
Package ‘grandR’
October 13, 2022

Version 0.2.0

Title Comprehensive Analysis of Nucleotide Conversion Sequencing Data

Description Nucleotide conversion sequencing experiments have been
developed to add a temporal dimension to RNA-seq and single-cell RNA-seq. Such
experiments require specialized tools for primary processing such as GRAND-SLAM,
(see 'Jürges et al' <doi:10.1093/bioinformatics/bty256>) and specialized tools for
downstream analyses. 'grandR' provides a comprehensive toolbox for quality control,
kinetic modeling, differential gene expression analysis and visualization of such data.

Author Florian Erhard [aut, cre] (<https://orcid.org/0000-0002-3574-6983>),
Teresa Rummel [ctb],
Lygeri Sakellaridi [ctb]

Maintainer Florian Erhard <Florian.Erhard@uni-wuerzburg.de>

License Apache License (>= 2)

Encoding UTF-8

URL https://github.com/erhard-lab/grandR

BugReports https://github.com/erhard-lab/grandR/issues

Imports stats, Matrix, ggplot2, grDevices, patchwork, plyr, parallel,
reshape2, MASS, cowplot, minpack.lm, lfc, methods, utils,
numDeriv

Suggests knitr, rmarkdown, circlize, Seurat, ComplexHeatmap, ggrepel,
RCurl, DESeq2, clusterProfiler, msigdbr, fgsea, rclipboard,
cubature, lamW, DT, RColorBrewer, eulerr, gsl, htmltools,
labeling, matrixStats, monocle, VGAM, quantreg, rlang,
graphics, scales, shiny

RoxygenNote 7.2.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2022-09-20 07:56:10 UTC

1

https://doi.org/10.1093/bioinformatics/bty256
https://orcid.org/0000-0002-3574-6983
https://github.com/erhard-lab/grandR
https://github.com/erhard-lab/grandR/issues

2 R topics documented:

R topics documented:
Analyses . 4
AnalyzeGeneSets . 5
ApplyContrasts . 7
CalibrateEffectiveLabelingTimeKineticFit . 8
CalibrateEffectiveLabelingTimeMatchHalflives . 9
check.analysis . 10
ClassifyGenes . 11
Coldata . 12
ComputeAbsolute . 13
ComputeExpressionPercentage . 14
ComputeNtrPosteriorQuantile . 15
ComputeSteadyStateHalfLives . 16
Condition . 17
data.apply . 18
DefaultSlot . 19
Defer . 20
density2d . 21
Design . 21
DesignSemantics . 22
estimate.dispersion . 23
EstimateRegulation . 23
f.old.equi . 26
FilterGenes . 27
Findno4sUPairs . 29
FindReferences . 29
FitKinetics . 31
FitKineticsGeneLeastSquares . 33
FitKineticsGeneLogSpaceLinear . 35
FitKineticsGeneNtr . 37
FitKineticsGeneSnapshot . 39
FitKineticsPulseR . 41
FitKineticsSnapshot . 41
FormatCorrelation . 43
GeneInfo . 44
Genes . 45
get.mode.slot . 47
GetAnalysisTable . 47
GetContrasts . 48
GetData . 50
GetDiagnosticParameters . 52
GetSignificantGenes . 53
GetSparseMatrix . 54
GetSummarizeMatrix . 55
GetTable . 56
grandR . 58
IsParallel . 60

R topics documented: 3

LFC . 61
LikelihoodRatioTest . 62
ListGeneSets . 63
MakeColdata . 64
MAPlot . 65
Normalize . 66
NormalizeBaseline . 68
PairwiseDESeq2 . 69
PlotAnalyses . 70
PlotConversionFreq . 71
PlotGeneGroupsBars . 72
PlotGeneGroupsPoints . 73
PlotGeneOldVsNew . 74
PlotGeneProgressiveTimecourse . 75
PlotGeneSnapshotTimecourse . 76
PlotGeneTotalVsNtr . 78
PlotHeatmap . 79
PlotMismatchPositionForSample . 81
PlotMismatchPositionForType . 82
PlotModelCompareConv . 83
PlotModelCompareErr . 83
PlotModelCompareErrPrior . 84
PlotModelCompareLL . 85
PlotModelCompareNtr . 85
PlotModelConv . 86
PlotModelErr . 86
PlotModelLabelTimeCourse . 87
PlotModelNtr . 88
PlotModelShape . 88
PlotPCA . 89
PlotProfileLikelihood . 90
Plots . 90
PlotScatter . 91
PlotSimulation . 94
PlotTypeDistribution . 95
psapply . 95
ReadGRAND . 96
ReadGRAND3 . 97
RotatateAxisLabels . 99
Scale . 99
Semantics.time . 100
ServeGrandR . 100
SetParallel . 102
SimulateKinetics . 102
SimulateReadsForSample . 103
SimulateTimeCourse . 105
Slots . 106
structure2vector . 107

4 Analyses

ToIndex . 108
toxicity . 109
Transform.no . 111
TransformSnapshot . 112
VulcanoPlot . 112

Index 114

Analyses Analysis table functions

Description

Get analysis names and add or remove analyses

Usage

Analyses(data, description = FALSE)

AddAnalysis(data, name, table, warn.present = TRUE)

DropAnalysis(data, pattern = NULL)

Arguments

data A grandR object

description if TRUE, also return the column names of each analysis table (i.e. a list named
according to the analyses)

name The user-defined analysis name

table The analysis table to add

warn.present Warn if an analysis with the same name is already present (and then overwrite)

pattern A regular expression that is matched to analysis names

Details

The columns in the analysis tables are defined by the analysis method (e.g. "Synthesis","Half-life"
and "rmse" by FitKinetics). A call to an analysis function might produce more than one table
(e.g. because kinetic modeling is done for multiple Conditions). In this case, AddAnalysisTable
produces more than one analysis table.

AddAnalysis is usually not called directly by the user, but is used by analysis methods to add their
final result to a grandR object (e.g., FitKinetics,LikelihoodRatioTest,LFC,PairwiseDESeq2).

Value

Either the analysis names or a grandR data with added/removed slots or the metatable to be used
with AddAnalysis

AnalyzeGeneSets 5

Functions

• Analyses(): Obtain the analyses names

• AddAnalysis(): Add an analysis table

• DropAnalysis(): Remove analyses from the grandR object

See Also

Slots, DefaultSlot

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars) # default behavior is to update the default slot; this calls AddSlot
Slots(sars)
DefaultSlot(sars)
sars <- DropSlot(sars,"norm")
sars # note that the default slot reverted to count

AnalyzeGeneSets Gene set analysis

Description

Perform gene-set enrichment and overrepresentation analysis (GSEA/ORA) for a specified set of
genes

Usage

AnalyzeGeneSets(
data,
analysis = Analyses(data)[1],
criteria = LFC,
species = NULL,
category = NULL,
subcategory = NULL,
verbose = TRUE,
minSize = 10,
maxSize = 500,
process.genesets = NULL

)

6 AnalyzeGeneSets

Arguments

data the grandR object that contains the data to analyze

analysis the analysis to use, can be more than one and can be regexes (see details)

criteria an expression to define criteria for GSEA/ORA (see details)

species the species the genes belong to (eg "Homo sapiens"); can be NULL, then the
species is inferred from gene ids (see details)

category the category defining gene sets (see ListGeneSets)

subcategory the category defining gene sets (see ListGeneSets)

verbose Print status messages

minSize The minimal size of a gene set to be considered

maxSize The maximal size of a gene set to be considered
process.genesets

a function to process geneset names; can be NULL (see details)

Details

The analysis parameter (just like for GetAnalysisTable can be a regex (that will be matched against
all available analysis names). It can also be a vector (of regexes). Be careful with this, if more than
one table e.g. with column LFC ends up in here, only the first is used (if criteria=LFC).

The criteria parameter can be used to define how analyses are performed. The criteria must be
an expression that either evaluates into a numeric or logical vector. In the first case, GSEA is
performed, in the latter it is ORA. The columns of the given analysis table(s) can be used to build
this expression.

If no species is given, a very simple automatic inference is done, which will only work when having
human or mouse ENSEMBL identifiers as gene ids.

The process.genesets parameters can be function that takes the character vector representing the
names of all gene sets. The original names are replaced by the return value of this function.

Value

the clusterprofile object representing the analysis results.

See Also

GSEA,enricher,msigdbr

Examples

See the differential-expression vignette!

ApplyContrasts 7

ApplyContrasts Apply a function over contrasts

Description

Helper function to run many pairwise comparisons using a contrast matrix

Usage

ApplyContrasts(
data,
analysis,
name.prefix,
contrasts,
mode.slot = NULL,
verbose = FALSE,
FUN,
...

)

Arguments

data the grandR object
analysis a plain name, only used for status messages
name.prefix the prefix for the new analysis name; a dot and the column names of the contrast

matrix are appended; can be NULL (then only the contrast matrix names are
used)

contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts

mode.slot which slot to take expression values from
verbose print status messages?
FUN a function taking 1. the data matrix, 2. a logical vector indicating condition A

and 3. a logical vector indicating condition B
... further parameters forward to FUN

Details

To implement most pairwise analyses, you only have to define FUN; see the source code of LFC
for an example!

Value

a new grandR object with added analysis tables (that were returned by FUN)

See Also

LFC,PairwiseDESeq2,GetContrasts

8 CalibrateEffectiveLabelingTimeKineticFit

CalibrateEffectiveLabelingTimeKineticFit

Uses the kinetic model to calibrate the effective labeling time.

Description

The NTRs of each sample might be systematically too small (or large). This function identifies such
systematic deviations and computes labeling durations without systematic deviations.

Usage

CalibrateEffectiveLabelingTimeKineticFit(
data,
slot = DefaultSlot(data),
time = Design$dur.4sU,
time.name = "calibrated_time",
time.conf.name = "calibrated_time_conf",
CI.size = 0.95,
steady.state = NULL,
n.estimate = 1000,
n.iter = 10000,
verbose = FALSE,
...

)

Arguments

data A grandR object

slot The data slot to take expression values from

time The column in the column annotation table representing the labeling duration

time.name The name in the column annotation table to put the calibrated labeling durations

time.conf.name The name in the column annotation table to put the confidence values for the
labeling durations (half-size of the confidence interval)

CI.size The level for confidence intervals

steady.state either a named list of logical values representing conditions in steady state or
not, or a single logical value for all conditions

n.estimate the times are calibrated with the top n expressed genes

n.iter the maximal number of iterations for the numerical optimization

verbose verbose output

... forwarded to FitKinetics

CalibrateEffectiveLabelingTimeMatchHalflives 9

Details

There are many reasons why the nominal (wall-clock) time of 4sU labeling might be distinct from
the effective labeling time. Most importantly, 4sU needs some time to enter the cells and get acti-
vated to be ready for transcription. Therefore, the 4sU concentration (relative to the U concentra-
tion) rises, based on observations, over the timeframe of 1-2h. GRAND-SLAM assumes a constant
4sU incorporation rate, i.e. specifically new RNA made early during the labeling is underestimated.
This, especially for short labeling (<2h), the effective labeling duration might be significantly less
than the nominal labeling duration.

It is impossible to obtain a perfect absolute calibration, i.e. all durations might be off by a factor.

Value

A new grandR object containing the calibrated durations in the column data annotation

See Also

FitKinetics

CalibrateEffectiveLabelingTimeMatchHalflives

Calibrate the effective labeling time by matching half-lives to a .refer-
ence

Description

The NTRs of each sample might be systematically too small (or large). This function identifies such
systematic deviations and computes labeling durations without systematic deviations.

Usage

CalibrateEffectiveLabelingTimeMatchHalflives(
data,
reference.halflives = NULL,
reference.columns = NULL,
slot = DefaultSlot(data),
time.labeling = Design$dur.4sU,
time.experiment = NULL,
time.name = "calibrated_time",
n.estimate = 1000,
verbose = FALSE

)

10 check.analysis

Arguments

data A grandR object
reference.halflives

a vector of reference Half-lives named by genes
reference.columns

the reference column description
slot The data slot to take expression values from
time.labeling the column in the column annotation table denoting the labeling duration or the

labeling duration itself
time.experiment

the column in the column annotation table denoting the experimental time point
(can be NULL, see details)

time.name The name in the column annotation table to put the calibrated labeling durations
n.estimate the times are calibrated with the top n expressed genes
verbose verbose output

Value

A new grandR object containing the calibrated durations in the column data annotation

See Also

FitKineticsGeneSnapshot

check.analysis Internal functions to check for a valid analysis or slot names.

Description

Internal functions to check for a valid analysis or slot names.

Usage

check.analysis(data, analyses, regex)

check.slot(data, slot, allow.ntr = TRUE)

check.mode.slot(data, mode.slot, allow.ntr = TRUE)

Arguments

data a grandR object
analyses a regex to be matched to analysis names
regex interpret as regular expression
slot a slot name
allow.ntr whether to allow for the value "ntr" (and throw an error in case)
mode.slot a mode.slot

ClassifyGenes 11

Details

A mode.slot is a mode followed by a dot followed by a slot name, or just a slot name. A mode is
either total, new or old.

Value

Whether or not the given name is valid and unique for the grandR object

ClassifyGenes Build the type column for the gene info table.

Description

Returns a function to be used as classify.genes parameter for ReadGRAND.

Usage

ClassifyGenes(
...,
use.default = TRUE,
drop.levels = TRUE,
name.unknown = "Unknown"

)

Arguments

... additional functions to define types (see details)

use.default if TRUE, use the default type inference (priority after the user defined ones); see
details

drop.levels if TRUE, drop unused types from the factor that is generated

name.unknown the type to be used for all genes where no type was identified

Details

This function returns a function. Usually, you do not use it yourself but ClassifyGenes is usually
as classify.genes parameter for ReadGRAND to build the Type column in the GeneInfo table. See
the example to see how to use it directly.

Each ... parameter must be a function that receives the gene info table and must return a logical
vector, indicating for each row in the gene info table, whether it matches to a specific type. The
name of the parameter is used as the type name.

If a gene matches to multiple type, the first function returning TRUE for a row in the table is used.

By default, this function will recognize mitochondrial genes (MT prefix of the gene symbol), ERCC
spike-ins, and Ensembl gene identifiers (which it will call "cellular"). These three are the last
functions to be checked (in case a user defined type via ...) also matches to, e.g., an Ensembl gene).

12 Coldata

Value

a function that takes the original GeneInfo table and adds the Type column

See Also

ReadGRAND

Examples

viral.genes <- c('ORF3a','E','M','ORF6','ORF7a','ORF7b','ORF8','N','ORF10','ORF1ab','S')
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),

design=c("Cell",Design$dur.4sU,Design$Replicate),
classify.genes=ClassifyGenes(`SARS-CoV-2`=

function(gene.info) gene.info$Symbol %in% viral.genes),
verbose=TRUE)

table(GeneInfo(sars)$Type)

fun<-ClassifyGenes(viral=function(gene.info) gene.info$Symbol %in% viral.genes)
table(fun(GeneInfo(sars)))

Coldata Get the column annotation table or add additional columns to it

Description

The columns of a grandR object are samples or cells. The column annotation table contains meta
information for the columns of a grandR object. When loaded from the GRAND-SLAM output,
this this constructed from the sample/cell names by MakeColdata

Usage

Coldata(data, column = NULL, value = NULL)

Coldata(data, column) <- value

Arguments

data A grandR object

column The name of the additional annotation column; can also be a data frame (then
value is ignored and the data frame is added)

value The additional annotation per sample or cell

ComputeAbsolute 13

Details

A new column can be added either by data<-Coldata(data,name,values) or by Coldata(data,name)<-values.

Several new columns can be added by data<-Coldata(data,df) where df is either a data frame
or matrix.

The column named Condition has a special meaning in this table: It is used by several func-
tions to stratify the columns during the analysis (e.g. to estimate separate kinetic parameters with
FitKinetics or it is used as covariate for LFC or LikelihoodRatioTest). For that reason there
are special functions to set and get this column.

Value

Either the column annotation table or a new grandR object having an updated column annotation
table

See Also

GeneInfo, MakeColdata, Condition

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

head(GeneInfo(sars))
GeneInfo(sars,"LengthCategory")<-cut(GeneInfo(sars)$Length,c(0,1500,2500,Inf),

labels=c("Short","Medium","Long"))
table(GeneInfo(sars)$LengthCategory)

ComputeAbsolute Compute absolute expression using ERCC spike ins

Description

Compute absolute expression in a grandR object and puts the normalized data into a new slot

Usage

ComputeAbsolute(
data,
dilution = 40000,
volume = 10,
slot = "tpm",
name = "absolute"

)

14 ComputeExpressionPercentage

Arguments

data the grandR object

dilution the dilution of the spikein transcript in the lysis reaction mix

volume the approximate volume of the lysis chamber (nanoliters)

slot the slot containing relative expression values

name the name of the new slot to put absolute expression values in

Value

a new grandR object with an additional slot

See Also

relative2abs

ComputeExpressionPercentage

Expression percentage computation

Description

Compute the expression percentage for a particular set of genes.

Usage

ComputeExpressionPercentage(
data,
name,
genes,
mode.slot = DefaultSlot(data),
multiply.by.100 = TRUE

)

Arguments

data the grandR object

name the new name by which this is added to the Coldata

genes define the set of genes to compute the percentage for

mode.slot which mode.slot to take the values for computing the percentage from
multiply.by.100

if TRUE, compute percentage values, otherwise fractions between 0 and 1

ComputeNtrPosteriorQuantile 15

Details

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector
referring to the gene table rows.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to filter by new counts.

Value

a new grandR object having the expression percentage in its Coldata table

See Also

Coldata

ComputeNtrPosteriorQuantile

Compute NTR quantiles

Description

Computes quantiles from the NTR posterior and puts them into a new slot

Usage

ComputeNtrPosteriorQuantile(data, quantile, name)

ComputeNtrCI(data, CI.size = 0.95, name.lower = "lower", name.upper = "upper")

ComputeNtrPosteriorLower(data, CI.size = 0.95, name = "lower")

ComputeNtrPosteriorUpper(data, CI.size = 0.95, name = "upper")

Arguments

data the grandR object

quantile which quantile to compute

name the name of the new slot to put quantile values in

CI.size A number between 0 and 1 representing the size of the credible interval

name.lower the name of the new slot to put the lower bound of the CI in

name.upper the name of the new slot to put the upper bound of the CI in

16 ComputeSteadyStateHalfLives

Details

The NTR posterior distribution can be approximated by a beta distribution.

ComputeNtrPosteriorQuantile computes any quantile from this Beta approximation

ComputeNtrPosteriorLower computes the (1-CI.size)/2 quantile

ComputeNtrPosteriorUpper computes the 1-(1-CI.size)/2 quantile

ComputeNtrCI computes both of these quantiles.

Value

a new grandR object containing an additional slot

ComputeSteadyStateHalfLives

Steady state half-lives for each sample

Description

Transforms each NTR to a half-life value (assuming steady state gene expression) and puts them
into a new slot or adds an analysis

Usage

ComputeSteadyStateHalfLives(
data,
time = Design$dur.4sU,
name,
columns = NULL,
max.HL = 48,
CI.size = 0.95,
compute.CI = FALSE,
as.analysis = FALSE

)

Arguments

data the grandR object

time either a number indicating the labeling time, or a name of the Coldata table

name the name of the new slot/analysis to put half-life values in

columns which columns (i.e. samples or cells) to return; sets as.analysis to TRUE (see
details)

max.HL all values above this will be set to this

CI.size A number between 0 and 1 representing the size of the credible interval

compute.CI it TRUE, credible intervals are computed, this also sets as.analysis to TRUE

as.analysis if TRUE add the results as analysis and not as data slot

Condition 17

Details

An NTR value p can be transformed into an RNA half-live using the equation log(2)/(-1/t*log(1-p))
This is described in our GRAND-SLAM paper (Juerges et al., Bioinformatics 2018).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a new grandR object with an additional slot or analysis

Condition Get or set the conditions in the column annotation table.

Description

The conditions column from the column annotation table is used by several functions to stratify the
columns (samples or cells) during the analysis (e.g. to estimate separate kinetic parameters with
FitKinetics or it is used as covariate for LFC or LikelihoodRatioTest). For that reason there
are special functions to set and get this column.

Usage

Condition(data, value = NULL)

Condition(data) <- value

Arguments

data A grandR object

value Either a vector of column names from the column annotation table, or the con-
dition names themselves

Details

If the conditions column does not exist (or has been set to NULL), all analysis functions will work
without stratifying samples or cells. The condition can also be set up directly when loading data,
by using Condition as one of the design vector entries (see below).

The condition can be set either by data<-Condition(data,names) or by Condition(data)<-names.

Value

Either the values of the condition column for Condition(data) or the grandR data object having the
new condition column

18 data.apply

See Also

Coldata

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

Condition(sars)
Condition(sars) <- c("Cell","duration.4sU.original")
Condition(sars)

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

Condition(sars)

data.apply Internal function to apply functions to all slots etc.

Description

Internal function to apply functions to all slots etc.

Usage

data.apply(data, fun, fun.gene.info = NULL, fun.coldata = NULL, ...)

Arguments

data a grandR object

fun apply this function to each data slot (i.e. it receives each data matrix)

fun.gene.info apply this function to the gene info table

fun.coldata apply this function to the column annotation table

... passed further to fun, fun.gene.info and fun.coldata

Details

The additional parameters are provided to each of the functions.

Value

A new grandR object

DefaultSlot 19

DefaultSlot Get or set the default slot for a grandR object.

Description

The default slot is used by default by many functions including GetData,GetTable or FitKinetics

Usage

DefaultSlot(data, value = NULL)

DefaultSlot(data) <- value

Arguments

data A grandR object

value the name of the new default slot

Details

The default slot can be set either by data<-DefaultSlot(data,"norm") or by DefaultSlot(data)<-"norm".

Value

Either the name of the default slot for DefaultSlot(data) or the grandR data object having the new
default slot

See Also

Slots

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

DefaultSlot(sars)
sars <- Normalize(sars) # default behavior is to update the default slot
DefaultSlot(sars)
DefaultSlot(sars)="count"

20 Defer

Defer Defer calling a function

Description

This generates a function with one mandatory parameter (and additional optional parameters) that,
when called, (i) also receives the parameters given when calling Defer, and (ii) after calling it each
element of the add list is appended by +. When no optional parameters are given, the result is
cached.

Usage

Defer(FUN, ..., add = NULL, cache = TRUE)

Arguments

FUN the function to be deferred

... additional parameters to be used when the deferred function is called

add list containing additional elements to be added + to the result of the deferred
function

cache use caching mechanism

Details

The following expressions are very similar: f <- function(d) Heavy.function(d) and f <- Defer(Heavy.function).
In both cases, you get a function f that you can call for some d, which in turn calls Heavy.function.
The only difference is that in the second case, the result is cached: Heavy.function is called only
once when first calling f, if f is called a second time, the previous result is returned. This makes
sense if the parameter d is constant (like a grandR object) and if Heavy.function is deterministic.

If additional parameters are provided to f, caching is disabled. Be careful if Heavy.function is
not deterministic (see examples).

Use case scenario: You want to produce a heatmap from a grandR object to be used as plot.static
in the shiny web interface. PlotHeatmap takes some time, and the resulting object is pretty large in
memory. Saving the heatmap object to disk is very inefficient (the Rdata file will be huge, especially
with many heatmaps). Deferring the call without caching also is bad, because whenever the user
clicks onto the heatmap, it is regenerated.

Value

a function that can be called

density2d 21

Examples

Heavy.function <- function(data) rnorm(5,mean=data)
f1=Defer(Heavy.function)
f2=function(d) Heavy.function(d)
f2(4)
f2(4) # these are not equal, as rnorm is called twice
f1(4)
f1(4) # these are equal, as the result of rnorm is cached

density2d Density estimation in 2d

Description

Estimate point densities on a regular grid for.

Usage

density2d(x, y, facet = NULL, n = 100, margin = "n")

Arguments

x x coordinates

y y coordinates

facet factor: estimate for each unique factor; can be NULL

n size of the grid

margin one of ’n’,’x’ or ’y’; should the density be computed along both axes (’n’), or
along ’x’ or ’y’ axis only

Value

a density value for each point

Design A list of predefined names for design vectors

Description

These predefined names mainly are implemented here to harmonize analyses. It is good practise to
use these names if sensible.

Usage

Design

22 DesignSemantics

Format

An object of class list of length 11.

DesignSemantics Build the design semantics list

Description

This is used to add additional columns to the Coldata table by giving additional semantics to
existing columns.

Usage

DesignSemantics(...)

Arguments

... named parameter list of functions (see details)

Details

DesignSemantics returns a list of functions that is supposed to be used as semantics parameter
when calling MakeColdata. For each design vector element matching a name of this list the corre-
sponding function is called by MakeColdata to add additional columns.

Each function takes two parameters, the first being the original column in the Coldata table column,
the second being its name.

Semantics.time is such a predefined function: Contents such as 3h or 30min are converted into a
numerical value (in hours), and no4sU is converted into 0.

By default, this is used for the names duration.4sU and Experimental.time

Value

a named list; the names should correspond to column names in the Coldata table, and the values are
functions to add semantics to this table

See Also

MakeColdata

estimate.dispersion 23

Examples

Semantics.time(c("5h","30min","no4sU"),"Test")

myfun <- function(s,name) {
r<-Semantics.time(s,name)
cbind(r,data.frame(hpi=paste0(r$duration.4sU+3,"h")))

}
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),

design=function(names)
MakeColdata(names,c("Cell",Design$dur.4sU,Design$Replicate),

semantics=DesignSemantics(duration.4sU=myfun)),
verbose=TRUE)

Coldata(sars)

estimate.dispersion Estimate dispersion parameters for a count matrix using DESeq2

Description

Estimate dispersion parameters for a count matrix using DESeq2

Usage

estimate.dispersion(ss)

Arguments

ss the count matrix

Value

a vector of dispersion parameters (to be used as size=1/dispersion for Xnbinom functions)

EstimateRegulation Estimate regulation from snapshot experiments

Description

Compute the posterior log2 fold change distributions of RNA synthesis and degradation

24 EstimateRegulation

Usage

EstimateRegulation(
data,
name.prefix = "Regulation",
contrasts,
reference.columns,
slot = DefaultSlot(data),
time.labeling = Design$dur.4sU,
time.experiment = NULL,
ROPE.max.log2FC = 0.25,
sample.f0.in.ss = TRUE,
N = 10000,
N.max = N * 10,
CI.size = 0.95,
seed = 1337,
dispersion = NULL,
hierarchical = TRUE,
correct.labeling = FALSE,
verbose = FALSE

)

Arguments

data the grandR object

name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)

contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts

reference.columns

a reference matrix usually generated by FindReferences to define reference sam-
ples for each sample (see details)

slot the data slot to take f0 and totals from

time.labeling the column in the Coldata table denoting the labeling duration, or the numeric
labeling duration itself

time.experiment

the column in the Coldata table denoting the experimental time point (can be
NULL, see details)

ROPE.max.log2FC

the region of practical equivalence is [-ROPE.max.log2FC,ROPE.max.log2FC]
in log2 fold change space

sample.f0.in.ss

whether or not to sample f0 under steady state conditions

N the sample size

N.max the maximal number of samples (necessary if old RNA > f0); if more are neces-
sary, a warning is generated

EstimateRegulation 25

CI.size A number between 0 and 1 representing the size of the credible interval
seed Seed for the random number generator
dispersion overdispersion parameter for each gene; if NULL this is estimated from data
hierarchical Take the NTR from the hierarchical Bayesian model (see details)
correct.labeling

Labeling times have to be unique; usually execution is aborted, if this is not the
case; if this is set to true, the median labeling time is assumed

verbose Print status messages

Details

The kinetic parameters s and d are computed using TransformSnapshot. For that, the sample either
must be in steady state (this is the case if defined in the reference.columns matrix), or if the levels at
an earlier time point are known from separate samples, so called temporal reference samples. Thus,
if s and d are estimated for a set of samples x_1,...,x_k (that must be from the same time point t),
we need to find (i) the corresponding temporal reference samples from time t0, and (ii) the time
difference between t and t0.

The temporal reference samples are identified by the reference.columns matrix. This is a square ma-
trix of logicals, rows and columns correspond to all samples and TRUE indicates that the row sample
is a temporal reference of the columns sample. This time point is defined by time.experiment. If
time.experiment is NULL, then the labeling time of the A or B samples is used (e.g. useful if la-
beling was started concomitantly with the perturbation, and the steady state samples are unperturbed
samples).

By default, the hierarchical Bayesian model is estimated. If hierarchical = FALSE, the NTRs are
sampled from a beta distribution that approximates the mixture of betas from the replicate samples.

if N is set to 0, then no sampling from the posterior is performed, but the transformed MAP estimates
are returned

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

• "s.A"the posterior mean synthesis rate for sample A from the comparison
• "s.B"the posterior mean synthesis rate for sample B from the comparison
• "HL.A"the posterior mean RNA half-life for sample A from the comparison
• "HL.B"the posterior mean RNA half-life for sample B from the comparison
• "s.log2FC"the posterior mean synthesis rate log2 fold change
• "s.cred.lower"the lower CI boundary of the synthesis rate log2 fold change
• "s.cred.upper"the upper CI boundary of the synthesis rate log2 fold change
• "s.ROPE"the signed ROPE probability (negative means downregulation) for the synthesis rate

fold change
• "HL.log2FC"the posterior mean half-life log2 fold change
• "HL.cred.lower"the lower CI boundary of the half-life log2 fold change
• "HL.cred.upper"the upper CI boundary of the half-life log2 fold change
• "HL.ROPE"the signed ROPE probability (negative means downregulation) for the half-life

fold change

26 f.old.equi

See Also

FitKineticsGeneSnapshot,FitKineticsSnapshot

Examples

banp <- ReadGRAND(system.file("extdata", "BANP.tsv.gz", package = "grandR"),
design=c("Cell","Experimental.time","Genotype",

Design$dur.4sU,Design$has.4sU,Design$Replicate))
contrasts <- GetContrasts(banp,contrast=c("Experimental.time.original","0h"),name.format="$A")
reference.columns <- FindReferences(banp,reference= Experimental.time==0)
banp <- EstimateRegulation(banp,"Regulation",

contrasts=contrasts,
reference.columns=reference.columns,
verbose=TRUE,
time.experiment = "Experimental.time",
N=0, # don't sample in the example

dispersion=0.1) # don't estimate dispersion in the example
head(GetAnalysisTable(banp))

f.old.equi Functions to compute the abundance of new or old RNA at time t.

Description

The standard mass action kinetics model of gene expression arises from the differential equation
df/dt = s − df(t), with s being the constant synthesis rate, d the constant degradation rate and
f0 = f(0) (the abundance at time 0).

Usage

f.old.equi(t, s, d)

f.old.nonequi(t, f0, s, d)

f.new(t, s, d)

Arguments

t time in h

s synthesis date in U/h (arbitrary unit U)

d degradation rate in 1/h

f0 the abundance at time t=0

Value

the RNA abundance at time t

FilterGenes 27

Functions

• f.old.equi(): abundance of old RNA assuming steady state (i.e. f0=s/d)

• f.old.nonequi(): abundance of old RNA without assuming steady state

• f.new(): abundance of new RNA (steady state does not matter)

Examples

d=log(2)/2
s=10

f.new(2,s,d) # Half-life 2, so after 2h the abundance should be half the steady state
f.old.equi(2,s,d)
s/d

t<-seq(0,10,length.out=100)
plot(t,f.new(t,s,d),type='l',col='blue',ylim=c(0,s/d))
lines(t,f.old.equi(t,s,d),col='red')
abline(h=s/d,lty=2)
abline(v=2,lty=2)
so old and new RNA are equal at t=HL (if it is at steady state at t=0)

plot(t,f.new(t,s,d),type='l',col='blue')
lines(t,f.old.nonequi(t,f0=15,s,d),col='red')
abline(h=s/d,lty=2)
abline(v=2,lty=2)
so old and new RNA are not equal at t=HL (if it is not at steady state at t=0)

FilterGenes Filter genes

Description

Return a grandR object with fewer genes than the given grandR object (usually to filter out weakly
expressed genes).

Usage

FilterGenes(
data,
mode.slot = "count",
minval = 100,
mincol = ncol(data)/2,
min.cond = NULL,
use = NULL,
keep = NULL,
return.genes = FALSE

)

28 FilterGenes

Arguments

data the grandR object

mode.slot the mode.slot that is used for filtering (see details)

minval the minimal value for retaining a gene

mincol the minimal number of columns (i.e. samples or cells) a gene has to have a value
>= minval

min.cond if not NULL, do not compare values per column, but per condition (see details)

use if not NULL, defines the genes directly that are supposed to be retained (see
details)

keep if not NULL, defines genes directly, that should be kept even though they do not
adhere to the filtering criteria (see details)

return.genes if TRUE, return the gene names instead of a new grandR object

Details

By default genes are retained, if they have 100 read counts in at least half of the columns (i.e.
samples or cells).

The use parameter can be used to define genes to be retained directly. The keep parameter, in
contrast, defines additional genes to be retained. For both, genes can be referred to by their names,
symbols, row numbers in the gene table, or a logical vector referring to the gene table rows.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to filter by new counts.

if the min.cond parameter is given, first all columns belonging to the same Condition are summed
up, and then the usual filtering is performed by conditions instead of by columns.

Value

either a new grandR object (if return.genes=FALSE), or a vector containing the gene names that
would be retained

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

nrow(sars)
This is already filtered and has 1045 genes
nrow(FilterGenes(sars,minval=1000))
There are 966 genes with at least 1000 read counts in half of the samples
nrow(FilterGenes(sars,minval=10000,min.cond=1))
There are 944 genes with at least 10000 read counts in the Mock or SARS condition
nrow(FilterGenes(sars,use=GeneInfo(sars,"Type")!="Cellular"))
These are the 11 viral genes.

Findno4sUPairs 29

Findno4sUPairs Find equivalent no4sU samples for 4sU samples

Description

Identify all no4sU samples in the same condition, and return everything as a list to be used in
PlotToxicityTest, PlotToxicityTestRank, PlotToxicityTestAll, PlotToxicityTestRankAll

Usage

Findno4sUPairs(data, paired.replicates = FALSE, discard.no4sU = TRUE)

Arguments

data a grandR object
paired.replicates

pair replicates, i.e. only no4sU.A is found for 4sU.A

discard.no4sU do not report references for no4sU samples

Value

a named list containing, for each 4sU sample, a vector of equivalent no4sU samples

See Also

PlotToxicityTest, PlotToxicityTestRank, PlotToxicityTestAll, PlotToxicityTestRankAll

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

Findno4sUPairs(sars)

FindReferences Obtain reference columns (samples or cells) for all columns (samples
or cells) in the data set

Description

In some situations (see examples) it is required to find a reference sample of some kind for each
sample in a data set. This is a convenience method to find such reference samples, and provide them
as a lookup table.

30 FindReferences

Usage

FindReferences(
data,
reference = NULL,
reference.function = NULL,
group = NULL,
as.list = FALSE,
columns = NULL

)

Arguments

data A grandR object

reference Expression evaluating to a logical vector to indicate which columns are reference
columns; evaluated in an environment having the columns of Coldata(data)

reference.function

Function evaluating to a logical vector to indicate which columns are reference
columns; called with the data frame row corresponding to the sample, and eval-
uated in an environment having the columns of Coldata(data)

group a vector of colnames in Coldata(data)

as.list return it as a list (names correspond to each sample, elements are the reference
samples)

columns find references only for a subset of the columns (samples or cells; can be NULL)

Details

Without any group, the list simply contains all references for each sample/cell. With groups defined,
each list entry consists of all references from the same group.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

A logical matrix that contains for each sample or cell (in columns) a TRUE for the corresponding
corresponding reference samples or cells in rows

See Also

Coldata,Findno4sUPairs, Condition

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

FindReferences(sars,reference=no4sU)
obtain the corresponding no4sU sample for each sample; use the Condition column
FindReferences(sars,Condition=="Mock",group="duration.4sU.original")

FitKinetics 31

obtain for each sample the corresponding sample in the Mock condition
FindReferences(sars,Condition=="Mock",group=c("duration.4sU.original","Replicate"))
obtain for each sample the corresponding Mock sample, paying attention to replicates

FitKinetics Fit kinetic models to all genes.

Description

Fit the standard mass action kinetics model of gene expression by different methods. Some methods
require steady state assumptions, for others data must be properly normalized. The parameters are
fit per Condition.

Usage

FitKinetics(
data,
name.prefix = "kinetics",
type = c("nlls", "ntr", "lm"),
slot = DefaultSlot(data),
time = Design$dur.4sU,
CI.size = 0.95,
return.fields = c("Synthesis", "Half-life"),
return.extra = NULL,
...

)

Arguments

data A grandR object

name.prefix the prefix of the analysis name to be stored in the grandR object

type Which method to use (either one of "full","ntr","lm")

slot The data slot to take expression values from

time The column in the column annotation table representing the labeling duration

CI.size A number between 0 and 1 representing the size of the confidence interval

return.fields which statistics to return (see details)

return.extra additional statistics to return (see details)

... forwarded to FitKineticsGeneNtr, FitKineticsGeneLeastSquares or FitKineticsGeneLogSpaceLinear

32 FitKinetics

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more
precise with multiple samples from multiple labeling durations.

The standard mass action kinetics model of gene expression arises from the following differential
equation:

df/dt = s− df(t)

This model assumes constant synthesis and degradation rates. Based on this, there are different
ways for fitting the parameters:

• FitKineticsGeneLeastSquares: non-linear least squares fit on the full model; depends on
proper normalization; can work without steady state; assumption of homoscedastic gaussian
errors is theoretically not justified

• FitKineticsGeneLogSpaceLinear: linear model fit on the old RNA; depends on proper normal-
ization; assumes steady state for estimating the synthesis rate; assumption of homoscedastic
gaussian errors in log space is problematic and theoretically not justified

• FitKineticsGeneNtr: maximum a posteriori fit on the NTR posterior transformed to the degra-
dation rate; as it is based on the NTR only, it is independent on proper normalization; assumes
steady state; theoretically well justified

This function is flexible in what to put in the analysis table. You can specify the statistics using
return.fields and return.extra (see kinetics2vector)

Value

A new grandR object with the fitted parameters as an analysis table

See Also

FitKineticsGeneNtr, FitKineticsGeneLeastSquares, FitKineticsGeneLogSpaceLinear

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

sars <- FilterGenes(sars,use=1:10)
sars<-FitKinetics(sars,name="kinetics.ntr",type='ntr')
sars<-Normalize(sars)
sars<-FitKinetics(sars,name="kinetics.nlls",type='nlls')
sars<-FitKinetics(sars,name="kinetics.lm",type='lm')
head(GetAnalysisTable(sars,columns="Half-life"))

FitKineticsGeneLeastSquares 33

FitKineticsGeneLeastSquares

Fit a kinetic model according to non-linear least squares.

Description

Fit the standard mass action kinetics model of gene expression using least squares (i.e. assuming
gaussian homoscedastic errors) for the given gene. The fit takes both old and new RNA into ac-
count and requires proper normalization, but can be performed without assuming steady state. The
parameters are fit per Condition.

Usage

FitKineticsGeneLeastSquares(
data,
gene,
slot = DefaultSlot(data),
time = Design$dur.4sU,
CI.size = 0.95,
steady.state = NULL,
use.old = TRUE,
use.new = TRUE,
maxiter = 250,
compute.residuals = TRUE

)

Arguments

data A grandR object

gene The gene for which to fit the model

slot The data slot to take expression values from

time The column in the column annotation table representing the labeling duration

CI.size A number between 0 and 1 representing the size of the confidence interval

steady.state either a named list of logical values representing conditions in steady state or
not, or a single logical value for all conditions

use.old a logical vector to exclude old RNA from specific time points

use.new a logical vector to exclude new RNA from specific time points

maxiter the maximal number of iterations for the Levenberg-Marquardt algorithm used
to minimize the least squares

compute.residuals

set this to TRUE to compute the residual matrix

34 FitKineticsGeneLeastSquares

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more
precise with multiple samples from multiple labeling durations. In particular (but not only) without
assuming steady state, also a sample without 4sU (representing time 0) is useful.

The standard mass action kinetics model of gene expression arises from the following differential
equation:

df/dt = s− df(t)

This model assumes constant synthesis and degradation rates (but not necessarily that the system
is in steady state at time 0). From the solution of this differential equation, it is straight forward
to derive the expected abundance of old and new RNA at time t for given parameters s (synthesis
rate), d (degradation rate) and f0=f(0) (the abundance at time 0). These equations are implemented
in f.old.equi (old RNA assuming steady state gene expression, i.e. f0=s/d), f.old.nonequi (old
RNA without assuming steady state gene expression) and f.new (new RNA; whether or not it is
steady state does not matter).

This function finds s and d such that the squared error between the observed values of old and new
RNA and their corresponding functions is minimized. For that to work, data has to be properly
normalized.

Value

A named list containing the model fit:

• data: a data frame containing the observed value used for fitting

• residuals: the computed residuals if compute.residuals=TRUE, otherwise NA

• Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)

• Degradation: the degradation rate (in 1/h)

• Half-life: the RNA half-life (in h, always equal to log(2)/degradation-rate

• conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

• conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

• f0: The abundance at time 0 (in U)

• logLik: the log likelihood of the model

• rmse: the total root mean square error

• rmse.new: the total root mean square error for all new RNA values used for fitting

• rmse.old: the total root mean square error for all old RNA values used for fitting

• total: the total sum of all new and old RNA values used for fitting

• type: non-equi or equi

If Condition(data) is not NULL, the return value is a named list (named according to the levels
of Condition(data)), each element containing such a structure.

FitKineticsGeneLogSpaceLinear 35

See Also

FitKinetics, FitKineticsGeneLogSpaceLinear, FitKineticsGeneNtr

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)
FitKineticsGeneLeastSquares(sars,"SRSF6",steady.state=list(Mock=TRUE,SARS=FALSE))

FitKineticsGeneLogSpaceLinear

Fit a kinetic model using a linear model.

Description

Fit the standard mass action kinetics model of gene expression using a linear model after log-
transforming the observed values (i.e. assuming gaussian homoscedastic errors of the logarithmized
values) for the given gene. The fit takes only old RNA into account and requires proper normaliza-
tion, but can be performed without assuming steady state for the degradation rate. The parameters
are fit per Condition.

Usage

FitKineticsGeneLogSpaceLinear(
data,
gene,
slot = DefaultSlot(data),
time = Design$dur.4sU,
CI.size = 0.95

)

Arguments

data A grandR object

gene The gene for which to fit the model

slot The data slot to take expression values from

time The column in the column annotation table representing the labeling duration

CI.size A number between 0 and 1 representing the size of the confidence interval

36 FitKineticsGeneLogSpaceLinear

Details

The start of labeling for all samples should be the same experimental time point. The fit gets
more precise with multiple samples from multiple labeling durations. Also a sample without 4sU
(representing time 0) is useful.

The standard mass action kinetics model of gene expression arises from the following differential
equation:

df/dt = s− df(t)

This model assumes constant synthesis and degradation rates (but not necessarily that the system
is in steady state at time 0). From the solution of this differential equation, it is straight forward
to derive the expected abundance of old and new RNA at time t for given parameters s (synthesis
rate), d (degradation rate) and f0=f(0) (the abundance at time 0). These equations are implemented
in f.old.equi (old RNA assuming steady state gene expression, i.e. f0=s/d), f.old.nonequi (old
RNA without assuming steady state gene expression) and f.new (new RNA; whether or not it is
steady state does not matter).

This function primarily finds d such that the squared error between the observed values of old and
new RNA and their corresponding functions is minimized in log space. For that to work, data has
to be properly normalized, but this is independent on any steady state assumptions. The synthesis
rate is computed (under the assumption of steady state) as s = f0 · d

Value

A named list containing the model fit:

• data: a data frame containing the observed value used for fitting

• Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)

• Degradation: the degradation rate (in 1/h)

• Half-life: the RNA half-life (in h, always equal to log(2)/degradation-rate

• conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

• conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

• f0: The abundance at time 0 (in U)

• logLik: the log likelihood of the model

• rmse: the total root mean square error

• adj.r.squared: adjusted R^2 of the linear model fit

• total: the total sum of all new and old RNA values used for fitting

• type: always "lm"

If Condition(data) is not NULL, the return value is a named list (named according to the levels
of Condition(data)), each element containing such a structure.

See Also

FitKinetics, FitKineticsGeneLeastSquares, FitKineticsGeneNtr

FitKineticsGeneNtr 37

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)
FitKineticsGeneLogSpaceLinear(sars,"SRSF6") # fit per condition

FitKineticsGeneNtr Fit a kinetic model using the degradation rate transformed NTR pos-
terior distribution.

Description

Fit the standard mass action kinetics model of gene expression by maximum a posteriori on a model
based on the NTR posterior. The fit takes only the NTRs into account and is completely independent
on normalization, but it cannot be performed without assuming steady state. The parameters are fit
per Condition.

Usage

FitKineticsGeneNtr(
data,
gene,
slot = DefaultSlot(data),
time = Design$dur.4sU,
CI.size = 0.95,
transformed.NTR.MAP = TRUE,
exact.ci = FALSE,
total.fun = median

)

Arguments

data A grandR object

gene The gene for which to fit the model

slot The data slot to take expression values from

time The column in the column annotation table representing the labeling duration

CI.size A number between 0 and 1 representing the size of the credible interval
transformed.NTR.MAP

Use the transformed NTR MAP estimator instead of the MAP of the transformed
posterior

exact.ci compute exact credible intervals (see details)

total.fun use this function to summarize the expression values (only relevant for comput-
ing the synthesis rate s)

38 FitKineticsGeneNtr

Details

The start of labeling for all samples should be the same experimental time point. The fit gets more
precise with multiple samples from multiple labeling durations.

The standard mass action kinetics model of gene expression arises from the following differential
equation:

df/dt = s− df(t)

This model assumes constant synthesis and degradation rates. Further assuming steady state al-
lows to derive the function transforming from the NTR to the degradation rate d as d(ntr) =
−1/tlog(1 − ntr). Furthermore, if the ntr is (approximately) beta distributed, it is possible to de-
rive the distribution of the transformed random variable for the degradation rate (see Juerges et al.,
Bioinformatics 2018).

This function primarily finds d by maximizing the degradation rate posterior distribution. For that,
data does not have to be normalized, but this only works under steady-state conditions. The synthe-
sis rate is then computed (under the assumption of steady state) as s = f0 · d
The maximum-a-posteriori estimator is biased. Bias can be removed by a correction factor (which
is done by default).

By default the chi-squared approximation of the log-posterior function is used to compute credible
intervals. If exact.ci is used, the posterior is integrated numerically.

Value

A named list containing the model fit:

• data: a data frame containing the observed value used for fitting

• Synthesis: the synthesis rate (in U/h, where U is the unit of the slot)

• Degradation: the degradation rate (in 1/h)

• Half-life: the RNA half-life (in h, always equal to log(2)/degradation-rate

• conf.lower: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

• conf.upper: a vector containing the lower confidence bounds for Synthesis, Degradation and
Half-life

• f0: The abundance at time 0 (in U)

• logLik: the log likelihood of the model

• rmse: the total root mean square error

• total: the total sum of all new and old RNA values used for fitting

• type: always "ntr"

If Condition(data) is not NULL, the return value is a named list (named according to the levels
of Condition(data)), each element containing such a structure.

See Also

FitKinetics, FitKineticsGeneLeastSquares, FitKineticsGeneLogSpaceLinear

FitKineticsGeneSnapshot 39

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)
sars <- subset(sars,columns=Condition=="Mock")
FitKineticsGeneNtr(sars,"SRSF6")

FitKineticsGeneSnapshot

Compute the posterior distributions of RNA synthesis and degradation
for a particular gene

Description

Compute the posterior distributions of RNA synthesis and degradation for a particular gene

Usage

FitKineticsGeneSnapshot(
data,
gene,
columns = NULL,
reference.columns = NULL,
dispersion = NULL,
slot = DefaultSlot(data),
time.labeling = Design$dur.4sU,
time.experiment = NULL,
sample.f0.in.ss = TRUE,
hierarchical = TRUE,
beta.prior = NULL,
return.samples = FALSE,
return.points = FALSE,
N = 10000,
N.max = N * 10,
CI.size = 0.95,
correct.labeling = FALSE

)

Arguments

data the grandR object

gene a gene name or symbol or index

columns samples or cell representing the same experimental condition (must refer to a
unique labeling duration)

40 FitKineticsGeneSnapshot

reference.columns

a reference matrix usually generated by FindReferences to define reference sam-
ples for each sample (see details)

dispersion dispersion parameter for the given columns (if NULL, this is estimated from the
data, takes a lot of time!)

slot the data slot to take f0 and totals from

time.labeling the column in the column annotation table denoting the labeling duration or the
labeling duration itself

time.experiment

the column in the column annotation table denoting the experimental time point
(can be NULL, see details)

sample.f0.in.ss

whether or not to sample f0 under steady state conditions

hierarchical Take the NTR from the hierarchical Bayesian model (see details)

beta.prior The beta prior for the negative binomial used to sample counts, if NULL, a beta
distribution is fit to all expression values and given dispersions

return.samples return the posterior samples of the parameters?

return.points return the point estimates per replicate as well?

N the posterior sample size

N.max the maximal number of posterior samples (necessary if old RNA > f0); if more
are necessary, a warning is generated

CI.size A number between 0 and 1 representing the size of the credible interval
correct.labeling

whether to correct labeling times

Details

The kinetic parameters s and d are computed using TransformSnapshot. For that, the sample ei-
ther must be in steady state (this is the case if defined in the reference.columns matrix), or if the
levels of reference samples from a specific prior time point are known. This time point is defined
by time.experiment (i.e. the difference between the reference samples and samples themselves).
If time.experiment is NULL, then the labeling time of the samples is used (e.g. useful if la-
beling was started concomitantly with the perturbation, and the reference samples are unperturbed
samples).

By default, the hierarchical Bayesian model is estimated. If hierarchical = FALSE, the NTRs are
sampled from a beta distribution that approximates the mixture of betas from the replicate samples.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a list containing the posterior mean of s and s, its credible intervals and, if return.samples=TRUE a
data frame containing all posterior samples

FitKineticsPulseR 41

FitKineticsPulseR Fit kinetics using pulseR

Description

Fit kinetics using pulseR

Usage

FitKineticsPulseR(data, name = "pulseR", time = Design$dur.4sU)

Arguments

data A grandR object

name the user defined analysis name to store the results

time The column in the column annotation table representing the labeling duration

Details

This is adapted code from https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling

Value

a new grandR object containing the pulseR analyses in a new analysis table

FitKineticsSnapshot Fits RNA kinetics from snapshot experiments

Description

Compute the posterior distributions of RNA synthesis and degradation from snapshot experiments
for each condition

Usage

FitKineticsSnapshot(
data,
name.prefix = "Kinetics",
reference.columns,
slot = DefaultSlot(data),
conditions = NULL,
time.labeling = Design$dur.4sU,
time.experiment = NULL,
sample.f0.in.ss = TRUE,
N = 10000,

42 FitKineticsSnapshot

N.max = N * 10,
CI.size = 0.95,
seed = 1337,
dispersion = NULL,
hierarchical = TRUE,
correct.labeling = FALSE,
verbose = FALSE

)

Arguments

data the grandR object

name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)

reference.columns

a reference matrix usually generated by FindReferences to define reference sam-
ples for each sample (see details)

slot the data slot to take f0 and totals from

conditions character vector of all condition names to estimate kinetics for; can be NULL
(i.e. all conditions)

time.labeling the column in the column annotation table denoting the labeling duration or the
labeling duration itself

time.experiment

the column in the column annotation table denoting the experimental time point
(can be NULL, see details)

sample.f0.in.ss

whether or not to sample f0 under steady state conditions

N the sample size

N.max the maximal number of samples (necessary if old RNA > f0); if more are neces-
sary, a warning is generated

CI.size A number between 0 and 1 representing the size of the credible interval

seed Seed for the random number generator

dispersion overdispersion parameter for each gene; if NULL this is estimated from data

hierarchical Take the NTR from the hierarchical Bayesian model (see details)
correct.labeling

Labeling times have to be unique; usually execution is aborted, if this is not the
case; if this is set to true, the median labeling time is assumed

verbose Vebose output

Details

The kinetic parameters s and d are computed using TransformSnapshot. For that, the sample either
must be in steady state (this is the case if defined in the reference.columns matrix), or if the levels at
an earlier time point are known from separate samples, so called temporal reference samples. Thus,

FormatCorrelation 43

if s and d are estimated for a set of samples x_1,...,x_k (that must be from the same time point t),
we need to find (i) the corresponding temporal reference samples from time t0, and (ii) the time
difference between t and t0.

The temporal reference samples are identified by the reference.columns matrix. This is a square ma-
trix of logicals, rows and columns correspond to all samples and TRUE indicates that the row sample
is a temporal reference of the columns sample. This time point is defined by time.experiment. If
time.experiment is NULL, then the labeling time of the A or B samples is used (e.g. useful if la-
beling was started concomitantly with the perturbation, and the steady state samples are unperturbed
samples).

By default, the hierarchical Bayesian model is estimated. If hierarchical = FALSE, the NTRs are
sampled from a beta distribution that approximates the mixture of betas from the replicate samples.

if N is set to 0, then no sampling from the posterior is performed, but the transformed MAP estimates
are returned

Value

a new grandR object including new analysis tables (one per condition). The columns of the new
analysis table are

• "s"the posterior mean synthesis rate

• "HL"the posterior mean RNA half-life

• "s.cred.lower"the lower CI boundary of the synthesis rate

• "s.cred.upper"the upper CI boundary of the synthesis rate

• "HL.cred.lower"the lower CI boundary of the half-life

• "HL.cred.upper"the upper CI boundary of the half-life

FormatCorrelation Formatting function for correlations

Description

Returns a function that takes x and y and returns a formatted output to describe the correlation of x
and y

Usage

FormatCorrelation(
method = "pearson",
n.format = NULL,
coeff.format = "%.2f",
p.format = "%.2g"

)

44 GeneInfo

Arguments

method how to compute correlation coefficients (can be pearson, spearman or kendall)

n.format format string for the number of data points (see sprintf); can be NULL (don’t
output the number of data points)

coeff.format format string for the correlation coefficient (see sprintf); can be NULL (don’t
output the correlation coefficient)

p.format format string for the P value (see sprintf); can be NULL (don’t output the P
value)

Details

Use this for the correlation parameter of PlotScatter

Value

a function

Examples

set.seed(42)
data <- data.frame(u=runif(500)) # generate some correlated data
data$x <- rnorm(500,mean=data$u)
data$y <- rnorm(500,mean=data$u)

fun <- FormatCorrelation()
fun(data$x,data$y)

fun <- FormatCorrelation(method="spearman",p.format="%.4g")
fun(data$x,data$y)

GeneInfo Get the gene annotation table or add additional columns to it

Description

The gene annotation table contains meta information for the rows of a grandR object. When loaded
from the GRAND-SLAM output, this this contains gene ids, gene symbols, the transcript length
and the type.

Usage

GeneInfo(data, column = NULL, value = NULL)

GeneInfo(data, column) <- value

Genes 45

Arguments

data A grandR object

column The name of the additional annotation column

value The additional annotation per gene

Details

New columns can be added either by data<-GeneInfo(data,name,values) or by GeneInfo(data,name)<-values.

Value

Either the gene annotation table or a new grandR object having an updated gene annotation table

See Also

Genes, Coldata, ReadGRAND

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

head(GeneInfo(sars))
GeneInfo(sars,"LengthCategory")<-cut(GeneInfo(sars)$Length,c(0,1500,2500,Inf),

labels=c("Short","Medium","Long"))
table(GeneInfo(sars)$LengthCategory)

Genes Gene and sample (or cell) names

Description

Get the genes and sample (or cell) names for a grandR object, or add an additional gene annotation
column

Usage

Genes(data, genes = NULL, use.symbols = TRUE, regex = FALSE)

Columns(data, columns = NULL, reorder = FALSE)

46 Genes

Arguments

data A grandR object

genes which genes to use

use.symbols obtain the gene symbols instead of gene names

regex treat genes as a regex, and return all that match

columns which columns (i.e. samples or cells) to return (see details)

reorder if TRUE, do not enforce the current order of columns

Details

The genes are either the (often unreadable) gene ids (e.g. Ensembl ids), or the symbols.

Genes(data,use.symbols=FALSE) it the same as rownames(data), and Columns(data) is the
same as colnames(data)

If both column and value are specified for GeneInfo, a new column is added to the gene annotation
table

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

Either the gene or column names of the grandR data object, or the columns of an analysis table in
the grandR object

See Also

Coldata, GeneInfo, Analyses

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

all(Genes(sars,use.symbols = FALSE)==rownames(sars))
all(Columns(sars)==colnames(sars))

get.mode.slot 47

get.mode.slot Internal functions to parse mode.slot strings

Description

Internal functions to parse mode.slot strings

Usage

get.mode.slot(data, mode.slot, allow.ntr = TRUE)

Arguments

data a grandR object
mode.slot a mode.slot
allow.ntr whether to allow for the value "ntr" (and throw an error in case)

Details

A mode.slot is a mode followed by a dot followed by a slot name, or just a slot name. A mode is
either total, new or old

Value

a named list with elements mode and slot (or only slot in case of ntr,alpha or beta)

GetAnalysisTable Obtain a table of analysis results values

Description

This is the main function to access analysis results. For slot data, use GetTable (as a large matrix)
or GetData (as tidy table).

Usage

GetAnalysisTable(
data,
analyses = NULL,
regex = TRUE,
columns = NULL,
genes = Genes(data),
by.rows = FALSE,
gene.info = TRUE,
name.by = "Symbol",
prefix.by.analysis = TRUE

)

48 GetContrasts

Arguments

data A grandR object

analyses One or several regex to be matched against analysis names (Analyses); all anal-
ysis tables if NULL

regex Use regex for analyses (TRUE) or don’t (FALSE, i.e. must specify the exact
name)

columns Regular expressions to select columns from the analysis table (all have to match!);
all columns if NULL

genes Restrict the output table to the given genes

by.rows if TRUE, add rows if there are multiple analyses; otherwise, additional columns
are appended; TRUE also sets prefix.by.analysis to FALSE!

gene.info Should the table contain the GeneInfo values as well (at the beginning)?

name.by A column name of Coldata(data). This is used as the rownames of the output
table

prefix.by.analysis

Should the column names in the output prefixed by the analysis name?

Details

The names for the output table are <Analysis name>.<columns name>

Value

A data frame containing the analysis results

See Also

GetTable,GetData,Genes

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

sars<-LFC(sars,contrasts=GetContrasts(sars,group = "duration.4sU"))
head(GetAnalysisTable(sars,columns="LFC"))

GetContrasts Create a contrast matrix

Description

Each column of a contrast matrix represents a pairwise comparison of all samples or cells of a
grandR object (or a column annotation table). Elements being 1 are contrasted vs. elements being
-1 (and all 0 are irrelevant for this comparison).

GetContrasts 49

Usage

GetContrasts(x, ...)

S3 method for class 'grandR'
GetContrasts(
x,
contrast = "Condition",
no4sU = FALSE,
columns = NULL,
group = NULL,
name.format = NULL,
...

)

Default S3 method:
GetContrasts(
x,
contrast,
columns = NULL,
group = NULL,
name.format = NULL,
...

)

Arguments

x A grandR object or a column annotation table

... further arguments to be passed to or from other methods.

contrast A vector describing what should be contrasted

no4sU Use no4sU columns (TRUE) or not (FALSE)

columns logical vector of which columns (samples or cells) to use (or NULL: use all);
for grandR objects, see details

group Split the samples or cells according to this column of the column annotation
table (and adapt the of the output table)

name.format Format string for generating the column from the contrast vector (see details)

Details

To compare one specific factor level A against another level B in a particular column COL of the
column annotation table, specify contrast=c("COL","A","B")

To compare all levels against a specific level A in a particular column COL of the column annotation
table, specify contrast=c("COL","A")

To perform all pairwise comparisons of all levels from a particular column COL of the column
annotation table, specify contrast=c("COL")

If the column COL only has two levels, all three are equivalent.

50 GetData

In all cases, if groups is not NULL, the columns annotation table is first split and contrasts are
applied within all samples or cells with the same group factor level.

The format string specifies the column name in the generated contrast matrix (which is used as the
Analysis name when calling ApplyContrasts, LFC, PairwiseDESeq2, etc.). The keywords $GRP,
$COL, $A and $B are substituted by the respective elements of the contrast vector or the group
this comparison refers to. By default, it is "$A vs $B" if group is NULL, and "$A vs $B.$GRP"
otherwise.

The method for grandR objects simply calls the general method

For grandR objects, columns can be given as a logical, integer or character vector representing a
selection of the columns (samples or cells). The expression is evaluated in an environment having
the Coldata, i.e. you can use names of Coldata as variables to conveniently build a logical vector
(e.g., columns=Condition="x").

Value

A contrast matrix to be used in ApplyContrasts, LFC, PairwiseDESeq2

See Also

ApplyContrasts, LFC, PairwiseDESeq2

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition","Time",Design$Replicate))

GetContrasts(sars,contrast="Condition")
Compare all Mock vs. all SARS
GetContrasts(sars,contrast=c("Condition","SARS","Mock"))
This direction of the comparison is more reasonable
GetContrasts(sars,contrast=c("Condition","SARS","Mock"),group="Time")
Compare SARS vs Mock per time point
GetContrasts(sars,contrast=c("Time","no4sU"), group="Condition",no4sU=TRUE,

name.format="$A vs $B ($GRP)")
Compare each sample against the respective no4sU sample

See the differential-expression vignette for more examples!

GetData Obtain a tidy table of values for a gene or a small set of genes

Description

This is the main function to access slot data data from a particular gene (or a small set of genes) as
a tidy table. If data for all genes must be retrieved (as a large matrix), use the GetTable function.
For analysis results, use the GetAnalysisTable function.

GetData 51

Usage

GetData(
data,
mode.slot = DefaultSlot(data),
columns = NULL,
genes = Genes(data),
by.rows = FALSE,
coldata = TRUE,
ntr.na = TRUE,
name.by = "Symbol"

)

Arguments

data A grandR object

mode.slot Which kind of data to access (see details)

columns A vector of columns (see details); all condition/cell names if NULL

genes Restrict the output table to the given genes (this typically is a single gene, or
very few genes)

by.rows if TRUE, add rows if there are multiple genes / mode.slots; otherwise, additional
columns are appended

coldata Should the table contain the Coldata values as well (at the beginning)?

ntr.na For columns representing a 4sU naive sample, should mode.slot ntr,new.count
and old.count be 0,0 and count (ntr.na=FALSE; can be any other slot than count)
or NA,NA and NA (ntr.na=TRUE)

name.by A column name of Coldata(data). This is used as the colnames of the output
table

Details

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to obtain the new counts.

If only one mode.slot and one gene is given, the output table contains one column (and potentially
columns from Coldata) named Value. If one gene and multiple mode.slots are given, the columns
are named according to the mode.slots. If one mode.slot and multiple genes are given, the columns
are named according to the genes. If multiple genes and mode.slots are given, columns are named
gene.mode.slot.

If by.rows=TRUE, the table is molten such that each row contains only one value (for one of the
genes and for one of the mode.slots). If only one gene and one mode.slot is given, melting does not
have an effect.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

52 GetDiagnosticParameters

Value

A data frame containing the desired values

See Also

GetTable,GetAnalysisTable,DefaultSlot,Genes

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

GetData(sars,mode.slot="ntr",gene="MYC")
one gene, one mode.slot
GetData(sars,mode.slot=c("count","ntr"),gene="MYC",coldata = FALSE)
one gene, multiple mode.slots
GetData(sars,mode.slot=c("count","ntr"),gene=c("SRSF6","MYC"),by.rows=TRUE)
multiple genes, multiple mode.slots, by rows

GetDiagnosticParameters

Describe parameters relevant to diagnostics

Description

Many of the diagnostics functions expect (optional or mandatory) parameters that are described by
this function

Usage

GetDiagnosticParameters(data)

Arguments

data a grandR object

Value

a list with

• orientation: Sense or Antisense, only relevant to mismatches for strand unspecific data

• category: all available categories (Exonic/Intronic, genomes). Note that this might differ from
what is available from GeneInfo(data,"Category"), since Grand3 might not have estimated
NTRs for all categories!

• label: which nucleoside analogs have been used

• model: which model (binom or tbbinom) to inspect

• estimator: which estimator (joint or separate NTRs were estimated for subreads)

GetSignificantGenes 53

GetSignificantGenes Significant genes

Description

Return significant genes for this grandR object

Usage

GetSignificantGenes(
data,
analysis = NULL,
regex = TRUE,
criteria = NULL,
as.table = FALSE,
use.symbols = TRUE,
gene.info = TRUE

)

Arguments

data the grandR object

analysis the analysis to use, can be more than one and can be regexes (see details)

regex interpret analyses as regex?

criteria the criteria used to define what significant means; if NULL, Q<0.05 & abs(LFC)>=1
is used; can use the column names of the analysis table as variables, should be a
logical or numerical value per gene (see Details)

as.table return a table

use.symbols return them as symbols (gene ids otherwise)

gene.info add gene infos to the output table

Details

The analysis parameter (just like for GetAnalysisTable can be a regex (that will be matched against
all available analysis names). It can also be a vector (of regexes). Be careful with this, if more than
one table e.g. with column LFC ends up in here, only the first is used (if criteria=LFC).

The criteria parameter can be used to define how analyses are performed. If criteria is a logical, it
obtains significant genes defined by cut-offs (e.g. on q value and LFC). If it is a numerical, all genes
are returned sorted (descendingly) by this value. The columns of the given analysis table(s) can be
used to build this expression.

Value

a vector of gene names (or symbols), or a table

54 GetSparseMatrix

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c(Design$Condition,Design$dur.4sU,Design$Replicate))

sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)
sars<-LFC(sars,mode="total",contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
GetSignificantGenes(sars,criteria=LFC>1)

GetSparseMatrix Obtain a genes x values table as a sparse matrix

Description

This is the main function to access slot data for all genes as a sparse matrix.

Usage

GetSparseMatrix(
data,
mode.slot = DefaultSlot(data),
columns = NULL,
genes = Genes(data),
name.by = "Symbol"

)

Arguments

data A grandR object

mode.slot Which kind of data to access (see details)

columns which columns (i.e. samples or cells) to return (see details)

genes Restrict the output table to the given genes

name.by A column name of Coldata(data). This is used as the rownames of the output
table

Details

To refer to data slots, the mode.slot syntax can be used: It is either a data slot, or one of (new,old,total)
followed by a dot followed by a slot. For new or old, the data slot value is multiplied by ntr or 1-ntr.
This can be used e.g. to obtain the new counts.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

A sparse matrix containing the desired values

GetSummarizeMatrix 55

See Also

GetData,GetAnalysisTable,DefaultSlot,Genes,GetSummarizeMatrix

GetSummarizeMatrix Create a summarize matrix

Description

If this matrix is multiplied with a count table (e.g. obtained by GetTable), either the average
(average=TRUE) or the sum (average=FALSE) of all columns (samples or cells) belonging to the
same Condition is computed.

Usage

GetSummarizeMatrix(x, ...)

S3 method for class 'grandR'
GetSummarizeMatrix(x, no4sU = FALSE, columns = NULL, average = TRUE, ...)

Default S3 method:
GetSummarizeMatrix(x, subset = NULL, average = TRUE, ...)

Arguments

x A grandR object or a named vector (the names indicate the sample names, the
value the conditions to be summarized)

... further arguments to be passed to or from other methods.

no4sU Use no4sU columns (TRUE) or not (FALSE)

columns which columns (i.e. samples or cells) to return (see details)

average matrix to compute the average (TRUE) or the sum (FALSE)

subset logical vector of which elements of the vector v to use (or NULL: use all)

Details

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition="x").

The method for grandR object simply calls the general method

Value

A matrix to be multiplied with a count table

See Also

GetTable

56 GetTable

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

GetSummarizeMatrix(sars)
head(as.matrix(GetTable(sars)) %*% GetSummarizeMatrix(sars)) # average by matrix multiplication
head(GetTable(sars,summarize = TRUE)) # shortcut, does the same

See the data-matrices-and-analysis-results vignette for more examples!

GetTable Obtain a genes x values table

Description

This is the main function to access slot data for all genes as a large matrix. If data from a particular
gene (or a small set of genes) must be retrieved, use the GetData function. For analysis results, use
the GetAnalysisTable function.

Usage

GetTable(
data,
type = DefaultSlot(data),
columns = NULL,
genes = Genes(data),
ntr.na = TRUE,
gene.info = FALSE,
summarize = NULL,
prefix = NULL,
name.by = "Symbol"

)

Arguments

data A grandR object

type Either a mode.slot (see details) or a regex to be matched against analysis names.
Can also be a vector

columns A vector of columns (either condition/cell names if the type is a mode.slot, or
names in the output table from an analysis; use Columns(data,<analysis>) to
learn which columns are available); all condition/cell names if NULL

genes Restrict the output table to the given genes

ntr.na For columns representing a 4sU naive sample, should types ntr,new.count and
old.count be 0,0 and count (ntr.na=FALSE; can be any other slot than count) or
NA,NA and NA (ntr.na=TRUE)

GetTable 57

gene.info Should the table contain the GeneInfo values as well (at the beginning)?

summarize Should replicates by summarized? Can only be specified if columns is NULL;
either a summarization matrix (GetSummarizeMatrix) or TRUE (in which case
GetSummarizeMatrix(data) is called)

prefix Prepend each column in the output table (except for the gene.info columns) by
the given prefix

name.by A column name of Coldata(data). This is used as the rownames of the output
table

Details

This is a convenience wrapper for GetData (values from data slots) and GetAnalysisTable (values
from analyses). Types can refer to any of the two (and can be mixed). If there are types from both
data and analyses, columns must be NULL. Otherwise columns must either be condition/cell names
(if type refers to one or several data slots), or regular expressions to match against the names in the
analysis tables.

Columns definitions for data slots can be given as a logical, integer or character vector representing
a selection of the columns (samples or cells). The expression is evaluated in an environment having
the Coldata, i.e. you can use names of Coldata as variables to conveniently build a logical vector
(e.g., columns=Condition=="x").

To refer to data slots via type, the mode.slot syntax can be used: Each name is either a data slot,
or one of (new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is
multiplied by ntr or 1-ntr. This can be used e.g. to obtain the new counts.

Value

A data frame containing the desired values

See Also

GetData,GetAnalysisTable,DefaultSlot,Genes,GetSummarizeMatrix

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

sars <- Normalize(FilterGenes(sars))

head(GetTable(sars))
DefaultSlot values, i.e. size factor normalized read counts for all samples
head(GetTable(sars,summarize=TRUE))
DefaultSlot values averaged over the two conditions
head(GetTable(sars,type="new.count",columns=!no4sU))
Estimated counts for new RNA for all samples with 4sU

sars<-LFC(sars,contrasts=GetContrasts(sars,group = "duration.4sU"))
head(GetAnalysisTable(sars,columns="LFC"))
Estimated fold changes SARS vs Mock for each time point

58 grandR

grandR Create a grandR object and retrieve basic information

Description

The grandR object contains

• metadata about the origin (file/url) of the GRAND-SLAM output

• the current state (e.g., what is the current default slot) of the grandR object

• a gene info table (i.e. metadata for the rows of the data matrices)

• a column annotation table (i.e. metadata for the columns of the data matrices)

• several data matrices for read counts, normalized expression values, NTRs, etc. (genes x
samples or genes x cells; stored in so-called slots)

• potentially several analysis output tables (for kinetic modeling, differential gene expression
testing)

Usually, this constructor is not invoked directly (but by ReadGRAND or SimulateTimeCourse).

Usage

grandR(
prefix = parent$prefix,
gene.info = parent$gene.info,
slots = parent$data,
coldata = parent$coldata,
metadata = parent$metadata,
analyses = NULL,
plots = NULL,
parent = NULL

)

VersionString()

Title(data)

S3 method for class 'grandR'
dim(x)

is.grandR(x)

S3 method for class 'grandR'
dimnames(x)

grandR 59

S3 method for class 'grandR'
print(x, ...)

S3 method for class 'grandR'
subset(x, columns, ...)

S3 method for class 'grandR'
split(x, f = Design$Condition, drop = FALSE, ...)

S3 method for class 'grandR'
merge(..., list = NULL, column.name = Design$Origin)

Arguments

prefix Can either be the prefix used to call GRAND-SLAM with, or the main output
file ($prefix.tsv.gz); if the RCurl package is installed, this can also be a URL

gene.info a data frame with metadata for all genes

slots A list of matrices representing the slots

coldata a data frame with metadata for all samples (or cells)

metadata a metadata list

analyses the analyses list

plots the plots list

parent A parent object containing default values for all other parameters (i.e. all pa-
rameters not specified are obtained from this object)

data, x a grandR object

... further arguments to be passed to or from other methods.

columns which columns (i.e. samples or cells) to return (see details)

f The name of the annotation table according to which the object is split or the
new annotation table column name denoting the origin after merging

drop unused

list a list of grandR objects

column.name a new name for the Coldata table to annotate the merged objects

Details

The dimensions (nrow, ncol) of the grandR object are considered to be the dimensions of the data
tables, i.e. nrow(data) provides the number of genes and ncol(data) the number of samples (or
cells).

Currently, the object is implemented as a list of the above mentioned items. This implementation is
subject to change. Make sure to use accessor functions to obtain the information you want.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment havin the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

60 IsParallel

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution
(alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

Functions

Title Obtain a useful title for the project (from the prefix parameter)

dim Obtain the dimensions (genes x samples or genes x cells)

is Check whether it is a grandR object

dimnames Obtain the row and column names of this object (genes x samples or genes x cells)

print Print information on this grandR object

subset Create a new grandR object with a subset of the columns (use FilterGenes to subset on
genes)

split Split the grandR object into a list of multiple grandR objects (according to the levels of an
annotation table column)

merge Merge several grandR objects into one

See Also

Slots, DefaultSlot, Genes, GeneInfo, Coldata, GetTable, GetData, Analyses, GetAnalysisTable

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

this is part of the corona data from Finkel et al.
dim(sars)
head(rownames(sars))

IsParallel Checks for parallel execution

Description

Checks for parallel execution

Usage

IsParallel()

Value

whether or not parallelism is activated

LFC 61

LFC Estimation of log2 fold changes

Description

Estimate the log fold changes based on a contrast matrix, requires the LFC package.

Usage

LFC(
data,
name.prefix = mode,
contrasts,
slot = "count",
LFC.fun = lfc::PsiLFC,
mode = "total",
normalization = NULL,
verbose = FALSE,
...

)

Arguments

data the grandR object

name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)

contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts

slot the slot of the grandR object to take the data from; for PsiLFC, this really should
be "count"!

LFC.fun function to compute log fold changes (default: PsiLFC, other viable option:
NormLFC)

mode compute LFCs for "total", "new", or "old" RNA

normalization normalize on "total", "new", or "old" (see details)

verbose print status messages?

... further arguments forwarded to LFC.fun

Details

Both PsiLFC and NormLFC) by default perform normalization by subtracting the median log2
fold change from all log2 fold changes. When computing LFCs of new RNA, it might be sensible
to normalize w.r.t. to total RNA, i.e. subtract the median log2 fold change of total RNA from
all the log2 fold change of new RNA. This can be accomplished by setting mode to "new", and
normalization to "total"!

62 LikelihoodRatioTest

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

• "LFC"the log2 fold change

See Also

PairwiseDESeq2,GetContrasts

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c(Design$Condition,Design$dur.4sU,Design$Replicate))

sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)
sars<-LFC(sars,mode="total",contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
sars<-LFC(sars,mode="new",normalization="total",

contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
head(GetAnalysisTable(sars))

LikelihoodRatioTest Compute a likelihood ratio test.

Description

The test is computed on any of total/old/new counts using DESeq2 based on two nested models
specified using formulas.

Usage

LikelihoodRatioTest(
data,
name = "LRT",
mode = "total",
normalization = mode,
target = ~Condition,
background = ~1,
no4sU = FALSE,
columns = NULL,
verbose = FALSE

)

Arguments

data A grandR object

name the user defined analysis name to store the results

mode either "total", "new" or "old"

ListGeneSets 63

normalization normalize on "total", "new", or "old" (see details)

target formula specifying the target model (you can use any column name from the
Coldata(data))

background formula specifying the background model (you can use any column name from
the Coldata(data))

no4sU Use no4sU columns (TRUE) or not (FALSE)

columns logical vector of which columns (samples or cells) to use (or NULL: use all)

verbose Print status updates

Details

This is a convenience wrapper around the likelihood ratio test implemented in DESeq2.

DESeq2 by default performs size factor normalization. When computing differential expression of
new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. use the size factors computed
from total RNA instead of computed from new RNA. This can be accomplished by setting mode to
"new", and normalization to "total"!

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

• "M"the base mean

• "S"the difference in deviance between the reduced model and the full model

• "P"the likelihood ratio test P value

• "Q"same as P but Benjamini-Hochberg multiple testing corrected

ListGeneSets List available gene sets

Description

Helper function to return a table with all available gene sets for AnalyzeGeneSets.

Usage

ListGeneSets()

Details

This is a convenience wrapper for msigdbr_collections.

Value

the gene set table; use the values in the category and subcategory columns for the corresponding
parameters of AnalyzeGeneSets

64 MakeColdata

See Also

AnalyzeGeneSets

MakeColdata Extract an annotation table from a formatted names vector

Description

If columns (i.e. sample or cell) follow a specific naming pattern, this can be used to conveniently
set up an annotation table.

Usage

MakeColdata(
names,
design,
semantics = DesignSemantics(),
rownames = TRUE,
keep.originals = TRUE

)

Arguments

names Formatted names vector (see details)

design Titles for the columns of the annotation table

semantics Additional semantics to apply to given annotations (see details)

rownames Add rownames to the annotation table

keep.originals To not discard the original values for all annotations where semantics were ap-
plied

Details

The names have to contain dots (.) to separate the fields for the column annotation table. E.g. the
name Mock.4h.A will be split into the fields Mock, 4h and A. For such names, a design vector of
length 3 has to be given, that describes the meaning of each field. A reasonable design vector for
the example would be c("Treatment","Time","Replicate"). Some names are predefined in the
list Design.

The names given in the design vector might even have additional semantics: E.g. for the name
duration.4sU the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5,
or no4sU into 0).

Semantics can be user-defined via the semantics list: For each name in the design vector matching to
a name in this list, the corresponding function in the list is run. Functions must accept 2 parameters,
the first is the original column in the annotation table, the second the original name. The function
must return a data.frame with the number of rows matching to the annotation table. In most cases
it is easier to manipulate the returned data frame instead of changing the semantics. However, the
build-in semantics provide a convenient way to reduce this kind of manipulation in most cases.

MAPlot 65

Value

A data frame representing the annotation table

See Also

ReadGRAND,DesignSemantics,Coldata

Examples

coldata <- MakeColdata(c("Mock.0h.A","Mock.0h.B","Mock.2h.A","Mock.2h.B"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

MAPlot Make an MA plot

Description

Plot average expression vs. log2 fold changes

Usage

MAPlot(
data,
analysis = Analyses(data)[1],
aest = aes(),
p.cutoff = 0.05,
lfc.cutoff = 1,
label.numbers = TRUE,
highlight = NULL,
label = NULL,
label.repel = 1

)

Arguments

data the grandR object that contains the data to be plotted
analysis the analysis to plot (default: first analysis)
aest parameter to set visual attributes of the plot
p.cutoff p-value cutoff (default: 0.05)
lfc.cutoff log fold change cutoff (default: 1)
label.numbers if TRUE, label the number of genes
highlight highlight these genes; can be either numeric indices, gene names, gene symbols

or a logical vector (see details)
label label these genes; can be either numeric indices, gene names, gene symbols or a

logical vector (see details)
label.repel force to repel labels from points and each other (increase if labels overlap)

66 Normalize

Value

a ggplot object

Normalize Normalization

Description

Normalizes data in a grandR object and puts the normalized data into a new slot

Usage

Normalize(
data,
genes = Genes(data),
name = "norm",
slot = "count",
set.to.default = TRUE,
size.factors = NULL,
return.sf = FALSE

)

NormalizeFPKM(
data,
genes = Genes(data),
name = "fpkm",
slot = "count",
set.to.default = TRUE,
tlen = GeneInfo(data, "Length")

)

NormalizeRPM(
data,
genes = Genes(data),
name = "rpm",
slot = "count",
set.to.default = TRUE

)

NormalizeTPM(
data,
genes = Genes(data),
name = "tpm",
slot = "count",
set.to.default = TRUE,
tlen = GeneInfo(data, "Length")

)

Normalize 67

Arguments

data the grandR object

genes compute the normalization w.r.t. these genes (see details)

name the name of the new slot for the normalized data

slot the name of the slot for the data to normalize

set.to.default set the new slot as the default slot

size.factors numeric vector; if not NULL, use these size factors instead of computing size
factors

return.sf return the size factors and not a grandR object

tlen the transcript lengths (for FPKM and TPM)

Details

Normalize will perform DESeq2 normalization, i.e. it will use estimateSizeFactorsForMatrix to
estimate size factors, and divide each value by this. If genes are given, size factors will be computed
only w.r.t. these genes (but then all genes are normalized).

NormalizeFPKM will compute fragments per kilobase and million mapped reads. If genes are
given, the scaling factor will only be computed w.r.t. these genes (but then all genes are normalized).

NormalizeRPM will compute reads per million mapped reads. If genes are given, the scaling factor
will only be computed w.r.t. these genes (but then all genes are normalized).

NormalizeTPM will compute transcripts per million mapped reads. If genes are given, the scaling
factor will only be computed w.r.t. these genes (but then all genes are normalized).

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector
referring to the gene table rows.

Value

a new grandR object with a new data slot

See Also

NormalizeBaseline

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)
DefaultSlot(sars)

68 NormalizeBaseline

NormalizeBaseline Normalization to a baseline

Description

Normalizes data in a grandR object to a baseline and puts the normalized data into a new slot

Usage

NormalizeBaseline(
data,
baseline = FindReferences(data, reference = Condition == levels(Condition)[1]),
name = "baseline",
slot = DefaultSlot(data),
set.to.default = FALSE,
LFC.fun = lfc::PsiLFC,
...

)

Arguments

data the grandR object

baseline matrix defining the corresponding baseline (row) for each column (sample or
cell; see details)

name the name of the new slot for the normalized data

slot the name of the slot for the data to normalize

set.to.default set the new slot as the default slot

LFC.fun either NormLFC or PsiLFC from the lfc package

... forwarded to LFC.fun

Details

Baseline normalization computes the log2 fold change for a column (i.e. sample or cell) to a baseline
columns (or several baseline columns). This is by default done using the PsiLFC function from the
lfc package, which, by default, also normalizes log2 fold changes by adding a constant such that
the median is zero.

Baselines are defined by a square logical matrix, defining for each sample or cell of the grandR
object, represented by the column of the matrix, which samples or cells are indeed the baseline
(represented by the rows). Such matrices can conveniently be obtained by FindReferences.

Value

a new grandR object with an additional slot

PairwiseDESeq2 69

See Also

Normalize,FindReferences

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

blmat <- FindReferences(sars,reference = duration.4sU==0, group = "Cell")
the Mock.no4sU or SARS.no4sU sample are the baselines for each sample
sars <- NormalizeBaseline(sars,baseline=blmat)
head(GetTable(sars,type="baseline"))

PairwiseDESeq2 Perform Wald tests for differential expression

Description

Apply DESeq2 for comparisons defined in a contrast matrix, requires the DESeq2 package.

Usage

PairwiseDESeq2(
data,
name.prefix = mode,
contrasts,
separate = FALSE,
mode = "total",
normalization = mode,
logFC = FALSE,
verbose = FALSE

)

Arguments

data the grandR object

name.prefix the prefix for the new analysis name; a dot and the column names of the contrast
matrix are appended; can be NULL (then only the contrast matrix names are
used)

contrasts contrast matrix that defines all pairwise comparisons, generated using GetCon-
trasts

separate model overdispersion separately for all pairwise comparison (TRUE), or fit a
single model per gene, and extract contrasts (FALSE)

mode compute LFCs for "total", "new", or "old" RNA

normalization normalize on "total", "new", or "old" (see details)

logFC compute and add the log2 fold change as well

verbose print status messages?

70 PlotAnalyses

Details

DESeq2 by default performs size factor normalization. When computing differential expression of
new RNA, it might be sensible to normalize w.r.t. to total RNA, i.e. use the size factors computed
from total RNA instead of computed from new RNA. This can be accomplished by setting mode to
"new", and normalization to "total"!

Value

a new grandR object including a new analysis table. The columns of the new analysis table are

• "M"the base mean

• "S"the log2FoldChange divided by lfcSE

• "P"the Wald test P value

• "Q"same as P but Benjamini-Hochberg multiple testing corrected

• "LFC"the log2 fold change (only with the logFC parameter set to TRUE)

See Also

LFC,GetContrasts

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c(Design$Condition,Design$dur.4sU,Design$Replicate))

sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)
sars<-PairwiseDESeq2(sars,mode="total",

contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
sars<-PairwiseDESeq2(sars,mode="new",normalization="total",

contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
head(GetAnalysisTable(sars,column="Q"))

PlotAnalyses Convenience function to make the same type of plot for multple analy-
ses.

Description

Convenience function to make the same type of plot for multple analyses.

Usage

PlotAnalyses(data, plot.fun, analyses = Analyses(data), add = NULL, ...)

PlotConversionFreq 71

Arguments

data the grandR object that contains the data to be plotted

plot.fun the plottinf function to apply

analyses the analyses to plot (default: all)

add additional ggplot (e.g., geoms) objects to add

... passed further to plot.fun

Value

ggplot objects

PlotConversionFreq Diagnostic plot for conversion frequencies

Description

This is the second diagnostic plot (estimated conversions) generated by GRAND3.

Usage

PlotConversionFreq(data, category, max.columns = 120)

Arguments

data the grandR object

category show a specific category (see GetDiagnosticParameters); cannot be NULL

max.columns if there are more columns (samples for bulk, cells for single cell) than this, show
boxplots instead of points

Details

Show the percentage of all conversion types for all samples. In contrast to mismatches (see PlotMis-
matchPositionForSample and PlotMismatchPositionForType), the correct strand is already inferred
for conversions, i.e. conversions refer to actual conversion events on RNA, whereas mismatches are
observed events in mapped reads.

Value

a list with a ggplot object, a description, and the desired size for the plot

72 PlotGeneGroupsBars

PlotGeneGroupsBars Plot gene values as bars

Description

Plot old and new RNA of a gene in a row.

Usage

PlotGeneGroupsBars(
data,
gene,
slot = DefaultSlot(data),
columns = NULL,
show.CI = FALSE,
xlab = NULL

)

Arguments

data the grandR object to get the data to be plotted from

gene the gene to plot

slot the slot of the grandR object to get the data from

columns which columns (i.e. samples or cells) to show (see details)

show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)

xlab The names to show at the x axis;

Details

xlab can be given as a character vector or an expression that evaluates into a character vector. The
expression is evaluated in an environment having the Coldata, i.e. you can use names of Coldata
as variables to conveniently it.

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

GetData, PlotGeneTotalVsNtr,PlotGeneOldVsNew,PlotGeneGroupsBars

PlotGeneGroupsPoints 73

PlotGeneGroupsPoints Plot gene groups as points

Description

Plot either old, new or total RNA of a gene in a row, per condition.

Usage

PlotGeneGroupsPoints(
data,
gene,
group = "Condition",
mode.slot = DefaultSlot(data),
columns = NULL,
log = TRUE,
show.CI = FALSE,
aest = NULL,
size = 2

)

Arguments

data the grandR object to get the data to be plotted from

gene the gene to plot

group how to group the genes (default: Condition)

mode.slot the mode.slot of the grandR object to get the data from

columns which columns (i.e. samples or cells) to show (see details)

log show the y axis in log scale

show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)

aest parameter to set the visual attributes of the plot

size the point size used for plotting; overridden if size is defined via aest

Details

The value of the aest parameter must be an Aesthetic mapping as generated by aes or aes_string.

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to obtain the new counts.

The table used for plotting is the table returned by GetData with coldata set to TRUE, i.e. you can
use all names from the Coldata table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are
names in the Coldata table).

74 PlotGeneOldVsNew

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

GetData, PlotGeneTotalVsNtr,PlotGeneOldVsNew,PlotGeneGroupsBars

PlotGeneOldVsNew Gene plot comparing old vs new RNA

Description

Plot the old vs new RNA values of a gene

Usage

PlotGeneOldVsNew(
data,
gene,
slot = DefaultSlot(data),
columns = NULL,
log = TRUE,
show.CI = FALSE,
aest = NULL,
size = 2

)

Arguments

data the grandR object to get the data to be plotted from

gene the gene to plot

slot the slot of the grandR object to get the data from

columns which columns (i.e. samples or cells) to show (see details)

log show both axes in log scale

show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)

aest parameter to set the visual attributes of the plot

size the point size used for plotting; overridden if size is defined via aest

PlotGeneProgressiveTimecourse 75

Details

The value of the aest parameter must be an Aesthetic mapping as generated by aes or aes_string.

The table used for plotting is the table returned by GetData with coldata set to TRUE, i.e. you can
use all names from the Coldata table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are
names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

GetData, PlotGeneTotalVsNtr,PlotGeneGroupsPoints,PlotGeneGroupsBars

PlotGeneProgressiveTimecourse

Plot progressive labeling timecourses

Description

Plot the abundance of new and old RNA and the fitted model over time for a single gene.

Usage

PlotGeneProgressiveTimecourse(
data,
gene,
slot = DefaultSlot(data),
time = Design$dur.4sU,
type = c("nlls", "ntr", "lm"),
exact.tics = TRUE,
show.CI = FALSE,
return.tables = FALSE,
...

)

Arguments

data a grandR object

gene the gene to be plotted

slot the data slot of the observed abundances

76 PlotGeneSnapshotTimecourse

time the labeling duration column in the column annotation table

type how to fit the model (see linkFitKinetics)

exact.tics use axis labels directly corresponding to the available labeling durations?

show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)

return.tables also return the tables used for plotting

... given to the fitting procedures

Details

For each Condition there will be one panel containing the values and the corresponding model fit.

Value

either a ggplot object, or a list containing all tables used for plotting and the ggplot object.

See Also

FitKineticsGeneNtr, FitKineticsGeneLeastSquares, FitKineticsGeneLogSpaceLinear

PlotGeneSnapshotTimecourse

Gene plot for snapshot timecourse data

Description

Plot the total RNA expression vs the new-to-total RNA ratio for a gene

Usage

PlotGeneSnapshotTimecourse(
data,
gene,
time = Design$dur.4sU,
mode.slot = DefaultSlot(data),
columns = NULL,
average.lines = TRUE,
exact.tics = TRUE,
log = TRUE,
show.CI = FALSE,
aest = NULL,
size = 2

)

PlotGeneSnapshotTimecourse 77

Arguments

data the grandR object to get the data to be plotted from

gene the gene to plot

time the times to show on the x axis (see details)

mode.slot the mode.slot of the grandR object to get the data from

columns which columns (i.e. samples or cells) to show (see details)

average.lines add average lines?

exact.tics use axis labels directly corresponding to the available temporal values?

log show the y axis in log scale

show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)

aest parameter to set the visual attributes of the plot

size the point size used for plotting; overridden if size is defined via aest

Details

The x axis of this plot will show a temporal dimension. The time parameter defines a name in the
Coldata table containing the temporal values for each sample.

The value of the aest parameter must be an Aesthetic mapping as generated by aes or aes_string.

The table used for plotting is the table returned by GetData with coldata set to TRUE, i.e. you can
use all names from the Coldata table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are
names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

See Also

GetData, PlotGeneOldVsNew,PlotGeneGroupsPoints,PlotGeneGroupsBars

78 PlotGeneTotalVsNtr

PlotGeneTotalVsNtr Gene plot comparing total RNA vs the NTR

Description

Plot the total RNA expression vs the new-to-total RNA ratio for a gene

Usage

PlotGeneTotalVsNtr(
data,
gene,
slot = DefaultSlot(data),
columns = NULL,
log = TRUE,
show.CI = FALSE,
aest = NULL,
size = 2

)

Arguments

data the grandR object to get the data to be plotted from

gene the gene to plot

slot the slot of the grandR object to get the data from

columns which columns (i.e. samples or cells) to show (see details)

log show the x axis (total RNA) in log scale

show.CI show confidence intervals; one of TRUE/FALSE (default: FALSE)

aest parameter to set the visual attributes of the plot

size the point size used for plotting; overridden if size is defined via aest

Details

The value of the aest parameter must be an Aesthetic mapping as generated by aes or aes_string.

The table used for plotting is the table returned by GetData with coldata set to TRUE, i.e. you can
use all names from the Coldata table for aest.

By default, aest is set to aes(color=Condition,shape=Replicate) (if both Condition and Replicate are
names in the Coldata table).

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a ggplot object.

PlotHeatmap 79

See Also

GetData, PlotGeneOldVsNew,PlotGeneGroupsPoints,PlotGeneGroupsBars

PlotHeatmap Create heatmaps from grandR objects

Description

Convenience method to compare among more two variables (slot data or analyses results).

Usage

PlotHeatmap(
data,
type = DefaultSlot(data),
columns = NULL,
genes = NULL,
summarize = NULL,
transform = "Z",
cluster.genes = TRUE,
cluster.columns = FALSE,
label.genes = length(genes) <= 50,
xlab = NULL,
breaks = NULL,
colors = NULL,
title = NULL,
return.matrix = FALSE,
...

)

Arguments

data the grandR object that contains the data to plot

type Either a mode.slot (see details) or a regex to be matched against analysis names.
Can also be a vector

columns a vector of columns (either condition/cell names if the type is a mode.slot, or
names in the output table from an analysis; use Columns(data,<analysis>) to
learn which columns are available); all condition/cell names if NULL

genes the genes to be included in the plot (default: all genes)

summarize Should replicates by summarized? Can only be specified if columns is NULL;
either a summarization matrix (GetSummarizeMatrix) or TRUE (in which case
GetSummarizeMatrix(data) is called)

transform apply a transformation to the selected data; can be a function, or a character (see
details)

cluster.genes should genes be clustered?

80 PlotHeatmap

cluster.columns

should samples (or cells) be clustered?

label.genes should genes be labeled?

xlab The names to show at the x axis (only works if type is a single slot)

breaks vector of color breaks; can be NULL (see details)

colors an RColorBrewer palette name; can be NULL (see details)

title the title for the plot; can be NULL

return.matrix if TRUE, return a list containing the data matrix and the heatmap instead of the
heatmap alone

... additional parameters forwarded to Heatmap

Details

This is just a convenience function which

1. Calls GetTable with the parameter type,columns,summarize,genes

2. Transforms the returned table using the transform parameter

3. Determines reasonable colors using breaks and colors

4. and then calls ComplexHeatmap::Heatmap

type and columns can refer to values from data slots values from analyses (and can be mixed).
If there are types from both data and analyses, columns must be NULL. Otherwise columns must
either be condition/cell names (if type refers to one or several data slots), or regular expressions to
match against the names in the analysis tables.

Columns definitions for data slots can be given as a logical, integer or character vector representing
a selection of the columns (samples or cells). The expression is evaluated in an environment having
the Coldata, i.e. you can use names of Coldata as variables to conveniently build a logical vector
(e.g., columns=Condition=="x").

To refer to data slots, the mode.slot syntax can be used: Each name is either a data slot, or one of
(new,old,total) followed by a dot followed by a slot. For new or old, the data slot value is multiplied
by ntr or 1-ntr. This can be used e.g. to obtain the new counts.

The transform parameter either is a function that transforms a matrix (which can conveniently be
done using the Transform.XXX functions described next), or a character (which must be the XXX
to find such a function). Available data transformations are

• transform=Transform.Z() or transform="Z": compute z scores for each row (see Transform.Z)

• transform=Transform.VST() or transform="VST": do a variance stabilizing transformation
(see Transform.VST)

• transform=Transform.logFC() or transform="logFC": compute log2 fold changes to one or
several reference columns; which must be defined via parameters (see Transform.logFC)

• transform=Transform.no() or transform="no": do not transform (see Transform.no)

Reasonable coloring is chosen depending on the value distribution in the matrix. If the values are
zero centered (e.g. z scores or most often log fold changes), then by default the 50 quantile with
the larger value. The breaks are -q90,q50,0,q50,q90, and, by default, the red to blue "RdBu" palette
from RColorBrewer is taken. If the values are not zero centered, the 5

PlotMismatchPositionForSample 81

xlab can be given as a character vector or an expression that evaluates into a character vector. The
expression is evaluated in an environment having the Coldata, i.e. you can use names of Coldata
as variables.

Value

a ComplexHeatmap object

See Also

GetTable,Heatmap

PlotMismatchPositionForSample

Diagnostic plot for mismatch position for columns (by sample)

Description

This belongs to the first diagnostic plots (raw mismatches) generated by GRAND3.

Usage

PlotMismatchPositionForSample(
data,
sample,
orientation = NULL,
category = NULL

)

Arguments

data a grandR object
sample a sample name
orientation restrict to either Sense or Antisense; can be NULL
category restrict to a specific category (see GetDiagnosticParameters); can be NULL

Details

For all positions along the reads (x axis; potentially paired end, shown left and right), show the
percentage of all mismatch types. The panel in column T and row C shows T-to-C mismatches.
Positions outside of shaded areas are clipped. Uncorrected and Retained means before and after
correcting multiply sequenced bases. Sense/Antisense means reads (first read for paired end) that
are (based on the annotation) oriented in sense or antisense direction to a gene (i.e. this is only
relevant for sequencing protocols that do not preserve strand information).

Value

a list with a ggplot object, a description, and the desired size for the plot

82 PlotMismatchPositionForType

PlotMismatchPositionForType

Diagnostic plot for mismatch position for columns (by mismatch type)

Description

This belongs to the first diagnostic plots (raw mismatches) generated by GRAND3.

Usage

PlotMismatchPositionForType(
data,
genomic,
read,
orientation = NULL,
category = NULL

)

Arguments

data a grandR object

genomic the nucleotide as it occurs in the genome

read the nucleotide as it occurs in the read

orientation restrict to either Sense or Antisense; can be NULL

category restrict to a specific category (see GetDiagnosticParameters); can be NULL

Details

For all positions along the reads (x axis; potentially paired end, shown left and right), show the
percentage of a specific mismatch type for all samples. Positions outside of shaded areas are
clipped. Uncorrected and Retained means before and after correcting multiply sequenced bases.
Sense/Antisense means reads (first read for paired end) that are (based on the annotation) oriented
in sense or antisense direction to a gene (i.e. this is only relevant for sequencing protocols that do
not preserve strand information).

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareConv 83

PlotModelCompareConv Diagnostic plot for estimated models (global conversion rate)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelCompareConv(data, label = "4sU", estimator = "Separate")

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

Details

Compares the estimated conversion rate (i.e., the probability for a conversion on a new RNA
molecule) for the binom and tbbinom models (mean conversion rate).

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareErr Diagnostic plot for estimated models (global error rate)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelCompareErr(data, label = "4sU", estimator = "Separate")

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

84 PlotModelCompareErrPrior

Details

Compares the estimated error rate (i.e., the probability for a conversion on an old RNA molecule)
for the binom and tbbinom models.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareErrPrior

Diagnostic plot for estimated models (global error rate)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelCompareErrPrior(
data,
label = "4sU",
estimator = "Separate",
model = "Binom"

)

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

model which model to consider (see GetDiagnosticParameters); cannot be NULL

Details

Compares the prior error rate (estimated from no4sU samples or from all other mismatch types)
against the final error rate estimate.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareLL 85

PlotModelCompareLL Diagnostic plot for estimated models (log likelihoods)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelCompareLL(data, label = "4sU", estimator = "Separate")

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

Details

Shows the difference in log likelihoods between the binom and tbbinom models.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelCompareNtr Diagnostic plot for estimated models (global NTR)

Description

This belongs to the fourth kind (model comparison) of diagnostic plots

Usage

PlotModelCompareNtr(data, label = "4sU", estimator = "Separate")

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

Details

Compares the global NTR (i.e. for all reads used for estimation of global parameters, what is the
percentage of new RNA) for the binom and tbbinom models.

86 PlotModelErr

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelConv Diagnostic plot for estimated models (global conversion rate)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelConv(data, label = "4sU", estimator = "Separate", model = "Binom")

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

model which model to consider (see GetDiagnosticParameters); cannot be NULL

Details

Shows the estimated conversion rate (i.e., the probability for a conversion on a new RNA molecule)
for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelErr Diagnostic plot for estimated models (global error rate)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelErr(data, label = "4sU", estimator = "Separate", model = "Binom")

PlotModelLabelTimeCourse 87

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

model which model to consider (see GetDiagnosticParameters); cannot be NULL

Details

Shows the estimated error rate (i.e., the probability for a conversion on an old RNA molecule) for
each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelLabelTimeCourse

Diagnostic plot for estimated models (4sU increase)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelLabelTimeCourse(data, label = "4sU", estimator = "Separate")

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

Details

Shows the estimated time evolution of 4sU increase in the tbbinom model for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

88 PlotModelShape

PlotModelNtr Diagnostic plot for estimated models (global NTR)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelNtr(data, label = "4sU", estimator = "Separate", model = "Binom")

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

model which model to consider (see GetDiagnosticParameters); cannot be NULL

Details

Shows the estimated global NTR (i.e. for all reads used for estimation of global paramters, what is
the percentage of new RNA) for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotModelShape Diagnostic plot for estimated models (global shape parameter)

Description

This belongs to the third kind (model) of diagnostic plots

Usage

PlotModelShape(data, label = "4sU", estimator = "Separate")

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

estimator which estimator to consider (see GetDiagnosticParameters); cannot be NULL

PlotPCA 89

Details

Shows the estimated shape parameter (describing the increase of 4sU over time) in the tbbinom
model for each sample.

Value

a list with a ggplot object, a description, and the desired size for the plot

PlotPCA Make a PCA plot

Description

Make a PCA plot

Usage

PlotPCA(
data,
mode.slot = DefaultSlot(data),
ntop = 500,
aest = NULL,
x = 1,
y = 2,
columns = NULL

)

Arguments

data the grandR object that contains the data to plot
mode.slot the mode and slot of data to plot; slot in the grandr object (eg "count")
ntop how many genes to use
aest parameter to set the visual attributes
x number of principal component to show on the x axis (numeric)
y number of principal component to show on the y axis (numeric)
columns which columns (i.e. samples or cells) to perform PCA on (see details)

Details

Columns can be given as a logical, integer or character vector representing a selection of the
columns (samples or cells). The expression is evaluated in an environment having the Coldata, i.e.
you can use names of Coldata as variables to conveniently build a logical vector (e.g., columns=Condition=="x").

Value

a PCA plot

90 Plots

PlotProfileLikelihood Diagnostic plot for estimated models (global error rate)

Description

This belongs to the fifth kind (profile likelihoods) of diagnostic plots

Usage

PlotProfileLikelihood(data, label = "4sU", sample = NULL, subread = NULL)

Arguments

data a grandR object

label which label to consider (see GetDiagnosticParameters); cannot be NULL

sample which sample to consider (see GetDiagnosticParameters); cannot be NULL

subread which subread to consider (see GetDiagnosticParameters); cannot be NULL

Details

Shows the profile likelihoods for all parameters of the tbbinom model.

Value

a list with a ggplot object, a description, and the desired size for the plot

Plots Stored plot functions

Description

Get plot names and add or remove plots

Usage

Plots(data)

AddGenePlot(data, name, FUN)

AddGlobalPlot(data, name, FUN)

PlotGene(data, name, gene)

PlotGlobal(data, name)

DropPlots(data, pattern = NULL)

PlotScatter 91

Arguments

data A grandR object

name The user-defined plot name

FUN The plotting function to add

gene The gene to plot

pattern A regular expression that is matched to plot names

Details

FUN has to be a function with a single parameter for global plots (i.e., the grandR object) or two
parameters for gene plots (i.e., the grandR object and the gene name). Usually, it is either the name
of a plotting function, such as PlotGeneOldVsNew, or, if it is necessary to parametrize it, a call to
Defer (which takes care of caching plots without storing an additional copy of the grandR object).

Value

Either the plot names or a grandR data with added/removed plots

Functions

• Plots(): Obtain the plot names

• AddGenePlot(): Add a gene plot to the grandR object

• AddGlobalPlot(): Add a global plot to the the grandR object

• PlotGene(): Create a gene plot

• PlotGlobal(): Create a global plot

• DropPlots(): Remove plots from the grandR object

PlotScatter Make a scatter plot

Description

Convenience method to compare two variables (slot data or analyses results).

Usage

PlotScatter(
data,
x = NULL,
y = NULL,
xcol = NULL,
ycol = NULL,
xlab = NULL,
ylab = NULL,

92 PlotScatter

log = FALSE,
log.x = log,
log.y = log,
remove.outlier = 1.5,
xlim = NULL,
ylim = NULL,
size = 0.3,
genes = NULL,
highlight = NULL,
label = NULL,
label.repel = 1,
facet = NULL,
color = NULL,
density.margin = "n",
density.n = 100,
correlation = NULL,
correlation.x = -Inf,
correlation.y = Inf,
correlation.hjust = 0.5,
correlation.vjust = 0.5,
layers.below = NULL

)

Arguments

data the grandR object (can also be a plain data frame)

x an expression to compute the x value or a character corresponding to a sample
(or cell) name or a fully qualified analysis result name (see details)

y an expression to compute the y value or a character corresponding to a sample
(or cell) name or a fully qualified analysis result name (see details)

xcol a character corresponding to a sample (or cell) name or a fully qualified analysis
result name (see details)

ycol a character corresponding to a sample (or cell) name or a fully qualified analysis
result name (see details)

xlab the label for x (can be NULL, then the x parameter is used)

ylab the label for y (can be NULL, then the y parameter is used)

log if TRUE, use log scales for x and y axis

log.x if TRUE, use log scale for the x axis

log.y if TRUE, use log scale for the y axis

remove.outlier configure how outliers are selected (is the coef parameter to boxplot.stats); can
be FALSE, in which case no points are considered outliers (see details)

xlim define the x axis limits (vector of length 2 defining the lower and upper bound,
respectively)

ylim define the y axis limits (vector of length 2 defining the lower and upper bound,
respectively)

PlotScatter 93

size the point size to use

genes restrict to these genes; can be either numeric indices, gene names, gene symbols
or a logical vector

highlight highlight these genes; can be either numeric indices, gene names, gene symbols
or a logical vector (see details)

label label these genes; can be either numeric indices, gene names, gene symbols or a
logical vector (see details)

label.repel force to repel labels from points and each other (increase if labels overlap)

facet an expression (evaluated in the same environment as x and y); for each unique
value a panel (facet) is created; can be NULL

color either NULL (use point density colors), or a name of the GeneInfo table (use
scale_color_xxx to define colors), or a color for all points

density.margin for density colors, one of ’n’,’x’ or ’y’; should the density be computed along
both axes (’n’), or along ’x’ or ’y’ axis only

density.n how many bins to use for density calculation (see kde2d)

correlation a function to format correlation statistics to be annotated (see details)

correlation.x x coordinate to put the correlation annotation in the plot (see details)

correlation.y y coordinate to put the correlation annotation in the plot (see details)
correlation.hjust

x adjustment to put the correlation annotation in the plot (see details)
correlation.vjust

y adjustment to put the correlation annotation in the plot (see details)

layers.below list of ggplot geoms to add before adding the layer containing the points

Details

Both the x and y parameter are either expressions or names. Names are either sample (or cell, in
case of single cell experiments) names or fully qualified analysis results (analysis name followed by
a dot and the analysis result table column). These names can be used within expressions. Defining
by names only works with character literals like "kinetics.Synthesis", but if you give an expression
(e.g. a variable name that contains a character), this won’t work, since PlotScatter will try to evaluate
this for defining the values, not the name of the column. If you wanna define names, and use some
expression for this, you need to use the xcol and ycol parameters instead of the x and y parameters!

By default the limits of x and y axis are chosen after removing outliers (using the same algorithm
used for boxplot). Thus, larger numbers filter less stringently. remove.outlier can also be set to
FALSE (no outlier filtering). If xlim or ylim are set, this overrides outlier filtering. Points outside
of the limits (i.e. outliers or points outside of xlim or ylim) are set to infinity (such that they are
shown at the border of the plot in gray)

By default, all genes are shown. This can be restricted using the genes parameter (see ToIndex). It
is also possible to highlight a subset of the genes using highlight. This parameter either describes
a subset of the genes (either numeric indices, gene names, gene symbols or a logical vector), in
which case these genes are plotted in red and with larger points size, or it can be a list of such
vectors. The names of this list must be valid colors. Genes can also be labeled (make sure that this
is really only a small subset of the genes).

94 PlotSimulation

Often scatter plots show that x and y coordinates are correlated. Correlations can be annotated using
the FormatCorrelation function. Most often you will use PlotScatter(data,x,y,correlation=FormatCorrelation()).
To use a different correlation measure, other formats for correlation coefficient and P values or omit
one of these statistics, parametrize FormatCorrelation. Use correlation.x and correlation.y to
place the annotation in the plot, and correlation.hjust/correlation.vjust to align the annotation at the
given x,y coordinates. Infinite values for correlation.x/correlation.y will put the annotation at the
border of the plot.

Value

a ggplot object with the data frame used as the df attribute

PlotSimulation Plot simulated data

Description

The input data is usually created by SimulateKinetics

Usage

PlotSimulation(sim.df, ntr = TRUE, old = TRUE, new = TRUE, total = TRUE)

Arguments

sim.df the input data frame

ntr show the ntr?

old show old RNA?

new show new RNA?

total show total RNA?

Value

a ggplot object

See Also

SimulateKinetics for creating the input data frame

Examples

PlotSimulation(SimulateKinetics(hl=2))

PlotTypeDistribution 95

PlotTypeDistribution Plot the distribution of gene types

Description

Plot the distribution of gene types

Usage

PlotTypeDistribution(data, mode.slot = DefaultSlot(data), relative = FALSE)

Arguments

data the grandR object to get the data to be plotted from
mode.slot which mode and slot to use
relative show percentage values?

Value

a ggplot object

psapply Parallel (s/l)apply

Description

Depending on whether SetParallel has been called, execute in parallel or not.

Usage

psapply(..., seed = NULL)

plapply(..., seed = NULL)

Arguments

... forwarded to lapply or parallel::mclapply
seed Seed for the random number generator

Details

If the code uses random number specify the seed to make it deterministic

Value

a vector (psapply) or list (plapply)

96 ReadGRAND

ReadGRAND Read the output of GRAND-SLAM 2.0 into a grandR object.

Description

Metabolic labeling - nucleotide conversion RNA-seq data (such as generated by SLAM-seq,TimeLapse-
seq or TUC-seq) must be carefully analyzed to remove bias due to incomplete labeling. GRAND-
SLAM is a software package that employs a binomial mixture modeling approach to obtain precise
estimates of the new-to-total RNA ratio (NTR) per gene and sample (or cell). This function directly
reads the output of GRAND-SLAM 2.0 into a grandR object.

Usage

ReadGRAND(
prefix,
design = c(Design$Condition, Design$Replicate),
classify.genes = ClassifyGenes(),
read.percent.conv = FALSE,
rename.sample = NULL,
verbose = FALSE

)

Arguments

prefix Can either be the prefix used to call GRAND-SLAM with, or the main output
file ($prefix.tsv.gz); if the RCurl package is installed, this can also be a URL

design Either a design vector (see details), or a data.frame providing metadata for all
columns (samples/cells), or a function that is called with the condition name
vector and is supposed to return this data.frame.

classify.genes A function that is used to add the type column to the gene annotation table,
always a call to ClassifyGenes

read.percent.conv

Should the percentage of conversions also be read?

rename.sample function that is applied to each sample name before parsing (or NULL)

verbose Print status updates

Details

If columns (samples/cells) are named systematically in a particular way, the design vector provides
a powerful and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table.
E.g. the name Mock.4h.A will be split into the fields Mock, 4h and A. For such names, a design vector
of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for
the example would be c("Treatment","Time","Replicate"). Some names are predefined in the
list Design.

ReadGRAND3 97

The names given in the design vector might even have additional semantics: E.g. for the name
duration.4sU the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5,
or no4sU into 0). Semantics can be user-defined by calling MakeColdata and using the return value
as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate
the Coldata table after loading data instead of using this mechanism; the build-in semantics simply
provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed some-
thing up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular
misnamed sample).

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution
(alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

See Also

ReadGRAND3,ClassifyGenes,MakeColdata,DesignSemantics

Examples

sars <- ReadGRAND("https://zenodo.org/record/5834034/files/sars.tsv.gz",
design=c("Cell",Design$dur.4sU,Design$Replicate), verbose=TRUE)

ReadGRAND3 Read the output of GRAND-SLAM 3.0 into a grandR object.

Description

Metabolic labeling - nucleotide conversion RNA-seq data (such as generated by SLAM-seq,TimeLapse-
seq or TUC-seq) must be carefully analyzed to remove bias due to incomplete labeling. GRAND-
SLAM is a software package that employs a binomial mixture modeling approach to obtain precise
estimates of the new-to-total RNA ratio (NTR) per gene and sample (or cell). This function directly
reads the output of GRAND-SLAM 3.0 into a grandR object.

Usage

ReadGRAND3(
prefix,
design = NULL,
label = "4sU",
estimator = "Binom",
classify.genes = ClassifyGenes(),
read.posterior = NULL,
rename.sample = NULL,

98 ReadGRAND3

verbose = FALSE
)

Arguments

prefix the prefix used to call GRAND-SLAM

design Either a design vector (see details), or a data.frame providing metadata for all
columns (samples/cells), or a function that is called with the condition name vec-
tor and is supposed to return this data.frame. if NULL, a library,sample,barcode
design is used for sparse data, and a condition,replicate design for dense data

label which nucleoside analog

estimator which estimator to use (one of Binom,TbBinom,TbBinomShape)

classify.genes A function that is used to add the type column to the gene annotation table,
always a call to ClassifyGenes

read.posterior also read the posterior parameters alpha and beta? if NULL, TRUE for dense
data, FALSE for sparse data

rename.sample function that is applied to each sample name before parsing (or NULL)

verbose Print status updates

Details

If columns (samples/cells) are named systematically in a particular way, the design vector provides
a powerful and easy way to create the column annotations.

The column names have to contain dots (.) to separate the fields for the column annotation table.
E.g. the name Mock.4h.A will be split into the fields Mock, 4h and A. For such names, a design vector
of length 3 has to be given, that describes the meaning of each field. A reasonable design vector for
the example would be c("Treatment","Time","Replicate"). Some names are predefined in the
list Design.

The names given in the design vector might even have additional semantics: E.g. for the name
duration.4sU the values are interpreted (e.g. 4h is converted into the number 4, or 30min into 0.5,
or no4sU into 0). Semantics can be user-defined by calling MakeColdata and using the return value
as the design parameter, or a function that calls MakeColdata. In most cases it is easier to manipulate
the Coldata table after loading data instead of using this mechanism; the build-in semantics simply
provide a convenient way to reduce this kind of manipulation in most cases.

Sometimes you might have forgotten to name all samples consistently (or you simply messed some-
thing up). In this case, the rename.sample parameter can be handy (e.g. to rename a particular
misnamed sample).

Value

A grandR object containing the read counts, NTRs, information on the NTR posterior distribution
(alpha,beta) and potentially additional information of all genes detected by GRAND-SLAM

See Also

ReadGRAND,ClassifyGenes,MakeColdata,DesignSemantics

RotatateAxisLabels 99

RotatateAxisLabels Rotate x axis labels

Description

Add this to a ggplot object to rotate the x axis labels

Usage

RotatateAxisLabels(angle = 90)

Arguments

angle the angle by which to rotate

Value

a ggplot theme object

Scale Scale data

Description

Compute values for all genes standardized (i.e. z scores) across samples.

Usage

Scale(
data,
name = "scaled",
slot = DefaultSlot(data),
set.to.default = FALSE,
group = NULL,
center = TRUE,
scale = TRUE

)

Arguments

data a grandR object
name the new slot name
slot the slot from where to take values
set.to.default set the new slot as default slot
group Perform standardization per group of columns (see details)
center Perform centering (forwarded to scale)
scale Perform scaling (forwarded to scale)

100 ServeGrandR

Details

Standardization can be done per group. For this, the group parameter has to be a name of the
Coldata table, to define groups of columns (i.e. samples or cells).

Value

a new grandR object with a new slot

See Also

scale

Semantics.time Semantics for time columns

Description

Defines additional semantics for columns representing temporal dimensions

Usage

Semantics.time(s, name)

Arguments

s original column

name the column name

Value

a data frame with a single numeric column, where <x>h from s is replaced by x, <x>min is replaced
by x/60, and no4sU is replaced by 0

ServeGrandR Serve a shiny web interface

Description

Fire up a shiny web server for exploratory analysis of grandR data.

ServeGrandR 101

Usage

ServeGrandR(
data,
table = NULL,
sizes = NA,
height = 400,
plot.gene = NULL,
plot.global = NULL,
df.identifier = "Symbol",
title = Title(data),
show.sessionInfo = FALSE,
help = list(".Q: multiple testing corrected p values", ".LFC: log2 fold changes")

)

Arguments

data the grandR object (or a file name to an rds file containing a grandR object)

table the table to display (can be NULL; see details)

sizes the widths for the gene plots to show (12 is full screen with); must be a vector
as long as there are gene plots

height the height for the gene plots in pixel

plot.gene a list of gene plots; can be NULL, then the stored gene plots are used (see Plots)

plot.global a list of global plots; can be NULL, then the stored global plots are used (see
Plots)

df.identifier the main identifier (column name) from the table; this is used when calling the
gene plot functions;

title the title to show in the header of the website
show.sessionInfo

whether to show session info

help a list of characters that is shown as help text at the beginning (when no gene plot
is shown); should describe the contents of your table

Details

If the table parameter is NULL, either an analysis table named "ServeGrandR" is used (if it exists),
otherwise the columns "Q", "LFC", "Synthesis" and "Half-life" of all analysis tables are used.

The gene plots must be functions that accept two parameters: the grandR object and a gene identi-
fier. You can either use functions directly (e.g. plot.gene=list(PlotGeneOldVsNew)), or use De-
fer in cases you need to specify additional parameters, e.g. plot.gene=list(Defer(PlotGeneOldVsNew,log=FALSE)).
The global plots are functions accepting a single parameter (the grandR object). Here the use of
Defer is encouraged due to its caching mechanism.

Value

a shiny web server

102 SimulateKinetics

SetParallel Set up parallel execution

Description

Set the number of cores for parallel execution.

Usage

SetParallel(cores = max(1, parallel::detectCores() - 2))

Arguments

cores number of cores

Details

Whenever psapply or plapply are used, they are executed in parallel.

Value

No return value, called for side effects

SimulateKinetics Simulate the kinetics of old and new RNA for given parameters.

Description

The standard mass action kinetics model of gene expression arises from the differential equation
df/dt = s − df(t), with s being the constant synthesis rate, d the constant degradation rate and
f0 = f(0) (the abundance at time 0). The RNA half-life is directly related to d via HL = log(2)/d.
This model dictates the time evolution of old and new RNA abundance after metabolic labeling
starting at time t=0. This function simulates data according to this model.

Usage

SimulateKinetics(
s = 100 * d,
d = log(2)/hl,
hl = 2,
f0 = s/d,
min.time = -1,
max.time = 10,
N = 1000,
name = NULL,
out = c("Old", "New", "Total", "NTR")

)

SimulateReadsForSample 103

Arguments

s the synthesis rate

d the degradation rate

hl the RNA half-life

f0 the abundance at time t=0

min.time the start time to simulate

max.time the end time to simulate

N how many time points from min.time to max.time to simuate

name add a Name column to the resulting data frame

out which values to put into the data frame

Value

a data frame containing the simulated values

See Also

PlotSimulation for plotting the simulation

Examples

head(SimulateKinetics(hl=2)) # simulate steady state kinetics for an RNA with half-life 2h

SimulateReadsForSample

Simulate metabolic labeling - nucleotide conversion RNA-seq data.

Description

This function takes a vector of true relative abundances and NTRs, and then simulates (i) read
counts per gene and (ii) 4sU incorporation and conversion events. Subsequently, it uses the same
approach as implemented in the GRAND-SLAM 2.0 software (Juerges et al., Bioinformatics 2018)
to estimate the NTR from these simulated data.

Usage

SimulateReadsForSample(
num.reads = 2e+07,
rel.abundance = setNames(rlnorm(10000, meanlog = 4.5, sdlog = 1), paste0("Gene",

1:10000)),
ntr = setNames(rbeta(10000, 1.5, 3), paste0("Gene", 1:10000)),
dispersion = 0.05,
beta.approx = FALSE,
conversion.reads = FALSE,

104 SimulateReadsForSample

u.content = 0.25,
u.content.sd = 0.05,
read.length = 75,
p.old = 1e-04,
p.new = 0.04,
seed = NULL

)

Arguments

num.reads the total amount of reads for simulation

rel.abundance named (according to genes) vector of the true relative abundances. Is divided by
its sum.

ntr vector of true NTRs

dispersion vector of dispersion parameters (should best be estimated by DESeq2)

beta.approx should the beta approximation of the NTR posterior be computed?
conversion.reads

also output the number of reads with conversion

u.content the relative frequency of uridines in the reads

u.content.sd the standard deviation of the u content

read.length the read length for simulation

p.old the probability for a conversion in reads originating from old RNA

p.new the probability for a conversion in reads originating from new RNA

seed seed value for the random number generator (set to make it deterministic!)

Details

The simulation proceeds as follows:

1. Draw for each gene the number of reads from a negative binomial distribution parametrized
with the relative abundances x read number and the dispersion parameter

2. For each gene: Draw for each read the number of uridines according to a beta binomial dis-
tribution for the given read length (the beta prior is parametrized to match the u.content and
u.content.sd parameters)

3. For each read: Draw the number of conversions according to the binomial mixture model of
GRAND-SLAM (parametrized with p_old, p_new, the gene specific NTR and the read specific
number of uridines)

4. Estimate the NTR by using the GRAND-SLAM approach

Value

a matrix containing, per column, the simulated counts, the simulated NTRs, (potentially the shape
parameters of the beta distribution approximation,) and the true relative frequencies and ntrs

SimulateTimeCourse 105

See Also

SimulateTimeCourse

Examples

SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9)
SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9,seed=1337)
SimulateReadsForSample(num.reads = 10000,rel.abundance = rep(1,5),ntr=0.9,seed=1337)
the second and third matrix should be equal, the first should be distinct

SimulateTimeCourse Simulate a complete time course of metabolic labeling - nucleotide
conversion RNA-seq data.

Description

This function takes a vector of true synthesis rates and RNA half-lives, and then simulates data
for multiple time points and replicates. Both synthesis rate and RNA half-lives are assumed to be
constant, but the system might not be in steady-state.

Usage

SimulateTimeCourse(
condition,
gene.info,
s,
d,
f0 = s/d,
s.variation = 1,
d.variation = 1,
dispersion,
num.reads = 1e+07,
timepoints = c(0, 0, 0, 1, 1, 1, 2, 2, 2, 4, 4, 4),
beta.approx = FALSE,
conversion.reads = FALSE,
verbose = TRUE,
seed = NULL,
...

)

Arguments

condition A user-defined condition name (which is placed into the Coldata of the final
grandR object)

gene.info either a data frame containing gene annotation or a vector of gene names

s a vector of synthesis rates

106 Slots

d a vector of degradation rates (to get a specific half-life HL, use d=log(2)/HL)

f0 the abundance at time t=0

s.variation biological variability of s among all samples (see details)

d.variation biological variability of d among all samples (see details)

dispersion a vector of dispersion parameters (estimate from data using DESeq2, e.g. by the
estimate.dispersion utility function)

num.reads a vector representing the number of reads for each sample

timepoints a vector representing the labeling duration (in h) for each sample

beta.approx should the beta approximation of the NTR posterior be computed?

conversion.reads

also output the number of reads with conversion

verbose Print status updates

seed seed value for the random number generator (set to make it deterministic!)

... provided to SimulateReadsForSample

Details

If s.variation or d.variation are > 1, then for each gene a random gaussian is added to s (or d) such
that 90 of the gaussian is log2(s.variation).

Value

a grandR object containing the simulated data in its data slots and the true parameters in the gene
annotation table

Slots Slot functions

Description

Get slot names and add or remove slots

Usage

Slots(data)

DropSlot(data, pattern = NULL)

AddSlot(data, name, matrix, set.to.default = FALSE)

structure2vector 107

Arguments

data A grandR object

pattern a regular expression matched against slot names

name the slot name

matrix the data matrix for the new slot

set.to.default set the new slot as the default slot?

Value

Either the slot names or a grandR data with added/removed slots

Functions

• Slots(): Obtain the slot names

• DropSlot(): Remove one or several slots from this grandR object

• AddSlot(): Add an additional slot to this grandR object

See Also

DefaultSlot

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars) # default behavior is to update the default slot
sars
sars <- DropSlot(sars,"norm")
sars # note that the defauls slot reverted to count

structure2vector Convert a structure into a vector

Description

The structure is supposed to be a list. Flattening is done by extracting the given fields (return.fields)
and applying the additional function (return.extra). This is mainly to be used within sapply and
similar.

108 ToIndex

Usage

structure2vector(d, return.fields = NULL, return.extra = NULL)

kinetics2vector(
d,
condition = NULL,
return.fields = c("Synthesis", "Half-life"),
return.extra = NULL

)

Arguments

d the data structure

return.fields which fields should be extracted directly (may be NULL)

return.extra apply a function returning a flat list or vector (may be NULL)

condition if the original grandR object had Condition set, which condition to extract
(NULL otherwise)

Value

the data flattened into a vector

Functions

• kinetics2vector(): Convert the output of the FitKinetics methods into a vector

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Condition",Design$dur.4sU,Design$Replicate))

sars <- Normalize(sars)
fit <- FitKineticsGeneLeastSquares(sars,"SRSF6")$Mock
print(fit)
kinetics2vector(fit)

ToIndex Obtain the indices of the given genes

Description

Genes can be referred to by their names, symbols, row numbers in the gene table, or a logical vector
referring to the gene table rows. This function accepts all these possibilities and returns the row
number in the gene table for the given genes,

Usage

ToIndex(data, gene, regex = FALSE)

toxicity 109

Arguments

data The grandR object

gene A vector of genes. Can be either numeric indices, gene names, gene symbols or
a logical vector

regex Treat gene as a regex and return all that match

Value

Numeric indices corresponding to the given genes

See Also

GeneInfo

Examples

sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c("Cell",Design$dur.4sU,Design$Replicate))

ToIndex(sars,c("MYC"))
ToIndex(sars,GeneInfo(sars)$Symbol=="MYC")

toxicity Perform toxicity tests

Description

Testing for toxicity of a 4sU sample is performed by comparing half-lives or NTR ranks against the
log2 fold change of the 4sU sample vs equivalent no4sU samples.

Usage

PlotToxicityTestRankAll(data, pairs = Findno4sUPairs(data), ...)

PlotToxicityTestAll(data, pairs = Findno4sUPairs(data), ...)

PlotToxicityTestDeferAll(data, pairs = NULL, ...)

PlotToxicityTestRankDeferAll(data, pairs = NULL, ...)

PlotToxicityTestRank(
data,
w4sU,
no4sU = Findno4sUPairs(data)[[w4sU]],
ntr = w4sU,
ylim = NULL,
LFC.fun = lfc::PsiLFC,

110 toxicity

slot = "count",
correction = 1

)

PlotToxicityTest(
data,
w4sU,
no4sU = Findno4sUPairs(data)[[w4sU]],
ntr = w4sU,
ylim = NULL,
LFC.fun = lfc::PsiLFC,
slot = "count",
hl.quantile = 0.8,
correction = 1

)

Arguments

data a grandR object

pairs a no4sU pairs list as generated by Findno4sUPairs

... further arguments to be passed to or from other methods.

w4sU the name of a 4sU sample

no4sU the name(s) of equivalent no4sU sample(s)

ntr the name of a sample to take NTRs from (usually equal to w4sU)

ylim y axis limits

LFC.fun function to compute log fold change (default: PsiLFC, other viable option:
NormLFC)

slot the slot of the grandR object to take the data from; for PsiLFC, this really should
be "count"!

correction correction factor

hl.quantile the half-life quantile to cut the plot

Details

The deferred versions are useful to be used in conjunction with ServeGrandR plot.static. Their
implementation make sure that they are lightweight, i.e. when saving the returned function to an
Rdata file, the grandR object is not stored.

Value

either a ggplot object, a list of ggplot objects, or a list of deferred functions for plotting

See Also

Findno4sUPairs,Defer

Transform.no 111

Transform.no Transformations for PlotHeatmap

Description

Functions to perform transformations on the matrix used for PlotHeatmap.

Usage

Transform.no(label = " ")

Transform.Z(label = "z score", center = TRUE, scale = TRUE)

Transform.VST(label = "VST")

Transform.logFC(label = "log2 FC", LFC.fun = lfc::PsiLFC, columns = NULL, ...)

Arguments

label label that is used for the heatmap legend
center perform centering when computing Z scores (see scale)
scale perform scaling when computing Z scores (see scale)
LFC.fun function to compute log fold changes (default: PsiLFC, other viable option:

NormLFC)
columns which columns (i.e. samples or cells) to use as reference when computing log

fold changes (see details)
... further parameters passed down to LFC.fun

Details

These functions should be used as transform parameter to PlotHeatmap. Available data transforma-
tions are

• transform=Transform.Z(): compute z scores for each row; you can omit the usual centering or
scaling by setting the respective parameters to false; see scale

• transform=Transform.VST(): do a variance stabilizing transformation using vst
• transform=Transform.logFC(): compute log2 fold changes to one or several reference columns;

see below how to define them; fold changes are computed using the lfc package)
• transform=Transform.no(): do not transform

The label to be used in the heatmap legend can be changed by specifying the label parameter.

For Transform.logFC, columns can be given as a logical, integer or character vector representing a
selection of the columns (samples or cells).

Value

A function that transforms a matrix.

112 VulcanoPlot

TransformSnapshot Estimate parameters for a one-shot experiment.

Description

Under steady state conditions it is straight-forward to estimate s and d. Otherwise, the total levels
at some other time point are needed.

Usage

TransformSnapshot(ntr, total, t, t0 = NULL, f0 = NULL, full.return = FALSE)

Arguments

ntr the new to total RNA ratio (measured)

total the total level of RNA (measured)

t the labeling duration

t0 time before measurement at which f0 is total level (only necessary under non-
steady-state conditions)

f0 total level at t0 (only necessary under non-steady-state conditions)

full.return also return the provided parameters

Details

t0 must be given as the total time in between the measurement of f0 and the given ntr and total
values!

Value

a named vector for s and d

VulcanoPlot Make a Vulcano plot

Description

Plot log2 fold changes against -log10 multiple testing adjusted P values

VulcanoPlot 113

Usage

VulcanoPlot(
data,
analysis = Analyses(data)[1],
p.cutoff = 0.05,
lfc.cutoff = 1,
label.numbers = TRUE,
...

)

Arguments

data the grandR object that contains the data to be plotted

analysis the analysis to plot (default: first analysis)

p.cutoff p-value cutoff (default: 0.05)

lfc.cutoff log fold change cutoff (default: 1)

label.numbers if TRUE, label the number of genes

... further parameters passed to PlotScatter

Value

a ggplot object

Index

∗ datasets
Design, 21

∗ data
ComputeExpressionPercentage, 14
GetAnalysisTable, 47
GetData, 50
GetSparseMatrix, 54
GetSummarizeMatrix, 55
GetTable, 56

∗ diagnostics
GetDiagnosticParameters, 52
PlotConversionFreq, 71
PlotMismatchPositionForSample, 81
PlotMismatchPositionForType, 82
PlotModelCompareConv, 83
PlotModelCompareErr, 83
PlotModelCompareErrPrior, 84
PlotModelCompareLL, 85
PlotModelCompareNtr, 85
PlotModelConv, 86
PlotModelErr, 86
PlotModelLabelTimeCourse, 87
PlotModelNtr, 88
PlotModelShape, 88
PlotProfileLikelihood, 90

∗ diffexp
EstimateRegulation, 23
GetContrasts, 48
GetSignificantGenes, 53
LFC, 61
LikelihoodRatioTest, 62
PairwiseDESeq2, 69

∗ geneplot
PlotGeneGroupsBars, 72
PlotGeneGroupsPoints, 73
PlotGeneOldVsNew, 74
PlotGeneProgressiveTimecourse, 75
PlotGeneSnapshotTimecourse, 76
PlotGeneTotalVsNtr, 78

∗ genesets
AnalyzeGeneSets, 5
ListGeneSets, 63

∗ globalplot
FormatCorrelation, 43
MAPlot, 65
PlotAnalyses, 70
PlotHeatmap, 79
PlotPCA, 89
PlotScatter, 91
PlotTypeDistribution, 95
Transform.no, 111
VulcanoPlot, 112

∗ grandr
Analyses, 4
Coldata, 12
Condition, 17
DefaultSlot, 19
GeneInfo, 44
Genes, 45
grandR, 58
Plots, 90
Slots, 106

∗ helper
ApplyContrasts, 7
check.analysis, 10
data.apply, 18
Defer, 20
density2d, 21
estimate.dispersion, 23
get.mode.slot, 47
IsParallel, 60
psapply, 95
RotatateAxisLabels, 99
SetParallel, 102
structure2vector, 107
ToIndex, 108

∗ kinetics
f.old.equi, 26

114

INDEX 115

FitKinetics, 31
FitKineticsGeneLeastSquares, 33
FitKineticsGeneLogSpaceLinear, 35
FitKineticsGeneNtr, 37
FitKineticsPulseR, 41
PlotSimulation, 94
SimulateKinetics, 102

∗ load
ClassifyGenes, 11
Design, 21
DesignSemantics, 22
MakeColdata, 64
ReadGRAND, 96
ReadGRAND3, 97
Semantics.time, 100

∗ preprocess
ComputeAbsolute, 13
ComputeNtrPosteriorQuantile, 15
FilterGenes, 27
Normalize, 66
NormalizeBaseline, 68
Scale, 99

∗ recalibration
CalibrateEffectiveLabelingTimeKineticFit,

8
CalibrateEffectiveLabelingTimeMatchHalflives,

9
∗ shiny

ServeGrandR, 100
∗ simulation

SimulateReadsForSample, 103
SimulateTimeCourse, 105

∗ snapshot
ComputeSteadyStateHalfLives, 16
FindReferences, 29
FitKineticsGeneSnapshot, 39
FitKineticsSnapshot, 41
TransformSnapshot, 112

∗ toxicity
Findno4sUPairs, 29
toxicity, 109

AddAnalysis (Analyses), 4
AddGenePlot (Plots), 90
AddGlobalPlot (Plots), 90
AddSlot (Slots), 106
aes, 73, 75, 77, 78
aes_string, 73, 75, 77, 78
Analyses, 4, 46, 48, 60

AnalyzeGeneSets, 5, 63, 64
ApplyContrasts, 7, 50

boxplot, 93
boxplot.stats, 92

CalibrateEffectiveLabelingTimeKineticFit,
8

CalibrateEffectiveLabelingTimeMatchHalflives,
9

check.analysis, 10
check.mode.slot (check.analysis), 10
check.slot (check.analysis), 10
ClassifyGenes, 11, 96–98
Coldata, 12, 15–18, 22, 24, 30, 40, 45, 46, 48,

50, 51, 54, 55, 57, 59, 60, 63, 65,
72–75, 77, 78, 80, 81, 89, 97, 98,
100, 105

Coldata<- (Coldata), 12
Columns, 56, 79
Columns (Genes), 45
ComputeAbsolute, 13
ComputeExpressionPercentage, 14
ComputeNtrCI

(ComputeNtrPosteriorQuantile),
15

ComputeNtrPosteriorLower
(ComputeNtrPosteriorQuantile),
15

ComputeNtrPosteriorQuantile, 15
ComputeNtrPosteriorUpper

(ComputeNtrPosteriorQuantile),
15

ComputeSteadyStateHalfLives, 16
Condition, 4, 13, 17, 28, 30, 31, 33, 35, 37,

55, 76, 108
Condition<- (Condition), 17

data.apply, 18
DefaultSlot, 5, 19, 52, 55, 57, 60, 107
DefaultSlot<- (DefaultSlot), 19
Defer, 20, 91, 101, 110
density2d, 21
Design, 21, 64, 96, 98
DesignSemantics, 22, 65, 97, 98
dim.grandR (grandR), 58
dimnames.grandR (grandR), 58
DropAnalysis (Analyses), 4
DropPlots (Plots), 90

116 INDEX

DropSlot (Slots), 106

enricher, 6
estimate.dispersion, 23
EstimateRegulation, 23
estimateSizeFactorsForMatrix, 67

f.new, 34, 36
f.new (f.old.equi), 26
f.old.equi, 26, 34, 36
f.old.nonequi, 34, 36
f.old.nonequi (f.old.equi), 26
FilterGenes, 27, 60
Findno4sUPairs, 29, 30, 110
FindReferences, 24, 29, 40, 42, 68, 69
FitKinetics, 4, 9, 13, 17, 19, 31, 35, 36, 38
FitKineticsGeneLeastSquares, 31, 32, 33,

36, 38, 76
FitKineticsGeneLogSpaceLinear, 31, 32,

35, 35, 38, 76
FitKineticsGeneNtr, 31, 32, 35, 36, 37, 76
FitKineticsGeneSnapshot, 10, 26, 39
FitKineticsPulseR, 41
FitKineticsSnapshot, 26, 41
FormatCorrelation, 43, 94

GeneInfo, 11–13, 44, 46, 48, 57, 60, 93, 109
GeneInfo<- (GeneInfo), 44
Genes, 45, 45, 48, 52, 55, 57, 60
get.mode.slot, 47
GetAnalysisTable, 6, 47, 50, 52, 53, 55–57,

60
GetContrasts, 7, 24, 48, 61, 62, 69, 70
GetData, 19, 47, 48, 50, 55–57, 60, 72–75,

77–79
GetDiagnosticParameters, 52, 71, 81–88,

90
GetSignificantGenes, 53
GetSparseMatrix, 54
GetSummarizeMatrix, 55, 55, 57, 79
GetTable, 19, 47, 48, 50, 52, 55, 56, 60, 80, 81
grandR, 58
GSEA, 6

Heatmap, 80, 81

is.grandR (grandR), 58
IsParallel, 60

kde2d, 93

kinetics2vector, 32
kinetics2vector (structure2vector), 107

LFC, 4, 7, 13, 17, 50, 61, 70
LikelihoodRatioTest, 4, 13, 17, 62
ListGeneSets, 6, 63

MakeColdata, 12, 13, 22, 64, 97, 98
MAPlot, 65
merge.grandR (grandR), 58
msigdbr, 6
msigdbr_collections, 63

Normalize, 66, 69
NormalizeBaseline, 67, 68
NormalizeFPKM (Normalize), 66
NormalizeRPM (Normalize), 66
NormalizeTPM (Normalize), 66
NormLFC, 61, 68, 110, 111

PairwiseDESeq2, 4, 7, 50, 62, 69
plapply, 102
plapply (psapply), 95
PlotAnalyses, 70
PlotConversionFreq, 71
PlotGene (Plots), 90
PlotGeneGroupsBars, 72, 72, 74, 75, 77, 79
PlotGeneGroupsPoints, 73, 75, 77, 79
PlotGeneOldVsNew, 72, 74, 74, 77, 79, 91
PlotGeneProgressiveTimecourse, 75
PlotGeneSnapshotTimecourse, 76
PlotGeneTotalVsNtr, 72, 74, 75, 78
PlotGlobal (Plots), 90
PlotHeatmap, 20, 79, 111
PlotMismatchPositionForSample, 71, 81
PlotMismatchPositionForType, 71, 82
PlotModelCompareConv, 83
PlotModelCompareErr, 83
PlotModelCompareErrPrior, 84
PlotModelCompareLL, 85
PlotModelCompareNtr, 85
PlotModelConv, 86
PlotModelErr, 86
PlotModelLabelTimeCourse, 87
PlotModelNtr, 88
PlotModelShape, 88
PlotPCA, 89
PlotProfileLikelihood, 90
Plots, 90, 101

INDEX 117

PlotScatter, 44, 91, 113
PlotSimulation, 94, 103
PlotToxicityTest, 29
PlotToxicityTest (toxicity), 109
PlotToxicityTestAll, 29
PlotToxicityTestAll (toxicity), 109
PlotToxicityTestDeferAll (toxicity), 109
PlotToxicityTestRank, 29
PlotToxicityTestRank (toxicity), 109
PlotToxicityTestRankAll, 29
PlotToxicityTestRankAll (toxicity), 109
PlotToxicityTestRankDeferAll

(toxicity), 109
PlotTypeDistribution, 95
print.grandR (grandR), 58
psapply, 95, 102
PsiLFC, 61, 68, 110, 111

ReadGRAND, 11, 12, 45, 58, 65, 96, 98
ReadGRAND3, 97, 97
relative2abs, 14
RotatateAxisLabels, 99

Scale, 99
scale, 99, 100, 111
Semantics.time, 100
ServeGrandR, 100, 110
SetParallel, 95, 102
SimulateKinetics, 94, 102
SimulateReadsForSample, 103, 106
SimulateTimeCourse, 58, 105, 105
Slots, 5, 19, 60, 106
split.grandR (grandR), 58
sprintf, 44
structure2vector, 107
subset.grandR (grandR), 58

Title (grandR), 58
ToIndex, 93, 108
toxicity, 109
Transform.logFC, 80
Transform.logFC (Transform.no), 111
Transform.no, 80, 111
Transform.VST, 80
Transform.VST (Transform.no), 111
Transform.Z, 80
Transform.Z (Transform.no), 111
TransformSnapshot, 25, 40, 42, 112

VersionString (grandR), 58

vst, 111
VulcanoPlot, 112

	Analyses
	AnalyzeGeneSets
	ApplyContrasts
	CalibrateEffectiveLabelingTimeKineticFit
	CalibrateEffectiveLabelingTimeMatchHalflives
	check.analysis
	ClassifyGenes
	Coldata
	ComputeAbsolute
	ComputeExpressionPercentage
	ComputeNtrPosteriorQuantile
	ComputeSteadyStateHalfLives
	Condition
	data.apply
	DefaultSlot
	Defer
	density2d
	Design
	DesignSemantics
	estimate.dispersion
	EstimateRegulation
	f.old.equi
	FilterGenes
	Findno4sUPairs
	FindReferences
	FitKinetics
	FitKineticsGeneLeastSquares
	FitKineticsGeneLogSpaceLinear
	FitKineticsGeneNtr
	FitKineticsGeneSnapshot
	FitKineticsPulseR
	FitKineticsSnapshot
	FormatCorrelation
	GeneInfo
	Genes
	get.mode.slot
	GetAnalysisTable
	GetContrasts
	GetData
	GetDiagnosticParameters
	GetSignificantGenes
	GetSparseMatrix
	GetSummarizeMatrix
	GetTable
	grandR
	IsParallel
	LFC
	LikelihoodRatioTest
	ListGeneSets
	MakeColdata
	MAPlot
	Normalize
	NormalizeBaseline
	PairwiseDESeq2
	PlotAnalyses
	PlotConversionFreq
	PlotGeneGroupsBars
	PlotGeneGroupsPoints
	PlotGeneOldVsNew
	PlotGeneProgressiveTimecourse
	PlotGeneSnapshotTimecourse
	PlotGeneTotalVsNtr
	PlotHeatmap
	PlotMismatchPositionForSample
	PlotMismatchPositionForType
	PlotModelCompareConv
	PlotModelCompareErr
	PlotModelCompareErrPrior
	PlotModelCompareLL
	PlotModelCompareNtr
	PlotModelConv
	PlotModelErr
	PlotModelLabelTimeCourse
	PlotModelNtr
	PlotModelShape
	PlotPCA
	PlotProfileLikelihood
	Plots
	PlotScatter
	PlotSimulation
	PlotTypeDistribution
	psapply
	ReadGRAND
	ReadGRAND3
	RotatateAxisLabels
	Scale
	Semantics.time
	ServeGrandR
	SetParallel
	SimulateKinetics
	SimulateReadsForSample
	SimulateTimeCourse
	Slots
	structure2vector
	ToIndex
	toxicity
	Transform.no
	TransformSnapshot
	VulcanoPlot
	Index

