
Package ‘gslnls’
January 17, 2023

Type Package

Title GSL Nonlinear Least-Squares Fitting

Version 1.1.2

Date 2023-01-17

Description An R interface to nonlinear least-squares optimization with the GNU Scientific Li-
brary (GSL), see M. Galassi et al. (2009, ISBN:0954612078). The available trust region meth-
ods include the Levenberg-Marquardt algorithm with and without geodesic acceleration, the Stei-
haug-Toint conjugate gradient algorithm for large systems and several variants of Powell's dog-
leg algorithm. Bindings are provided to tune a number of parameters affecting the low-level as-
pects of the trust region algorithms. The interface mimics R's nls() function and re-
turns model objects inheriting from the same class.

BugReports https://github.com/JorisChau/gslnls/issues

URL https://github.com/JorisChau/gslnls

Depends R (>= 3.5)

Imports stats, Matrix

Encoding UTF-8

Language en-US

License GPL-3

SystemRequirements GSL (>= 2.2)

RoxygenNote 7.2.0

NeedsCompilation yes

Author Joris Chau [aut, cre]

Maintainer Joris Chau <joris.chau@openanalytics.eu>

Repository CRAN

Date/Publication 2023-01-17 15:20:05 UTC

1

https://github.com/JorisChau/gslnls/issues
https://github.com/JorisChau/gslnls

2 anova.gsl_nls

R topics documented:
anova.gsl_nls . 2
coef.gsl_nls . 3
confint.gsl_nls . 4
confintd . 5
confintd.gsl_nls . 6
deviance.gsl_nls . 7
df.residual.gsl_nls . 8
fitted.gsl_nls . 9
formula.gsl_nls . 10
gsl_nls . 11
gsl_nls_control . 16
gsl_nls_large . 19
logLik.gsl_nls . 23
nobs.gsl_nls . 24
predict.gsl_nls . 25
residuals.gsl_nls . 26
summary.gsl_nls . 27
vcov.gsl_nls . 28

Index 30

anova.gsl_nls Anova tables

Description

Returns the analysis of variance (or deviance) tables for two or more fitted "gsl_nls" objects.

Usage

S3 method for class 'gsl_nls'
anova(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... Additional objects inheriting from class "gsl_nls".

Value

A data.frame object of class "anova" similar to anova representing the analysis-of-variance table
of the fitted model objects when printed.

See Also

anova

coef.gsl_nls 3

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + 1 + rnorm(n, sd = 0.1)

)
model
obj1 <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))
obj2 <- gsl_nls(fn = y ~ A * exp(-lam * x) + b, data = xy,

start = c(A = 1, lam = 1, b = 0))

anova(obj1, obj2)

coef.gsl_nls Extract model coefficients

Description

Returns the fitted model coefficients from a "gsl_nls" object. coefficients can also be used as
an alias.

Usage

S3 method for class 'gsl_nls'
coef(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Named numeric vector of fitted coefficients similar to coef

See Also

coef

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,

4 confint.gsl_nls

y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)
)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

coef(obj)

confint.gsl_nls Confidence interval for model parameters

Description

Returns asymptotic or profile likelihood confidence intervals for the parameters in a fitted "gsl_nls"
object.

Usage

S3 method for class 'gsl_nls'
confint(object, parm, level = 0.95, method = c("asymptotic", "profile"), ...)

Arguments

object An object inheriting from class "gsl_nls".

parm A character vector of parameter names for which to evaluate confidence inter-
vals, defaults to all parameters.

level A numeric scalar between 0 and 1 giving the level of the parameter confidence
intervals.

method Method to be used, either "asymptotic" for asymptotic confidence intervals or
"profile" for profile likelihood confidence intervals. The latter is only avail-
able for "gsl_nls" objects that are also of class "nls".

... At present no optional arguments are used.

Details

Method "asymptotic" assumes (approximate) normality of the errors in the model and calcu-
lates standard asymptotic confidence intervals based on the quantiles of a t-distritbution. Method
"profile" calculates profile likelihood confidence intervals using the confint.nls method in the
MASS package and for this reason is only available for "gsl_nls" objects that are also of class
"nls".

Value

A matrix with columns giving the lower and upper confidence limits for each parameter.

See Also

confint, confint.nls in package MASS.

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=MASS

confintd 5

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

asymptotic ci's
confint(obj)
Not run:
profile ci's (requires MASS)
confint(obj, method = "profile")

End(Not run)

confintd Confidence intervals for derived parameters

Description

confintd is a generic function to compute confidence intervals for continuous functions of the
parameters in a fitted model. The function invokes particular methods which depend on the class
of the first argument.

Usage

confintd(object, expr, level = 0.95, ...)

Arguments

object A fitted model object.

expr An expression or character vector that can be transformed to an expression
giving the function(s) of the parameters to be evaluated. Each expression should
evaluate to a numeric scalar.

level A numeric scalar between 0 and 1 giving the level of the derived parameter
confidence intervals.

... Additional argument(s) for methods

Value

A matrix with columns giving the fitted values and lower and upper confidence limits for each
derived parameter. The row names list the individual derived parameter expressions.

6 confintd.gsl_nls

See Also

confint

confintd.gsl_nls Confidence intervals for derived parameters

Description

Returns fitted values and confidence intervals for continuous functions of parameters from a fitted
"gsl_nls" object.

Usage

S3 method for class 'gsl_nls'
confintd(object, expr, level = 0.95, dtype = "symbolic", ...)

Arguments

object A fitted model object.

expr An expression or character vector that can be transformed to an expression
giving the function(s) of the parameters to be evaluated. Each expression should
evaluate to a numeric scalar.

level A numeric scalar between 0 and 1 giving the level of the derived parameter
confidence intervals.

dtype A character string equal to "symbolic" for symbolic differentiation of expr with
deriv, or "numeric" for numeric differentiation of expr with numericDeriv
using forward finite differencing.

... Additional argument(s) for methods

Details

This method assumes (approximate) normality of the errors in the model and confidence intervals
are calculated using the delta method, i.e. a first-order Taylor approximation of the (continuous)
function of the parameters. If dtype = "symbolic" (the default), expr is differentiated with respect
to the parameters using symbolic differentiation with deriv. As such, each expression in expr
must contain only operators that are known to deriv. If dtype = "numeric", expr is differentiated
using numeric differentiation with numericDeriv, which should be used if expr cannot be derived
symbolically with deriv.

Value

A matrix with columns giving the fitted values and lower and upper confidence limits for each
derived parameter. The row names list the individual derived parameter expressions.

See Also

confint

deviance.gsl_nls 7

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

delta method ci's
confintd(obj, expr = c("log(lam)", "A / lam"))

deviance.gsl_nls Model deviance

Description

Returns the deviance of a fitted "gsl_nls" object.

Usage

S3 method for class 'gsl_nls'
deviance(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Numeric deviance value similar to deviance

See Also

deviance

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model

8 df.residual.gsl_nls

obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

deviance(obj)

df.residual.gsl_nls Residual degrees-of-freedom

Description

Returns the residual degrees-of-freedom from a fitted "gsl_nls" object.

Usage

S3 method for class 'gsl_nls'
df.residual(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Integer residual degrees-of-freedom similar to df.residual.

See Also

df.residual

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

df.residual(obj)

fitted.gsl_nls 9

fitted.gsl_nls Extract model fitted values

Description

Returns the fitted responses from a "gsl_nls" object. fitted.values can also be used as an alias.

Usage

S3 method for class 'gsl_nls'
fitted(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Numeric vector of fitted responses similar to fitted.

See Also

fitted

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

fitted(obj)

10 formula.gsl_nls

formula.gsl_nls Extract model formula

Description

Returns the model formula from a fitted "gsl_nls" object.

Usage

S3 method for class 'gsl_nls'
formula(x, ...)

Arguments

x An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

If the object inherits from class "nls" returns the fitted model as a formula similar to formula.
Otherwise returns the fitted model as a function.

See Also

formula

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

formula(obj)

gsl_nls 11

gsl_nls GSL Nonlinear Least Squares fitting

Description

Determine the nonlinear least-squares estimates of the parameters of a nonlinear model using the
gsl_multifit_nlinear module present in the GNU Scientific Library (GSL).

Usage

gsl_nls(fn, ...)

S3 method for class 'formula'
gsl_nls(
fn,
data = parent.frame(),
start,
algorithm = c("lm", "lmaccel", "dogleg", "ddogleg", "subspace2D"),
control = gsl_nls_control(),
jac = NULL,
fvv = NULL,
trace = FALSE,
subset,
weights,
na.action,
model = FALSE,
...

)

S3 method for class 'function'
gsl_nls(
fn,
y,
start,
algorithm = c("lm", "lmaccel", "dogleg", "ddogleg", "subspace2D"),
control = gsl_nls_control(),
jac = NULL,
fvv = NULL,
trace = FALSE,
weights,
...

)

Arguments

fn a nonlinear model defined either as a two-sided formula including variables and
parameters, or as a function returning a numeric vector, with first argument the

12 gsl_nls

vector of parameters to be estimated. See the individual method descriptions
below.

data an optional data frame in which to evaluate the variables in fn if defined as a
formula. Can also be a list or an environment, but not a matrix.

y numeric response vector if fn is defined as a function, equal in length to the
vector returned by evaluation of the function fn.

start a named list or named numeric vector of starting estimates. start is only al-
lowed to be missing if fn is a selfStart model. If fn is a formula, a naive
guess for start is tried, but this should not be relied on.

algorithm character string specifying the algorithm to use. The following choices are sup-
ported:

• "lm" Levenberg-Marquardt algorithm (default)
• "lmaccel" Levenberg-Marquardt algorithm with geodesic acceleration. Can

be faster than "lm" but less stable. Stability is controlled by the avmax
parameter in control, setting avmax to zero is analogous to not using
geodesic acceleration.

• "dogleg" Powell’s dogleg algorithm
• "ddogleg" Double dogleg algorithm, an improvement over "dogleg" by

including information about the Gauss-Newton step while the iteration is
still far from the minimum.

• "subspace2D" 2D generalization of the dogleg algorithm. This method
searches a larger subspace for a solution, it can converge more quickly than
"dogleg" on some problems.

control an optional list of control parameters to tune the least squares iterations. See
gsl_nls_control for the available control parameters and their default values.

jac either NULL (default) or a function returning the n by p dimensional Jacobian
matrix of the nonlinear model fn, where n is the number of observations and p
the number of parameters. If a function, the first argument must be the vector
of parameters of length p. If NULL, the Jacobian is computed internally using a
finite difference approximations. Can also be TRUE, in which case jac is derived
symbolically with deriv, this only works if fn is defined as a (non-selfstarting)
formula. If fn is a selfStart model, the Jacobian specified in the "gradient"
attribute of the self-start model is used instead.

fvv either NULL (default) or a function returning an n dimensional vector containing
the second directional derivatives of the nonlinear model fn, with n the number
of observations. This argument is only used if geodesic acceleration is enabled
(algorithm = "lmaccel"). If a function, the first argument must be the vector
of parameters of length p and the second argument must be the velocity vector
also of length p. If NULL, the second directional derivative vector is computed in-
ternal using a finite difference approximation. Can also be TRUE, in which case
fvv is derived symbolically with deriv, this only works if fn is defined as a
(non-selfstarting) formula. If the model function in fn also returns a "hessian"
attribute (similar to the "gradient" attribute in a selfStart model), this Hes-
sian matrix is used to evaluate the second directional derivatives instead.

gsl_nls 13

trace logical value indicating if a trace of the iteration progress should be printed.
Default is FALSE. If TRUE, the residual (weighted) sum-of-squares and the current
parameter estimates are printed after each iteration.

subset an optional vector specifying a subset of observations to be used in the fitting
process. This argument is only used if fn is defined as a formula.

weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ’factory-fresh’ default is na.omit. Value na.exclude can be useful.
This argument is only used if fn is defined as a formula.

model a logical value. If TRUE, the model frame is returned as part of the object. De-
faults to FALSE. This argument is only used if fn is defined as a formula.

... additional arguments passed to the calls of fn, jac and fvv if defined as func-
tions.

Value

If fn is a formula returns a list object of class nls. If fn is a function returns a list object of
class gsl_nls. See the individual method descriptions for the structures of the returned lists and
the generic functions applicable to objects of both classes.

Methods (by class)

• formula: If fn is a formula, the returned list object is of classes gsl_nls and nls. There-
fore, all generic functions applicable to objects of class nls, such as anova, coef, confint,
deviance, df.residual, fitted, formula, logLik, nobs, predict, print, profile, residuals,
summary, vcov and weights are also applicable to the returned list object. In addition, a
method confintd is available for inference of derived parameters.

• function: If fn is a function, the first argument must be the vector of parameters and the
function should return a numeric vector containing the nonlinear model evaluations at the
provided parameter and predictor or covariate vectors. In addition, the argument y needs to
contain the numeric vector of observed responses, equal in length to the numeric vector re-
turned by fn. The returned list object is (only) of class gsl_nls. Although the returned object
is not of class nls, the following generic functions remain applicable for an object of class
gsl_nls: anova, coef, confint, deviance, df.residual, fitted, formula, logLik, nobs,
predict, print, residuals, summary, vcov and weights. In addition, a method confintd
is available for inference of derived parameters.

References

M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078.

See Also

nls

https://www.gnu.org/software/gsl/doc/html/nls.html

https://www.gnu.org/software/gsl/doc/html/nls.html

14 gsl_nls

Examples

Example 1: exponential model
(https://www.gnu.org/software/gsl/doc/html/nls.html#exponential-fitting-example)

data
set.seed(1)
n <- 50
x <- (seq_len(n) - 1) * 3 / (n - 1)
f <- function(A, lam, b, x) A * exp(-lam * x) + b
y <- f(A = 5, lam = 1.5, b = 1, x) + rnorm(n, sd = 0.25)

model fit
ex1_fit <- gsl_nls(

fn = y ~ A * exp(-lam * x) + b, ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(A = 0, lam = 0, b = 0) ## starting values

)
summary(ex1_fit) ## model summary
predict(ex1_fit, interval = "prediction") ## prediction intervals

analytic Jacobian 1
gsl_nls(

fn = y ~ A * exp(-lam * x) + b, ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(A = 0, lam = 0, b = 0), ## starting values
jac = function(par) with(as.list(par), ## jacobian
cbind(A = exp(-lam * x), lam = -A * x * exp(-lam * x), b = 1)

)
)

analytic Jacobian 2
gsl_nls(

fn = y ~ A * exp(-lam * x) + b, ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(A = 0, lam = 0, b = 0), ## starting values
jac = TRUE ## automatic derivation

)

self-starting model
gsl_nls(

fn = y ~ SSasymp(x, Asym, R0, lrc), ## model formula
data = data.frame(x = x, y = y) ## model fit data

)

Example 2: Gaussian function
(https://www.gnu.org/software/gsl/doc/html/nls.html#geodesic-acceleration-example-2)

data
set.seed(1)
n <- 300
x <- seq_len(n) / n
f <- function(a, b, c, x) a * exp(-(x - b)^2 / (2 * c^2))

gsl_nls 15

y <- f(a = 5, b = 0.4, c = 0.15, x) * rnorm(n, mean = 1, sd = 0.1)

Levenberg-Marquardt (default)
gsl_nls(

fn = y ~ a * exp(-(x - b)^2 / (2 * c^2)), ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(a = 1, b = 0, c = 1), ## starting values
trace = TRUE ## verbose output

)

Levenberg-Marquardt w/ geodesic acceleration 1
gsl_nls(

fn = y ~ a * exp(-(x - b)^2 / (2 * c^2)), ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(a = 1, b = 0, c = 1), ## starting values
algorithm = "lmaccel", ## algorithm
trace = TRUE ## verbose output

)

Levenberg-Marquardt w/ geodesic acceleration 2
second directional derivative
fvv <- function(par, v, x) {

with(as.list(par), {
zi <- (x - b) / c
ei <- exp(-zi^2 / 2)
2 * v[["a"]] * v[["b"]] * zi / c * ei + 2 * v[["a"]] * v[["c"]] * zi^2 / c * ei -

v[["b"]]^2 * a / c^2 * (1 - zi^2) * ei -
2 * v[["b"]] * v[["c"]] * a / c^2 * zi * (2 - zi^2) * ei -
v[["c"]]^2 * a / c^2 * zi^2 * (3 - zi^2) * ei

})
}

analytic fvv 1
gsl_nls(

fn = y ~ a * exp(-(x - b)^2 / (2 * c^2)), ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(a = 1, b = 0, c = 1), ## starting values
algorithm = "lmaccel", ## algorithm
trace = TRUE, ## verbose output
fvv = fvv, ## analytic fvv
x = x ## argument passed to fvv

)

analytic fvv 2
gsl_nls(

fn = y ~ a * exp(-(x - b)^2 / (2 * c^2)), ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(a = 1, b = 0, c = 1), ## starting values
algorithm = "lmaccel", ## algorithm
trace = TRUE, ## verbose output
fvv = TRUE ## automatic derivation

)

16 gsl_nls_control

Example 3: Branin function
(https://www.gnu.org/software/gsl/doc/html/nls.html#comparing-trs-methods-example)

Branin model function
branin <- function(x) {

a <- c(-5.1 / (4 * pi^2), 5 / pi, -6, 10, 1 / (8 * pi))
f1 <- x[2] + a[1] * x[1]^2 + a[2] * x[1] + a[3]
f2 <- sqrt(a[4] * (1 + (1 - a[5]) * cos(x[1])))
c(f1, f2)

}

Dogleg minimization w/ model as function
gsl_nls(

fn = branin, ## model function
y = c(0, 0), ## response vector
start = c(x1 = 6, x2 = 14.5), ## starting values
algorithm = "dogleg" ## algorithm

)

gsl_nls_control Tunable Nonlinear Least Squares iteration parameters

Description

Allow the user to tune the characteristics of the gsl_nls and gsl_nls_large nonlinear least
squares algorithms.

Usage

gsl_nls_control(
maxiter = 50,
scale = "more",
solver = "qr",
fdtype = "forward",
factor_up = 2,
factor_down = 3,
avmax = 0.75,
h_df = sqrt(.Machine$double.eps),
h_fvv = 0.02,
xtol = sqrt(.Machine$double.eps),
ftol = sqrt(.Machine$double.eps),
gtol = .Machine$double.eps^(1/3)

)

Arguments

maxiter positive integer, termination occurs when the number of iterations reaches maxiter.

scale character, scaling method or damping strategy determining the diagonal scaling
matrix D. The following options are supported:

gsl_nls_control 17

• "more" Moré rescaling (default). This method makes the problem scale-
invariant and has been proven effective on a large class of problems.

• "levenberg" Levenberg rescaling. This method has also proven effective
on a large class of problems, but is not scale-invariant. It may perform
better for problems susceptible to parameter evaporation (parameters going
to infinity).

• "marquardt" Marquardt rescaling. This method is scale-invariant, but it is
generally considered inferior to both the Levenberg and Moré strategies.

solver character, method used to solve the linear least squares system resulting as a sub-
problem in each iteration. For large-scale problems fitted with gsl_nls_large,
the Cholesky solver ("cholesky") is always selected and this parameter is not
used. For least squares problems fitted with gsl_nls the following choices are
supported:

• "qr" QR decomposition of the Jacobian (default). This method will pro-
duce reliable solutions in cases where the Jacobian is rank deficient or near-
singular but does require more operations than the Cholesky method.

• "cholesky" Cholesky decomposition of the Jacobian. This method is faster
than the QR approach, however it is susceptible to numerical instabilities if
the Jacobian matrix is rank deficient or near-singular.

• "svd" SVD decomposition of the Jacobian. This method will produce the
most reliable solutions for ill-conditioned Jacobians but is also the slowest.

fdtype character, method used to numerically approximate the Jacobian and/or second-
order derivatives when geodesic acceleration is used. Either "forward" for for-
ward finite differencing or "center" for centered finite differencing. For least
squares problems solved with gsl_nls_large, numerical approximation of the
Jacobian matrix is not available and this parameter is only used to numerically
approximate the second-order derivatives (if geodesic acceleration is used).

factor_up numeric factor by which to increase the trust region radius when a search step
is accepted. Too large values may destabilize the search, too small values slow
down the search, defaults to 2.

factor_down numeric factor by which to decrease the trust region radius when a search step
is rejected. Too large values may destabilize the search, too small values slow
down the search, defaults to 3.

avmax numeric value, the ratio of the acceleration term to the velocity term when using
geodesic acceleration to solve the nonlinear least squares problem. Any steps
with a ratio larger than avmax are rejected, defaults to 0.75. For problems which
experience difficulty converging, this threshold could be lowered.

h_df numeric value, the step size for approximating the Jacobian matrix with finite
differences, defaults to sqrt(.Machine$double.eps).

h_fvv numeric value, the step size for approximating the second directional derivative
when geodesic acceleration is used to solve the nonlinear least squares problem,
defaults to 0.02. This is only used if no analytic second directional derivative
(fvv) is specified in gsl_nls or gsl_nls_large.

xtol numeric value, termination occurs when the relative change in parameters be-
tween iterations is <= xtol. A general guideline for selecting the step tolerance

18 gsl_nls_control

is to choose xtol = 10^(-d) where d is the number of accurate decimal digits
desired in the parameters, defaults to sqrt(.Machine$double.eps).

ftol numeric value, termination occurs when the relative change in sum of squared
residuals between iterations is <= ftol, defaults to sqrt(.Machine$double.eps).

gtol numeric value, termination occurs when the relative size of the gradient of the
sum of squared residuals is <= gtol, indicating a local minimum, defaults to
.Machine$double.eps^(1/3)

Value

A list with exactly twelve components:

• maxiter

• scale

• solver

• fdtype

• factor_up

• factor_down

• avmax

• h_df

• h_fvv

• xtol

• ftol

• gtol

with meanings as explained under ’Arguments’.

Note

ftol is disabled in some versions of the GSL library.

References

M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078.

See Also

nls.control

https://www.gnu.org/software/gsl/doc/html/nls.html#tunable-parameters

Examples

default tuning parameters
gsl_nls_control()

https://www.gnu.org/software/gsl/doc/html/nls.html#tunable-parameters

gsl_nls_large 19

gsl_nls_large GSL Large-scale Nonlinear Least Squares fitting

Description

Determine the nonlinear least-squares estimates of the parameters of a large nonlinear model system
using the gsl_multilarge_nlinear module present in the GNU Scientific Library (GSL).

Usage

gsl_nls_large(fn, ...)

S3 method for class 'formula'
gsl_nls_large(
fn,
data = parent.frame(),
start,
algorithm = c("lm", "lmaccel", "dogleg", "ddogleg", "subspace2D", "cgst"),
control = gsl_nls_control(),
jac,
fvv,
trace = FALSE,
subset,
weights,
na.action,
model = FALSE,
...

)

S3 method for class 'function'
gsl_nls_large(
fn,
y,
start,
algorithm = c("lm", "lmaccel", "dogleg", "ddogleg", "subspace2D", "cgst"),
control = gsl_nls_control(),
jac,
fvv,
trace = FALSE,
weights,
...

)

Arguments

fn a nonlinear model defined either as a two-sided formula including variables and
parameters, or as a function returning a numeric vector, with first argument the

20 gsl_nls_large

vector of parameters to be estimated. See the individual method descriptions
below.

data an optional data frame in which to evaluate the variables in fn if defined as a
formula. Can also be a list or an environment, but not a matrix.

y numeric response vector if fn is defined as a function, equal in length to the
vector returned by evaluation of the function fn.

start a named list or named numeric vector of starting estimates. start is only al-
lowed to be missing if fn is a selfStart model. If fn is a formula, a naive
guess for start is tried, but this should not be relied on.

algorithm character string specifying the algorithm to use. The following choices are sup-
ported:

• "lm" Levenberg-Marquardt algorithm (default)
• "lmaccel" Levenberg-Marquardt algorithm with geodesic acceleration. Can

be faster than "lm" but less stable. Stability is controlled by the avmax
parameter in control, setting avmax to zero is analogous to not using
geodesic acceleration.

• "dogleg" Powell’s dogleg algorithm
• "ddogleg" Double dogleg algorithm, an improvement over "dogleg" by

including information about the Gauss-Newton step while the iteration is
still far from the minimum.

• "subspace2D" 2D generalization of the dogleg algorithm. This method
searches a larger subspace for a solution, it can converge more quickly than
"dogleg" on some problems.

• "cgst" Steihaug-Toint Conjugate Gradient algorithm, a generalization of
the dogleg algorithm that avoids solving for the Gauss-Newton step directly,
instead using an iterative conjugate gradient algorithm. The method per-
forms well at points where the Jacobian is singular, and is also suitable for
large-scale problems where factoring the Jacobian matrix is prohibitively
expensive.

control an optional list of control parameters to tune the least squares iterations. See
gsl_nls_control for the available control parameters and their default values.

jac a function returning the n by p dimensional Jacobian matrix of the nonlinear
model fn, where n is the number of observations and p the number of parame-
ters. The first argument must be the vector of parameters of length p. Can also
be TRUE, in which case jac is derived symbolically with deriv, this only works
if fn is defined as a (non-selfstarting) formula. If fn is a selfStart model, the
Jacobian specified in the "gradient" attribute of the self-start model is used
instead.

fvv a function returning an n dimensional vector containing the second directional
derivatives of the nonlinear model fn, with n the number of observations. This
argument is only used if geodesic acceleration is enabled (algorithm = "lmaccel").
The first argument must be the vector of parameters of length p and the sec-
ond argument must be the velocity vector also of length p. Can also be TRUE,
in which case fvv is derived symbolically with deriv, this only works if fn
is defined as a (non-selfstarting) formula. If the model function in fn also re-
turns a "hessian" attribute (similar to the "gradient" attribute in a selfStart

gsl_nls_large 21

model), this Hessian matrix is used to evaluate the second directional derivatives
instead.

trace logical value indicating if a trace of the iteration progress should be printed.
Default is FALSE. If TRUE, the residual (weighted) sum-of-squares, the squared
(Euclidean) norm of the current parameter estimates and the condition number
of the Jacobian are printed after each iteration.

subset an optional vector specifying a subset of observations to be used in the fitting
process. This argument is only used if fn is defined as a formula.

weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ’factory-fresh’ default is na.omit. Value na.exclude can be useful.
This argument is only used if fn is defined as a formula.

model a logical value. If TRUE, the model frame is returned as part of the object. De-
faults to FALSE. This argument is only used if fn is defined as a formula.

... additional arguments passed to the calls of fn, jac and fvv if defined as func-
tions.

Value

If fn is a formula returns a list object of class nls. If fn is a function returns a list object of
class gsl_nls. See the individual method descriptions for the structures of the returned lists and
the generic functions applicable to objects of both classes.

Methods (by class)

• formula: If fn is a formula, the returned list object is of classes gsl_nls and nls. There-
fore, all generic functions applicable to objects of class nls, such as anova, coef, confint,
deviance, df.residual, fitted, formula, logLik, nobs, predict, print, profile, residuals,
summary, vcov and weights are also applicable to the returned list object. In addition, a
method confintd is available for inference of derived parameters.

• function: If fn is a function, the first argument must be the vector of parameters and the
function should return a numeric vector containing the nonlinear model evaluations at the
provided parameter and predictor or covariate vectors. In addition, the argument y needs to
contain the numeric vector of observed responses, equal in length to the numeric vector re-
turned by fn. The returned list object is (only) of class gsl_nls. Although the returned object
is not of class nls, the following generic functions remain applicable for an object of class
gsl_nls: anova, coef, confint, deviance, df.residual, fitted, formula, logLik, nobs,
predict, print, residuals, summary, vcov and weights. In addition, a method confintd
is available for inference of derived parameters.

References

M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078.

22 gsl_nls_large

See Also

gsl_nls

https://www.gnu.org/software/gsl/doc/html/nls.html

Examples

Large NLS example
(https://www.gnu.org/software/gsl/doc/html/nls.html#large-nonlinear-least-squares-example)

number of parameters
p <- 250

model function
f <- function(theta) {

c(sqrt(1e-5) * (theta - 1), sum(theta^2) - 0.25)
}

jacobian function
jac <- function(theta) {

rbind(diag(sqrt(1e-5), nrow = length(theta)), 2 * t(theta))
}

dense Levenberg-Marquardt
gsl_nls_large(

fn = f, ## model
y = rep(0, p + 1), ## (dummy) responses
start = 1:p, ## start values
algorithm = "lm", ## algorithm
jac = jac, ## jacobian
control = list(maxiter = 250)

)

dense Steihaug-Toint conjugate gradient
gsl_nls_large(

fn = f, ## model
y = rep(0, p + 1), ## (dummy) responses
start = 1:p, ## start values
jac = jac, ## jacobian
algorithm = "cgst" ## algorithm

)

sparse Jacobian function
jacsp <- function(theta) {

rbind(Matrix::Diagonal(x = sqrt(1e-5), n = length(theta)), 2 * t(theta))
}

sparse Levenberg-Marquardt
gsl_nls_large(

fn = f, ## model
y = rep(0, p + 1), ## (dummy) responses
start = 1:p, ## start values
algorithm = "lm", ## algorithm

https://www.gnu.org/software/gsl/doc/html/nls.html

logLik.gsl_nls 23

jac = jacsp, ## sparse jacobian
control = list(maxiter = 250)

)

sparse Steihaug-Toint conjugate gradient
gsl_nls_large(

fn = f, ## model
y = rep(0, p + 1), ## (dummy) responses
start = 1:p, ## start values
jac = jacsp, ## sparse jacobian
algorithm = "cgst" ## algorithm

)

logLik.gsl_nls Extract model log-likelihood

Description

Returns the model log-likelihood of a fitted "gsl_nls" object.

Usage

S3 method for class 'gsl_nls'
logLik(object, REML = FALSE, ...)

Arguments

object An object inheriting from class "gsl_nls".

REML logical value; included for compatibility reasons only, should not be used.

... At present no optional arguments are used.

Value

Numeric object of class "logLik" identical to logLik.

See Also

logLik

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)

24 nobs.gsl_nls

model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

logLik(obj)

nobs.gsl_nls Extract the number of observations

Description

Returns the number of observations from a "gsl_nls" object.

Usage

S3 method for class 'gsl_nls'
nobs(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Integer number of observations similar to nobs

See Also

nobs

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

nobs(obj)

predict.gsl_nls 25

predict.gsl_nls Calculate model predicted values

Description

Returns predicted values for the expected response from a fitted "gsl_nls" object. Asymptotic
confidence or prediction (tolerance) intervals at a given level can be evaluated by specifying the
appropriate interval argument.

Usage

S3 method for class 'gsl_nls'
predict(
object,
newdata,
scale = NULL,
interval = c("none", "confidence", "prediction"),
level = 0.95,
...

)

Arguments

object An object inheriting from class "gsl_nls".

newdata A named list or data.frame in which to look for variables with which to pre-
dict. If newdata is missing, the predicted values at the original data points are
returned.

scale A numeric scalar or vector. If it is set, it is used as the residual standard deviation
(or vector of residual standard deviations) in the computation of the standard
errors, otherwise this information is extracted from the model fit.

interval A character string indicating if confidence or prediction (tolerance) intervals at
the specified level should be returned.

level A numeric scalar between 0 and 1 giving the confidence level for the intervals
(if any) to be calculated.

... At present no optional arguments are used.

Value

If interval = "none" (default), a vector of predictions for the mean response. Otherwise, a matrix
with columns fit, lwr and upr. The first column (fit) contains predictions for the mean response.
The other two columns contain lower (lwr) and upper (upr) confidence or prediction bounds at the
specified level.

See Also

predict.nls

26 residuals.gsl_nls

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

predict(obj)
predict(obj, newdata = data.frame(x = 1:(2 * n) / n))
predict(obj, interval = "confidence")
predict(obj, interval = "prediction", level = 0.99)

residuals.gsl_nls Extract model residuals

Description

Returns the model residuals from a fitted "gsl_nls" object. resid can also be used as an alias.

Usage

S3 method for class 'gsl_nls'
residuals(object, type = c("response", "pearson"), ...)

Arguments

object An object inheriting from class "gsl_nls".

type character; if "response" the raw residuals are returned, if "pearson" the Pear-
son are returned, i.e. the raw residuals divided by their standard error.

... At present no optional arguments are used.

Value

Numeric vector of model residuals similar to residuals.

See Also

residuals

summary.gsl_nls 27

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

residuals(obj)

summary.gsl_nls Model summary

Description

Returns the model summary for a fitted "gsl_nls" object.

Usage

S3 method for class 'gsl_nls'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

Arguments

object An object inheriting from class "gsl_nls".

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

symbolic.cor logical; if TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

... At present no optional arguments are used.

Value

List object of class "summary.nls" identical to summary.nls

See Also

summary.nls

28 vcov.gsl_nls

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

summary(obj)

vcov.gsl_nls Calculate variance-covariance matrix

Description

Returns the estimated variance-covariance matrix of the model parameters from a fitted "gsl_nls"
object.

Usage

S3 method for class 'gsl_nls'
vcov(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

A matrix containing the estimated covariances between the parameter estimates similar to vcov
with row and column names corresponding to the parameter names given by coef.gsl_nls.

See Also

vcov

Examples

data
set.seed(1)
n <- 50
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

vcov.gsl_nls 29

)
model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

vcov(obj)

Index

anova, 2
anova.gsl_nls, 2

class, 5
coef, 3
coef.gsl_nls, 3, 28
confint, 4, 6
confint.gsl_nls, 4
confint.nls, 4
confintd, 5
confintd.gsl_nls, 6

deriv, 6, 12, 20
deviance, 7
deviance.gsl_nls, 7
df.residual, 8
df.residual.gsl_nls, 8

expression, 5, 6

fitted, 9
fitted.gsl_nls, 9
formula, 10–13, 19–21
formula.gsl_nls, 10
function, 10–12, 19, 20

gsl_nls, 11, 16, 17, 22
gsl_nls_control, 12, 16, 20
gsl_nls_large, 16, 17, 19

logLik, 23
logLik.gsl_nls, 23

na.exclude, 13, 21
na.fail, 13, 21
na.omit, 13, 21
nls, 13
nls.control, 18
nobs, 24
nobs.gsl_nls, 24
numericDeriv, 6

options, 13, 21

predict.gsl_nls, 25
predict.nls, 25

residuals, 26
residuals.gsl_nls, 26

selfStart, 12, 20
summary.gsl_nls, 27
summary.nls, 27
symnum, 27

vcov, 28
vcov.gsl_nls, 28

30

	anova.gsl_nls
	coef.gsl_nls
	confint.gsl_nls
	confintd
	confintd.gsl_nls
	deviance.gsl_nls
	df.residual.gsl_nls
	fitted.gsl_nls
	formula.gsl_nls
	gsl_nls
	gsl_nls_control
	gsl_nls_large
	logLik.gsl_nls
	nobs.gsl_nls
	predict.gsl_nls
	residuals.gsl_nls
	summary.gsl_nls
	vcov.gsl_nls
	Index

