURE_u"=round(SNR(f,hatf_SURE_u),2),

"MSE_d"=round(SNR(f,hatf_oracle_d),2),

"SURE_d"=round(SNR(f,hatf_SURE_d),2))

Table 1: Uniform vs Dependent

Input_SNR MSE_u SURE_u MSE_d SURE_d

8.24 12.55 12.15 14.38 14.38

It can be seen form Table 1 that in both cases, SURE provides a good estimator of the MSE and
therefore the resulting estimators have performances close (in terms of SNR) to those obtained by
minimizing the unknown risk.

Equivalently, estimators can be obtained by the inverse of the SGWT given by the function
inverse_sgwt. For exemple:

hatf_oracle_u <- inverse_sgwt(wc_oracle_u,

evalues, evectors, b)

Or if the coefficients have not been stored for each threshold value (i.e., with the argument
“keepwc=FALSE” when calling SUREthresh) using the thresholding function beta_thresh, e.g.,

wc_oracle_u <- betathresh(wcn,

thresh[opt_thresh_u$min[[1]]], 2)

Bibliography

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In ICLR, 2014.

Thierry Coulhon, Gerard Kerkyacharian, and Pencho Petrushev. Heat kernel generated frames
in the setting of dirichlet spaces. Journal of Fourier Analysis and Applications, 18(5):995–1066,
2012.

Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Transactions
on Mathematical Software (TOMS), 38(1):1, 2011.

Basile de Loynes, Fabien Navarro, and Baptiste Olivier. Data-driven thresholding in denoising

8

with spectral graph wavelet transform. Journal of Computational and Applied Mathematics, 389:
113319, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, pages 3844–3852, 2016.

David L. Donoho and Iain M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage.
J. Amer. Statist. Assoc., 90(432):1200–1224, 1995.

Franziska Göbel, Gilles Blanchard, and Ulrike von Luxburg. Construction of tight frames on graphs
and application to denoising. In Handbook of big data analytics, Springer Handb. Comput. Stat.,
pages 503–522. Springer, Cham, 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pages 1024–1034, 2017.

David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. In NIPS, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):
808–828, 2018.

Nathanaël Perraudin, Johan Paratte, David Shuman, Lionel Martin, Vassilis Kalofolias, Pierre
Vandergheynst, and David K. Hammond. GSPBOX: A toolbox for signal processing on graphs.
ArXiv e-prints, August 2014.

David Shuman, Sunil Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Processing Magazine, 3(30):83–98, 2013.

Nicolas Tremblay and Pierre Borgnat. Graph wavelets for multiscale community mining. IEEE
Trans. Signal Process., 62(20):5227–5239, 2014.

9

	Introduction
	Graphs Collection and Visualization
	Example of application to denoising

