
Package ‘glmmrOptim’
January 20, 2023

Type Package

Title Approximate Optimal Experimental Designs Using Generalised
Linear Mixed Models

Version 0.2.2

Date 2023-01-19

Maintainer Sam Watson <S.I.Watson@bham.ac.uk>

Description Optimal design analysis algorithms for any study design that can be represented or
modelled as a generalised linear mixed model including cluster randomised trials,
cohort studies, spatial and temporal epidemiological studies, and split-plot designs.
See <https://github.com/samuel-watson/glmmrBase/blob/master/README.md> for a
detailed manual on model specification. A detailed discussion of the methods in this
package can be found in Watson and Pan (2022) <arXiv:2207.09183>.

License GPL (>= 2)

Imports methods, Rcpp (>= 1.0.7), digest

LinkingTo Rcpp (>= 1.0.7), RcppEigen, glmmrBase (>= 0.2.3)

RoxygenNote 7.2.1

NeedsCompilation yes

Author Sam Watson [aut, cre],
Yi Pan [aut]

URL https://github.com/samuel-watson/glmmrOptim

BugReports https://github.com/samuel-watson/glmmrOptim/issues

Suggests testthat, CVXR

Biarch true

Depends R (>= 3.4.0), Matrix, glmmrBase

SystemRequirements GNU make

Encoding UTF-8

Repository CRAN

Date/Publication 2023-01-20 10:20:02 UTC

1

https://github.com/samuel-watson/glmmrBase/blob/master/README.md
https://arxiv.org/abs/2207.09183
https://github.com/samuel-watson/glmmrOptim
https://github.com/samuel-watson/glmmrOptim/issues


2 apportion

R topics documented:
apportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
DesignSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
GradRobustStep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Index 13

apportion Generate exact designs from approximate weights

Description

Given a set of optimal weights for experimental conditions generate exact designs using several
rounding methods.

Usage

apportion(w, n)

Arguments

w A vector of weights.

n The size of the exact designs to return.

Details

Allocating ‘n‘ items to ‘k‘ groups proportionally to set of weights ‘w‘ is known as the apportion-
ment problem. The problem most famously arose when determining how many members each state
should have in the U.S. House of Representatives based on their proportion of the population. The
solutions are named after their proposers in the early U.S. Hamilton’s method initially allocates
‘floor(n*w)‘ observations to each experimental condition and then allocates the remaining obser-
vations based on the largest remainders ‘n*w - floor(n*w)‘. The other methods (Adams, Jefferson,
and Webster) are divisor methods. The vector of counts is ‘m‘, which is either all zeros for Jefferson
and Webster and all ones for Adams, and we define ‘pi <- n*w‘ and then iteratively add observa-
tions based on the largest values of ‘pi/alpha‘ where ‘alpha‘ is either: * m + 0.5 (Webster) * m +
1 (Jefferson) * m (Adams) Pukelsheim and Rieder, 1996 <doi:10.2307/2337232> discuss efficient
rounding of experimental condition weights and determine that a variant of Adam’s method is the
most efficient. Results using this method are labelled "Pukelsheim" in the output; there may be mul-
tiple designs using this procedure. Pukelsheim and Rieder’s method assumes there is a minimum of
one experimental condition of each type, whereas the other methods do not have this restriction.

Value

A named list. The names correspond to the method of rounding (see Details), and the entries are
vectors of integers indicating the count of each type of experimental condition.



DesignSpace 3

Examples

w <- c(0.45,0.03,0.02,0.02,0.03,0.45)
apportion(w,10)

DesignSpace A GLMM Design Space

Description

A GLMM Design Space

A GLMM Design Space

Details

A class-based representation of a "design space" that contains one or more Model objects.

An experimental study is comprised of a collection of experimental conditions, which are one or
more observations made a pre-specified locations/values of covariates. A design space represents
the collection of all possible experimental conditions for the study design and plausible models
describing the data generating process. The main purpose of this class is to identify optimal study
designs, that is the set of ‘n‘ experimental conditions from all possible experimental conditions that
minimise the variance of a parameter of interest across the specified GLMMs.

A ‘DesignSpace‘ object is intialised using one or more Model objects. Design objects can be added
or removed from the collection. All designs must have the same number of rows in their design
matrices (X and Z) and the same number of experimental conditions. The DesignSpace functions
can modify the linked design objects.

**Initialisation** The experimental condition refers to the smallest "unit" of the study design that
could be included in the design. For example, in a cluster randomised trial, the experimental condi-
tion may be single individuals such that we can observed any number of individuals in any cluster
period (including none at all). In this case the experimental condition would be equivalent to row
number. Alternatively, we may have to observe whole cluster periods, and we need to choose which
cluster periods to observe, in which case the each observation in a different cluster-period would
have the same experimental condition identifier. Finally, we may determine that the whole cluster
in all periods (a "sequence") is either observed or not.

**Approximate c-Optimal designs** The function returns approximate c-optimal design(s) of size
m from the design space with N experimental conditions. The objective function is

CTM−1C

where M is the information matrix and C is a vector. Typically C will be a vector of zeros with
a single 1 in the position of the parameter of interest. For example, if the columns of X in the
design are an interdept, the treatment indicator, and then time period indicators, the vector C may
be ‘c(0,1,0,0,...)‘, such that the objective function is the variance of that parameter. If there are
multiple designs in the design space, the C vectors do not have to be the same as the columns of X
in each design might differ.



4 DesignSpace

If the experimental conditions are correlated with one another, then one of three combinatorial al-
gorithms can be used, see Watson and Pan, 2022 <arXiv:2207.09183>. The algorithms are: (i)
local search, which starts from a random design of size m and then makes the best swap between an
experimental condition in and out of the design until no variance improving swap can be made; (ii)
greedy search, which starts from a design of size p « n and then sequentially adds the best experi-
mental condition until it generates a design of size m; (iii) reverse greedy search, which starts from
the complete set of N experimental conditions and sequentially removes the worst experimental
condition until it generates a design of size m. Note that only the local search has provable bounds
on the solution.

If the experimental conditional are uncorrelated (but there is correlation between observations
within the same experimental condition) then optionally an alternative algorithm can be used to ap-
proximate the optimal design using a second-order cone program (see Sangol, 2015 <doi:10.1016/j.jspi.2010.11.031>
and Holland-Letz et al 2011 <doi:10.1111/j.1467-9868.2010.00757.x>). The approximate algo-
rithm will return weights in [0,1] for each unique experimental condition representing the "propor-
tion of effort" to spend on each design condition. There are different ways to translate these weights
into integer values, which are returned see apportion. Use of the approximate optimal design algo-
rithm can be disabled used ‘use_combin=TRUE‘

In some cases the optimal design will not be full rank with respect to the design matrix X of the
design space. This will result in a non-positive definite information matrix, and an error. The
program will indicate which columns of X are likely "empty" in the optimal design. The user can
then optionally remove these columns in the algorithm using the ‘rm_cols‘ argument, which will
delete the specified columns and linked observations before starting the algorithm.

The algorithm will also identify robust optimal designs if there are multiple designs in the design
space. There are two options for robust optimisation. Both involve a weighted combination of the
value of the function from each design, where the weights are specified by the ‘weights‘ field in
the design space. The weights represent the prior probability or plausibility of each design. The
weighted sum is either a sum of the absolute value of the c-optimal criterion or its log (e.g. see
Dette, 1993 <doi:10.1214/aos/1176349149>).

Value

An environment that is ‘DesignSpace‘ class object

Public fields

weights A vector denoting the prior weighting of each Design in the design space. Required if
robust optimisation is used based on a weighted average variance over the linked designs. If
it is not specified in the call to ‘new()‘ then designs are assumed to have equal weighting.

experimental_condition A vector indicating the unique identifier of the experimental condition
for each observation/row in the matrices X and Z.

Methods

Public methods:

• DesignSpace$new()

• DesignSpace$add()

• DesignSpace$remove()



DesignSpace 5

• DesignSpace$print()

• DesignSpace$n()

• DesignSpace$optimal()

• DesignSpace$show()

• DesignSpace$clone()

Method new(): Create a new Design Space
Creates a new design space from one or more glmmr designs.

Usage:
DesignSpace$new(..., weights = NULL, experimental_condition = NULL)

Arguments:
... One or more glmmrBase Model objects. The designs must have an equal number of obser-

vations.
weights Optional. A numeric vector of values between 0 and 1 indicating the prior weights

to assign to each of the designs. The weights are required for optimisation, if a weighted
average variance is used across the designs. If not specified then designs are assumed to
have equal weighting.

experimental_condition Optional. A vector of the same length as the number of obser-
vations in each design indicating the unique identifier of the experimental condition that
observation belongs to, see Details. If not provided, then it is assumed that all observations
are separate experimental conditions.

Returns: A ‘DesignSpace‘ object

Examples:
df <- nelder(~ ((int(2)*t(3)) > cl(3)) > ind(5))
df$int <- df$int - 1
des <- Model$new(covariance = list(formula = ~ (1|gr(cl)) + (1|gr(cl*t)),

parameters = c(0.25,0.1)),
mean = list(formula = ~ int + factor(t) - 1,

parameters = rep(0,4)),
data=df,
family=gaussian(),
var_par = 1)

ds <- DesignSpace$new(des)
#add another design
des2 <- des$clone(deep=TRUE)
des2$covariance <- Covariance$new(data = df,

formula = ~ (1|gr(cl)*ar1(t)),
parameters = c(0.25,0.8))

ds$add(des2)
#report the size of the design
ds$n()
#we can access specific designs
ds$show(2)$n()
#and then remove it
ds$remove(2)
#or we could add them when we construct object



6 DesignSpace

ds <- DesignSpace$new(des,des2)
#we can specify weights
ds <- DesignSpace$new(des,des2,weights=c(0.1,0.9))
#and add experimental conditions
ds <- DesignSpace$new(des,des2,experimental_condition = df$cl)

Method add(): Add a design to the design space

Usage:
DesignSpace$add(x)

Arguments:
x A ‘Design‘ to add to the design space

Returns: Nothing

Examples:
#See examples for constructing the class

Method remove(): Removes a design from the design space

Usage:
DesignSpace$remove(index)

Arguments:
index Index of the design to remove

Returns: Nothing

Examples:
#See examples for constructing the class

Method print(): Print method for the Design Space

Usage:
DesignSpace$print()

Arguments:
... ignored

Returns: Prints to the console all the designs in the design space

Examples:
#See examples for constructing the class

Method n(): Returns the size of the design space and number of observations

Usage:
DesignSpace$n()

Examples:
#See examples for constructing the class

Method optimal(): Approximate c-optimal design of size m
Algorithms to identify an approximate c-optimal design of size m within the design space.

Usage:



DesignSpace 7

DesignSpace$optimal(
m,
C,
V0 = NULL,
rm_cols = NULL,
keep = FALSE,
verbose = TRUE,
algo = c(1),
use_combin = FALSE,
robust_log = FALSE,
p

)

Arguments:
m A positive integer specifying the number of experimental conditions to include.
C Either a vector or a list of vectors of the same length as the number of designs, see Details.
V0 Optional. If a Bayesian c-optimality problem then this should be a list of prior covariance

matrices for the model parameters the same length as the number of designs.
rm_cols Optional. A list of vectors indicating columns of X to remove from each design, see

Details.
keep Logical indicating whether to "keep" the optimal design in the linked design objects and

remove any experimental conditions and columns that are not part of the optimal design.
Irreversible, so that these observations will be lost from the linked design objects. Defaults
to FALSE.

verbose Logical indicating whether to reported detailed output on the progress of the algo-
rithm. Default is TRUE.

algo A vector of integers indicating the algorithm(s) to use. 1 = local search, 2 = greedy
search, 3 = reverse greedy search. Declaring ‘algo = 1‘ for example will use the local
search. Providing a vector such as ‘c(3,1)‘ will execute the algorithms in order, so this
would run a reverse greedy search followed by a local search. Note that many combinations
will be redundant. For example, running a greedy search after a local search will not have
any effect.

use_combin Logical. If the experimental conditions are uncorrelated, if this option is TRUE
then the hill climbing algorithm will be used, otherwise if it is FALSE, then a fast approxi-
mate alternative will be used. See Details

robust_log Logical. If TRUE and there are multiple designs in the design space then the
robust criterion will be a sum of the log of the c-optimality criterion weighted by the study
weights, and if FALSE then it will be a weighted sum of the absolute value.

p Positive integer specifying the size of the starting design for the greedy algorithm

Returns: A named list. If using the weighting method then the list contains the optimal exper-
imental weights and a list of exact designs of size ‘m‘, see apportion. If using a combinatorial
algorithm then the list contains the rows in the optimal design, the indexes of the experimental
conditions in the optimal design, the variance from this design, and the total number of function
evaluations. Optionally the linked designs are also modified (see option ‘keep‘).

Examples:
df <- nelder(~(cl(6)*t(5)) > ind(5))
df$int <- 0



8 DesignSpace

df[df$t >= df$cl, 'int'] <- 1
des <- Model$new(
covariance = list(formula = ~ (1|gr(cl)),

parameters = c(0.25)),
mean = list(formula = ~ factor(t) + int - 1,

parameters = c(rep(0,5),0.6)),
data=df,
family=gaussian(),
var_par = 1

)
ds <- DesignSpace$new(des)

#find the optimal design of size 30 individuals using local search
opt <- ds$optimal(30,C=list(c(rep(0,5),1)),algo=1)
#find the optimal design of size 30 individuals using reverse greedy search
opt2 <- ds$optimal(30,C=list(c(rep(0,5),1)),algo=3)

#let the experimental condition be the cluster
# these experimental conditions are independent of one another
ds <- DesignSpace$new(des,experimental_condition = df$cl)
# now find the optimal 4 clusters to include
# approximately, finding the weights for each condition
opt <- ds$optimal(4,C=list(c(rep(0,5),1)))
# or use the local search algorithm
opt <- ds$optimal(4,C=list(c(rep(0,5),1)),use_combin = TRUE,algo=1)

#robust optimisation using two designs
des2 <- des$clone(deep=TRUE)
des2$covariance <- Covariance$new(
data = df,
formula = ~ (1|gr(cl)*ar1(t)),
parameters = c(0.25,0.8)

)
ds <- DesignSpace$new(des,des2)
#weighted average assuming equal weights using local search
opt <- ds$optimal(30,C=list(c(rep(0,5),1),c(rep(0,5),1)))

Method show(): Returns a linked design

Usage:
DesignSpace$show(i)

Arguments:

i Index of the design to return

Examples:

#See examples for constructing the class

Method clone(): The objects of this class are cloneable with this method.

Usage:



DesignSpace 9

DesignSpace$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `DesignSpace$new`
## ------------------------------------------------

df <- nelder(~ ((int(2)*t(3)) > cl(3)) > ind(5))
df$int <- df$int - 1
des <- Model$new(covariance = list(formula = ~ (1|gr(cl)) + (1|gr(cl*t)),

parameters = c(0.25,0.1)),
mean = list(formula = ~ int + factor(t) - 1,

parameters = rep(0,4)),
data=df,
family=gaussian(),
var_par = 1)

ds <- DesignSpace$new(des)
#add another design
des2 <- des$clone(deep=TRUE)
des2$covariance <- Covariance$new(data = df,

formula = ~ (1|gr(cl)*ar1(t)),
parameters = c(0.25,0.8))

ds$add(des2)
#report the size of the design
ds$n()
#we can access specific designs
ds$show(2)$n()
#and then remove it
ds$remove(2)
#or we could add them when we construct object
ds <- DesignSpace$new(des,des2)
#we can specify weights
ds <- DesignSpace$new(des,des2,weights=c(0.1,0.9))
#and add experimental conditions
ds <- DesignSpace$new(des,des2,experimental_condition = df$cl)

## ------------------------------------------------
## Method `DesignSpace$add`
## ------------------------------------------------

#See examples for constructing the class

## ------------------------------------------------
## Method `DesignSpace$remove`
## ------------------------------------------------

#See examples for constructing the class



10 DesignSpace

## ------------------------------------------------
## Method `DesignSpace$print`
## ------------------------------------------------

#See examples for constructing the class

## ------------------------------------------------
## Method `DesignSpace$n`
## ------------------------------------------------

#See examples for constructing the class

## ------------------------------------------------
## Method `DesignSpace$optimal`
## ------------------------------------------------

df <- nelder(~(cl(6)*t(5)) > ind(5))
df$int <- 0
df[df$t >= df$cl, 'int'] <- 1
des <- Model$new(

covariance = list(formula = ~ (1|gr(cl)),
parameters = c(0.25)),

mean = list(formula = ~ factor(t) + int - 1,
parameters = c(rep(0,5),0.6)),

data=df,
family=gaussian(),
var_par = 1

)
ds <- DesignSpace$new(des)

#find the optimal design of size 30 individuals using local search
opt <- ds$optimal(30,C=list(c(rep(0,5),1)),algo=1)
#find the optimal design of size 30 individuals using reverse greedy search
opt2 <- ds$optimal(30,C=list(c(rep(0,5),1)),algo=3)

#let the experimental condition be the cluster
# these experimental conditions are independent of one another
ds <- DesignSpace$new(des,experimental_condition = df$cl)
# now find the optimal 4 clusters to include
# approximately, finding the weights for each condition
opt <- ds$optimal(4,C=list(c(rep(0,5),1)))
# or use the local search algorithm
opt <- ds$optimal(4,C=list(c(rep(0,5),1)),use_combin = TRUE,algo=1)

#robust optimisation using two designs
des2 <- des$clone(deep=TRUE)
des2$covariance <- Covariance$new(

data = df,
formula = ~ (1|gr(cl)*ar1(t)),
parameters = c(0.25,0.8)

)
ds <- DesignSpace$new(des,des2)
#weighted average assuming equal weights using local search



GradRobustStep 11

opt <- ds$optimal(30,C=list(c(rep(0,5),1),c(rep(0,5),1)))

## ------------------------------------------------
## Method `DesignSpace$show`
## ------------------------------------------------

#See examples for constructing the class

GradRobustStep Range of combinatorials algorithms to identify approximate optimal
GLMM design

Description

Range of combinatorials algorithms to identify approximate optimal GLMM design

Usage

GradRobustStep(
idx_in,
n,
C_list,
X_list,
Z_list,
D_list,
w_diag,
max_obs,
weights,
exp_cond,
nmax,
V0_list,
type,
robust_log = FALSE,
trace = TRUE,
uncorr = FALSE,
bayes = FALSE

)

Arguments

idx_in Integer vector specifying the indexes of the experimental conditions to start from

n Integer specifying the size of the design to find. For local search, this should be
equal to the size of idx_in

C_list List of C vectors for the c-optimal function, see DesignSpace

X_list List of X matrices, where X is the matrix of covariates in the regression model

Z_list List of Z matrices where Z is the design matrix of random effects terms



12 GradRobustStep

D_list List of D matrices, where D is the covariance matrix of the random effects

w_diag Matrix with each column corresponding to the diagonal of the individual level
variance matrix, see Model for details

max_obs Vector of integers specifying the maximum number of copies of each experi-
mental condition

weights Vector specifying the weights of each design

exp_cond Vector specifying the experimental condition index of each observation

nmax Integer specifying the maximum number of rows of matrices X and Z during the
algorithm.

V0_list List of prior covariance matrices for the model parameters

type Integer. 0 = local search algorithm. 1 = local+greedy+local. 2 = local+greedy.
3 = greedy+local

robust_log Logical indicating to use a weighted sum of log (TRUE) or absolute (FALSE)
values of the c-optimal function when using a robust criterion.

trace Logical indicating whether to provide detailed output

uncorr Logical indicating whether to treat all the experimental conditions as uncorre-
lated (TRUE) or not (FALSE)

bayes Logical indicating whether to use a Bayesian model with prior distributions on
model parameters (TRUE) or a likelihood based model (FALSE)

Value

A list containing: a vector of experimental condition indexes in the optimal design, the variance of
the optimal design, the number of function calls and matrix operations, and an indicator for whether
a Bayesian model was used.



Index

apportion, 2, 4, 7

DesignSpace, 3, 11

GradRobustStep, 11

Model, 3, 5, 12

13


	apportion
	DesignSpace
	GradRobustStep
	Index

