Package 'grafify'

October 23, 2022

Title Easy Graphs for Data Visualisation and Linear Models for ANOVA

Type Package

Date 2022-10-23 Version 3.0.0 **Description** Easily explore data by plotting graphs with a few lines of code. Use these ggplot() wrappers to quickly draw graphs of scatter/dots with box-whiskers, violins or SD error bars, data distributions, before-after graphs, factorial ANOVA and more. Customise graphs in many ways, for example, by choosing from colour blindfriendly palettes (12 discreet, 3 continuous and 2 divergent palettes). Use the simple code for ANOVA as ordinary (lm()) or mixed-effects linear models (lmer()), including randomised-block or repeated-measures designs, and fit non-linear outcomes as a generalised additive model (gam) using mgcv(). Obtain estimated marginal means and perform post-hoc comparisons on fitted models (via emmeans()). Also includes small datasets for practicing code and teaching basics before users move on to more complex designs. See vignettes for details on usage https://grafify-vignettes.netlify.app/. Citation: <doi:10.5281/zenodo.5136508>. **License** GPL (>= 2) Imports car, emmeans, Hmisc, Ime4, ImerTest, magrittr, mgcv, patchwork, purrr, stats, tidyr **Depends** R (>= 4.0), ggplot2 **Encoding UTF-8** LazyData true Language en-GB RoxygenNote 7.2.1 **Suggests** dplyr, knitr, rlang, rmarkdown, pbkrtest, testthat (>= 3.0.0) URL https://github.com/ashenoy-cmbi/grafify Config/testthat/edition 3 NeedsCompilation no **Author** Avinash R Shenoy [cre, aut] (https://orcid.org/0000-0001-6228-9303) Maintainer Avinash R Shenoy <a. shenoy@imperial.ac.uk> **Repository** CRAN **Date/Publication** 2022-10-23 12:15:07 UTC

R topics documented:

data_lw_death
data_2w_Festing
data_2w_Tdeath
data_cholesterol
data_doubling_time
data_t_pdiff
data_t_pratio
data_zooplankton
ga_anova
ga_model
get_graf_colours
graf_colours
graf_col_palette
graf_col_palette_default
graf_palettes
make_1way_data
make_1way_rb_data 15
make_2way_data
make_2way_rb_data
mixed_anova
mixed_anova_slopes
mixed_model
mixed_model_slopes
plot_3d_scatterbar
plot_3d_scatterbox
plot_3d_scatterviolin
plot_4d_scatterbar
plot_4d_scatterbox
plot_4d_scatterviolin
plot_bar_sd
plot_befafter_box
plot_befafter_colours
plot_befafter_shapes
plot_density
plot_dotbar_sd
plot_dotbox
plot_dotviolin
plot_gam_predict
plot_grafify_palette
plot_histogram
plot_lm_predict
plot_logscale
plot_point_sd
plot_qqline
plot_qqmodel
plot_qq_gam

data 1	w death	
uata 1	w ucam	•

data.	_1w_death	In vii	•	ime	ents	m	ıea	su	rin	ıg .	pe	rce	ent	ag	e	cei	ll d	de	ati	h i	in	th	re	e į	ge.	nc)-
Index																											106
	theme_grafify		 •	 	•		•	•		•	•	•		•	•		•	•	•	•			٠	•	•		105
	table_x_reorder																										
	table_summary																										
	simple_model		 	 																							102
	simple_anova																										
	scale_fill_grafify .																										
	scale_colour_grafify																										
	posthoc_vsRef																										
	posthoc_Trends_vsR																										
	posthoc_Trends_Pair																										
	posthoc_Pairwise . posthoc_Trends_Lev																										
	posthoc_Levelwise																										
	plot_xy_NumGroup																										
	plot_xy_CatGroup																										
	plot_scatterviolin .																										
	plot_scatterbox			 																							78
	plot_scatterbar_sd .			 																							76

Description

These data are from in vitro measurements of death of host cells (measured as percentage of total cells) after infection with three different strains of a pathogenic bacterium, from five independent experiments. The three strains are three levels within the fixed factor Genotype. The five independent experiments are levels within the random variable Experiment. These data can be analysed using linear mixed effects modelling. These data are from Goddard *et al*, Cell Rep, 2019, doi.org/10.1016/j.celrep.2019.03.100

Usage

data_1w_death

Format

data.frame: 15 obs. of 3 variables.

Experiment - a random factor with 5 levels "Exp_1", "Exp_2"...

Genotype Genotypes - a fixed factor with 3 levels: "WT", "KO_1", "KO_2".

Death Numerical dependent variable indicating percentage cell death.

data_2w_Tdeath

data_2w_Festing Data from two-way ANOVA with randomised block design of treat- ments of strains of mice.	data_2w_Festing	v v
---	-----------------	-----

Description

Data from Festing, ILAR Journal (2014) 55, 472–476 <doi: 10.1093/ilar/ilu045>. These data are suitable for two-way linear mixed effects modelling. The activity of GST (numerical dependent variable) was measured in 4 strains of mice (levels with the fixed factor Strain) either treated or controls (levels within the fixed factor Treatment). Once mouse each was used in two randomised blocks, which is the random factor (Block).

Usage

```
data_2w_Festing
```

Format

data.frame: 16 obs. of 4 variables:

Block A random factor with 2 levels "A" and "B".

Treatment A fixed factor with 2 levels: "Control" & "Treated"

Strain A fixed factor with 4 levels: "129Ola", "A/J", "NIH" & "BALB/C"

GST Numerical dependent variable indicating GST activity measurement

data_2w_Tdeath	In vitro measurement of percentage cell death - two-way ANOVA de-
	sign with repeated measures, and randomised blocks.

Description

These are measurements of death of infected host cells (as percentage of total cells) upon infection with two strains of bacteria, measured at two time points, in 6 independent experiments. These data repeated-measures data suitable for two-way linear mixed effects modelling with experiment and subjects as random factors.

Usage

data_2w_Tdeath

data_cholesterol 5

Format

data.frame: 24 obs. of 6 variables:

Experiment A random factor with 6 levels "e1", "e2"...

Time A fixed factor with 2 levels: "t100" & "t300".

Time2 A numeric column that allows plotting data on a quantitative "Time" axis. The "Time" column has "factor" type values that should be used for the ANOVA..

Genotype A fixed factor with 2 levels that we want to compare "WT" & "KO".

Subject A random factor with 12 levels: "s1", "s2"... These are cell culture wells that were measured at two time points, and indicate "subjects" that underwent repeated-measures within each of 6 experiments. Subject IDs for WT and KO are unique and clearly indicate different wells.

PI Numerical dependent variable indicating propidium iodide dye uptake as a measure of cell death. These are percentage of dead cells out of total cells plated.

data_cholesterol

Hierarchical data from 25 subjects either treated or not at 5 hospitals - two-way ANOVA design with repeated measures.

Description

An example dataset on measurements of blood cholesterol levels measured in 5 subjects measured before and after receiving a Drug. Five patients each were recruited at 5 hospitals (a-e), so that there are 25 different subjects (1-25) measured twice. Data are from Micro/Immuno Stats

Usage

data_cholesterol

Format

tibble: 30 obs. of 3 variables:

Hospital Factor with 5 levels (a-e), representing different hospitals where subjects were recruited.

Subject A factor with 25 levels denoting individuals on whom measurements were made twice.

Treatment A factor with 2 levels indicating when measurements were made, i.e. before and after drug.

Cholesterol Numerical dependent variable indicating measured doubling time in min.

6 data_t_pdiff

data_doubling_time Doubling time of E.coli measured by 10 students three times.	independent
---	-------------

Description

An example dataset showing measurements of *E. coli* doubling times (in min) measured by 10 different students in 3 independent experiments each. Note that Experiments are just called Exp1-Exp3 even though Exp1 of any of the students are not connected in anyway - this will confuse R! Data are from Micro/Immuno Stats

Usage

```
data_doubling_time
```

Format

tibble: 30 obs. of 3 variables:

Student Factor with 10 levels, representing different students.

Experiment A factor with 3 levels representing independent experiments.

Doubling_time Numerical dependent variable indicating measured doubling time in min.

data_t_pdiff

Matched data from two groups where difference between them is consistent.

Description

An example dataset for paired difference Student's *t* test. These are bodyweight (Mass) in grams of same mice left untreated or treated, which are two groups to be compared. The data are in a longtable format, and the two groups are levels within the factor "Condition". The Subject column lists ID of matched mice that were measured without and with treatment. These data are from Sanchez-Garrido *et al*, Sci Signal, 2018, DOI: 10.1126/scisignal.aat6903.

Usage

```
data_t_pdiff
```

Format

data.frame: 20 obs. of 3 variables:

Subject Factor with 10 levels, denoted by capital letters, representing individuals or subjects.

Condition A fixed factor with 2 levels: "Untreated" & "Treated".

Mass Numerical dependent variable indicating body mass of mice

data_t_pratio 7

data_t_pratio

Matched data from two groups where ratio between them is consistent.

Description

An example dataset for paired ratio Student's *t* test. These are Cytokine measurements by ELISA (in ng/ml) from 33 independent in vitro experiments performed on two Genotypes that we want to compare. The data are in a longtable format, and the two groups are levels within the factor "Genotype". The Experiment column lists ID of matched experiments.

Usage

data_t_pratio

Format

data.frame: 66 obs. of 3 variables:

Genotype Factor with 2 levels, representing genotypes to be compared ("WT" & "KO").

Experiment A random factor with 33 levels representing independent experiments, denoted as "Exp_1", "Exp_2"...

Cytokine Numerical dependent variable indicating cytokine measured by ELISA.

data_zooplankton

Time-series data on zooplankton in lake Menon.

Description

A subset of data from (Lathro RC, 2000) (doi:10.6073/pasta/ec3d0186753985147d4f283252388e05) provided by the Wisconsin Department of Natural Resources

Usage

data_zooplankton

Format

tibble: 1127 obs. of 8 variables:

day Numeric integer variable.

year Numeric integer variable of years during which data were collected.

lake This data is for lake Menona; data for other others not included in this subset.

taxon Names of zooplankton taxa as factor of 8 levels.

density Numeric values of density of measurements.

8 ga_anova

density_adj Numeric values of adjusted density .min_density Numeric values of minimum densities.desnsity_scaled Numeric value of scaled density.

ga_anova

ANOVA table from a generalised additive model (gam)

Description

The two functions ga_model and ga_anova are for fitting generalised additive models (gam) with the mgcv package. It will use the gam() function in mgcv for ANOVA designs with up to two categorical fixed factors (with two or more levels; Fixed_Factor), and exactly one factor is a continuous variable (e.g. time), which is called Smooth_Factor. A smooth function is fitted with factor-wise smooth basis function (by =). A default value for number of nodes (the argument k in gam) may work, but a specific number can be provided using the Nodes argument. The model is fit using the REML method. When two categorical fixed factors are provided, an interaction term is included for main effects and smooth basis functions.

Usage

```
ga_anova(
   data,
   Y_value,
   Fixed_Factor,
   Smooth_Factor,
   Random_Factor = NULL,
   Nodes = NULL,
   ...
)
```

Arguments

data a data frame where categorical independent variables are converted to factors using as.factor() first. The function will throw errors without this.

Y_value name of column containing quantitative (dependent) variable, provided within

"quotes".

Fixed_Factor name(s) of categorical fixed factors (independent variables) provided as a vector

if more than one or within "quotes". Convert to factors first with as . factor.

Smooth_Factor the continuous variable to fit smoothly with a basis function, provided within

"quotes" (only 1 Smooth_Factor allowed).

Random_Factor name(s) of random factors to be provided in "quotes" (only 1 Random_Factor

allowed). Convert to factor with as . factor first.

Nodes number of nodes (the parameter k in gam).

... any additional variables to pass on to gam or anova

ga_model 9

Details

If a Random_Factor is also provided, it is fitted using bs = "re" smooth.

Value

ANOVA table of class "anova" and "data.frame".

Examples

```
#with zooplankton data
ga_anova(data = data_zooplankton,
Y_value = "log(density_adj)",
Fixed_Factor = "taxon",
Smooth_Factor = "day")
```

ga_model

Fit a generalised additive model (gam)

Description

The two functions <code>ga_model</code> and <code>ga_anova</code> are for fitting generalised additive models (gam) with the <code>mgcv</code> package. It will use the <code>gam()</code> function in <code>mgcv</code> for ANOVA designs with <code>up</code> to two categorical fixed factors (with two or more levels; <code>Fixed_Factor</code>), and exactly one factor is a continuous variable (e.g. time), which is called <code>Smooth_Factor</code>. A smooth function is fitted with factor-wise smooth basis function (by =). A default value for number of nodes (the argument <code>k</code> in <code>gam</code>) may work, but a specific number can be provided using the <code>Nodes</code> argument. The model is fit using the <code>REML</code> method. When two categorical fixed factors are provided, an interaction term is included for main effects and smooth basis functions.

```
ga_model(
   data,
   Y_value,
   Fixed_Factor,
   Smooth_Factor,
   Random_Factor = NULL,
   Nodes = "NULL",
   ...
)
```

10 get_graf_colours

Arguments

data a data frame where categorical independent variables are converted to factors using as.factor() first. The function will throw errors without this. name of column containing quantitative (dependent) variable, provided within Y_value "quotes". Fixed_Factor name(s) of categorical fixed factors (independent variables) provided as a vector if more than one or within "quotes". Convert to factors first with as . factor. Smooth_Factor the continuous variable to fit smoothly with a basis function, provided within "quotes" (only 1 Smooth_Factor allowed). name(s) of random factors to be provided in "quotes" (only 1 Random_Factor Random_Factor allowed). Convert to factor with as . factor first. Nodes number of nodes (the parameter k in gam). any additional variables to pass on to gam or anova

Details

If a Random_Factor is also provided, it is fitted using bs = "re" smooth.

Value

This function gives a generalised additive model object of class "gam", "lm" and "glm".

Examples

```
#fit a model with zooplankton data
z1 <- ga_model(data = data_zooplankton,
Y_value = "log(density_adj)",
Fixed_Factor = "taxon",
Smooth_Factor = "day")</pre>
```

get_graf_colours

Get graf internal

Description

Function to make grafify colour scheme. Thank you Dr Simon.

Usage

```
get_graf_colours(...)
```

Arguments

... internal

graf_colours 11

Details

To visualise grafify colours use plot_grafify_palette.

Value

This function returns names and hexcodes of colours in grafify as a character vector.

graf_colours

List of hexcodes of colours in grafify palettes

Description

To visualise these colours use plot_grafify_palette. okabe_ito, bright, contrast, dark, light, muted, pale, vibrant, yello_conti from Paul Tol's post. Zesty, Pastel, Elegant from this link. Colour hexcodes for fishy, kelly, r4, safe, OrBl_div, PrGn_div, blue_conti, grey_conti taken from cols4all:c4a_gui package. All schemes are colour blind-friendly.

Usage

graf_colours

Format

An object of class character of length 154.

Value

This is a character vector with names and hexcodes of colours used by palette functions. It is used by get_graf_colours to generate palettes.

graf_col_palette

Call grafify palettes for scale & fill functions

Description

graf_col_palette and graf_col_palette_default functions generate colours for grafify scale functions. graf_col_palette picks sequential colours when the number of discrete colours needed is less than that in the palette. This is the default for grafify with ColoSeq = TRUE. If the number of colours required is more than that in the discrete palette, it fills intervening colours using the colorRampPalette[grDevices] function.

```
graf_col_palette(palette = "okabe_ito", reverse = FALSE, ...)
```

Arguments

palette internal reverse internal

... additional parameters

Details

graf_col_palette_default picks the most distant colours within the palette, rather than in the sequence they are in the palette, when the number of colours required is less than that in the palette. Colour order can be reversed in both functions.

When only one colour discreet is required, and you want to reverse the colour palette, ColSeq should be set to FALSE.

Value

This generates required number of sequential colours from the chosen grafify palette when called by scale functions of ggplot2.

```
graf_col_palette_default
```

Call grafify palettes for scale & fill functions

Description

graf_col_palette and graf_col_palette_default functions generate colours for grafify scale functions. graf_col_palette picks sequential colours when the number of discrete colours needed is less than that in the palette. This is the default for grafify with ColoSeq = TRUE. If the number of colours required is more than that in the discrete palette, it fills intervening colours using the colorRampPalette[grDevices] function.

Usage

```
graf_col_palette_default(palette = "okabe_ito", reverse = FALSE, ...)
```

Arguments

palette internal reverse internal

... additional parameters

Details

graf_col_palette_default picks the most distant colours within the palette, rather than in the sequence they are in the palette, when the number of colours required is less than that in the palette. Colour order can be reversed in both functions.

When only one colour discreet is required, and you want to reverse the colour palette, ColSeq should be set to FALSE.

graf_palettes 13

Value

This generates required number of distant colours from the chosen grafify palette when called by scale functions of ggplot2.

graf_palettes

List of palettes available in grafify package

Description

To visualise these colours use $plot_grafify_palette$.

Usage

graf_palettes

Format

An object of class list of length 18.

Value

This function returns a list of palettes in grafify with names and hexcodes of colours in those palettes. Names of palettes available are as follows:

Categorical/discreet palettes:

- okabe_ito
- bright
- contrast
- dark
- kelly
- light
- muted
- pale
- r4
- safe
- vibrant

Sequential quantitative palettes:

- grey_conti
- blue_conti
- yellow_conti

Divergent quantitative palettes:

- OrBl_div
- PrGn_div

14 make_1way_data

make_1way_data	Make one-way or two-way independent group or randomised block design data.

Description

The make_1way_data, make_1way_rb_data, make_2way_data and make_2way_rb_data functions generate independent or randomised block (rb) design data of one-way or two-way designs.

Usage

```
make_1way_data(Group_means, Num_obs, Residual_SD)
```

Arguments

Group_means a vector with means of each level of the first fixed factor (FixFac_X1) measured

within Group 1.

Num_obs a single numeric value indicating the number of independent measurements, i.e.

levels within the random factor Experiment.

Residual_SD a single numeric value indicating residual SD in the model.

Details

Random variates from the normal distribution based on user provided mean and SD provided are generated. For independent designs, the Residual_SD argument is used to set expected residual SD from the linear model. Exp_SD is used to set experiment-to-experiment SD, that will be assigned to the random factor for rb designs.

Num_exp sets the number of independent measurements per group.

For one-way designs, the user provides Group_means as a vector. Number of levels are recognised based on number of means. For two-way designs, two vectors are to be provided by the user containing means of levels of a second factor. Number of means in both vectors should be the same. These functions can only handle balanced designs, i.e. same number of observations in all groups.

The output is a data frame with one or two columns denoting the fixed factor with levels that match the number of means entered. For rb data, the column for RandFac denotes levels of the blocking factor. The quantitative response variables are in the numeric Values column.

Value

This function produces a data. frame object containing simulated data.

make_1way_rb_data 15

Examples

```
#Basic usage with three levels within Factor_X,
#20 observations in each group, with residual SD 15
one_independent_tab <- make_1way_data(c(350, 250, 100), 15, 20)
str(one_independent_tab)
head(one_independent_tab)</pre>
```

make_1way_rb_data

Make one-way or two-way independent group or randomised block design data.

Description

The make_1way_data, make_1way_rb_data, make_2way_data and make_2way_rb_data functions generate independent or randomised block (rb) design data of one-way or two-way designs.

Usage

```
make_1way_rb_data(Group_means, Num_exp, Exp_SD, Residual_SD)
```

Arguments

Group_means	a vector with means of	f each level o	of the first fixed	factor (FixFac_X	(1) measured
-------------	------------------------	----------------	--------------------	------------------	--------------

within Group 1.

Num_exp a single numeric value. indicating the number of independent measurements,

i.e. levels within the random factor RandFac.

Exp_SD a single numeric value indicating the standard deviation (SD) between experi-

ments, i.e. within RandFac.

Residual_SD a single numeric value indicating residual SD in the model.

Details

Random variates from the normal distribution based on user provided mean and SD provided are generated. For independent designs, the Residual_SD argument is used to set expected residual SD from the linear model. Exp_SD is used to set experiment-to-experiment SD, that will be assigned to the random factor for rb designs.

Num_exp sets the number of independent measurements per group.

For one-way designs, the user provides Group_means as a vector. Number of levels are recognised based on number of means. For two-way designs, two vectors are to be provided by the user containing means of levels of a second factor. Number of means in both vectors should be the same. These functions can only handle balanced designs, i.e. same number of observations in all groups.

The output is a data frame with one or two columns denoting the fixed factor with levels that match the number of means entered. For rb data, the column for RandFac denotes levels of the blocking factor. The quantitative response variables are in the numeric Values column.

16 make_2way_data

Value

This function produces a data. frame object containing simulated data.

Examples

```
#Basic usage with two levels within FactorX2,
#20 experiments with inter-experiment SD 20, and residual SD 15

two_rb_tab <- make_2way_rb_data(c(100, 20), c(200, 300), 20, 20, 15)

str(two_rb_tab)
head(two_rb_tab)</pre>
```

make_2way_data

Make one-way or two-way independent group or randomised block design data.

Description

The make_1way_data, make_1way_rb_data, make_2way_data and make_2way_rb_data functions generate independent or randomised block (rb) design data of one-way or two-way designs.

Usage

```
make_2way_data(Group_1_means, Group_2_means, Num_obs, Residual_SD)
```

Arguments

 $\hbox{Group_1_means} \quad \hbox{a vector with means of each level of the first fixed factor (FixFac_X1) measured }$

within Group 1.

Group_2_means only for make_2way_data and make_2way_rb_data: a vector with mean(s) of

each level of FactorX2 measured within Group 2.

Num_obs a single numeric value indicating the number of independent measurements, i.e.

levels within the random factor Experiment.

Residual_SD a single numeric value indicating residual SD in the model.

Details

Random variates from the normal distribution based on user provided mean and SD provided are generated. For independent designs, the Residual_SD argument is used to set expected residual SD from the linear model. Exp_SD is used to set experiment-to-experiment SD, that will be assigned to the random factor for rb designs.

Num_obs sets the number of independent measurements per group.

For one-way designs, the user provides Group_means as a vector. Number of levels are recognised based on number of means. For two-way designs, two vectors are to be provided by the user containing means of levels of a second factor. Number of means in both vectors should be the

make_2way_rb_data 17

same. These functions can only handle balanced designs, i.e. same number of observations in all groups.

The output is a data frame with one or two columns denoting the fixed factor with levels that match the number of means entered. For rb data, the column for RandFac denotes levels of the blocking factor. The quantitative response variables are in the numeric Values column.

Value

This function produces a data. frame object containing simulated data.

Examples

```
#Basic usage with two levels within FactorX2, 20 observations in each group, with residual SD 15
two_independent_tab <- make_2way_data(c(100, 20), c(200, 300), 20, 15)

#Four levels with 5 observations and residual SD 5
two_independent_tab <- make_2way_data(c(100, 20, 1500, 20), c(150, 5, 1450, 25), 5, 5)</pre>
```

make_2way_rb_data	Make one-way or two-way independent group or randomised block design data.

Description

The make_1way_data, make_1way_rb_data, make_2way_data and make_2way_rb_data functions generate independent or randomised block (rb) design data of one-way or two-way designs.

Usage

```
make_2way_rb_data(Group1_means, Group2_means, Num_exp, Exp_SD, Residual_SD)
```

Arguments

Group1_means	a vector with means of each level of the first fixed factor (FixFac_X1) measured within Group 1.
Group2_means	only for make_2way_data and make_2way_rb_data: a vector with mean(s) of each level of FactorX2 measured within Group 2.
Num_exp	a single numeric value indicating the number of independent measurements, i.e. levels within the random factor RandFac.
Exp_SD	a single numeric value indicating the standard deviation (SD) between experiment, i.e. within RandFac.
Residual_SD	a single numeric value indicating residual SD in the model.

18 mixed_anova

Details

Random variates from the normal distribution based on user provided mean and SD provided are generated. For independent designs, the Residual_SD argument is used to set expected residual SD from the linear model. Exp_SD is used to set experiment-to-experiment SD, that will be assigned to the random factor (RandFac) for rb designs.

Num_exp sets the number of independent measurements per group.

For one-way designs, the user provides Group_means as a vector. Number of levels are recognised based on number of means. For two-way designs, two vectors are to be provided by the user containing means of levels of a second factor. Number of means in both vectors should be the same. These functions can only handle balanced designs, i.e. same number of observations in all groups.

The output is a data frame with one or two columns denoting the fixed factor with levels that match the number of means entered. For rb data, the column for RandFac denotes levels of the blocking factor. The quantitative response variables are in the numeric Values column.

Value

This function produces a data. frame object containing simulated data.

Examples

```
#Basic usage with two levels within FactorX2,
#20 experiments with inter-experiment SD 20, and residual SD 15

two_rb_tab <- make_2way_rb_data(c(100, 20), c(200, 300), 20, 20, 15)

str(two_rb_tab)
head(two_rb_tab)</pre>
```

mixed_anova

ANOVA table from linear mixed effects analysis.

Description

There are four related functions for mixed effects analyses: mixed_model, mixed_anova, mixed_model_slopes, and mixed_anova_slopes.

```
mixed_anova(
   data,
   Y_value,
   Fixed_Factor,
   Random_Factor,
   Df_method = "Kenward-Roger",
   SS_method = "II",
   ...
)
```

mixed_anova 19

Arguments

data	a data table object, e.g. data.frame or tibble.
Y_value	name of column containing quantitative (dependent) variable, provided within "quotes".
Fixed_Factor	$name(s) \ of \ categorical \ fixed \ factors \ (independent \ variables) \ provided \ as \ a \ vector \ if \ more \ than \ one \ or \ within \ "quotes".$
Random_Factor	$name(s) \ of \ random \ factors \ to \ allow \ random \ intercepts; \ to \ be \ provided \ as \ a \ vector \ when \ more \ than \ one \ or \ within \ "quotes".$
Df_method	method for calculating degrees of freedom. Default is Kenward-Roger, can be changed to "Satterthwaite".
SS_method	type of sum of square, default is type II, can be changed to "I", "III", "1" or "2", or others.
	any additional arguments to pass on to lmer if required.

Details

This function uses <code>lmer</code> to fit a linear mixed effect model and provides the model object, which could be used for post-hoc comparisons. The model object is converted to class <code>lmerModLmerTest</code> object by <code>as_lmerModLmerTest</code>. This is then passes on the model to <code>anova</code> and provides the ANOVA table with F and P values. It produces a type II sum of squares ANOVA table with Kenward-Roger approximation for degrees of freedom (as implemented in <code>lmerTest</code>) package. It requires a data table, one dependent variable (Y_value), one or more independent variables (Fixed_Factor), and at least one random factor (Random_Factor). These should match names of variables in the long-format data table exactly. This function is related to <code>mixed_model</code>.

More than one fixed factors can be provided as a vector (e.g. c("A", "B")). A full model with interaction term is fitted. This means when Y_value = Y, Fixed_factor = c("A", "B"), Random_factor = "R" are entered as arguments, these are passed on as Y ~ A*B + (1|R) (which is equivalent to Y ~ A + B + A:B + (1|R)). For simplicity, only random intercepts are fitted ((1|R)).

Value

ANOVA table of class "anova" and "data.frame".

Examples

```
#Usage with one fixed (Student) and random factor (Experiment)
mixed_anova(data = data_doubling_time,
Y_value = "Doubling_time",
Fixed_Factor = "Student",
Random_Factor = "Experiment")

#two fixed factors provided as a vector
mixed_anova(data = data_cholesterol,
Y_value = "Cholesterol",
Fixed_Factor = c("Treatment", "Hospital"),
Random_Factor = "Subject")
```

20 mixed_anova_slopes

mixed_anova_slopes ANOVA table from linear mixed effects analysis.

Description

There are four related functions for mixed effects analyses: mixed_model, mixed_anova, mixed_model_slopes, and mixed_anova_slopes.

Usage

```
mixed_anova_slopes(
  data,
  Y_value,
  Fixed_Factor,
  Slopes_Factor,
  Random_Factor,
  Df_method = "Kenward-Roger",
  SS_method = "II",
   ...
)
```

Arguments

data	a data table object, e.g. data.frame or tibble.
Y_value	name of column containing quantitative (dependent) variable, provided within "quotes".
Fixed_Factor	name(s) of categorical fixed factors (independent variables) provided as a vector if more than one or within "quotes".
Slopes_Factor	name of factor to allow varying slopes on.
Random_Factor	name(s) of random factors to allow random intercepts; to be provided as a vector when more than one or within "quotes".
Df_method	method for calculating degrees of freedom. Default is Kenward-Roger, can be changed to "Satterthwaite".
SS_method	type of sum of square, default is type II, can be changed to "I", "III", "1" or "2", or others.
	any additional arguments to pass on to lmer if required.

Details

This function uses 1mer to fit a linear mixed effect model and provides the model object, which could be used for post-hoc comparisons. The model object is converted to class 1merModLmerTest object by as_1merModLmerTest.

It produces a type II sum of squares ANOVA table with Kenward-Roger approximation for degrees of freedom (as implemented in lmerTest) package. It requires a data table, one dependent

mixed_model 21

variable (Y_value), one or more independent variables (Fixed_Factor). Exactly one random factor (Random_Factor) and Slope_Factor should be provided. This function is related to mixed_model.

More than one fixed factors can be provided as a vector (e.g. c("A", "B")). A full model with interaction term is fitted with one term each for varying slopes and intercepts. This means when Y_value = Y, Fixed_factor = c("A", "B"), Slopes_Factor = "S", Random_factor = "R" are entered as arguments, these are passed on as Y ~ A*B + (S|R) (which is equivalent to Y ~ A + B + A:B + (S|R)). In this experimental implementation, random slopes and intercepts are fitted ((Slopes_Factor|Random_Factor)). Only one term each is allowed for ¬ and Random_Factor.

Value

ANOVA table of class "anova" and "data.frame".

Examples

```
mixed_anova_slopes(data = data_2w_Tdeath,
Y_value = "PI",
Fixed_Factor = c("Genotype", "Time"),
Slopes_Factor = "Time",
Random_Factor = "Experiment")
```

mixed_model

Model from a linear mixed effects model

Description

There are four related functions for mixed effects analyses: mixed_model, mixed_anova, mixed_model_slopes, and mixed_anova_slopes.

Usage

```
mixed_model(data, Y_value, Fixed_Factor, Random_Factor, ...)
```

Arguments

data	a data table object, e.g. data.frame or tibble.
Y_value	name of column containing quantitative (dependent) variable, provided within "quotes".
Fixed_Factor	$name(s) \ of \ categorical \ fixed \ factors \ (independent \ variables) \ provided \ as \ a \ vector \ if \ more \ than \ one \ or \ within \ "quotes".$
Random_Factor	name(s) of random factors to allow random intercepts; to be provided as a vector when more than one or within "quotes".
	any additional arguments to pass on to lmer if required.

Details

This function uses 1mer to fit a linear mixed effect model and provides the model object, which could be used for post-hoc comparisons. The model object is converted to class 1merModLmerTest object by as_1merModLmerTest.

It requires a data table, one dependent variable (Y_value), one or more independent variables (Fixed_Factor), and at least one random factor (Random_Factor). These should match names of variables in the long-format data table exactly. This function is related to mixed_anova. Output of this function can be used with posthoc_Pairwise, posthoc_Levelwise and posthoc_vsRef, or with emmeans.

More than one fixed factors can be provided as a vector (e.g. c("A", "B")). A full model with interaction term is fitted. This means when Y_value = Y, Fixed_factor = c("A", "B"), Random_factor = "R" are entered as arguments, these are passed on as Y ~ A*B + (1|R) (which is equivalent to Y ~ A + B + A:B + (1|R)). For simplicity, only random intercepts are fitted ((1|R)).

Also see mixed_anova_slopes and mixed_model_slopes for similar functions where variable slopes and intercept models are fit.

Value

This function returns an S4 object of class "lmerModLmerTest".

Examples

```
#one fixed factor and random factor
mixed_model(data = data_doubling_time,
Y_value = "Doubling_time",
Fixed_Factor = "Student",
Random_Factor = "Experiment")
#two fixed factors as a vector, one random factor
mixed_model(data = data_cholesterol,
Y_value = "Cholesterol",
Fixed_Factor = c("Treatment", "Hospital"),
Random_Factor = "Subject")
#save model
model <- mixed_model(data = data_doubling_time,</pre>
Y_value = "Doubling_time",
Fixed_Factor = "Student",
Random_Factor = "Experiment")
#get model summary
summary(model)
```

mixed_model_slopes 23

Description

There are four related functions for mixed effects analyses: mixed_model, mixed_anova, mixed_model_slopes, and mixed_anova_slopes.

Usage

```
mixed_model_slopes(
  data,
  Y_value,
  Fixed_Factor,
  Slopes_Factor,
  Random_Factor,
  ...
)
```

Arguments

data a data table object, e.g. data.frame or tibble.

Y_value name of column containing quantitative (dependent) variable, provided within

"quotes".

Fixed_Factor name(s) of categorical fixed factors (independent variables) provided as a vector

if more than one or within "quotes".

Slopes_Factor name of factor to allow varying slopes on.

Random_Factor name(s) of random factors to allow random intercepts; to be provided as a vector

when more than one or within "quotes".

... any additional arguments to pass on to lmer if required.

Details

This function uses lmer to fit a linear mixed effect model and provides the model object, which could be used for post-hoc comparisons. The model object is converted to class lmerModLmerTest object by as_lmerModLmerTest. It requires a data table, one dependent variable (Y_value), one or more independent variables (Fixed_Factor). Exactly one random factor (Random_Factor) and Slope_Factor should be provided. This function is related to mixed_anova_slopes. Output of this function can be used with posthoc_Pairwise, posthoc_Levelwise and posthoc_vsRef, or with emmeans.

More than one fixed factors can be provided as a vector (e.g. c("A", "B")). A full model with interaction term is fitted with one term each for varying slopes and intercepts. This means when Y_value = Y, Fixed_factor = c("A", "B"), Slopes_Factor = "S", Random_factor = "R" are entered as arguments, these are passed on as Y ~ A*B + (S|R) (which is equivalent to Y ~ A + B + A:B + (S|R)). In this experimental implementation, random slopes and intercepts are fitted ((Slopes_Factor|Random_Factor)). Only one term each is allowed for Slopes_Factor and Random_Factor.

Value

This function returns an S4 object of class "lmerModLmerTest".

24 plot_3d_scatterbar

Examples

```
#two fixed factors as a vector,
#exactly one slope factor and random factor
mod <- mixed_model_slopes(data = data_2w_Tdeath,
Y_value = "PI",
Fixed_Factor = c("Genotype", "Time"),
Slopes_Factor = "Time",
Random_Factor = "Experiment")
#get summary
summary(mod)</pre>
```

plot_3d_scatterbar

Plot a scatter graph with matched shapes on a bar plot using three variables.

Description

The functions plot_3d_scatterbar, plot_3d_scatterbox, plot_4d_scatterbar and plot_4d_scatterbox are useful for plotting one-way or two-way ANOVA designs with randomised blocks or repeated measures. The blocks or subjects can be mapped to the shapes argument in both functions (up to 25 levels can be mapped to shapes; there will be an error if this number is exceeded). The 3d versions use the categorical variable (xcol) for grouping (e.g. one-way ANOVA designs), and 4d versions take an additional grouping variable (e.g. two-way ANOVA designs) that is passed to either boxes or bars argument.

```
plot_3d_scatterbar(
  data,
  xcol,
  ycol,
  shapes,
  facet,
  symsize = 3,
  s_alpha = 0.8,
  b_alpha = 1,
  jitter = 0.1,
  ewid = 0.2,
  TextXAngle = 0,
  LogYTrans,
  LogYBreaks = waiver(),
  LogYLabels = waiver(),
  LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
  bthick,
```

plot_3d_scatterbar 25

```
ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
ColSeq = TRUE,
ColRev = FALSE,
SingleColour = "NULL",
...
)
```

Arguments

data a data table, e.g. data.frame or tibble.

xcol name of the column with the categorical factor to be plotted on X axis. ycol name of the column with quantitative variable to plot on the Y axis.

shapes name of the column with the second categorical factor, for example from a two-

way ANOVA design.

facet add another variable from the data table to create faceted graphs using ggplot2facet_wrap.

symsize size of symbols, default set to 3.

s_alpha fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha

= 0 to not show scatter plot.

b_alpha fractional opacity of boxes. Default is set to 0, which results in white boxes in-

side violins. Change to any value >0 up to 1 for different levels of transparency.

jitter extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol

overlap, set to 0 for aligned symbols.

ewid width of error bars, default set to 0.2.

TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove

overlapping text.

LogYTrans transform Y axis into "log10" or "log2"

LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales,

default is waiver(), or provide a vector of desired breaks.

LogYLabels argument for ggplot2[scale_y_continuous] for Y axis labels on log scales,

default is waiver(), or provide a vector of desired labels.

LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y

axis

facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can

be fixed (default), free, free_y or free_x (for Y and X axis one at a time,

respectively).

fontsize parameter of base_size of fonts in theme_classic, default set to size 20.

symthick size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.

bthick thickness (in 'pt' units) of lines of boxes; default = fontsize/22.

ColPal grafify colour palette to apply, default "okabe_ito"; see graf_palettes for

available palettes.

ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen

palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.

26 plot_3d_scatterbar

ColRev whether to reverse order of colour within the selected palette, default F (FALSE);

can be set to T (TRUE).

SingleColour a colour hexcode (starting with #), a number between 1-154, or names of colours

from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour

other than "black"; use grey_lin11, which is almost black.

... any additional arguments to pass.

Details

These functions rely on ggplot with geom_point and geom_bar (through stat_summary) or geom_boxplot geometries.

Variables other than the quantitative variable (ycol) will be automatically converted to categorical variables even if they are numeric in the data table.

Shapes are always plotted in black colour, and their opacity can be changed with the s_alpha argument and overlap can be reduced with the jitter argument. Other arguments are similar to other plot functions as briefly explained below.

Bars depict means using stat_summary with geom = "bar", fun = "mean", and bar width is set to 0.7 (cannot be changed). Error bar width can be changed with the ewid argument.

Boxplot geometry uses geom_boxplot with position = position_dodge(width = 0.9), width = 0.6. The thick line within the boxplot depicts the median, the box the IQR (interquantile range) and the whiskers show 1.5*IQR.

In 4d versions, the two grouping variables (i.e. xcol and either boxes or bars) are passed to ggplot aesthetics through group = interaction{ xcol, shapes}.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

All four functions can be expanded further, for example with facet_grid or facet_wrap.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#3d version for 1-way data with blocking
plot_3d_scatterbar(data = data_1w_death,
xcol = Genotype, ycol = Death,
shapes = Experiment)
#compare above graph to
plot_scatterbar_sd(data = data_1w_death,
xcol = Genotype, ycol = Death)
#single colour
plot_3d_scatterbar(data = data_1w_death,
xcol = Genotype, ycol = Death,
shapes = Experiment,
```

plot_3d_scatterbox 27

```
SingleColour = "pale_grey")
#4d version for 2-way data with blocking
plot_4d_scatterbox(data = data_2w_Tdeath,
xcol = Genotype,
ycol = PI,
boxes = Time,
shapes = Experiment)

plot_4d_scatterbar(data = data_2w_Festing,
xcol = Strain,
ycol = GST,
bars = Treatment,
shapes = Block)
```

plot_3d_scatterbox

Plot a scatter and box plot with matched symbols.

Description

The functions plot_3d_scatterbar, plot_3d_scatterbox, plot_4d_scatterbar and plot_4d_scatterbox are useful for plotting one-way or two-way ANOVA designs with randomised blocks or repeated measures. The blocks or subjects can be mapped to the shapes argument in both functions (up to 25 levels can be mapped to shapes; there will be an error if this number is exceeded). The 3d versions use the categorical variable (xcol) for grouping (e.g. one-way ANOVA designs), and 4d versions take an additional grouping variable (e.g. two-way ANOVA designs) that is passed to either boxes or bars argument.

```
plot_3d_scatterbox(
  data,
  xcol,
  ycol,
  shapes,
  facet,
  symsize = 3,
  s_alpha = 0.8,
  b_alpha = 1,
  bwid = 0.5,
  jitter = 0.1,
  TextXAngle = 0,
  LogYTrans,
  LogYBreaks = waiver(),
  LogYLabels = waiver(),
  LogYLimits = NULL,
  facet_scales = "fixed",
```

28 plot_3d_scatterbox

```
fontsize = 20,
symthick,
bthick,
ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
ColSeq = TRUE,
ColRev = FALSE,
SingleColour = "NULL",
...
)
```

Arguments

fontsize

symthick

bthick

rş	guments	
	data	a data table, e.g. data.frame or tibble.
	xcol	name of the column with the categorical factor to be plotted on X axis. If your table has numeric X , enter xcol = factor(name of colum).
	ycol	name of the column with quantitative variable to plot on the Y axis.
	shapes	name of the column with the second categorical factor in a two-way ANOVA design.
	facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
	symsize	size of symbols, default set to 3.
	s_alpha	fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot.
	b_alpha	fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency.
	bwid	width of boxes; default 0.5.
	jitter	extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.
	TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
	LogYTrans	transform Y axis into "log10" or "log2"
	LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
	LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
	LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
	facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).

parameter of base_size of fonts in theme_classic, default set to size 20. size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.

thickness (in 'pt' units) of lines of boxes; default = fontsize/22.

plot_3d_scatterbox 29

ColPal	grafify colour palette to apply, default "okabe_ito"; see graf_palettes for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
SingleColour	a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.
	any additional arguments to pass to ggplot2geom_boxplot.

Details

These functions rely on ggplot with geom_point and geom_bar (through stat_summary) or geom_boxplot geometries.

Variables other than the quantitative variable (yco1) will be automatically converted to categorical variables even if they are numeric in the data table.

Shapes are always plotted in black colour, and their opacity can be changed with the s_alpha argument and overlap can be reduced with the jitter argument. Other arguments are similar to other plot functions as briefly explained below.

Bars depict means using stat_summary with geom = "bar", fun = "mean", and bar width is set to 0.7 (cannot be changed). Error bar width can be changed with the ewid argument.

Boxplot geometry uses geom_boxplot with position = position_dodge(width = 0.9), width = 0.6. The thick line within the boxplot depicts the median, the box the IQR (interquantile range) and the whiskers show 1.5*IQR.

In 4d versions, the two grouping variables (i.e. xcol and either boxes or bars) are passed to ggplot aesthetics through group = interaction{ xcol, shapes}.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

All four functions can be expanded further, for example with facet_grid or facet_wrap.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#3d version for 1-way data with blocking
plot_3d_scatterbox(data = data_1w_death,
xcol = Genotype, ycol = Death,
shapes = Experiment)
#compare above graph to
plot_scatterbox(data = data_1w_death,
```

plot_3d_scatterviolin

```
xcol = Genotype, ycol = Death)
#single colour graph
plot_3d_scatterbox(data = data_1w_death,
xcol = Genotype, ycol = Death,
shapes = Experiment,
SingleColour = "pale_grey")
#4d version for 2-way data with blocking
plot_4d_scatterbox(data = data_2w_Tdeath,
xcol = Genotype,
ycol = PI,
boxes = Time,
shapes = Experiment)
plot_4d_scatterbar(data = data_2w_Festing,
xcol = Strain,
ycol = GST,
bars = Treatment,
shapes = Block)
```

Description

The functions plot_3d_scatterbar, plot_3d_scatterbox, plot_3d_scatterviolin, plot_4d_scatterbar, plot_4d_scatterbox and plot_4d_scatterviolin are useful for plotting one-way or two-way ANOVA designs with randomised blocks or repeated measures. The blocks or subjects can be mapped to the shapes argument in both functions (up to 25 levels can be mapped to shapes; there will be an error if this number is exceeded). The 3d versions use the categorical variable (xcol) for grouping (e.g. one-way ANOVA designs), and 4d versions take an additional grouping variable (e.g. two-way ANOVA designs) that is passed to either boxes or bars argument.

```
plot_3d_scatterviolin(
  data,
  xcol,
  ycol,
  shapes,
  facet,
  symsize = 3,
  s_alpha = 0.8,
  b_alpha = 0,
  v_alpha = 1,
  bwid = 0.3,
  vadjust = 1,
  jitter = 0.1,
```

plot_3d_scatterviolin 31

```
TextXAngle = 0,
 scale = "width",
 trim = TRUE,
 LogYTrans,
 LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
 facet_scales = "fixed",
  fontsize = 20,
 symthick,
 bvthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
 SingleColour = "NULL",
)
```

Arguments

a data table, e.g. data.frame or tibble.
name of the column with the categorical factor to be plotted on X axis. If your table has numeric X , enter xcol = factor(name of colum).
name of the column with quantitative variable to plot on the Y axis.
name of the column with the second categorical factor in a two-way ANOVA design.
add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
size of symbols, default set to 3.
fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot.
fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency.
fractional opacity of violins, default set to 1.
width of boxes (default 0.3).
number to adjust the smooth/wigglyness of violin plot (default is 1).
extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.
orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
set to "area" by default, can be changed to "count" or "width".
set whether tips of violin plot should be trimmed at high/low data. Default trim = T, can be changed to F.
transform Y axis into "log10" or "log2"

32 plot_3d_scatterviolin

LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bvthick	thickness (in 'pt' units) of both violin and boxplot lines; default = fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
SingleColour	a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.
	any additional arguments to pass to ggplot2geom_boxplot or ggplot2geom_violin.

Details

These functions rely on ggplot with geom_point and geom_bar (through stat_summary), or geom_violin and geom_boxplot geometries.

Variables other than the quantitative variable (yco1) will be automatically converted to categorical variables even if they are numeric in the data table.

Shapes are always plotted in black colour, and their opacity can be changed with the s_alpha argument and overlap can be reduced with the jitter argument. Other arguments are similar to other plot functions as briefly explained below.

Bars depict means using stat_summary with geom = "bar", fun = "mean", and bar width is set to 0.7 (cannot be changed). Error bar width can be changed with the ewid argument.

Boxplot geometry uses $geom_boxplot$ with position = position_dodge(width = 0.9), width = 0.6. The thick line within the boxplot depicts the median, the box the IQR (interquantile range) and the whiskers show 1.5*IQR.

In 4d versions, the two grouping variables (i.e. xcol and either boxes or bars) are passed to ggplot aesthetics through group = interaction{ xcol, shapes}.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

All four functions can be expanded further, for example with facet_grid or facet_wrap.

plot_4d_scatterbar 33

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#3d version for 1-way data with blocking
plot_3d_scatterviolin(data = data_1w_death,
xcol = Genotype, ycol = Death,
shapes = Experiment)
#compare above graph to
plot_scatterviolin(data = data_1w_death,
xcol = Genotype, ycol = Death)
#single colour
plot_3d_scatterviolin(data = data_1w_death,
xcol = Genotype, ycol = Death,
shapes = Experiment,
SingleColour = "pale_grey")
#4d version for 2-way data with blocking
plot_4d_scatterviolin(data = data_2w_Tdeath,
xcol = Genotype,
ycol = PI,
boxes = Time,
shapes = Experiment)
```

plot_4d_scatterbar

Plot a dot plot with matched shapes on a box plot using four variables.

Description

The functions plot_3d_scatterbar, plot_3d_scatterbox, plot_4d_scatterbar and plot_4d_scatterbox are useful for plotting one-way or two-way ANOVA designs with randomised blocks or repeated measures. The blocks or subjects can be mapped to the shapes argument in both functions (up to 25 levels can be mapped to shapes; there will be an error if this number is exceeded). The 3d versions use the categorical variable (xcol) for grouping (e.g. one-way ANOVA designs), and 4d versions take an additional grouping variable (e.g. two-way ANOVA designs) that is passed to either boxes or bars argument.

```
plot_4d_scatterbar(
  data,
  xcol,
  ycol,
  bars,
  shapes,
  facet,
```

34 plot_4d_scatterbar

```
symsize = 3,
  s_alpha = 0.8,
 b_alpha = 1,
 bwid = 0.5,
 jitter = 0.1,
 ewid = 0.2,
 TextXAngle = 0,
 LogYTrans,
 LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
 facet_scales = "fixed",
 fontsize = 20,
 symthick,
 bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColRev = FALSE,
 ColSeq = TRUE,
)
```

Arguments

data	a data table, e.g. data.frame or tibble.
xcol	name of the column with the categorical factor to plot on X axis. If column is numeric, enter as factor(col).
ycol	name of the column to plot on quantitative variable on the Y axis.
bars	name of the column containing grouping within the factor plotted on X axis. Can be categorical or numeric X . If your table has numeric X and you want to plot as factor, enter xcol = factor(name of colum).
shapes	name of the column that contains matched observations, e.g. subject IDs, experiment ID.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
symsize	size of symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot.
b_alpha	fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency.
bwid	width of boxes; default 0.5.
jitter	extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.
ewid	width of error bars, default set to 0.2.
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove

overlapping text.

35 plot_4d_scatterbar

LogYTrans	transform Y axis into "log10" or "log2"
LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick	thickness (in 'pt' units) of bar and error bar lines; default = fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
	any additional arguments to pass to ggplot2stat_summary or ggplot2geom_point.

Details

These functions rely on ggplot with geom_point and geom_bar (through stat_summary) or geom_boxplot geometries.

Variables other than the quantitative variable (ycol) will be automatically converted to categorical variables even if they are numeric in the data table.

Shapes are always plotted in black colour, and their opacity can be changed with the s_alpha argument and overlap can be reduced with the jitter argument. Other arguments are similar to other plot functions as briefly explained below.

Bars depict means using stat_summary with geom = "bar", fun = "mean", and bar width is set to 0.7 (cannot be changed). Error bar width can be changed with the ewid argument.

Boxplot geometry uses geom_boxplot with position = position_dodge(width = 0.9), width = 0.6. The thick line within the boxplot depicts the median, the box the IQR (interquantile range) and the whiskers show 1.5*IQR.

In 4d versions, the two grouping variables (i.e. xcol and either boxes or bars) are passed to ggplot aesthetics through group = interaction{ xcol, shapes}.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

All four functions can be expanded further, for example with facet_grid or facet_wrap.

36 plot_4d_scatterbox

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#3d version for 1-way data with blocking
plot_3d_scatterbox(data = data_1w_death,
xcol = Genotype, ycol = Death, shapes = Experiment)
#compare above graph to
plot_scatterbox(data = data_1w_death, xcol = Genotype, ycol = Death)
#4d version for 2-way data with blocking
plot_4d_scatterbox(data = data_2w_Tdeath,
xcol = Genotype,
ycol = PI,
boxes = Time,
shapes = Experiment)
plot_4d_scatterbar(data = data_2w_Festing,
xcol = Strain,
ycol = GST,
bars = Treatment,
shapes = Block)
```

plot_4d_scatterbox

Plot a dot plot with matched shapes on a box plot using four variables.

Description

The functions plot_3d_scatterbar, plot_3d_scatterbox, plot_4d_scatterbar and plot_4d_scatterbox are useful for plotting one-way or two-way ANOVA designs with randomised blocks or repeated measures. The blocks or subjects can be mapped to the shapes argument in both functions (up to 25 levels can be mapped to shapes; there will be an error if this number is exceeded). The 3d versions use the categorical variable (xcol) for grouping (e.g. one-way ANOVA designs), and 4d versions take an additional grouping variable (e.g. two-way ANOVA designs) that is passed to either boxes or bars argument.

```
plot_4d_scatterbox(
  data,
  xcol,
  ycol,
  boxes,
  shapes,
  facet,
  symsize = 3,
```

plot_4d_scatterbox 37

```
s_alpha = 0.8,
 b_alpha = 1,
 bwid = 0.5,
  jitter = 0.1,
 TextXAngle = 0,
 LogYTrans,
 LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
 symthick,
 bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
)
```

Arguments

LogYBreaks

data	a data table, e.g. data.frame or tibble.
xcol	name of the column with the categorical factor to plot on X axis. If column is numeric, enter as factor(col).
ycol	name of the column to plot on quantitative variable on the Y axis.
boxes	name of the column containing grouping within the factor plotted on X axis. Can be categorical or numeric X . If your table has numeric X and you want to plot as factor, enter xcol = factor(name of colum).
shapes	name of the column that contains matched observations, e.g. subject IDs, experiment number etc.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
symsize	size of symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot.
b_alpha	fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency.
bwid	width of boxes; default 0.5.
jitter	extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
LogYTrans	transform Y axis into "log10" or "log2"

argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales,

default is waiver(), or provide a vector of desired breaks.

38 plot_4d_scatterbox

LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick	thickness (in 'pt' units) of boxplot lines; default = fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
	any additional arguments to pass to ggplot2geom_boxplot.

Details

These functions rely on ggplot with geom_point and geom_bar (through stat_summary) or geom_boxplot geometries.

Variables other than the quantitative variable (yco1) will be automatically converted to categorical variables even if they are numeric in the data table.

Shapes are always plotted in black colour, and their opacity can be changed with the s_alpha argument and overlap can be reduced with the jitter argument. Other arguments are similar to other plot functions as briefly explained below.

Bars depict means using stat_summary with geom = "bar", fun = "mean", and bar width is set to 0.7 (cannot be changed). Error bar width can be changed with the ewid argument.

Boxplot geometry uses geom_boxplot with position = position_dodge(width = 0.9), width = 0.6. The thick line within the boxplot depicts the median, the box the IQR (interquantile range) and the whiskers show 1.5*IQR.

In 4d versions, the two grouping variables (i.e. xcol and either boxes or bars) are passed to ggplot aesthetics through group = interaction{ xcol, shapes}.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

All four functions can be expanded further, for example with facet_grid or facet_wrap.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

plot_4d_scatterviolin 39

Examples

```
#3d version for 1-way data with blocking
plot_3d_scatterbox(data = data_1w_death,
xcol = Genotype, ycol = Death, shapes = Experiment)
#compare above graph to
plot_scatterbox(data = data_1w_death, xcol = Genotype, ycol = Death)
#4d version for 2-way data with blocking
plot_4d_scatterbox(data = data_2w_Tdeath,
xcol = Genotype,
ycol = PI,
boxes = Time,
shapes = Experiment)
plot_4d_scatterbar(data = data_2w_Festing,
xcol = Strain,
ycol = GST,
bars = Treatment,
shapes = Block)
```

Description

The functions plot_3d_scatterbar, plot_3d_scatterbox, plot_3d_scatterviolin, plot_4d_scatterbar, plot_4d_scatterbox and plot_4d_scatterviolin are useful for plotting one-way or two-way ANOVA designs with randomised blocks or repeated measures. The blocks or subjects can be mapped to the shapes argument in both functions (up to 25 levels can be mapped to shapes; there will be an error if this number is exceeded). The 3d versions use the categorical variable (xcol) for grouping (e.g. one-way ANOVA designs), and 4d versions take an additional grouping variable (e.g. two-way ANOVA designs) that is passed to either boxes or bars argument.

Usage

```
plot_4d_scatterviolin(
  data,
  xcol,
  ycol,
  boxes,
  shapes,
  facet,
  symsize = 3,
  s_alpha = 0.8,
  v_alpha = 1,
  b_alpha = 0,
  bwid = 0.3,
```

40 plot_4d_scatterviolin

```
vadjust = 1,
  jitter = 0.1,
  TextXAngle = 0,
  scale = "width",
  trim = TRUE,
 LogYTrans,
  LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
 bvthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
)
```

Arguments

scale

data	a data table, e.g. data.frame or tibble.
xcol	name of the column with the categorical factor to plot on X axis. If column is numeric, enter as factor(col).
ycol	name of the column to plot on quantitative variable on the Y axis.
boxes	name of the column containing grouping within the factor plotted on X axis. Can be categorical or numeric X . If your table has numeric X and you want to plot as factor, enter xcol = factor(name of colum).
shapes	name of the column that contains matched observations, e.g. subject IDs, experiment number etc.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
symsize	size of symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 0.8 (i.e. 80% opacity). Set s_alpha = 0 to not show scatter plot.
v_alpha	fractional opacity of violins, default set to 1.
b_alpha	fractional opacity of boxes. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency.
bwid	width of boxes; default 0.3.
vadjust	number to adjust the smooth/wigglyness of violin plot (default set to 1).
jitter	extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove

set to "area" by default, can be changed to "count" or "width".

overlapping text.

plot_4d_scatterviolin 41

trim	set whether tips of violin plot should be trimmed at high/low data. Default trim = T, can be changed to F.
LogYTrans	transform Y axis into "log10" or "log2"
LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bvthick	thickness (in 'pt' units) of both violin and boxplot lines; default = fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
	any additional arguments to pass to ggplot2geom_boxplot or ggplot2geom_violin.

Details

These functions rely on ggplot with geom_point and geom_bar (through stat_summary), or geom_violin and geom_boxplot geometries.

Variables other than the quantitative variable (ycol) will be automatically converted to categorical variables even if they are numeric in the data table.

Shapes are always plotted in black colour, and their opacity can be changed with the s_alpha argument and overlap can be reduced with the jitter argument. Other arguments are similar to other plot functions as briefly explained below.

Bars depict means using stat_summary with geom = "bar", fun = "mean", and bar width is set to 0.7 (cannot be changed). Error bar width can be changed with the ewid argument.

Boxplot geometry uses $geom_boxplot$ with position = position_dodge(width = 0.9), width = 0.6. The thick line within the boxplot depicts the median, the box the IQR (interquantile range) and the whiskers show 1.5*IQR.

In 4d versions, the two grouping variables (i.e. xcol and either boxes or bars) are passed to ggplot aesthetics through group = interaction{ xcol, shapes}.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

All four functions can be expanded further, for example with facet_grid or facet_wrap.

42 plot_bar_sd

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#3d version for 1-way data with blocking
plot_3d_scatterviolin(data = data_1w_death,
xcol = Genotype, ycol = Death, shapes = Experiment)
#compare above graph to
plot_scatterviolin(data = data_1w_death,
xcol = Genotype, ycol = Death)

#4d version for 2-way data with blocking
plot_4d_scatterviolin(data = data_2w_Tdeath,
xcol = Genotype,
ycol = PI,
boxes = Time,
shapes = Experiment)
```

plot_bar_sd

Plot a bar graph indicating mean with error bars (SD) using two variables.

Description

This function takes a data table, categorical X and numeric Y variables, and plots bars showing the mean with SD error bars. The X variable is mapped to the fill aesthetic of bars.

Usage

```
plot_bar_sd(
  data,
  xcol,
  ycol,
  facet,
  b_alpha = 1,
  bwid = 0.7,
  ewid = 0.3,
  TextXAngle = 0,
  LogYTrans,
  LogYBreaks = waiver(),
  LogYLabels = waiver(),
  LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
```

plot_bar_sd 43

```
"light", "muted", "pale", "r4", "safe", "vibrant"),
ColSeq = TRUE,
ColRev = FALSE,
SingleColour = "NULL",
...
)
```

Arguments

data a data table object, e.g. a data.frame or tibble.

xcol name of the column to plot on X axis. This should be a categorical variable.

ycol name of the column to plot on the Y axis. This should be a quantitative variable.

facet add another variable from the data table to create faceted graphs using ggplot2facet_wrap.

b_alpha fractional opacity of bars, default set to .5 (i.e. 50% transparent).

bwid width of bars, default 0.7

ewid width of error bars, default 0.3

TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove

overlapping text.

LogYTrans transform Y axis into "log10" or "log2"

LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales,

default is waiver(), or provide a vector of desired breaks.

LogYLabels argument for ggplot2[scale_y_continuous] for Y axis labels on log scales,

default is waiver(), or provide a vector of desired labels.

LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y

axis.

facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can

be fixed (default), free, free_y or free_x (for Y and X axis one at a time,

respectively).

fontsize parameter of base_size of fonts in theme_classic, default set to size 20.

bthick thickness (in 'pt' units) of bar and error bar lines; default = fontsize/

ColPal grafify colour palette to apply, default "okabe_ito"; see graf_palettes for

available palettes.

ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen

palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.

ColRev whether to reverse order of colour within the selected palette, default F (FALSE);

can be set to T (TRUE).

SingleColour a colour hexcode (starting with #), a number between 1-154, or names of colours

from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour

other than "black"; use grey_lin11, which is almost black.

... any additional arguments to pass to stat_summary.

44 plot_befafter_box

Details

The function uses stat_summary with geom = "bar". Standard deviation (SD) is plotted through stat_summary calculated using mean_sdl from the ggplot2 package (get help with ?mean_sdl), and 1x SD is plotted (fun.arg = list(mult = 1).

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

If there are many groups along the X axis and you prefer a single colour for the graph, use the SingleColour argument.

You are instead encouraged to show all data using the following functions: plot_scatterbar_sd, plot_scatterbox, plot_dotbox, plot_dotbar_sd, plot_scatterviolin or plot_dotviolin.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#Basic usage
plot_bar_sd(data = data_doubling_time,
xcol = Student, ycol = Doubling_time)

#apply distant colours in the default palette
plot_bar_sd(data = data_doubling_time,
xcol = Student, ycol = Doubling_time,
ColSeq = FALSE)

#single colour along X axis aesthetic
plot_bar_sd(data = data_doubling_time,
xcol = Student, ycol = Doubling_time,
SingleColour = "pale_cyan")
```

plot_befafter_box

Before-after style graph with a boxplot

Description

The plot_befafter_box, plot_befafter_colours, plot_befafter_colors and plot_befafter_shapes are for plotting matched data joined by lines. These functions take X and Y variables along with a data column with matching information (e.g. matched subjects or experiments etc.) and plot symbols matched by colour or shape.

plot_befafter_box 45

Usage

```
plot_befafter_box(
 data,
 xcol,
 ycol,
 match,
  facet,
 PlotShapes = FALSE,
  symsize = 3,
  s_alpha = 0.8,
  b_alpha = 1,
  bwid = 0.4,
  jitter = 0.1,
  TextXAngle = 0,
 LogYTrans,
 LogYBreaks = waiver(),
  LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
 bthick,
  groups,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
  ColSeq = TRUE,
 ColRev = FALSE,
  SingleColour = "NULL",
)
```

Arguments

data	a data table object, e.g. data.frame or tibble.
xcol	name of the column containing the categorical variable to be plotted on the X axis.
ycol	name of the column containing the quantitative Y values.
match	name of the column with the grouping variable to pass on to geom_line.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
PlotShapes	logical TRUE or FALSE (default = FALSE) if the shape of the symbol is to be mapped to the match variable. Note that only 25 shapes allowed.
symsize	size of symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 0.8 (i.e., 80% opacity).
b_alpha	fractional opacity of boxes, default set to 1.
bwid	width of boxplots; default 0.4.

plot_befafter_box

jitter	extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
LogYTrans	transform Y axis into "log10" or "log2"
LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick	thickness (in 'pt' units) of lines and boxes lines; default = fontsize/22.
groups	old argument name for match; retained for backward compatibility.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
SingleColour	a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.
•••	any additional arguments to pass to ggplot2geom_line, ggplot2geom_point, or ggplot2facet_wrap.

Details

Use plot_befafter_box to also get a boxplot with matched data. In this function, the categorical variable along X axis is mapped to the fill-colour aesthetic.

The default is a plot without matching shapes. Change the PlotShapes argument to TRUE for plot similar to plot_befafter_shapes. Note that with PlotShapes = TRUE the colour of symbols will always be black and the X-axis variable is mapped to the fill colour of boxplots.

Note that only 25 shapes are available, and there will be errors with plot_befafter_shapes when there are fewer than 25 matched observations; instead use default (PlotShapes = FALSE).

Add another variable to make faceted graphs with the facet argument.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from

plot_befafter_colours 47

within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

To plot a graph with a single colour along the X axis variable, use the SingleColour argument.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#plot without legends if necessary
plot_befafter_box(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
match = Subject)
#with PlotShapes = TRUE
plot_befafter_box(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
match = Subject, PlotShapes = TRUE)
#2way ANOVA design with randomised blocks
plot_befafter_box(data = data_2w_Tdeath,
xcol = Time2, ycol = PI,
match = Experiment, facet = Genotype)
```

Description

The plot_befafter_colours, plot_befafter_colors and plot_befafter_shapes are for plotting matched data joined by lines. These functions take X and Y variables along with a data column with matching information (e.g. matched subjects or experiments etc.) and plot symbols matched by colour or shape.

Usage

```
plot_befafter_colours(
  data,
  xcol,
  ycol,
  match,
  facet,
  Boxplot = FALSE,
  symsize = 3,
  s_alpha = 1,
  jitter = 0.1,
  bwid = 0.4,
  TextXAngle = 0,
```

plot_befafter_colours

```
groups,
 LogYTrans,
  LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
 bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
  SingleColour = "NULL",
)
plot_befafter_colors(
 data,
  xcol,
 ycol,
 match,
 facet,
 Boxplot = FALSE,
  symsize = 3,
  s_alpha = 1,
  jitter = 0.1,
  bwid = 0.4,
 TextXAngle = 0,
  groups,
  LogYTrans,
 LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
 bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
 SingleColour = "NULL",
)
```

Arguments

data a data table object, e.g. data.frame or tibble.

plot_befafter_colours 49

xcol	name of the column containing the categorical variable to be plotted on the X axis.
ycol	name of the column containing the quantitative Y values.
match	name of the column with the matching variable to pass on to geom_line.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
Boxplot	logical TRUE/FALSE, whether to show box and whisker plot or not (default is FALSE)
symsize	size of symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 1 (i.e. maximum opacity & zero transparency).
jitter	extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.
bwid	width of boxplots; default 0.4.
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
groups	old argument name for match; retained for backward compatibility.
LogYTrans	transform Y axis into "log10" or "log2"
LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick	thickness (in 'pt' units) of lines and boxes; default = fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
SingleColour	a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.

any additional arguments to pass to ggplot2geom_line or ggplot2geom_point.

50 plot_befafter_shapes

Details

Setting Boxplot = TRUE will also plot a box and whiskers plot.

Note that only 25 shapes are available, and there will be errors with plot_befafter_shapes when there are fewer than 25 matched observations; instead use plot_befafter_colours instead.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

To plot a graph with a single colour along the X axis variable, use the SingleColour argument.

More complex designs can also be plotted when used with facet_wrap or facet_grid.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#plot without legends if necessary
plot_befafter_colours(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
match = Subject, s_alpha = .9, ColSeq = FALSE)+
guides(fill = "none",
colour = "none") #remove guides
#plot with boxplot
plot_befafter_colours(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
match = Subject, s_alpha = .9, ColSeq = FALSE,
Boxplot = TRUE) +
guides(fill = "none",
colour = "none") #remove guides
#2way ANOVA design with randomised blocks
plot_befafter_colours(data = data_2w_Tdeath,
xcol = Genotype, ycol = PI,
match = Experiment) + facet_wrap("Time")
```

Description

The plot_befafter_colours, plot_befafter_colors and plot_befafter_shapes are for plotting matched data joined by lines. These functions take X and Y variables along with a data column with matching information (e.g. matched subjects or experiments etc.) and plot symbols matched by colour or shape.

plot_befafter_shapes 51

Usage

```
plot_befafter_shapes(
 data,
 xcol,
 ycol,
 match,
  facet,
 Boxplot = FALSE,
  symsize = 3,
  s_alpha = 1,
  bwid = 0.4,
  jitter = 0.1,
 TextXAngle = 0,
 LogYTrans,
 LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
 bthick,
  groups,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
  SingleColour = "NULL",
)
```

Arguments

data	a data table object, e.g. data.frame or tibble.
xcol	name of the column containing the categorical variable to be plotted on the X axis.
ycol	name of the column containing the quantitative Y values.
match	name of the column with the matching variable to pass on to geom_line.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
Boxplot	logical TRUE/FALSE, whether to show box and whisker plot or not (default is FALSE)
symsize	size of symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 1.
bwid	width of boxplots; default 0.4.
jitter	extent of jitter (scatter) of symbols, default is 0.1. Increase to reduce symbol overlap, set to 0 for aligned symbols.

52 plot_befafter_shapes

TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
LogYTrans	transform Y axis into "log10" or "log2"
LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick	thickness (in 'pt' units) of lines and boxes; default = fontsize/22.
groups	old argument name for match; retained for backward compatibility.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
SingleColour	a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.
	any additional arguments to pass to ggplot2geom_line or ggplot2geom_point.

Details

Setting Boxplot = TRUE will also plot a box and whiskers plot.

Note that only 25 shapes are available, and there will be errors with plot_befafter_shapes when there are fewer than 25 matched observations; instead use plot_befafter_colours instead.

Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

To plot a graph with a single colour along the X axis variable, use the SingleColour argument.

More complex designs can also be plotted when used with facet_wrap or facet_grid.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

plot_density 53

Examples

```
#plot without legends if necessary
plot_befafter_colors(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
match = Subject, s_alpha = .9, ColSeq = FALSE)+
guides(fill = "none",
colour = "none") #remove guides
#plot with boxplot
plot_befafter_colors(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
match = Subject, s_alpha = .9, ColSeq = FALSE,
Boxplot = TRUE)+
guides(fill = "none",
colour = "none") #remove guides
#2way ANOVA design with randomised blocks
plot_befafter_colors(data = data_2w_Tdeath,
xcol = Genotype, ycol = PI,
match = Experiment) + facet_wrap("Time")
```

plot_density

Plot density distribution of data.

Description

This function takes a data table, ycol of quantitative variable and a categorical grouping variable (group), if available, and plots a density graph using geom_density).

Usage

```
plot_density(
  data,
  ycol,
  group,
  facet,
  c_{alpha} = 0.2,
  TextXAngle = 0,
  facet_scales = "fixed",
  fontsize = 20,
  linethick,
  Group,
  alpha,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
  ColSeq = TRUE,
 ColRev = FALSE,
)
```

54 plot_density

Arguments

data	a data table e.g. data.frame or tibble.
ycol	name of the column containing the quantitative variable whose density distribution is to be plotted.
group	name of the column containing a categorical grouping variable
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
c_alpha	fractional opacity of filled colours under the curve, default set to 0.2 (i.e. 20% opacity).
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
	parameter of base_size of fonts in theme_crassic, default set to size zo.
linethick	thickness of symbol border, default set to fontsize/22.
linethick Group	
	thickness of symbol border, default set to fontsize/22.
Group	thickness of symbol border, default set to fontsize/22. deprecated old argument for group; retained for backward compatibility.
Group alpha	thickness of symbol border, default set to fontsize/22. deprecated old argument for group; retained for backward compatibility. deprecated old argument for c_alpha; retained for backward compatibility. grafify colour palette to apply, default "okabe_ito"; see graf_palettes for
Group alpha ColPal	thickness of symbol border, default set to fontsize/22. deprecated old argument for group; retained for backward compatibility. deprecated old argument for c_alpha; retained for backward compatibility. grafify colour palette to apply, default "okabe_ito"; see graf_palettes for available palettes. logical TRUE or FALSE. Default TRUE for sequential colours from chosen

Details

Note that the function requires the quantitative Y variable first, and groups them based on an X variable. The group variable is mapped to the fill and colour aesthetics in geom_density. Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

plot_dotbar_sd 55

Examples

```
plot_density(data = data_t_pratio,
ycol = log(Cytokine), group = Genotype)

#with faceting
plot_density(data = data_cholesterol,
ycol = Cholesterol, group = Treatment,
fontsize = 10)+facet_wrap("Treatment")
```

plot_dotbar_sd

Plot a dotplot on a bar graph with SD error bars with two variables.

Description

There are three types of plot_dot_ functions that plot "dots" as data symbols plotted with geom_dotplot geometry. Variants can show summary and data distributions as bar and SD errors (plot_dotbar_sd), box and whisker plots (plot_dotbox) or violin and box & whiskers plots (plot_dotviolin). They all take a data table, a categorical X variable and a numeric Y variable.

Usage

```
plot_dotbar_sd(
  data,
  xcol,
 ycol,
  facet,
  dotsize = 1.5,
  d_{alpha} = 0.8,
  b_alpha = 1,
  bwid = 0.5,
  ewid = 0.2,
  TextXAngle = 0,
  LogYTrans,
  LogYBreaks = waiver(),
 LogYLabels = waiver(),
  LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  dotthick,
  bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
 SingleColour = "NULL",
)
```

56 plot_dotbar_sd

Arguments

data a data table object, e.g. data.frame or tibble.

xcol name of the column to plot on X axis. This should be a categorical variable.

ycol name of the column to plot on quantitative Y axis. This should be a quantitative

variable.

facet add another variable from the data table to create faceted graphs using ggplot2facet_wrap.

dotsize size of dots relative to binwidth used by geom_dotplot. Default set to 1.5,

increase/decrease as needed.

d_alpha fractional opacity of dots, default set to 0.8 (i.e., 80% opacity).

b_alpha fractional opacity of bars, default set to 1.

bwid width of bars; default 0.5.

ewid width of error bars, default set to 0.2.

TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove

overlapping text.

LogYTrans transform Y axis into "log10" or "log2"

LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales,

default is waiver(), or provide a vector of desired breaks.

LogYLabels argument for ggplot2[scale_y_continuous] for Y axis labels on log scales,

default is waiver(), or provide a vector of desired labels.

LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y

axis.

facet_scales whether or not to fix scales on X & Y axes for all facet facet graphs. Can

be fixed (default), free, free_y or free_x (for Y and X axis one at a time,

respectively).

fontsize parameter of base_size of fonts in theme_classic, default set to size 20.

dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to

fontsize/22.

bthick thickness (in 'pt' units) of bar and error bar lines; default = fontsize/22.

ColPal grafify colour palette to apply, default "okabe_ito"; see graf_palettes for

available palettes.

ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen

palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.

ColRev whether to reverse order of colour within the selected palette, default F (FALSE);

can be set to T (TRUE).

SingleColour a colour hexcode (starting with #), a number between 1-154, or names of colours

from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour

other than "black"; use grey_lin11, which is almost black.

... any additional arguments to pass to ggplot2geom_dotplot.

plot_dotbox 57

Details

Related plot_scatter variants show data symbols using the geom_point geometry. These are plot_scatterbar_sd, plot_scatterbox and plot_scatterviolin. Overplotting in plot_scatter variants can be reduced with the jitter argument.

The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins.

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

If you prefer a single colour for the graph, use the SingleColour argument.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
plot_dotbar_sd(data = data_cholesterol,
xcol = Treatment,
ycol = Cholesterol)

plot_dotbar_sd(data = data_1w_death,
xcol = Genotype, ycol = Death,
ColPal = "pale", ColSeq = FALSE, ColRev = TRUE)

#single colour along X
plot_dotbar_sd(data = data_1w_death,
xcol = Genotype, ycol = Death,
SingleColour = "light_orange")
```

plot_dotbox

Plot a dotplot on a boxplot with two variables.

Description

There are three types of plot_dot_ functions that plot "dots" as data symbols plotted with geom_dotplot geometry. Variants can show summary and data distributions as bar and SD errors (plot_dotbar_sd), box and whisker plots (plot_dotbox) or violin and box & whiskers plots (plot_dotviolin). They all take a data table, a categorical X variable and a numeric Y variable.

58 plot_dotbox

Usage

```
plot_dotbox(
  data,
  xcol,
 ycol,
  facet,
 dotsize = 1.5,
 d_{alpha} = 0.8,
 b_alpha = 1,
 bwid = 0.5,
 TextXAngle = 0,
 LogYTrans,
 LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  dotthick,
 bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
 SingleColour = "NULL",
)
```

Arguments

data	a data table object, e.g. data.frame or tibble.
xcol	name of the column to plot on X axis. This should be a categorical variable.
ycol	name of the column to plot on quantitative Y axis. This should be a quantitative variable.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
dotsize	size of dots relative to binwidth used by geom_dotplot. Default set to 1.5, increase/decrease as needed.
d_alpha	fractional opacity of dots, default set to 0.8 (i.e., 80% opacity).
b_alpha	fractional opacity of boxes, default set to 1.
bwid	width of boxplots; default 0.5.
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
LogYTrans	transform Y axis into "log10" or "log2"
LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.

plot_dotbox 59

LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
dotthick	thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22.
bthick	thickness (in 'pt' units) of boxplot lines; default = fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
SingleColour	a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.
	any additional arguments to pass to ggplot2geom_boxplot or ggplot2geom_dotplot.

Details

Related plot_scatter variants show data symbols using the geom_point geometry. These are plot_scatterbar_sd, plot_scatterbox and plot_scatterviolin. Overplotting in plot_scatter variants can be reduced with the jitter argument.

The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins.

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

If you prefer a single colour for the graph, use the SingleColour argument.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
plot_dotbox(data = data_1w_death,
xcol = Genotype, ycol = Death)
```

60 plot_dotviolin

```
plot_dotbox(data = data_1w_death,
xcol = Genotype, ycol = Death,
ColPal = "vibrant", b_alpha = 0.5)
plot_dotbox(data = data_1w_death,
xcol = Genotype, ycol = Death,
SingleColour = "safe_bluegreen", b_alpha = 0.5)
```

plot_dotviolin

Plot a dotplot on a violin plot with two variables.

Description

There are three types of plot_dot_ functions that plot "dots" as data symbols plotted with geom_dotplot geometry. Variants can show summary and data distributions as bar and SD errors (plot_dotbar_sd), box and whisker plots (plot_dotbox) or violin and box & whiskers plots (plot_dotviolin). They all take a data table, a categorical X variable and a numeric Y variable.

Usage

```
plot_dotviolin(
  data,
  xcol,
  ycol,
  facet,
  dotsize = 1.5,
  d_{alpha} = 0.8,
 b_alpha = 0,
  v_alpha = 1,
 bwid = 0.3,
  vadjust = 1,
  trim = TRUE,
  scale = "width",
  TextXAngle = 0,
  LogYTrans,
  LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  dotthick,
  bvthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
 SingleColour = "NULL",
)
```

plot_dotviolin 61

Arguments

data a data table object, e.g. data.frame or tibble. xcol name of the column to plot on X axis. This should be a categorical variable. ycol name of the column to plot on quantitative Y axis. This should be a quantitative variable. facet add another variable from the data table to create faceted graphs using ggplot2facet_wrap. dotsize size of dots relative to binwidth used by geom_dotplot. Default set to 1.5, increase/decrease as needed. d_alpha fractional opacity of dots, default set to 0.8 (i.e., 80% opacity). b_alpha fractional opacity of boxplots. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency. fractional opacity of violins, default set to 1. v_alpha bwid width of boxplots; default 0.3. vadjust number to adjust the smooth/wigglyness of violin plot (default set to 1). trim set whether tips of violin plot should be trimmed at high/low data. Default trim = TRUE, can be changed to FALSE. set to "area" by default, can be changed to "count" or "width". scale orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove TextXAngle overlapping text. transform Y axis into "log10" or "log2" LogYTrans LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, LogYLabels default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. whether or not to fix scales on X & Y axes for all facet facet graphs. Can facet_scales be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. dotthick thickness of dot border (stroke parameter of geom_dotplot), default set to fontsize/22. bvthick thickness (in 'pt' units) of both violin and boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply, default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE);

can be set to T (TRUE).

62 plot_dotviolin

SingleColour a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.

... any additional arguments to pass to ggplot2geom_boxplot, ggplot2geom_dotplot or ggplot2geom_violin.

Details

Related plot_scatter variants show data symbols using the geom_point geometry. These are plot_scatterbar_sd, plot_scatterbox and plot_scatterviolin. Overplotting in plot_scatter variants can be reduced with the jitter argument.

The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins.

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

If you prefer a single colour for the graph, use the SingleColour argument.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#plot with trim = FALSE
plot_dotviolin(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
dotsize = 2, trim = FALSE)

plot_dotviolin(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
trim = FALSE, b_alpha = 0.5,
ColPal = "pale", ColSeq = FALSE)

#single colour along X
plot_dotviolin(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
trim = FALSE, b_alpha = 0.5,
SingleColour = "pale_cyan")
```

plot_gam_predict 63

 ${\tt plot_gam_predict} \qquad \qquad {\tt Plot\ prediction\ of\ gam\ model}$

Description

Plot prediction of gam model

Usage

```
plot_gam_predict(
   Model,
   xcol,
   ycol,
   ByFactor,
   symsize = 1,
   s_alpha = 0.1,
   smooth_alpha = 0.7,
   linethick,
   fontsize = 20,
   ...
)
```

Arguments

Model	a generalised additive model (gam) fitted with ga_model or mgcv
xcol	the smooth in the gam (should match variable in the model exactly)
ycol	the dependent variable in gam (should match variable in the model exactly)
ByFactor	the by factor used in gam (should match variable in the model exactly)
symsize	size of symbols (default = 1)
s_alpha	opacity of symbols (default = 0.1)
smooth_alpha	opacity of the predicted CI interval (default = 0.7)
linethick	thickness of symbol lines (default = fontsize/22)
fontsize	base font size for graph
	additional arguments to pass to plot_xy_CatGroup.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

64 plot_grafify_palette

Examples

```
#fit zooplankton data
z1 <- ga_model(data = data_zooplankton,
Y_value = "log(density_adj)",
Fixed_Factor = "taxon",
Smooth_Factor = "day")

#plot fitted data
plot_gam_predict(Model = z1,
xcol = day,
ycol = `log(density_adj)`,
ByFactor = taxon)</pre>
```

Description

This simple function allows quick visualisation of colours in grafify palettes and their hex codes. It uses plot_bar_sd and some arguments are similar and can be adjusted.

Usage

```
plot_grafify_palette(
  palette = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
      "light", "muted", "pale", "r4", "safe", "vibrant"),
      fontsize = 14,
      ...
)
```

Arguments

```
palette name of grafify palettes: "okabe_ito", "vibrant, "bright", "pale", "muted", "dark", 
"light", "contrast" or "all_grafify".

font size font size.

... any additional parameters to pass to plot_bar_sd
```

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
plot_grafify_palette("pale")
plot_grafify_palette("contrast")
```

plot_histogram 65

plot_histogram Plot data distribution as histograms.

Description

This function takes a data table, a quantitative variable (ycol) and a Grouping variable (group), if available, and plots a histogram graph using geom_histogram).

Usage

```
plot_histogram(
 data,
 ycol,
 group,
 facet,
 BinSize = 30,
 c_alpha = 0.2,
 TextXAngle = 0,
 facet_scales = "fixed",
 fontsize = 20,
 linethick,
 Group,
 alpha,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
   "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
)
```

Arguments

data	a data table e.g. data.frame or tibble.
ycol	name of the column containing the quantitative variable whose histogram distribution is to be plotted.
group	name of the column containing a categorical grouping variable.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
BinSize	bins to use on X-axis, default set to 30.
c_alpha	fractional opacity of colour filled within histograms, default set to 0.2 (i.e. 20% opacity).
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).

plot_lm_predict

fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
linethick	thickness of symbol border, default set to fontsize/22.
Group	deprecated old argument for group; retained for backward compatibility.
alpha	deprecated old argument for c_alpha; retained for backward compatibility.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
• • •	any additional arguments to pass to ggplot2geom_histogram.

Details

Note that the function requires the quantitative Y variable first, and groups them based on an X variable. The group variable is mapped to the fill and colour aesthetics in geom_histogram.

ColPal & ColRev options are applied to both fill and colour scales. Colours available can be seen quickly with plot_grafify_palette. Colours can be changed using ColPal, ColRev or ColSeq arguments. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#Basic usage
plot_histogram(data = data_t_pratio,
ycol = Cytokine, group = Genotype,
BinSize = 10)
#with log transformation
plot_histogram(data = data_t_pratio,
ycol = log(Cytokine), group = Genotype,
BinSize = 10)
```

plot_lm_predict

Plot data and predictions from linear model

Description

This function takes a linear model, and up to three variables and plots observe data (circles) and model predictions (squares). If the X-variable is categorical, a box and whiskers plot is overlaid. A variable (ByFactor) can be used for faceting.

plot_lm_predict 67

Usage

```
plot_lm_predict(
   Model,
   xcol,
   ycol,
   ByFactor,
   obs_size = 2,
   obs_alpha = 0.3,
   pred_size = 2,
   pred_alpha = 0.8,
   linethick,
   base_size = 15,
   ...
)
```

Arguments

Model	a linear model saved with simple_model, mixed_model or ga_model.
xcol	variable along the \boldsymbol{X} axis (should match one of the dependent variables in model exactly).
ycol	independent variable along the Y axis (should match independent variable in model exactly).
ByFactor	optional faceting variable (should match one of the variables in model exactly).
obs_size	size of symbols for observed data (default $= 2$).
obs_alpha	opacity of symbols for observed data (default = 0.3).
pred_size	size of symbols for predicted data (default = 2).
pred_alpha	opacity of symbols for predicted data (default = 0.8).
linethick	thickness of border lines for boxes and symbols (default is base_size/20).
base_size	base fontsize for theme_grafify
• • •	any other parameters to be passed to theme_grafify

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#fit a model
deathm1 <- mixed_model(data_2w_Tdeath,
"PI", c("Genotype", "Time"),
"Experiment")
#plot model
plot_lm_predict(deathm1,
Genotype, PI, Time)
#fit zooplankton data
z1 <- ga_model(data = data_zooplankton,</pre>
```

68 plot_logscale

```
Y_value = "log(density_adj)",
Fixed_Factor = "taxon",
Smooth_Factor = "day")

#plot fitted data
plot_lm_predict(Model = z1,
xcol = day,
ycol = `log(density_adj)`,
ByFactor = taxon)
```

plot_logscale

Add log transformations to graphs

Description

This function allows " $\log 10$ " or " $\log 2$ " transformation of X or Y axes. With " $\log 10$ " transformation, $\log 10$ ticks are also added on the outside.

Usage

```
plot_logscale(
  Plot,
  LogYTrans = "log10",
  LogXTrans,
  LogYBreaks = waiver(),
  LogXBreaks = waiver(),
  LogYLimits = NULL,
  LogYLimits = NULL,
  LogYLabels = waiver(),
  LogXLabels = waiver(),
  ...
)
```

Arguments

Plot	a ggplot2 object.
LogYTrans	transform Y axis into "log10" (default) or "log2"
LogXTrans	transform X axis into "log10" or "log2"
LogYBreaks	argument for $ggplot2[scale_y_continuous]$ for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogXBreaks	argument for $ggplot2[scale_x_continuous]$ for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the \boldsymbol{Y} axis.

plot_point_sd 69		
LogXLimits	a vector of length two specifying the range (minimum and maximum) of the X axis.	
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.	
LogXLabels	argument for ggplot2[scale_x_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.	

any other arguments to pass to scale_y_continuous[ggplot2] or scale_x_continuous[ggplot2]

Details

Arguments allow for axes limits, breaks and labels to passed on.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#save a ggplot object
P <- ggplot(data_t_pratio,</pre>
aes(Genotype,Cytokine))+
geom_jitter(shape = 21,
size = 5, width = .2,
aes(fill = Genotype),
alpha = .7
#transform Y axis
plot_logscale(Plot = P)
#or in one go
plot_logscale(ggplot(data_t_pratio,
aes(Genotype,Cytokine))+
geom_jitter(shape = 21,
size = 5, width = .2,
aes(fill = Genotype),
alpha = .7))
```

plot_point_sd

Plot a point as mean with SD error bars using two variables.

Description

This function takes a data table, categorical X and numeric Y variables, and plots a point showing the mean with SD error bars. The X variable is mapped to the fill aesthetic of symbols.

70 plot_point_sd

Usage

```
plot_point_sd(
  data,
  xcol,
 ycol,
  facet,
  symsize = 3.5,
  s_alpha = 1,
  ewid = 0.2,
 TextXAngle = 0,
  LogYTrans,
 LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
  ethick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
 SingleColour = "NULL",
)
```

Arguments

data	a data table object, e.g. data.frame or tibble.
xcol	name of the column with a categorical X variable.
ycol	name of the column with quantitative Y variable.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
symsize	size of point symbols, default set to 3.5.
s_alpha	fractional opacity of symbols, default set to 1 (i.e. maximum opacity & zero transparency).
ewid	width of error bars, default set to 0.2.
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
LogYTrans	transform Y axis into "log10" or "log2"
LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.

plot_point_sd 71

facet_scales	whether or not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	thickness of symbol border, default set to fontsize1/22.
ethick	thickness of error bar lines; default fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
SingleColour	a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.
	any additional arguments to pass to ggplot2stat summary.

Details

The function uses $stat_summary$ with geom = "point" with size = 3. Standard deviation (SD) is plotted through $stat_summary$ calculated using mean_sdl from the ggplot2 package (get help with ?mean_sdl), and 1x SD is plotted (fun.arg = list(mult = 1).

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

If there are many groups along the X axis and you prefer a single colour for the graph, use the SingleColour argument.

You are instead encouraged to show all data using the following functions: plot_scatterbar_sd, plot_scatterbox, plot_dotbox, plot_dotbar_sd, plot_scatterviolin or plot_dotviolin.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#Basic usage
plot_point_sd(data = data_doubling_time,
xcol = Student, ycol = Doubling_time)
```

72 plot_qqline

plot_qqline Plot quantile-quantile (QQ) graphs from data.

Description

This function takes a data table, a quantitative variable (ycol), and a categorical grouping variable (group), if available, and plots a QQ graph using ggplot2[geom_qq] and ggplot2[geom_qq_line].

Usage

```
plot_qqline(
 data,
 ycol,
 group,
 facet,
 symsize = 3,
 s_alpha = 0.8,
 TextXAngle = 0,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
 linethick,
 Group,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
   "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
)
```

Arguments

data	a data table e.g. data.frame or tibble.
ycol	name of the column containing the quantitative variable whose distribution is to be plotted.
group	name of the column containing a categorical grouping variable.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
symsize	size of symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 1 (i.e. maximum opacity & zero transparency).
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
facet_scales	whether orcet graphs not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).

73 plot_qqline

fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	thickness of symbol border, default set to fontsize/22.
linethick	thickness of lines, default set to fontsize/22.
Group	deprecated old argument for group; retained for backward compatibility.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
	any additional arguments to pass to ggplot2[geom_qq] or ggplot2[geom_qq_line].

Details

Note that the function requires the quantitative Y variable first, and can be passed on a grouping variable as group if required. The graph plots sample quantiles on Y axis & theoretical quantiles on X axis. The X variable is mapped to the fill aesthetic instat_qq and colour aesthetic for the stat_qq_line.

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. When only one level is present within group, symbols will receive "ok_orange" colour. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

```
plot_qqline(data = data_cholesterol,
ycol = Cholesterol, group = Treatment)
#with faceting
plot_qqline(data = data_cholesterol,
ycol = Cholesterol, group = Treatment,
fontsize = 10)+facet_wrap("Treatment")
```

74 plot_qqmodel

plot_qqmodel	Plot quantile-quantile (QQ) graphs from residuals of linear models.

Description

This function takes a linear model (simple or mixed effects) and plots a QQ graph after running rstudent from rstudent to generate a table of Studentised model residuals on an ordinary (simple_model), mixed model (mixed_model or mixed_model_slopes. The graph plots studentised residuals from the model (sample) on Y axis & Theoretical quantiles on X axis.

Usage

```
plot_qqmodel(
   Model,
   symsize = 3,
   s_alpha = 0.8,
   fontsize = 20,
   symthick,
   linethick,
   SingleColour = "#E69F00"
)
```

Arguments

Model	name of a saved model generated by simple_model or mixed_model.
symsize	size of symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 0.8 (i.e., 80% opacity).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20 .
symthick	thickness of symbol border, default set to fontsize/22.
linethick	thickness of line, default set to fontsize/22.
SingleColour	colour of symbols (default = #E69F00, which is ok_orange)

Details

For generalised additive models fit with mgcv, scaled Pearson residuals are plotted.

The function uses ggplot2[geom_qq] and ggplot2[geom_qq_line] geometries. Symbols receive "ok_orange" colour by default.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

plot_qq_gam 75

Examples

```
#Basic usage
m1 <- simple_model(data = data_2w_Festing,
Y_value = "GST",
Fixed_Factor = c("Treatment", "Strain"))
plot_qqmodel(m1)</pre>
```

plot_qq_gam

Plot model diagnostics for generalised additive models

Description

This is a clone of the appraise function in the gratia package (rewritten to avoid depending on gratia package for these plots). This function will plot 4 diagnostic plots when given a generalised additive model fitted with ga_model or mgcv. It creates graphs that use grafify colours and theme_grafify().

Usage

```
plot_qq_gam(
  Model,
  symsize = 2,
  s_colour = "#E69F00",
  s_alpha = 0.6,
  line_col = "black",
  base_size = 12,
  linethick,
  n_bins = c("sturges", "scott", "fd")
)
```

Arguments

```
Model
                   a model of class gam fitted with ga_model or the mgcv package.
symsize
                   size of symbols (default = 2)
s_colour
                   colour of symbols (default = ok_orange)
s_alpha
                   opacity of symbols (default = 0.8)
line_col
                   colour of lines (default = black)
base_size
                   font size for theme (default = 12)
linethick
                   thickness in 'pt' units of lines and symbol orders (default = base_size/22)
                   one of either "sturges", "scott", "fd"
n_bins
```

Value

This function returns an object of classes "ggplot" and "gg".

This function returns a ggplot2 object of class "gg" and "ggplot".

76 plot_scatterbar_sd

plot_scatterbar_sd

Plot scatter dots on a bar graph with SD error bars with two variables.

Description

There are three types of plot_dot_ functions that plot "dots" as data symbols plotted with geom_dotplot geometry. Variants can show summary and data distributions as bar and SD errors (plot_dotbar_sd), box and whisker plots (plot_dotbox) or violin and box & whiskers plots (plot_dotviolin). They all take a data table, a categorical X variable and a numeric Y variable.

Usage

```
plot_scatterbar_sd(
 data,
 xcol,
 ycol,
  facet,
  symsize = 3,
  s_alpha = 0.8,
 b_alpha = 1,
 bwid = 0.5,
  ewid = 0.3,
  jitter = 0.1,
  TextXAngle = 0,
  LogYTrans,
  LogYBreaks = waiver(),
 LogYLabels = waiver(),
 LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
 bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
 SingleColour = "NULL",
)
```

Arguments

a data table object, e.g. data.frame or tibble.

xcol name of the column to plot on X axis. This should be a categorical variable.

ycol name of the column to plot on quantitative Y axis. This should be a quantitative variable.

plot_scatterbar_sd 77

facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
symsize	size of point symbols, default set to 3.
s_alpha	fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity).
b_alpha	fractional opacity of boxes, default set to .5 (i.e. 50% transparent).
bwid	width of bars, default set to 0.5.
ewid	width of error bars, default set to 0.3.
jitter	extent of jitter (scatter) of symbols, default is 0.1.
TextXAngle	orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
LogYTrans	transform Y axis into "log10" or "log2"
LogYBreaks	argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales	whether orcet graphs not to fix scales on X & Y axes for all facet facet graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick	thickness (in 'pt' units) of both bar and error bar lines; default = fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
SingleColour	a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.
	any additional arguments to pass to ggplot2facet_wrap.

Details

Related plot_scatter variants show data symbols using the geom_point geometry. These are plot_scatterbar_sd, plot_scatterbox and plot_scatterviolin. Overplotting in plot_scatter variants can be reduced with the jitter argument.

The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins.

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides

78 plot_scatterbox

whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

If you prefer a single colour for the graph, use the SingleColour argument.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#with jitter
plot_scatterbar_sd(data = data_cholesterol,
xcol = Treatment, ycol = Cholesterol)

#white bars
plot_scatterbar_sd(data = data_cholesterol,
xcol = Treatment, ycol = Cholesterol,
b_alpha = 0)

plot_scatterbar_sd(data = data_doubling_time,
xcol = Student, ycol = Doubling_time,
SingleColour = "ok_grey")
```

plot_scatterbox

Plot a scatter plot on a boxplot with two variables.

Description

There are three types of plot_dot_ functions that plot "dots" as data symbols plotted with geom_dotplot geometry. Variants can show summary and data distributions as bar and SD errors (plot_dotbar_sd), box and whisker plots (plot_dotbox) or violin and box & whiskers plots (plot_dotviolin). They all take a data table, a categorical X variable and a numeric Y variable.

Usage

```
plot_scatterbox(
  data,
  xcol,
  ycol,
  facet,
  symsize = 3,
  s_alpha = 0.8,
  b_alpha = 1,
  bwid = 0.5,
  jitter = 0.1,
  TextXAngle = 0,
```

plot_scatterbox 79

Arguments

name of the column to plot on X axis. This should be a categorical variable. ycol name of the column to plot on quantitative Y axis. This should be a quantitative variable. facet add another variable from the data table to create faceted graphs using ggplot2facet_wrap. symsize size of symbols, default set to 3. s_alpha fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity). b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.5. jitter extent of jitter (scatter) of symbols, default is 0.1. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.
variable. facet add another variable from the data table to create faceted graphs using ggplot2facet_wrap. symsize size of symbols, default set to 3. s_alpha fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity). b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.5. jitter extent of jitter (scatter) of symbols, default is 0.1. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove
symsize size of symbols, default set to 3. s_alpha fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity). b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.5. jitter extent of jitter (scatter) of symbols, default is 0.1. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove
s_alpha fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity). b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.5. jitter extent of jitter (scatter) of symbols, default is 0.1. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove
b_alpha fractional opacity of boxes, default set to 1. bwid width of boxplots; default 0.5. jitter extent of jitter (scatter) of symbols, default is 0.1. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove
bwid width of boxplots; default 0.5. jitter extent of jitter (scatter) of symbols, default is 0.1. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove
jitter extent of jitter (scatter) of symbols, default is 0.1. TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove
TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove
LogYTrans transform Y axis into "log10" or "log2"
LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks.
Ylabels argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis.
facet_scales whether or not to fix scales on X & Y axes for all graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize parameter of base_size of fonts in theme_classic, default set to size 20.
symthick size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick thickness (in 'pt' units) of boxplot lines; default = fontsize/22.
ColPal grafify colour palette to apply, default "okabe_ito"; see graf_palettes for

available palettes.

80 plot_scatterviolin

ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.

ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).

SingleColour a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black.

... any additional arguments to pass to ggplot2geom_boxplot.

Details

Related plot_scatter variants show data symbols using the geom_point geometry. These are plot_scatterbar_sd, plot_scatterbox and plot_scatterviolin. Overplotting in plot_scatter variants can be reduced with the jitter argument.

The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins.

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

If you prefer a single colour for the graph, use the SingleColour argument.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
plot_scatterbox(data = data_cholesterol,
xcol = Treatment, ycol = Cholesterol)

plot_scatterbox(data = data_doubling_time,
xcol = Student, ycol = Doubling_time,
SingleColour = "ok_grey")
```

plot_scatterviolin

Plot a scatter plot on a violin plot with two variables.

Description

There are three types of plot_dot_ functions that plot "dots" as data symbols plotted with geom_dotplot geometry. Variants can show summary and data distributions as bar and SD errors (plot_dotbar_sd), box and whisker plots (plot_dotbox) or violin and box & whiskers plots (plot_dotviolin). They all take a data table, a categorical X variable and a numeric Y variable.

plot_scatterviolin 81

Usage

```
plot_scatterviolin(
  data,
  xcol,
 ycol,
  facet,
  symsize = 3,
  s_alpha = 0.8,
 b_alpha = 0,
  v_alpha = 1,
 bwid = 0.3,
  vadjust = 1,
  jitter = 0.1,
  trim = TRUE,
  scale = "width",
 TextXAngle = 0,
  LogYTrans,
  LogYBreaks = waiver(),
  Ylabels = waiver(),
  LogYLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  symthick,
 bvthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
 SingleColour = "NULL",
)
```

Arguments

data	a data table object, e.g. data.frame or tibble.
xcol	name of the column to plot on X axis. This should be a categorical variable.
ycol	name of the column to plot on quantitative Y axis. This should be a quantitative variable.
facet	add another variable from the data table to create faceted graphs using ggplot2facet_wrap.
symsize	size of dots relative to binwidth used by geom_point. Default set to 3.
s_alpha	fractional opacity of symbols, default set to to 0.8 (i.e, 80% opacity). Set $s_alpha = 0$ to not show scatter plot.
b_alpha	fractional opacity of boxplots. Default is set to 0, which results in white boxes inside violins. Change to any value >0 up to 1 for different levels of transparency.
v_alpha	fractional opacity of violins, default set to 1.

82 plot_scatterviolin

bwid width of boxplots; default 0.3. vadjust number to adjust the smooth/wigglyness of violin plot (default set to 1). jitter extent of jitter (scatter) of symbols, default is 0 (i.e. aligned symbols). To reduce symbol overlap, try 0.1-0.3 or higher. set whether tips of violin plot should be trimmed at high/low data. Default trim trim = T, can be changed to F. set to "area" by default, can be changed to "count" or "width". scale TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text. transform Y axis into "log10" or "log2" LogYTrans LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. Ylabels argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogYLimits a vector of length two specifying the range (minimum and maximum) of the Y axis. facet_scales whether or not to fix scales on X & Y axes for all graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20. symthick size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22. bvthick thickness (in 'pt' units) of both violin and boxplot lines; default = fontsize/22. ColPal grafify colour palette to apply, default "okabe_ito"; see graf_palettes for available palettes. ColSeq logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2. ColRev whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE). SingleColour a colour hexcode (starting with #), a number between 1-154, or names of colours from grafify colour palettes to fill along X-axis aesthetic. Accepts any colour other than "black"; use grey_lin11, which is almost black. any additional arguments to pass to ggplot2geom_boxplot, ggplot2geom_point or ggplot2geom violin.

Details

Related plot_scatter variants show data symbols using the geom_point geometry. These are plot_scatterbar_sd, plot_scatterbox and plot_scatterviolin. Overplotting in plot_scatter variants can be reduced with the jitter argument.

The X variable is mapped to the fill aesthetic of dots, symbols, bars, boxes and violins.

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides

plot_xy_CatGroup 83

whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

If you prefer a single colour for the graph, use the SingleColour argument.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#plot without jitter
plot_scatterviolin(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
symsize = 2, trim = FALSE)

#no symbols
plot_scatterviolin(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
s_alpha = 0,
symsize = 2, trim = FALSE)

#single colour along X
plot_scatterviolin(data = data_t_pdiff,
xcol = Condition, ycol = Mass,
SingleColour = "pale_blue",
s_alpha = 0,
symsize = 2, trim = FALSE)
```

plot_xy_CatGroup

Plot points on a quantitative X - Y plot & a categorical grouping variable.

Description

This function takes a data table, quantitative X and Y variables along with a categorical grouping variable, and a and plots a graph with using <code>geom_point</code>. The categorical CatGroup variable is mapped to the fill aesthetic of symbols.

Usage

```
plot_xy_CatGroup(
  data,
  xcol,
  ycol,
  CatGroup,
  facet,
  Boxplot = FALSE,
```

84 plot_xy_CatGroup

```
symsize = 3,
  s_alpha = 0.8,
  TextXAngle = 0,
  LogYTrans,
  LogXTrans,
  LogYBreaks = waiver(),
  LogXBreaks = waiver(),
  LogYLabels = waiver(),
  LogXLabels = waiver(),
  LogYLimits = NULL,
  LogXLimits = NULL,
  facet_scales = "fixed",
  fontsize = 20,
  bwid = 0.3,
  b_alpha = 0.3,
  l_{alpha} = 0.8,
  symthick,
 bthick,
 ColPal = c("okabe_ito", "all_grafify", "bright", "contrast", "dark", "fishy", "kelly",
    "light", "muted", "pale", "r4", "safe", "vibrant"),
 ColSeq = TRUE,
 ColRev = FALSE,
)
```

Arguments

data a data table object, e.g. data.frame or tibble.

xcol name of the column with quantitative X variable.

ycol name of the column with quantitative Y variable.

CatGroup a categorical variable as grouping factor for colour of data points, should be a categorical variable for default colours to work. Will be converted to factor if your column is numeric

facet add another variable from the data table to create faceted graphs using ggplot2facet_wrap.

Boxplot logical TRUE/FALSE to plot box and whiskers plot (default = FALSE).

symsize size of symbols used by geom_point. Default set to 3.

s_alpha fractional opacity of symbols, default set to to 0.8 (i.e, 80% opacity).

TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove

overlapping text.

LogYTrans transform Y axis into "log10" or "log2" transform X axis into "log10" or "log2"

LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales,

default is waiver(), or provide a vector of desired breaks.

LogXBreaks argument for ggplot2[scale_x_continuous] for Y axis breaks on log scales,

default is waiver(), or provide a vector of desired breaks.

plot_xy_CatGroup 85

LogYLabels	argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogXLabels	argument for ggplot2[scale_x_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels.
LogYLimits	a vector of length two specifying the range (minimum and maximum) of the Y axis.
LogXLimits	a vector of length two specifying the range (minimum and maximum) of the X axis.
facet_scales	whether or not to fix scales on X & Y axes for all graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively).
fontsize	parameter of base_size of fonts in theme_classic, default set to size 20.
bwid	width of boxplot (default = 0.3).
b_alpha	fractional opacity of boxes, (default = 0.3).
l_alpha	fractional opacity of lines joining boxes, (default = 0.8).
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick	size (in 'pt' units) of outline of boxes, whisker and joining lines (stroke), default = fontsize/22.
ColPal	grafify colour palette to apply, default "okabe_ito"; see <pre>graf_palettes</pre> for available palettes.
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours, which will be applied using scale_fill_grafify2.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
	any additional arguments to pass on.

Details

A box and whisker plot with lines joining the medians can be plotted with Boxplot = TRUE. If only box plot is needed without the line, set the opacity of the line to 0 (i.e., $l_alpha = 0$).

Colours can be changed using ColPal, ColRev or ColSeq arguments. Colours available can be seen quickly with plot_grafify_palette. ColPal can be one of the following: "okabe_ito", "dark", "light", "bright", "pale", "vibrant, "muted" or "contrast". ColRev (logical TRUE/FALSE) decides whether colours are chosen from first-to-last or last-to-first from within the chosen palette. ColSeq (logical TRUE/FALSE) decides whether colours are picked by respecting the order in the palette or the most distant ones using colorRampPalette.

This plot is related to plot_xy_NumGroup which requires a numeric grouping factor. When summary statistics (mean/median) are required, use plot_3d_scatterbar, plot_3d_scatterbox or plot_4d_scatterbox.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

86 plot_xy_NumGroup

Examples

```
#The grouping factor cyl is automatically converted to categorical variable
plot_xy_CatGroup(data = mtcars,
xcol = mpg, ycol = disp, CatGroup = cyl,
ColPal = "vibrant", ColSeq = FALSE)

#with boxplot
plot_xy_CatGroup(data = mpg,
xcol = cyl, ycol = cty,
CatGroup = fl, Boxplot = TRUE)

#add another variable
#with boxplot
plot_xy_CatGroup(data = mpg,
xcol = cyl, ycol = cty,
CatGroup = fl, facet = drv,
Boxplot = TRUE)
```

plot_xy_NumGroup

Plot points on a quantitative X - Y plot & a numeric grouping variable.

Description

This function takes a data table, quantitative X and Y variables, and a numeric grouping variable, and a and plots a graph with using <code>geom_point</code>. The numerical NumGroup variable is mapped to the fill aesthetic of symbols, which receives the <code>scale_fill_grafify</code> default quantitative palette (blue_conti). Alternatives are <code>yellow_conti</code>, <code>grey_conti</code>, <code>OrBl_div</code> and <code>PrGn_div</code>. Colour order can be reversed with <code>ColRev = TRUE</code> (default is <code>FALSE</code>).

Usage

```
plot_xy_NumGroup(
  data,
  xcol,
  ycol,
 NumGroup,
  facet,
  Boxplot = FALSE,
  symsize = 3,
  s_alpha = 0.8,
  TextXAngle = 0,
  LogYTrans,
  LogXTrans,
  LogYBreaks = waiver(),
  LogXBreaks = waiver(),
  LogYLabels = waiver(),
  LogXLabels = waiver(),
```

plot_xy_NumGroup 87

```
LogYLimits = NULL,
LogXLimits = NULL,
facet_scales = "fixed",
fontsize = 20,
bwid = 0.3,
b_alpha = 0.3,
1_alpha = 0.8,
symthick,
bthick,
ColPal = c("blue_conti", "yellow_conti", "grey_conti", "PrGn_div", "OrBl_div"),
ColRev = FALSE,
...
)
```

a data table object, e.g. data.frame or tibble.

Arguments

data

name of the column with quantitative X variable. xcol name of the column with quantitative Y variable. ycol NumGroup a numeric factor for fill aesthetic of data points. facet add another variable from the data table to create faceted graphs using ggplot2facet_wrap. logical TRUE/FALSE to plot box and whiskers plot (default = FALSE). Boxplot symsize size of symbols used by geom_point. Default set to 3. s_alpha fractional opacity of symbols, default set to 0.8 (i.e, 80% opacity). orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove TextXAngle overlapping text. LogYTrans transform Y axis into "log10" or "log2" LogXTrans transform X axis into "log10" or "log2" LogYBreaks argument for ggplot2[scale_y_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogXBreaks argument for ggplot2[scale_x_continuous] for Y axis breaks on log scales, default is waiver(), or provide a vector of desired breaks. LogYLabels argument for ggplot2[scale_y_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. LogXLabels argument for ggplot2[scale_x_continuous] for Y axis labels on log scales, default is waiver(), or provide a vector of desired labels. a vector of length two specifying the range (minimum and maximum) of the Y LogYLimits LogXLimits a vector of length two specifying the range (minimum and maximum) of the X axis. facet_scales whether or not to fix scales on X & Y axes for all graphs. Can be fixed (default), free, free_y or free_x (for Y and X axis one at a time, respectively). fontsize parameter of base_size of fonts in theme_classic, default set to size 20.

88 posthoc_Levelwise

bwid	width of boxplot (default = 0.3).
b_alpha	fractional opacity of boxes, (default = 0.3).
l_alpha	fractional opacity of lines joining boxes, (default = 0.8).
symthick	size (in 'pt' units) of outline of symbol lines (stroke), default = fontsize/22.
bthick	size (in 'pt' units) of outline of boxes, whisker and joining lines (stroke), default = $fontsize/22$.
ColPal	grafify colour palette to apply, default "okabe_ito"; see ${\tt graf_palettes}$ for available palettes.
ColRev	whether to reverse order of colour within the selected palette, default F (FALSE); can be set to T (TRUE).
	any additional arguments to pass on.

Details

This plot is related to plot_xy_CatGroup which requires a categorical grouping factor. When summary statistics (mean/median) are required, use plot_3d_scatterbar, plot_3d_scatterbox or plot_4d_scatterbox.

Value

This function returns a ggplot2 object of class "gg" and "ggplot".

Examples

```
#The grouping factor gear is numeric
plot_xy_NumGroup(data = mtcars,
xcol = mpg, ycol = disp, NumGroup = cyl,
s_alpha = 0.8)
#change colour palette
plot_xy_NumGroup(data = mtcars,
xcol = mpg, ycol = disp, NumGroup = cyl,
s_alpha = 0.8,
ColPal = "grey_conti")
```

posthoc_Levelwise Level-wise post-hoc comparisons from a linear or linear mixed effects model.

Description

This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). It also needs to know the fixed factor(s), which should match those in the model and data table.

posthoc_Levelwise 89

Usage

```
posthoc_Levelwise(Model, Fixed_Factor, P_Adj = "fdr", Factor, ...)
```

Arguments

Model a model object fit using simple_model or mixed_model or related. Fixed Factor one or more categorical variables, provided as a vector (see Examples), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = c("A", "B"), this function passes this on as specs = A|B (note the vertical | between the two Fixed Factor) to emmeans to produce comparisons between each level A with each other listed separately at each level of B. method for correcting P values for multiple comparisons. Default is set to false P_Adj discovery rate ("fdr"), can be changed to "none", "tukey", "bonferroni", "sidak". See Interaction analysis in emmeans in the manual for emmeans. old argument name for Fixed_Factor; retained for backward compatibility. Factor additional arguments for emmeans such as 1mer.df or others. See help for so-

phisticated models in emmeans.

Details

The function will generate level-wise comparisons (as described in Comparisons and contrasts in emmeans), i.e. comparison between of every level of one factor separately at each level of the other factor. By default, P values are corrected by the FDR method (which can be changed). If the model was fit by transforming the quantitative response variable using "log", "logit", "sqrt" etc., results will still be on the original scale, i.e. type = "response" is the default; data will be back-transformed (check results to confirm this), and for log or logit see Transformations and link functions in emmeans, ratios will be compared. The first part of the emmeans results has the estimated marginal means, SE and CI (\$emmeans), which are generated from the fitted model, and not the original data table. The second part has the results of the comparisons (\$contrasts).

Value

returns an "emm_list" object containing contrasts and emmeans through emmeans.

```
#make a linear model first
CholMod <- mixed_model(data = data_cholesterol,
Y_value = "Cholesterol",
Fixed_Factor = c("Hospital", "Treatment"),
Random_Factor = "Subject")

#note quotes used only for fixed Fixed_Factor
#to get comparisons between different hospitals separately for each level of Treatment
posthoc_Levelwise(Model = CholMod,
Fixed_Factor = c("Hospital", "Treatment"))

#get comparisons between treatments separately at each hospital</pre>
```

90 posthoc_Pairwise

```
posthoc_Levelwise(Model = CholMod,
Fixed_Factor = c("Treatment", "Hospital"))
```

posthoc_Pairwise

Pairwise post-hoc comparisons from a linear or linear mixed effects model.

Description

This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). It also needs to know the fixed factor(s), which should match those in the model and data table.

Usage

```
posthoc_Pairwise(Model, Fixed_Factor, P_Adj = "fdr", Factor, ...)
```

phisticated models in emmeans.

Arguments

Model	a model object fit using simple_model or mixed_model or related.
Fixed_Factor	one or more categorical variables, provided as a vector (see Examples), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = c("A", "B"), this function passes this on as specs = A:B (note the colon between the two Fixed_Factor) to emmeans to produce pairwise comparisons.
P_Adj	method for correcting P values for multiple comparisons. Default is set to false discovery rate ("fdr"), can be changed to "none", "tukey", "bonferroni", "sidak". See Interaction analysis in emmeans in the manual for emmeans.
Factor	old argument name for Fixed_Factor; retained for backward compatibility.
	additional arguments for emmeans such as 1mer.df or others. See help for so-

Details

The function will generate pairwise comparisons of every level of every factor (as described in Comparisons and contrasts in emmeans). Too many comparisons will be generated and only use this when necessary. By default, P values are corrected by the FDR method (which can be changed). If the model was fit by transforming the quantitative response variable using "log", "logit", "sqrt" etc., results will still be on the original scale, i.e. type = "response" is the default; data will be back-transformed (check results to confirm this), and for log or logit see Transformations and link functions in emmeans, ratios will be compared. The first part of the emmeans results has the estimated marginal means, SE and CI (\$emmeans), which are generated from the fitted model, and not the original data table. The second part has the results of the comparisons (\$contrasts).

Value

returns an "emm_list" object containing contrasts and emmeans through emmeans.

Examples

```
#make linear models first
DoublMod <- simple_model(data = data_doubling_time,</pre>
Y_value = "Doubling_time", Fixed_Factor = "Student")
CholMod <- mixed_model(data = data_cholesterol,</pre>
Y_value = "Cholesterol",
Fixed_Factor = c("Hospital", "Treatment"),
Random_Factor = "Subject")
posthoc_Pairwise(Model = DoublMod,
Fixed_Factor = "Student")
#basic use with two Fixed_Factor provided as a vector
posthoc_Pairwise(Model = CholMod,
Fixed_Factor = c("Treatment", "Hospital"))
#same call with "tukey" adjustment
posthoc_Pairwise(Model = CholMod,
Fixed_Factor = c("Treatment", "Hospital"),
P_adj = "tukey")
```

posthoc_Trends_Levelwise

Use emtrends to get level-wise comparison of slopes from a linear model.

Description

This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). At least one of the factors should be a numeric covariate whose slopes you wish to find. It also needs to know the fixed factor(s), which should match those in the model and data table.

Usage

```
posthoc_Trends_Levelwise(
  Model,
  Fixed_Factor,
  Trend_Factor,
  P_Adj = "sidak",
   ...
)
```

Arguments

Model a model object fit using simple_model or mixed_model (or lm or lmer). Fixed_Factor one or more categorical variables, provided as a vector (see Examples), whose levels you wish to compare pairwise. Names of Fixed Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = c("A", "B"), this function passes this on as specs = A:B (note the colon between the two Fixed_Factor) to emmeans to produce pairwise comparisons. Trend_Factor a quantitative variable that interacts with a factor and whose slope (trend) is to be compared P_Adj method for correcting P values for multiple comparisons. Default is "sidak", can be changed to "bonferroni". See Interaction analysis in emmeans in the manual for emmeans. additional arguments for emmeans such as 1mer.df or others. See help for sophisticated models in emmeans.

Details

Checkout the Interactions with covariates section in the emmeans vignette for more details. One of the independent variables should be a quantitative (e.g. time points) variable whose slope (trend) you want to find at levels of the other factor.

Value

returns an "emm_list" object containing slopes and their contrasts calculated through emtrends.

Examples

```
#create an lm model
#Time2 is numeric (time points)
m1 <- simple_model(data = data_2w_Tdeath,
Y_value = "PI", Fixed_Factor = c("Genotype", "Time2"))
posthoc_Trends_Levelwise(Model = m1,
Fixed_Factor = "Genotype",
Trend_Factor = "Time2")</pre>
```

```
posthoc_Trends_Pairwise
```

Use emtrends to get pairwise comparison of slopes from a linear model.

Description

This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). At least one of the factors should be a numeric covariate whose slopes you wish to find. It also needs to know the fixed factor(s), which should match those in the model and data table.

Usage

```
posthoc_Trends_Pairwise(
   Model,
   Fixed_Factor,
   Trend_Factor,
   P_Adj = "sidak",
   ...
)
```

Arguments

Model	a model object fit using simple_model or mixed_model (or lm or lmer).
Fixed_Factor	one or more categorical variables, provided as a vector (see Examples), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = c("A", "B"), this function passes this on as specs = A:B (note the colon between the two Fixed_Factor) to emmeans to produce pairwise comparisons.
Trend_Factor	a quantitative variable that interacts with a factor and whose slope (trend) is to be compared
P_Adj	method for correcting P values for multiple comparisons. Default is "sidak", can be changed to "bonferroni". See Interaction analysis in emmeans in the manual for emmeans.
	additional arguments for emmeans such as lmer.df or others. See help for sophisticated models in emmeans.

Details

Checkout the Interactions with covariates section in the emmeans vignette for more details. One of the independent variables should be a quantitative (e.g. time points) variable whose slope (trend) you want to find at levels of the other factor.

Value

returns an "emm_list" object containing slopes and their contrasts calculated through emtrends.

```
#create an lm model
#Time2 is numeric (time points)
```

```
m1 <- simple_model(data = data_2w_Tdeath,
Y_value = "PI", Fixed_Factor = c("Genotype", "Time2"))
posthoc_Trends_Pairwise(Model = m1,
Fixed_Factor = "Genotype",
Trend_Factor = "Time2")</pre>
```

Description

This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). At least one of the factors should be a numeric covariate whose slopes you wish to find. It also needs to know the fixed factor(s), which should match those in the model and data table.

Usage

```
posthoc_Trends_vsRef(
   Model,
   Fixed_Factor,
   Trend_Factor,
   Ref_Level = 1,
   P_Adj = "sidak",
   ...
)
```

Arguments

Model	a model object fit using simple_model or mixed_model (or lm or lmer).
Fixed_Factor	one or more categorical variables, provided as a vector (see Examples), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = c("A", "B"), this function passes this on as specs = A:B (note the colon between the two Fixed_Factor) to emmeans to produce pairwise comparisons.
Trend_Factor	a quantitative variable that interacts with a factor and whose slope (trend) is to be compared
Ref_Level	the level within that factor to be considered the reference or control to compare other levels to (to be provided as a number - by default R orders levels alphabetically); default Ref_Level = 1.
P_Adj	method for correcting P values for multiple comparisons. Default is "sidak", can be changed to "bonferroni". See Interaction analysis in emmeans in the manual for emmeans.

posthoc_vsRef 95

... additional arguments for emmeans such as lmer.df or others. See help for sophisticated models in emmeans.

Details

Checkout the Interactions with covariates section in the emmeans vignette for more details. One of the independent variables should be a quantitative (e.g. time points) variable whose slope (trend) you want to find at levels of the other factor.

Value

returns an "emm_list" object containing slopes and their contrasts calculated through emtrends.

Examples

```
#create an lm model
#Time2 is numeric (time points)
m1 <- simple_model(data = data_2w_Tdeath,
Y_value = "PI", Fixed_Factor = c("Genotype", "Time2"))
posthoc_Trends_vsRef(Model = m1,
Fixed_Factor = "Genotype",
Trend_Factor = "Time2",
Ref_Level = 2)</pre>
```

posthoc_vsRef

Post-hoc comparisons to a control or reference group.

Description

This function is a wrapper based on emmeans, and needs a ordinary linear model produced by simple_model or a mixed effects model produced by mixed_model or mixed_model_slopes (or generated directly with lm, lme4 or lmerTest calls). It also needs to know the fixed factor(s), which should match those in the model and data table.

Usage

```
posthoc_vsRef(Model, Fixed_Factor, Ref_Level = 1, P_Adj = "fdr", Factor, ...)
```

Arguments

Model

a model object fit using simple_model or mixed_model or related.

Fixed_Factor

Fixed_Factor one or more categorical variables, provided as a vector (see Examples), whose levels you wish to compare pairwise. Names of Fixed_Factor should match Fixed_Factor used to fit the model. When more than one factor is provided e.g. Fixed_factor = c("A", "B"), this function passes this on as specs = A|B (note the vertical | between the two Fixed_Factor) to emmeans. The specification internally is set to specs = trt.vs.ctrl, Ref_Level = 1 to compare each group in A to the reference first group in A, separately at each level of B.

96 posthoc_vsRef

Ref_Level	the level within that factor to be considered the reference or control to compare other levels to (to be provided as a number - by default R orders levels alphabetically); default Ref_Level = 1.
P_Adj	method for correcting P values for multiple comparisons. Default is set to false discovery rate ("fdr"), can be changed to "none", "tukey", "bonferroni", "sidak". See Interaction analysis in emmeans in the manual for emmeans.
Factor	old argument name for Fixed_Factor; retained for backward compatibility.
	additional arguments for emmeans such as lmer.df or others. See help for sophisticated models in emmeans.

Details

The function will generate treatment vs control type of comparisons (as described in Comparisons and contrasts in emmeans), i.e. comparison of each level of a factor to a reference level, which is set by default to the first level in the factor (Ref_Level = 1). By default, P values are corrected by the FDR method (which can be changed). If the model was fit by transforming the quantitative response variable using "log", "logit", "sqrt" etc., results will still be on the original scale, i.e. type = "response" is the default; data will be back-transformed (check results to confirm this), and for log or logit see Transformations and link functions in emmeans, ratios will be compared. The first part of the emmeans results has the estimated marginal means, SE and CI (\$emmeans), which are generated from the fitted model, and **not** the original data table. The second part has the results of the comparisons (\$contrasts).

Value

returns an "emm_list" object containing contrasts and emmeans through emmeans.

```
#make linear models first
DoublMod <- simple_model(data = data_doubling_time,
Y_value = "Doubling_time",
Fixed_Factor = "Student")

CholMod <- mixed_model(data = data_cholesterol,
Y_value = "Cholesterol",
Fixed_Factor = c("Hospital", "Treatment"),
Random_Factor = "Subject")

#to compare all students with student #9
posthoc_vsRef(Model = DoublMod,
Fixed_Factor = "Student", Ref_Level = 9)

#for comparison between hospital_a to every other hospital, separately at levels of Treatment
posthoc_vsRef(Model = CholMod,
Fixed_Factor = c("Hospital", "Treatment"), Ref_Level = 1)</pre>
```

scale_colour_grafify 97

```
scale_colour_grafify scale_colour_ and scale_fill_functions
```

Description

These let you apply grafify discrete or continuous palettes as fill or colour aesthetics to any ggplot2 (scale_color_ spelling is also accepted).

Usage

```
scale_colour_grafify(
  palette = "okabe_ito",
  ColSeq = TRUE,
  reverse = FALSE,
  discrete = TRUE,
  ...
)

scale_color_grafify(
  palette = "okabe_ito",
  ColSeq = TRUE,
  reverse = FALSE,
  discrete = TRUE,
  ...
)
```

Arguments

palette	Name of the grafify palettes from above, provide within quotes. Default discrete palette is okabe_ito. For quantitative palette, set discrete = FALSE (which will apply blue_conti unless another palette is chosen).
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours.
reverse	Whether the colour order should be reversed.
discrete	not used.
	Additional parameters for scale_fill or scale_colour.

Details

The default is palette = "okabe_ito". The discrete argument is not used at present. The following discrete and quantitative palettes can be used.

Categorical/discreet palettes:

- okabe_ito (default)
- bright

scale_colour_grafify

- contrast
- dark
- kelly
- light
- muted
- pale
- r4
- safe
- vibrant

By default, sequential colours from above palettes will be chosen. To choose the most distant colours set ColSeq = TRUE.

Sequential quantitative palettes:

- grey_conti
- blue_conti
- yellow_conti

Divergent quantitative palettes:

- OrBl_div
- PrGn_div

Value

ggplot scale_fill function for discrete colours.

```
#add a grafify fill scheme to ggplot
ggplot(emmeans::neuralgia, aes(x = Treatment,
                              y = Duration))+
 geom_boxplot(aes(fill = Treatment),
              alpha = .6)+
 geom_point(aes(colour = Treatment,
                 shape = Treatment),
            size = 3)+
 scale_fill_grafify(palette = "bright")+
 scale_colour_grafify(palette = "bright")+
 facet_wrap("Sex")+
 theme_classic()
#distant colours `ColSeq = FALSE`
ggplot(emmeans::neuralgia, aes(x = Treatment,
                              y = Duration))+
 geom_boxplot(aes(fill = Treatment),
              alpha = .6)+
 geom_point(aes(colour = Treatment,
                shape = Treatment),
```

scale_fill_grafify 99

```
scale_fill_grafify scale_colour_ and scale_fill_functions
```

Description

These let you apply grafify discrete or continuous palettes as fill or colour aesthetics to any ggplot2 (scale_color_ spelling is also accepted).

Usage

```
scale_fill_grafify(
  palette = "okabe_ito",
  ColSeq = TRUE,
  reverse = FALSE,
  discrete = TRUE,
  ...
)
```

Arguments

palette	Name of the grafify palettes from above, provide within quotes. Default discrete palette is okabe_ito. For quantitative palette, set discrete = FALSE (which will apply blue_conti unless another palette is chosen).
ColSeq	logical TRUE or FALSE. Default TRUE for sequential colours from chosen palette. Set to FALSE for distant colours.
reverse	Whether the colour order should be reversed.
discrete	not used.
	Additional parameters for scale_fill or scale_colour.

100 scale_fill_grafify

Details

The default is palette = "okabe_ito". The discrete argument is not used at present. The following discrete and quantitative palettes can be used.

Categorical/discreet palettes:

- okabe_ito (default)
- bright
- contrast
- dark
- kelly
- light
- muted
- pale
- r4
- safe
- vibrant

By default, sequential colours from above palettes will be chosen. To choose the most distant colours set ColSeq = TRUE.

Sequential quantitative palettes:

- grey_conti
- blue_conti
- yellow_conti

Divergent quantitative palettes:

- OrBl_div
- PrGn_div

Value

ggplot scale_fill function for discrete colours.

simple_anova 101

```
facet_wrap("Sex")+
 theme_classic()
#distant colours `ColSeq = FALSE`
ggplot(emmeans::neuralgia, aes(x = Treatment,
                               y = Duration))+
 geom_boxplot(aes(fill = Treatment),
               alpha = .6)+
 geom_point(aes(colour = Treatment,
                 shape = Treatment),
            size = 3)+
 scale_fill_grafify(palette = "bright",
                     ColSeq = FALSE)+
 scale_colour_grafify(palette = "bright",
                       ColSeq = FALSE)+
 facet_wrap("Sex")+
 theme_classic()
#quantitative colour schemes
ggplot(mtcars, aes(x = disp,
                  y = mpg))+
 geom_point(aes(colour = cyl),
            size = 3)+
 scale_colour_grafify(palette = "blue_conti")
```

simple_anova

ANOVA table from a linear model fit to data.

Description

Update in v0.2.1: This function uses lm to fit a linear model to data, passes it on to Anova, and outputs the ANOVA table with type II sum of squares with F statistics and P values. (Previous versions produced type I sum of squares using anova call.)

Usage

```
simple_anova(data, Y_value, Fixed_Factor, ...)
```

Arguments

a data table object, e.g. data.frame or tibble.

Y_value

name of column containing quantitative (dependent) variable, provided within "quotes".

Fixed_Factor

name(s) of categorical fixed factors (independent variables) provided as a vector if more than one or within "quotes".

... any additional argument to pass on to 1m if required.

102 simple_model

Details

It requires a data table, one quantitative dependent variable and one or more independent variables. If your experiment design has random factors, use the related function mixed_anova.

This function is related to link{simple_model}.

Value

ANOVA table of class "anova" and "data.frame".

Examples

```
#Basic usage
simple_anova(data = data_doubling_time,
Y_value = "Doubling_time",
Fixed_Factor = "Student")
```

simple_model

Model from a linear model fit to data.

Description

This function uses 1m to fit a linear model to data and outputs the model object. It requires a data table, one quantitative dependent variable and one or more independent variables. The model output can be used to extract coefficients and other information, including post-hoc comparisons. If your experiment design has random factors, use the related function mixed_model.

Usage

```
simple_model(data, Y_value, Fixed_Factor, ...)
```

Arguments

data a data table object, e.g. data.frame or tibble.

Y_value name of column containing quantitative (dependent) variable, provided within

"quotes".

Fixed_Factor name(s) of categorical fixed factors (independent variables) provided as a vector

if more than one or within "quotes".

... any additional arguments to pass on to 1m if required.

Details

This function is related to link{simple_anova}. Output of this function can be used with posthoc_Pairwise, posthoc_Levelwise and posthoc_vsRef, or with emmeans.

table_summary 103

Value

This function returns an object of class "lm".

Examples

```
#fixed factors provided as a vector
Doubmodel <- simple_model(data = data_doubling_time,
Y_value = "Doubling_time",
Fixed_Factor = "Student")
#get summary
summary(Doubmodel)</pre>
```

table_summary

Get numeric summary grouped by factors

Description

This is a wrapper around aggregate function in base R to obtain mean, median, standard deviation and count for quantitative variable(s) grouped by one or more factors. More than one column containing of quantitative variables can be passed on, and summaries for each is provided with column names with a ...

Usage

```
table_summary(data, Ycol, ByGroup)
```

Arguments

data name of the data table.

Ycol name of one column (in quotes) or a vector of column names containing the

numerical variable to be summarised.

ByGroup name of one column (in quotes) or a vector of column names containing the

grouping factors

Value

this function takes in a data.frame or tibble and returns a data.frame or tibble.

```
table_summary(Ycol = "cty",
ByGroup = c("fl", "drv"),
data = mpg)
```

104 table_x_reorder

long X-axis	Reordering groups of	table_x_reorder
-------------	----------------------	-----------------

Description

This simple function takes in a data table and reorders groups (categorical variables or factors) to be plotted along the X-axis in a user-defined order.

Usage

```
table_x_reorder(data, xcol, OrderX, ...)
```

Arguments

data	a data table
xcol	name of column in above data table (provided within quotes) whose levels are to be reordered
OrderX	a vector of group names in the desired order
	any additional arguments for factor call.

Details

It uses two base R functions: as.factor to first force the user-selected column into a factor, and factor that reorders levels based on a user-provided vector.

Value

This function returns a data frame with a selected column converted into factor with reordered levels.

```
#reorder levels within Genotype
new_data <- table_x_reorder(data_t_pratio,</pre>
xcol = "Genotype",
OrderX = c("KO", "WT"))
#compare
plot_scatterbox(data_t_pratio,
Genotype,
Cytokine)
#with
plot_scatterbox(new_data,
Genotype,
Cytokine)
#also works within the plot call
plot_scatterbox(data = table_x_reorder(data_t_pratio,
xcol = "Genotype",
OrderX = c("KO", "WT")),
```

theme_grafify 105

```
xcol = Genotype,
ycol = Cytokine)
```

theme_grafify

A modified theme_classic() for grafify-like graphs.

Description

This is a slightly modified theme_classic[ggplot2] with two key differences: no border & background for facet panel labels, and font size of text on axes is 0.85 times that of the axes titles. The size of text legend title is also same as base font.

Usage

```
theme_grafify(
  base_size = 20,
  base_family = "",
  base_line_size = base_size/22,
  base_rect_size = base_size/22,
  TextXAngle = 0,
   ...
)
```

Arguments

base_size base font size for all text (default is 20). Other text is relative to this.

base_family default font family

base_line_size default line size (default is base font size/22)

base_rect_size default size of rectangles (default is base font size/22)

TextXAngle orientation of text on X-axis; default 0 degrees. Change to 45 or 90 to remove overlapping text.

... for any other arguments to pass to theme. A useful one is aspect_ratio = 1 for square plots.

Value

this returns an output with class "theme" and "gg".

```
plot(mpg, aes(drv, cty ))+
geom_jitter(width = 0.2)+
theme_grafify()
```

Index

* datasets data_1w_death, 3 data_2w_Festing, 4 data_2w_Tdeath, 4 data_cholesterol, 5 data_doubling_time, 6 data_t_pdiff, 6 data_t_pratio, 7 data_zooplankton, 7 graf_colours, 11 graf_palettes, 13	geom_bar, 26, 29, 32, 35, 38, 41 geom_boxplot, 26, 29, 32, 35, 38, 41, 59, 62, 80, 82 geom_density, 53, 54 geom_dotplot, 55-57, 59, 60, 62, 76, 78, 80 geom_histogram, 65, 66 geom_line, 46, 49, 52 geom_point, 26, 29, 32, 35, 38, 41, 46, 49, 52, 57, 59, 62, 77, 80, 82, 83, 86 geom_violin, 32, 41, 62, 82 get_graf_colours, 10
aggregate, 103 Anova, 101 anova, 19, 101 appraise, 75 as_lmerModLmerTest, 19, 20, 22, 23 colorRampPalette, 11, 12, 26, 29, 32, 35, 38, 41, 44, 47, 50, 52, 54, 57, 59, 62, 66,	ggplot, 26, 29, 32, 35, 38, 41 ggplot2, 72–74 graf_col_palette, 11 graf_colours, 11 graf_palettes, 13, 25, 29, 32, 35, 38, 41, 43, 46, 49, 52, 54, 56, 59, 61, 66, 71, 73, 77, 79, 82, 85, 88
71, 73, 78, 80, 83, 85 data_1w_death, 3 data_2w_Festing, 4 data_2w_Tdeath, 4 data_cholesterol, 5 data_doubling_time, 6 data_t_pdiff, 6 data_t_pratio, 7 data_zooplankton, 7 emmeans, 22, 23, 88-96, 102 emtrends, 92, 93, 95	lm, 92-94, 101, 102 lmer, 19-23, 92-94 make_1way_data, 14, 14, 15-17 make_1way_rb_data, 14, 15, 15, 16, 17 make_2way_data, 14-16, 16, 17 make_2way_rb_data, 14-17, 17 mixed_anova, 18, 22, 102 mixed_anova_slopes, 20, 23 mixed_model, 19, 21, 21, 74, 88-95, 102 mixed_model_slopes, 22, 74, 88, 90, 91, 93-95
facet_grid, 26, 29, 32, 35, 38, 41, 50, 52 facet_wrap, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 45, 46, 49–52, 54, 56, 58, 61, 65, 70, 72, 77, 79, 81, 84, 87 ga_anova, 8, 8, 9 ga_model, 8, 9, 9, 75	plot_3d_scatterbar, 24, 24, 27, 30, 33, 36, 39, 85, 88 plot_3d_scatterbox, 24, 27, 27, 30, 33, 36, 39, 85, 88 plot_3d_scatterviolin, 30, 30, 39 plot_4d_scatterbar, 24, 27, 30, 33, 33, 36, 39

INDEX 107

plot_4d_scatterbox, 24, 27, 30, 33, 36, 36,	simple_anova, 101			
39, 85, 88	simple_model, 74, 88-95, 102			
plot_4d_scatterviolin, 30, 39, 39	stat_summary, 26, 29, 32, 35, 38, 41, 44, 71			
plot_bar_sd, 42				
plot_befafter_box, 44, 44, 46	table_summary, 103			
plot_befafter_colors, 44, 47, 50	table_x_reorder, 104			
plot_befafter_colors	theme_classic, <i>105</i>			
(plot_befafter_colours), 47	theme_grafify, 105			
plot_befafter_colours, 44, 47, 47, 50, 52				
plot_befafter_shapes, 44, 46, 47, 50, 50, 52				
plot_density, 53				
plot_dotbar_sd, 44, 55, 55, 57, 60, 71, 76,				
78, 80				
plot_dotbox, 44, 55, 57, 57, 60, 71, 76, 78, 80				
plot_dotviolin, 44, 55, 57, 60, 60, 71, 76,				
78, 80				
plot_gam_predict, 63				
plot_grafify_palette, 44, 54, 57, 59, 62,				
64, 66, 71, 73, 77, 80, 82, 85				
plot_histogram, 65				
plot_lm_predict, 66				
plot_logscale, 68				
plot_point_sd, 69				
plot_qq_gam, 75				
plot_qqline, 72				
plot_qqmodel, 74				
plot_scatterbar_sd, 44, 57, 59, 62, 71, 76,				
77, 80, 82				
plot_scatterbox, 44, 57, 59, 62, 71, 77, 78,				
80, 82				
plot_scatterviolin, 44, 57, 59, 62, 71, 77,				
80, 80, 82				
plot_xy_CatGroup, 63, 83, 88				
plot_xy_NumGroup, 85, 86				
posthoc_Levelwise, 22, 23, 88, 102				
posthoc_Pairwise, 22, 23, 90, 102				
posthoc_Trends_Levelwise, 91				
posthoc_Trends_Pairwise, 92				
posthoc_Trends_vsRef, 94				
posthoc_vsRef, 22, 23, 95, 102				
postnoc_vonc1, 22, 23, 93, 102				
rstudent, 74				
scale_color_grafify				
(scale_colour_grafify), 97				
scale_colour_grafify,97				
scale_fill_grafify, 99				
scale_x_continuous, 69				
scale_y_continuous, 69				