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The Package

For some datasets, for example when there are collinearities in the design matrix x, glmnet may have very
long run times when fitting the relaxed lasso model, making it difficult to get solutions either from cv.glmnet
or even glmnet. In this package, glmnetr, we provide a workaround and solve for the unpenalized relaxed
model where gamma=0 for the linear, logsitc and Cox regression model structures using the stats glm()
function and the R survival pacakge coxph() function. If you are not fitting relaxed lasso models, or if you
are able to reasonably quickly get convergence using glmnet, then this package may not be of much benefit
to you. Note, while this package may allow one to fit relaxed lasso models that have difficulties converging
using glmnet, this package does not afford the full function and versatility of glmnet.

In addition to fitting the relaxed lasso model this package also includes the function cv.glmnetr() to
perform a cross validation (CV) to identify hyperparameters for a lasso fit, much like the cv.glmnet() function
of the glmnet package. Additionally, the package includes the function nested.glmnetr() to perform a nested
CV to assess the fit of a cross validation informed lasso model fit. If though you are fitting not a relaxed lasso
model but an elastic-net model, then the R-packages nestedcv ( https://cran.r-project.org/package=nestedcv
), ‘glmnetSE’ ( https://cran.r-project.org/package=glmnetSE ) or others may provide greater functionality
when performing a nested CV.

As with the glmnet package, this package passes most relevant information to the output object which can
be evaluated using plot, summary and predict functions. Use of the glmnetr package has many similarites
to the glmnet package and it is recommended that the user of glmnetr first become familiar with the glmnet
package ( https://cran.r-project.org/package=glmnet ), with the “An Introduction to glmnet” and “The
Relaxed Lasso” being especially helpful in this regard.

Data requirements

The basic data elements for input to the glmnetr analysis programs are similar to those of glmnet and
include 1) a matrix of predictors and 2) an outcome variable or variables in vector form. For the estimation
of the “fully” relaxed models (where gamma=0) the package is set up to fit the “gaussian” and “binomial”
models using the stats glm() function and Cox survival models using the the coxph() function of the survival
package. When fitting the Cox model the outcome model variable is interpreted as the “time” variable in
the Cox model, and one must also specify 3) a variable for event, agian in vector form, and optionally 4)
a variable for start time, also in vector form. Row i of the predictor matrix and element i of the outcome
vector(s) are to include the data for the same sampling unit.

An example dataset

To demonstrate usage of glmnetr we first generate a data set for analysis, run an analysis and evaluate
using the plot(), summary() and predict() functions.

The code
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# Simulate data for use in an example relaxed lasso fit of survival data
# first, optionally, assign a seed for random number generation to get applicable results
set.seed(116291949)
simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)

generates simulated data for analysis. We extract data in the format required for input to the glmnetr
programs.

# Extract simulated survival data
xs = simdata$xs # matrix of predictors
y_ = simdata$yt # vector of survival times
event = simdata$event # indicator of event vs. censoring

Inspecting the predictor matrix we see

# Check the sample size and number of predictors
print(dim(xs))

## [1] 1000 100

# Check the rank of the design matrix, i.e. the degrees of freedom in the predictors
rankMatrix(xs)[[1]]

## [1] 94

# Inspect the first few rows and some select columns
print(xs[1:10,c(1:12,18:20)])

## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X18 X19 X20
## [1,] 1 1 0 0 0 0 0 0 0 1 0 1 0.1513225 -0.4034383 0.35250844
## [2,] 1 0 0 0 1 0 0 1 0 0 0 0 -1.1610480 0.5533030 0.14578868
## [3,] 1 0 0 1 0 0 1 0 0 0 0 0 -0.3292269 0.3086399 -0.48443836
## [4,] 1 1 0 0 0 0 0 0 0 1 0 0 2.0635214 -0.5500741 -0.02173104
## [5,] 1 0 0 0 1 0 0 1 0 0 0 0 0.3905722 -0.6836452 -0.37643201
## [6,] 1 0 1 0 0 0 0 0 1 0 0 0 -0.2397597 1.6909447 0.49599945
## [7,] 1 0 1 0 0 0 0 1 0 0 0 0 -0.5592424 0.2314638 -0.53198341
## [8,] 1 0 0 1 0 0 0 0 0 0 1 0 -1.0050514 0.5319574 0.54287646
## [9,] 1 0 0 1 0 0 0 0 0 0 1 0 1.2548034 0.8213164 0.17067691
## [10,] 1 0 0 0 1 0 0 0 1 0 0 0 -0.3079151 -0.6105910 -0.88711869

Cross validation (CV) informed relaxed lasso model fit

To fit a relaxed lasso model and get reasonable hyperparameters for lambda and gamma, and summarize
the cross-validated “tuned” model fit, we can use the function cv.glmnet() and summary() functions.

# Fit a relaxed lasso model informed by cross validation
cv.cox.fit = suppressWarnings( cv.glmnetr(xs, NULL, y_, event, family="cox") )
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Note, in the derivation of the relaxed lasso model fits, individual coefficients may be unstable even when the
model may be stable which elicits warning messages. Thus we “wrapped” the call to cv.glmnetr() within
the suppressWarnings() function to suppress excessive warning messages in this vignette. The first term in
the call to cv.glmnetr(), xs, is the design matrix for predictors. The second input term, here NULL, is for
the start time in case (start, stop) time data setup is used in a Cox survival model. The third term is the
outcome variable for the linear regression or logistic regression model and the time of event or censoring in
case of the Cox model, and finally the forth term is the event indicator variable for the Cox model taking the
value 1 in case of an event or 0 in case of censoring at time y_. The forth term would be NULL for either
linear or logistic regression. Currently the options for family are “guassian” for linear regression , “binomial”
for logistic regression (both using the stats glm() function) and “cox” for the Cox proportional hazards
regression model using the coxph() function of the R survival package. | Before numerically summarizing
the model fit, or inspecting the coefficient estimates, we plot the average deviances using the plot function.

# Plot cross validation average deviances for a relaxed lasso model
plot(cv.cox.fit)

## min CV average deviance (max log likelihood) for
## relaxed at log(lambda) = -3.937, gamma.min = 0.75, df = 36
## fully relaxed at log(lambda) = -3.472, df = 18
## fully penalized at log(lambda) = -4.216, df = 48
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In that to maximize the log-likelihoods is to minimize deviance we inspect these curves for a minimum.
The minimizing lambda is indicated by the left most vertical line, here about log(lambda) = -3.94. The
minimizing gamma is 0.75 and described in the title. Whereas there is no legend here for gamma, when
non-zero coefficients start to enter the model as the penalty is reduced, here shown to the right, deviances
will tend to be smaller for gamma = 0, greater for gamma = 1 and in between for other gammas values.
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From this figure we also see that at lambda=0.75 the deviance is hardly distinguishable for gamma ranging
from 0.5 to 1. More relevant we see that the fully relaxed lasso (gamma=0) and indicated by the right most
vertical line, achieves a “nearly” minimal deviance at about -3.47.

# Plot coefficients informed by a cross validation
plot(cv.cox.fit, coefs=TRUE)

## min CV average deviance (max log likelihood)
## at log(lambda.min) = -3.937, gamma.min = 0.75, df = 36
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In this plot of coefficients we use the same orientation for lambda as in the plot for deviances with larger
values of the lambda penalty to the right and corresponding to fewer non-zero coefficients. The displayed
coefficients are for the minimizing gamma=0.75 as noted in the tile, and the minimizing lambda indicated
by the vertical line. Now, since the fully relaxed lasso model had a deviance almost that of the relaxed lasso
model we also plot the coefficients using the option gam=0.

# Plot fully relaxed coefficients informed by a cross validation
plot(cv.cox.fit, coefs=TRUE, gam=0)

## Fully relaxed min CV average deviance (max log likelihood)
## at log(lambda.min) = -3.472, df = 18
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In addition to simply showing how the coefficients change as the lambda penalty is decreased, this plot
shows how the coefficients change for the un-penalized (fully relaxed) model with gamma=0 as lambda
decreases. In particular we see the coefficients become slightly larger in magnitude as the lambda penalty
decreases and also as additional terms come into the model. This is not unexpected as omitted terms from
the Cox model tend to bias coefficients toward 0 more than increase the standard error. We also see, as too
indicated in the deviance plot, the number of model non-zero coefficients, 18, to be substantially less than
the 36 from the relaxed lasso fit and the 48 from the fully penalized lasso fit.
| The summary function describes the relaxed lasso fit informed by CV.

# Summarize relaxed lasso model fit informed by cross validation
summary(cv.cox.fit)

##
## The relaxed minimum is obtained for lambda = 0.01950023 , index = 30 and gamma = 0.75
## with df (number of non-zero terms) = 36, average deviance = 5.380322 and beta =
## X4 X5 X8 X14 X15
## -9.298178e-01 1.711721e+00 -1.885456e-01 -7.454261e-01 1.190965e-14
## X16 X17 X18 X19 X20
## 4.167433e-01 -1.302087e-15 -1.362967e+00 -3.625131e-01 2.922682e-02
## X21 X22 X23 X24 X25
## -3.182677e-01 6.426824e-01 -2.134638e-01 -2.569618e-01 -2.012441e+00
## X29 X30 X34 X35 X38
## 2.389336e-02 2.816325e-02 2.602897e-02 2.119959e-02 1.064479e-01
## X39 X43 X49 X50 X58
## 2.293174e-02 -5.218288e-02 -7.819052e-02 3.211853e-02 3.392804e-02
## X59 X60 X61 X62 X67
## -3.948692e-02 -4.923017e-02 -7.808802e-02 -8.469542e-02 1.799604e-02
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## X71 X72 X77 X87 X96
## -4.703098e-02 -1.302645e-01 4.472362e-02 1.123160e-01 -8.482900e-02
## X99
## -2.308179e-02
##
## The fully relaxed (gamma=0) minimum is obtained for lambda = 0.03104988 and index = 25
## with df (number of non-zero terms) = 17, average deviance = 5.455056 and beta =
## X4 X5 X8 X14 X18 X19 X21
## -1.0991234 1.9492327 -0.4643855 -0.6377441 -1.5308945 -0.4075762 -0.3687472
## X22 X23 X24 X25 X38 X61 X62
## 0.7625238 -0.2999622 -0.3593211 -2.2920690 0.1993155 -0.1477441 -0.1403819
## X72 X87 X96
## -0.1784984 0.1874497 -0.1588458
##
## The UNrelaxed (gamma=1) minimum is obtained for lambda = 0.01475121 and index = 33
## with df (number of non-zero terms) = 48, average deviance = 5.390245
##
##
## Order coefficients entered into the lasso model (1st to last):
## [1] "X25" "X18" "X5" "X22" "X4" "X19" "X21" "X24" "X23" "X62" "X14" "X38"
## [13] "X8" "X72" "X96" "X61" "X87" "X59" "X35" "X49" "X50" "X16" "X34" "X71"
## [25] "X77" "X30" "X39" "X43" "X58" "X60" "X20" "X29" "X67" "X99" "X12" "X28"
## [37] "X84" "X98" "X51" "X55" "X88" "X6" "X11" "X33" "X78" "X40" "X66" "X68"

In the summary output we first see the relaxed lasso model fit based upon the (lambda, gamma) pair which
minimizes the cross validated average deviance. Next is the model fit based upon the lambda that minimizes
the cross validated average deviance along the path where gamma=0, that is among the fully relaxed lasso
models. After that is information on the fully penalized lasso fit, but without the actual coefficient estimates.
These estimates can be printed using the option printg1=TRUE, but are suppressed by default for space.
Finally, the order that coefficients enter the lasso model as the penalty is decreased is provided, which
gives some indication of relative model importance of the coefficients. Because, though, the differences in
successive lambda values used in the numerical algorithms may allow multiple new terms to enter into the
model between successive numerical steps, the ordering in this list may not be strict. If the user would want
they could read lambda from output$lambda, set up a new lambda with finer steps and rerun the model.
Our experience though is that this does not generally lead to a meaningfully different model and so is not
done by default or as option. | One can as well use the predict function to get the coefficients for the lasso
model, or the xs_new*beta for a new design matrix xs_new. In contrast to the summary function which
simply displays coefficients, the predict function provides an outpout object in vector form (or a list with
two vectors) and so can more easily be used for further calculations. By default the summary function will
use the (lambda, gamma) pair that minimizes the average CV deviances. One can also specify lam=NULL
and gam=1 to use the fully penalized lasso best fit, that use the solution that minimizes the CV deviance
with respect to lambda while holding gamma=1, or gam=0 to use the fully relaxed lasso best fit, that is
minimizes while holding gamma=0. One can also numerically specify both lam for lambda and gam for
gamma. Within the package lambda and gamma usually denote vectors for the search algorithm and so
other names are used uere.

# Get coefficients
beta = predict(cv.cox.fit)

##
## (lambda, gamma) pair minimizing CV average deviance is used
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# Print out the non-zero coefficients
beta$beta

## X4 X5 X8 X14 X15
## -9.298178e-01 1.711721e+00 -1.885456e-01 -7.454261e-01 1.190965e-14
## X16 X17 X18 X19 X20
## 4.167433e-01 -1.302087e-15 -1.362967e+00 -3.625131e-01 2.922682e-02
## X21 X22 X23 X24 X25
## -3.182677e-01 6.426824e-01 -2.134638e-01 -2.569618e-01 -2.012441e+00
## X29 X30 X34 X35 X38
## 2.389336e-02 2.816325e-02 2.602897e-02 2.119959e-02 1.064479e-01
## X39 X43 X49 X50 X58
## 2.293174e-02 -5.218288e-02 -7.819052e-02 3.211853e-02 3.392804e-02
## X59 X60 X61 X62 X67
## -3.948692e-02 -4.923017e-02 -7.808802e-02 -8.469542e-02 1.799604e-02
## X71 X72 X77 X87 X96
## -4.703098e-02 -1.302645e-01 4.472362e-02 1.123160e-01 -8.482900e-02
## X99
## -2.308179e-02

# Print out all coefficients
beta$beta_

## X1 X2 X3 X4 X5
## 0.000000e+00 0.000000e+00 0.000000e+00 -9.298178e-01 1.711721e+00
## X6 X7 X8 X9 X10
## 0.000000e+00 0.000000e+00 -1.885456e-01 0.000000e+00 0.000000e+00
## X11 X12 X13 X14 X15
## 0.000000e+00 0.000000e+00 0.000000e+00 -7.454261e-01 1.190965e-14
## X16 X17 X18 X19 X20
## 4.167433e-01 -1.302087e-15 -1.362967e+00 -3.625131e-01 2.922682e-02
## X21 X22 X23 X24 X25
## -3.182677e-01 6.426824e-01 -2.134638e-01 -2.569618e-01 -2.012441e+00
## X26 X27 X28 X29 X30
## 0.000000e+00 0.000000e+00 0.000000e+00 2.389336e-02 2.816325e-02
## X31 X32 X33 X34 X35
## 0.000000e+00 0.000000e+00 0.000000e+00 2.602897e-02 2.119959e-02
## X36 X37 X38 X39 X40
## 0.000000e+00 0.000000e+00 1.064479e-01 2.293174e-02 0.000000e+00
## X41 X42 X43 X44 X45
## 0.000000e+00 0.000000e+00 -5.218288e-02 0.000000e+00 0.000000e+00
## X46 X47 X48 X49 X50
## 0.000000e+00 0.000000e+00 0.000000e+00 -7.819052e-02 3.211853e-02
## X51 X52 X53 X54 X55
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X56 X57 X58 X59 X60
## 0.000000e+00 0.000000e+00 3.392804e-02 -3.948692e-02 -4.923017e-02
## X61 X62 X63 X64 X65
## -7.808802e-02 -8.469542e-02 0.000000e+00 0.000000e+00 0.000000e+00
## X66 X67 X68 X69 X70
## 0.000000e+00 1.799604e-02 0.000000e+00 0.000000e+00 0.000000e+00
## X71 X72 X73 X74 X75
## -4.703098e-02 -1.302645e-01 0.000000e+00 0.000000e+00 0.000000e+00
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## X76 X77 X78 X79 X80
## 0.000000e+00 4.472362e-02 0.000000e+00 0.000000e+00 0.000000e+00
## X81 X82 X83 X84 X85
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X86 X87 X88 X89 X90
## 0.000000e+00 1.123160e-01 0.000000e+00 0.000000e+00 0.000000e+00
## X91 X92 X93 X94 X95
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X96 X97 X98 X99 X100
## -8.482900e-02 0.000000e+00 0.000000e+00 -2.308179e-02 0.000000e+00

# Get the predicteds (linear predictors) for the original data set
predicteds = predict(cv.cox.fit, xs)

##
## (lambda, gamma) pair minimizing CV average deviance is used

# Print out the first few predicteds
predicteds[1:20]

## [1] 0.1009869 4.3123200 -4.4673094 -1.7814957 0.9077405 -1.0938730
## [7] 4.6147550 -0.1989544 -6.0377112 -1.6112803 -0.8198837 2.1165700
## [13] -1.1446918 -2.1868484 1.7288336 -0.1977422 -1.0923555 -4.4471458
## [19] 2.2903899 -2.8503090

Model fit without cross validation

We can as well fit a relaxed lasso model without doing a CV. For this case one can still plot the coefficients
but when the minimizing lambda and gamma are not informed by CV one is to specify which gamma should
be used for the plots. By default gamma=1, i.e. for the fully penalized lasso model, is used for the plots.
One can plot the coefficient estimates for different gamma values, but these will usually be more meaningful
when informed by the CV “tuned” hyperparameters values for lambda and gamma. One can also use the
predict() function, again to output either coefficients or predicteds, i.e. xs_new*beta for a new design matrix
xs_new. Such predicteds are often, for example in coxph(), included in the analysis output object under the
name linear.predictors.

# Fit a model without cross validation
cox.fit = suppressWarnings( glmnetr(xs, NULL, y_, event, family="cox") )
# Plot coefficients of the fully relaxed lasso model
plot(cox.fit, gam=0)
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# Plot coefficients of the fully penalized lasso model
plot(cox.fit, gam=1)
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# Get an arbitrary set of coefficients for this example
lam = cox.fit$lambda[min(20,length(cox.fit$lambda))]
predict(cox.fit,lam=lam,gam=1)$beta

## X4 X5 X18 X19 X21 X22 X24
## -0.4445542 1.1931259 -0.9052081 -0.1634296 -0.1607677 0.3425005 -0.0734942
## X25
## -1.3556991

Nested cross validation

Because the values for lambda and gamma informed by CV are specifically chosen to give a best fit, model
fit statistics for the CV derived model will be biased. To address this one can perform a CV on the CV derived
estimates, that is a nested cross validation as argued for in SRDM ( Simon R, Radmacher MD, Dobbin K,
McShane LM. Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification. J
Natl Cancer Inst (2003) 95 (1): 14-18. https://academic.oup.com/jnci/article/95/1/14/2520188 ). This is
done here by the nested.glmnetr() function.

# A nested cross validation to evaluate a cross validation informed lasso model fit
nested.cox.fit = suppressWarnings(nested.glmnetr(xs,NULL,y_,event,family="cox"))
summary(nested.cox.fit)

##
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## Sample information including number of records, events,number of columns in
## design (predictor, X) matrix, and df (rank) of design matrix:
## family n nevents xs.columns xs.df
## "cox" "1000" "337" "100" "94"
##
## Tuning parameters for lasso model:
## folds_n seed
## "10" "325180121"
##
## Nested Cross Validation averages for LASSO (1se and min), Relaxed LASSO, and gamma=0 LASSO :
##
## deviance per event :
## lasso.1se lasso.min lasso.1seR lasso.minR lasso.1seR0 lasso.minR0
## 5.3569 5.2830 5.3487 5.3048 5.3808 5.3726
##
## number of nonzero model terms :
## lasso.1se lasso.min lasso.1seR lasso.minR lasso.1seR0 lasso.minR0
## 26.1 50.7 22.8 37.1 7.0 11.7
##
## linear calibration coefficient :
## lasso.1se lasso.min lasso.1seR lasso.minR lasso.1seR0 lasso.minR0
## 1.3028 1.0918 1.2640 1.0532 1.0898 0.9771
##
## agreement (concordance for Cox and binomial, r-square for guassian):
## lasso.1se lasso.min lasso.1seR lasso.minR lasso.1seR0 lasso.minR0
## 0.9193 0.9206 0.9193 0.9199 0.9137 0.9143
##
## Naive agreement for cross validation tuned lasso model :
## lasso.1se lasso.min lasso.1seR lasso.minR lasso.1seR0 lasso.minR0
## 0.9253 0.9315 0.9253 0.9313 0.9288 0.9343

#names(nested.cox.fit)

Before providing analysis results the output first reports sample size and since this is for a Cox regression,
the number of events, followed by the number of predictors and the df (degrees of freedom) of the design
matrix, as well as some information on “Tuning parameters” which reflect the earlier work to compare the
lasso model with stepwise procedures as described in JWHT (James, Witten, Hastie and Tibshirani, An
Introduction to Statistical Learning with applications in R, 2nd ed., Springer, New York, 2021). In general
we have found in practice that the lasso does better and so we do not present results here. (The tuned
stepwise fits also take a long to run, part of the earlier motivation for the lasso model development.)

Next are the nested cross validation results. First are the per record (or per event in case of the Cox
model) log-likelihoods which reflect the amount of information in each observation. Since we are not using
large sample theory to base inferences we feel the per record are more intuitive, and they allow comparisons
between datasets with unequal sample sizes. Next are the average number of model terms which reflect
the complexity of the different models, even if in a naive sense, followed by the agreement statistics,
here concordance, These nested cross validated concordances should be essentially unbiased for the given
design, unlike the naive concordances where the same data are used to derive the model and calculate the
concordances (see SRDM).

In addition to evaluating the CV informed relaxed lasso model using another layer of CV, the
nested.glmnetr() function also runs cv.glmnetr() based upon the whole data set. Here we see, not unex-
pectedly, that the concordances estimated from the nested CV are slightly smaller than the concordances
naively calculated using the original dataset. Depending on the data the nested CV and naive agreement
measures, here concordance, can be very similar or disparate.

Following JWHT we provide information on the minimizing lasso models as well as the “1SE” models,
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which are near to the minimizing lasso model fits, but of simpler nature. We though focus on the minimizing
lasso fits recognizing that relaxed lasso and fully relaxed lasso fits generally provide models of simpler form
while still optimizing a fit.

A summary for the CV fit can be produced by using the summary() function directly on a nested.glmnetr()
output using the option cvfit=TRUE. Else one can also extract the CV fit by extracting the ob-
ject$cv.glmnet.fit, where object is the output object obtained when running nested.glmnetr(). The plot()
and predict() functions can be applied direclty to a nested.glmnetr() object without the cvfit option for
futher evaluation or calculations for the CV model fit.

# Summary of the CV fit from a nested CV output
summary(nested.cox.fit, cvfit=TRUE)

##
## The relaxed minimum is obtained for lambda = 0.01950023 , index = 30 and gamma = 0.75
## with df (number of non-zero terms) = 36, average deviance = 5.407983 and beta =
## X4 X5 X8 X14 X15
## -9.298178e-01 1.711721e+00 -1.885456e-01 -7.454261e-01 1.190965e-14
## X16 X17 X18 X19 X20
## 4.167433e-01 -1.302087e-15 -1.362967e+00 -3.625131e-01 2.922682e-02
## X21 X22 X23 X24 X25
## -3.182677e-01 6.426824e-01 -2.134638e-01 -2.569618e-01 -2.012441e+00
## X29 X30 X34 X35 X38
## 2.389336e-02 2.816325e-02 2.602897e-02 2.119959e-02 1.064479e-01
## X39 X43 X49 X50 X58
## 2.293174e-02 -5.218288e-02 -7.819052e-02 3.211853e-02 3.392804e-02
## X59 X60 X61 X62 X67
## -3.948692e-02 -4.923017e-02 -7.808802e-02 -8.469542e-02 1.799604e-02
## X71 X72 X77 X87 X96
## -4.703098e-02 -1.302645e-01 4.472362e-02 1.123160e-01 -8.482900e-02
## X99
## -2.308179e-02
##
## The fully relaxed (gamma=0) minimum is obtained for lambda = 0.03104988 and index = 25
## with df (number of non-zero terms) = 17, average deviance = 5.445049 and beta =
## X4 X5 X8 X14 X18 X19 X21
## -1.0991234 1.9492327 -0.4643855 -0.6377441 -1.5308945 -0.4075762 -0.3687472
## X22 X23 X24 X25 X38 X61 X62
## 0.7625238 -0.2999622 -0.3593211 -2.2920690 0.1993155 -0.1477441 -0.1403819
## X72 X87 X96
## -0.1784984 0.1874497 -0.1588458
##
## The UNrelaxed (gamma=1) minimum is obtained for lambda = 0.01475121 and index = 33
## with df (number of non-zero terms) = 48, average deviance = 5.415692
##
##
## Order coefficients entered into the lasso model (1st to last):
## [1] "X25" "X18" "X5" "X22" "X4" "X19" "X21" "X24" "X23" "X62" "X14" "X38"
## [13] "X8" "X72" "X96" "X61" "X87" "X59" "X35" "X49" "X50" "X16" "X34" "X71"
## [25] "X77" "X30" "X39" "X43" "X58" "X60" "X20" "X29" "X67" "X99" "X12" "X28"
## [37] "X84" "X98" "X51" "X55" "X88" "X6" "X11" "X33" "X78" "X40" "X66" "X68"

Observe, the summary here is slightly different than obtained above running cv.glmnetr(). This is because
the model is derived using a new call (instance) of the cv.glmnetr() function, and each CV uses by default
a new random partitioning of the data.
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# Plot CV deviances from a nested CV output
plot(nested.cox.fit)

## min CV average deviance (max log likelihood) for
## relaxed at log(lambda) = -3.937, gamma.min = 0.75, df = 36
## fully relaxed at log(lambda) = -3.472, df = 18
## fully penalized at log(lambda) = -4.216, df = 48
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and

# Plot coefficients from a nested CV output
plot(nested.cox.fit, coefs=TRUE)

## min CV average deviance (max log likelihood)
## at log(lambda.min) = -3.937, gamma.min = 0.75, df = 36
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Summarizing, the summary() function with the cvfit=TRUE option as well as the plot() and predict()
functions for a nested.glmnetr() object are then essentially the same as those for a cv.glmnetr() output
object. The summary() function without the cvfit=TRUE option, though, regards the evaluation of the
cv.glmnetr() fit and is different.

# ... or use the predict function on the CV fit embedded in the nested CV output
predict(nested.cox.fit)$beta

##
## (lambda, gamma) pair minimizing CV average deviance is used

## X4 X5 X8 X14 X15
## -9.298178e-01 1.711721e+00 -1.885456e-01 -7.454261e-01 1.190965e-14
## X16 X17 X18 X19 X20
## 4.167433e-01 -1.302087e-15 -1.362967e+00 -3.625131e-01 2.922682e-02
## X21 X22 X23 X24 X25
## -3.182677e-01 6.426824e-01 -2.134638e-01 -2.569618e-01 -2.012441e+00
## X29 X30 X34 X35 X38
## 2.389336e-02 2.816325e-02 2.602897e-02 2.119959e-02 1.064479e-01
## X39 X43 X49 X50 X58
## 2.293174e-02 -5.218288e-02 -7.819052e-02 3.211853e-02 3.392804e-02
## X59 X60 X61 X62 X67
## -3.948692e-02 -4.923017e-02 -7.808802e-02 -8.469542e-02 1.799604e-02
## X71 X72 X77 X87 X96
## -4.703098e-02 -1.302645e-01 4.472362e-02 1.123160e-01 -8.482900e-02
## X99
## -2.308179e-02

14



Again, the plots and summary outputs from the nested.glmnetr() output are sightly different from what we
saw above when summarizing the cv.glmnetr() output due to random data partitions for the CV folds.

More example data and relaxed lasso fits

The glmnetr.simdata() can be used to obtain example data not only survival analyses but also for linear
models and logistic models. The glmnetr.simdata() output object list contains not only xs for the predictor
matrix, yt for time to event or censoring and event for event indication but also y_ for a normally distributed
random variable for the linear model setting and yb for the logistic model setting. Below we show examples
extracting and analyzing simulated data and for the linear model and logistic model structures.

#======================================================
# use the same simulated data output object from above, that is from the call
# simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
#
# extract linear regression model data
# xs = simdata$xs # just as a comment as we did this above
yg = simdata$y_ # vector of Gaussian (normal) outcomes
# run a linear regression lasso model
cv.lin.fit = suppressWarnings(cv.glmnetr(xs,NULL,yg,NULL,family="gaussian"))
summary(cv.lin.fit)

##
## The relaxed minimum is obtained for lambda = 0.03319184 , index = 44 and gamma = 0.5
## with df (number of non-zero terms) = 47, average deviance = 1.114769 and beta =
## X4 X5 X8 X10 X11
## 1.161532e+00 -1.549189e+00 3.223005e-02 -3.006510e-01 2.265790e-01
## X12 X14 X16 X17 X18
## 1.196422e-01 1.067253e+00 -8.194970e-01 7.280095e-14 1.269236e+00
## X19 X20 X21 X22 X23
## 3.782328e-01 -1.159691e-01 4.013828e-01 -5.696146e-01 3.107055e-01
## X24 X25 X31 X34 X38
## 3.021748e-01 1.820749e+00 -2.789714e-02 -4.220347e-02 -1.858647e-02
## X39 X42 X43 X44 X49
## -3.955076e-02 -5.575306e-02 7.198290e-02 -3.456562e-02 3.776110e-02
## X50 X58 X59 X60 X61
## -5.184501e-02 2.372919e-02 3.930152e-02 2.669017e-02 3.428079e-02
## X62 X63 X67 X69 X72
## 4.135598e-02 2.856378e-02 -1.668165e-02 3.939001e-02 4.305880e-02
## X74 X78 X79 X83 X85
## 4.264499e-02 1.403872e-02 -4.858182e-02 3.873856e-02 -3.775158e-02
## X87 X89 X91 X93 X96
## -4.837261e-02 4.738807e-02 4.623275e-02 5.977543e-02 2.214418e-02
## X97 X100
## -1.800447e-02 1.903081e-02
##
## The fully relaxed (gamma=0) minimum is obtained for lambda = 0.05285079 and index = 39
## with df (number of non-zero terms) = 29, average deviance = 1.129838 and beta =
## X4 X5 X10 X11 X12 X14
## 1.20081248 -1.56120791 -0.37574751 0.26079629 0.17613590 1.22237202
## X16 X18 X19 X20 X21 X22
## -0.96787628 1.28082345 0.39684005 -0.13359011 0.42388504 -0.58702071
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## X23 X24 X25 X42 X43 X49
## 0.31994642 0.31143832 1.84143659 -0.06802143 0.08228061 0.04727775
## X50 X59 X61 X62 X72 X79
## -0.06763110 0.05154905 0.05362791 0.05577944 0.04777248 -0.06587503
## X85 X87 X89 X91 X93
## -0.05354526 -0.06693239 0.05407041 0.06285454 0.07167155
##
## The UNrelaxed (gamma=1) minimum is obtained for lambda = 0.01899359 and index = 50
## with df (number of non-zero terms) = 68, average deviance = 1.11494
##
##
## Order coefficients entered into the lasso model (1st to last):
## [1] "X25" "X18" "X5" "X4" "X22" "X21" "X19" "X23" "X24" "X14"
## [11] "X20" "X7" "X11" "X16" "X10" "X43" "X79" "X12" "X50" "X93"
## [21] "X42" "X62" "X87" "X89" "X91" "X49" "X72" "X59" "X61" "X85"
## [31] "X39" "X44" "X8" "X34" "X74" "X83" "X69" "X31" "X38" "X63"
## [41] "X96" "X58" "X60" "X67" "X78" "X97" "X100" "X51" "X75" "X6"
## [51] "X48" "X80" "X82" "X36" "X57" "X26" "X52" "X35" "X45" "X54"
## [61] "X56" "X65" "X71" "X73" "X90" "X94" "X46" "X70"

# plot(cv.lin.fit, coefs=TRUE)
#
# extract logistic regression model data
# xs = simdata$xs # just as a comment as we did this above
yb = simdata$yb # vector of binomial (0 or 1) outcomes
# run a logistic regression lasso model
cv.bin.fit = suppressWarnings(cv.glmnetr(xs,NULL,yb,NULL,family="binomial"))
summary(cv.bin.fit)

##
## The relaxed minimum is obtained for lambda = 0.03486156 , index = 22 and gamma = 0
## with df (number of non-zero terms) = 9, average deviance = 0.611035 and beta =
## X4 X5 X18 X19 X21 X22 X23
## 1.8117021 -2.7690157 1.9554297 0.5723943 0.7843262 -0.7148489 0.3575476
## X24 X25
## 0.4489259 2.6955189
##
## The fully relaxed (gamma=0) minimum is obtained for lambda = 0.03486156 and index = 22
## with df (number of non-zero terms) = 9, average deviance = 0.611035 and beta =
## X4 X5 X18 X19 X21 X22 X23
## 1.8117021 -2.7690157 1.9554297 0.5723943 0.7843262 -0.7148489 0.3575476
## X24 X25
## 0.4489259 2.6955189
##
## The UNrelaxed (gamma=1) minimum is obtained for lambda = 0.00653242 and index = 40
## with df (number of non-zero terms) = 53, average deviance = 0.618209
##
##
## Order coefficients entered into the lasso model (1st to last):
## [1] "X25" "X18" "X5" "X4" "X21" "X22" "X19" "X24" "X23" "X20"
## [11] "X49" "X11" "X39" "X68" "X7" "X10" "X14" "X47" "X35" "X50"
## [21] "X69" "X37" "X42" "X61" "X79" "X91" "X54" "X40" "X63" "X93"
## [31] "X32" "X72" "X82" "X16" "X31" "X92" "X100" "X34" "X51" "X85"
## [41] "X41" "X67" "X81" "X30" "X44" "X66" "X74" "X84" "X9" "X52"
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## [51] "X55" "X36" "X38"

# plot(cv.bin.fit, coefs=TRUE)

Further model assessment

One can also fit a spline to the predicteds obtained form the predict functions. This may help to
understand nonlinearities in the predicteds, but may also give inflated hazard ratios.

# Get predicteds from CV relaxed lasso model embedded in nested CV outputs & Plot
xb.hat = predict( object=cv.cox.fit , xs_new=xs, lam=NULL, gam=NULL, comment=FALSE)
# describe the distribution of xb.hat
round(1000*quantile(xb.hat,c(0.01,0.05,0.1,0.25,0.5,0.75,0.90,0.95,0.99)))/1000

## 1% 5% 10% 25% 50% 75% 90% 95% 99%
## -5.912 -4.444 -3.633 -1.904 0.039 1.915 3.454 4.615 6.414

# Fit a spline to xb.hat uisng coxph, and plot
fit1 = coxph(Surv(y_, event) ~ pspline(xb.hat))
termplot(fit1,term=1,se=TRUE)
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From this spline fit we see the predicteds are approximately linear with the log hazard ratio.
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