
Package ‘hopit’
October 13, 2022

Type Package

Title Hierarchical Ordered Probit Models with Application to Reporting
Heterogeneity

Version 0.11.5

Depends R (>= 3.5.0), survey (>= 4.1-1)

Imports MASS, Rcpp, graphics, stats, grDevices, questionr, parallel,
Rdpack (>= 0.11.0)

LinkingTo Rcpp, RcppEigen

Description Self-reported health, happiness, attitudes, and other statuses or perceptions are of-
ten the subject of biases that may come from different sources. For example, the evalua-
tion of an individual’s own health may depend on previous medical diagnoses, functional sta-
tus, and symptoms and signs of illness; as on well as life-style behaviors, including contex-
tual social, gender, age-specific, linguistic and other cultural fac-
tors (Jylha 2009 <doi:10.1016/j.socscimed.2009.05.013>; Ok-
suzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The hopit package offers versa-
tile functions for analyzing different self-reported ordinal variables, and for helping to esti-
mate their biases. Specifically, the package provides the function to fit a generalized ordered pro-
bit model that regresses original self-reported status measures on two sets of independent vari-
ables (King et al. 2004 <doi:10.1017/S0003055403000881>; Ju-
rges 2007 <doi:10.1002/hec.1134>; Ok-
suzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The first set of vari-
ables (e.g., health variables) included in the regression are individual statuses and characteris-
tics that are directly related to the self-reported variable. In the case of self-
reported health, these could be chronic conditions, mobility level, difficulties with daily activi-
ties, performance on grip strength tests, anthropometric measures, and lifestyle behav-
iors. The second set of independent variables (threshold variables) is used to model cut-
points between adjacent self-reported response categories as functions of individual characteris-
tics, such as gender, age group, education, and country (Ok-
suzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The model helps to adjust for spe-
cific socio-demographic and cultural differences in how the continuous latent health is pro-
jected onto the ordinal self-rated measure. The fitted model can be used to calculate an individ-
ual predicted latent status variable, a latent index, and standardized latent coeffi-
cients; and makes it possible to reclassify a categorical status measure that has been ad-
justed for inter-individual differences in reporting behavior.

1

https://doi.org/10.1016/j.socscimed.2009.05.013
https://doi.org/10.1016/j.socscimed.2019.03.002
https://doi.org/10.1017/S0003055403000881
https://doi.org/10.1002/hec.1134
https://doi.org/10.1016/j.socscimed.2019.03.002
https://doi.org/10.1016/j.socscimed.2019.03.002

2 anova.hopit

License GPL-3

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.2.1

SystemRequirements C++11

Suggests testthat (>= 3.0.0), R.rsp (>= 0.43.0), usethis (>= 1.5.0),
knitr (>= 1.20), rmarkdown (>= 1.12), qpdf, roxygen2 (>= 6.1.1)

VignetteBuilder R.rsp, knitr

RdMacros Rdpack

Config/testthat/edition 3

NeedsCompilation yes

Author Maciej J. Danko [aut, cre] (<https://orcid.org/0000-0002-7924-9022>)

Maintainer Maciej J. Danko <Maciej.Danko@gmail.com>

Repository CRAN

Date/Publication 2022-10-01 14:00:05 UTC

R topics documented:
anova.hopit . 2
boot_hopit . 4
getCutPoints . 7
getLevels . 9
healthsurvey . 11
hopit . 13
hopit.control . 21
latentIndex . 22
percentile_CI . 24
standardizeCoef . 25
svy.varcoef_hopit . 26

Index 28

anova.hopit Likelihood Ratio Test Tables

Description

Perform the likelihood ratio test(s) for two or more hopit objects.

Usage

S3 method for class 'hopit'
anova(object, ..., method = c("sequential",
"with.most.complex", 'with.least.complex'),
direction = c("decreasing", "increasing"))

https://orcid.org/0000-0002-7924-9022

anova.hopit 3

Arguments

object an object containing the results returned by a hopit.

... an additional object(s) of the same type.

method the method of ordered model comparisons. Choose "sequential" for 1-2, 2-3,
3-4, ... comparisons or "with.most.complex" for 1-2, 1-3, 1-4, ... compar-
isons, where 1 is the most complex model (the least complex for "with.least.complex").

direction determine if the complexity of listed models is "increasing" or "decreasing"
(default).

Value

a vector or a matrix with the results of the test(s).

Author(s)

Maciej J. Danko

See Also

print.lrt.hopit, lrt.hopit, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE
levels(healthsurvey$health)

Example 1 ---------------------

fitting two nested models
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

a model with an interaction between hypertension and high_cholesterol
model2 <- hopit(latent.formula = health ~ hypertension * high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,

4 boot_hopit

control = list(trace = FALSE),
data = healthsurvey)

a likelihood ratio test
lrt1 <- anova(model1, model2)
lrt1

print results in a shorter form
print(lrt1, short = TRUE)

or equivalently
lrt.hopit(model2, model1)

Example 2 ---------------------

fitting additional nested models
model3 <- hopit(latent.formula = health ~ hypertension * high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese * diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

model4 <- hopit(latent.formula = health ~ hypertension * high_cholesterol +
heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese * diabetes + other_diseases,

thresh.formula = ~ sex * ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

sequential likelihood ratio tests
model complexity increases so direction = "increasing"
anova(model1, model2, model3, model4,

direction = "increasing", method = "sequential")

likelihood ratio tests of the most complex model with the rest of the models
anova(model1, model2, model3, model4,

direction = "increasing", method = "with.most.complex")

likelihood ratio tests of the least complex model with the rest of the models
anova(model1, model2, model3, model4,

direction = "increasing", method = "with.least.complex")

boot_hopit Bootstrapping hopit model

boot_hopit 5

Description

boot_hopit performs the bootstrap of a function dependent on a fitted model. In each of the boot-
strap repetitions, a set of new model coefficients is drawn from the multivariate normal distribution,
assuming the originally estimated model coefficients (see coef.hopit) as a mean and using the
model variance-covariance matrix (see vcov.hopit). The drawn coefficients are then used to cal-
culate the measure of interest using a function delivered by the func parameter.

Usage

boot_hopit(
model,
func,
data = model$frame,
nboot = 500,
unlist = TRUE,
boot.only.latent = TRUE,
parallel.flag = FALSE,
parallel.nb_cores = NULL,
parallel.packages = NULL,
parallel.variables = NULL,
robust.vcov,
...

)

Arguments

model a fitted hopit model.

func a function to be bootstrapped of the form func(model, ...).

data data used to fit the model.

nboot a number of bootstrap replicates.

unlist a logical indicating whether to unlist the boot object.
boot.only.latent

a logical indicating whether to perform the bootstrap on latent variables only.

parallel.flag a logical if to use parallel computations.
parallel.nb_cores

number of cores (<= number of CPU cores on the current host).
parallel.packages

list of packages needed to run "func".
parallel.variables

list of global variables and functions needed to run "func".

robust.vcov see vcov.hopit.

... other parameters passed to the func.

Value

a list with bootstrapped elements.

6 boot_hopit

Author(s)

Maciej J. Danko

See Also

percentile_CI, getLevels, getCutPoints, latentIndex, standardiseCoef, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE
levels(healthsurvey$health)

fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

Example 1 ---------------------
bootstrapping cut-points

a function to be bootstrapped
cutpoints <- function(model) getCutPoints(model)$cutpoints
B <- boot_hopit(model = model1, func = cutpoints, nboot = 100)

calculate lower and upper bounds using the percentile method
cutpoints.CI <- percentile_CI(B)

print estimated cutpoints and their confidence intervals
cutpoints(model1)
cutpoints.CI

Example 2 ---------------------
bootstrapping differences in health levels

a function to be bootstrapped
diff_BadHealth <- function(model) {

hl <- getLevels(model = model, formula=~ sex + ageclass, sep=' ')
hl$original[,1] + hl$original[,2] - hl$adjusted[,1]- hl$adjusted[,2]

}

estimate the difference

getCutPoints 7

est.org <- diff_BadHealth(model = model1)

perform the bootstrap
B <- boot_hopit(model = model1, func = diff_BadHealth, nboot = 100)

calculate lower and upper bounds using the percentile method
est.CI <- percentile_CI(B)

plot the difference and its (asymmetrical) confidence intervals
pmar <- par('mar'); par(mar = c(9.5,pmar[2:4]))
m <- max(abs(est.CI))
pos <- barplot(est.org, names.arg = names(est.org), las = 3,

ylab = 'Original - Adjusted',
ylim=c(-m, m), density = 20, angle = c(45, -45),
col = c('blue', 'orange'))

for (k in seq_along(pos)) lines(c(pos[k,1],pos[k,1]),
est.CI[,k], lwd = 2, col = 2)

abline(h = 0); box(); par(mar = pmar)

getCutPoints Calculate the threshold cut-points and individual adjusted responses
using Jurges’ method

Description

Calculate the threshold cut-points and individual adjusted responses using Jurges’ method

Usage

getCutPoints(model, decreasing.levels = model$decreasing.levels, subset = NULL)

Arguments

model a fitted hopit model.
decreasing.levels

a logical indicating whether self-reported health classes are ordered in increasing
order.

subset an optional vector specifying a subset of observations.

Value

a list with the following components:

cutpoints cut-points for the adjusted categorical response levels with the corresponding
percentiles of the latent index.

adjusted.levels

adjusted categorical response levels for each individual.

8 getCutPoints

Author(s)

Maciej J. Danko

References

Jurges H (2007). “True health vs response styles: exploring cross-country differences in self-
reported health.” Health Economics, 16(2), 163-178. doi:10.1002/hec.1134.

Oksuzyan A, Danko MJ, Caputo J, Jasilionis D, Shkolnikov VM (2019). “Is the story about sen-
sitive women and stoical men true? Gender differences in health after adjustment for reporting
behavior.” Social Science & Medicine, 228, 41-50. doi:10.1016/j.socscimed.2019.03.002.

See Also

latentIndex, standardiseCoef, getLevels, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE
levels(healthsurvey$health)

Example 1 ---------------------

fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

calculate the health index cut-points
z <- getCutPoints(model = model1)
z$cutpoints

plot(z)

tabulate the adjusted health levels for individuals (Jurges method):
rev(table(z$adjusted.levels))

tabulate the original health levels for individuals
table(model1$y_i)

tabulate the predicted health levels

https://doi.org/10.1002/hec.1134
https://doi.org/10.1016/j.socscimed.2019.03.002

getLevels 9

table(model1$Ey_i)

getLevels Summarize the adjusted and the original self-rated response levels

Description

Summarize the adjusted and the original self-rated response levels.

Usage

getLevels(
model,
formula = model$thresh.formula,
data = model$frame,
sep = "_",
decreasing.levels = model$decreasing.levels,
sort.flag = FALSE,
weight.original = TRUE

)

Arguments

model a fitted hopit model.

formula a formula containing the grouping variables. It is by default set to threshold
formula.

data data used to fit the model.

sep a separator for the level names.
decreasing.levels

a logical indicating whether self-reported health classes are ordered in increasing
order.

sort.flag a logical indicating whether to sort the levels.
weight.original

a logical indicating if use survey weights for calcualtion of original responses.

Value

a list with the following components:

original frequencies of original response levels for selected groups/categories.

adjusted frequencies of adjusted response levels (Jurges 2007 method) for selected groups/categories.

N.original the number of original response levels for selected groups/categories.

N.adjusted the number of adjusted response levels (Jurges 2007 method) for selected groups/categories.

categories selected groups/categories used in summary.

tab an original vs. an adjusted contingency table.

10 getLevels

mat a matrix with columns: grouping variables, original response levels, adjusted
response levels. Each row corresponds to a single individual from the data used
to fit the model.

Author(s)

Maciej J. Danko

References

Jurges H (2007). “True health vs response styles: exploring cross-country differences in self-
reported health.” Health Economics, 16(2), 163-178. doi:10.1002/hec.1134.

Oksuzyan A, Danko MJ, Caputo J, Jasilionis D, Shkolnikov VM (2019). “Is the story about sen-
sitive women and stoical men true? Gender differences in health after adjustment for reporting
behavior.” Social Science & Medicine, 228, 41-50. doi:10.1016/j.socscimed.2019.03.002.

See Also

getCutPoints, latentIndex, standardiseCoef, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE
levels(healthsurvey$health)

fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

Example 1 ---------------------

calculate a summary by country
hl <- getLevels(model=model1, formula=~ country, sep=' ')
plot(hl, las=1, mar = c(3,2,1.5,0.5))

differences between frequencies of original and adjusted health levels
round(100*(hl$original - hl$adjusted),2)

extract good and bad health levels (combined levels)
Org <- cbind(bad = rowSums(hl$original[,1:2]),

https://doi.org/10.1002/hec.1134
https://doi.org/10.1016/j.socscimed.2019.03.002

healthsurvey 11

good = rowSums(hl$original[,4:5]))
Adj <- cbind(bad = rowSums(hl$adjusted[,1:2]),

good = rowSums(hl$adjusted[,4:5]))
round(100*(Org - Adj),2)

plot the differences
barplot(t(Org - Adj), beside = TRUE, density = 20, angle = c(-45, 45),

col = c('pink4', 'green2'),
ylab = 'Original - adjusted reported health frequencies')

abline(h = 0); box()
legend('top', c('Bad health','Good health'),

density = 20, angle = c(-45, 45),
fill = c('pink4', 'green2'), bty = 'n', cex = 1.2)

in country X, bad health seems to be over-reported while good health
is under-reported; in country Z, good health is highly over-reported.

Example 2 ---------------------

summary by gender and age
hl <- getLevels(model = model1, formula=~ sex + ageclass, sep=' ')
plot(hl)

differences between frequencies of original and adjusted health levels
round(100*(hl$original - hl$adjusted),2)

extract good health levels (combined "Very good" and "Excellent" levels)
Org <- rowSums(hl$original[,4:5])
Adj <- rowSums(hl$adjusted[,4:5])
round(100*(Org - Adj),2)

pmar <- par('mar'); par(mar = c(9.5, pmar[2:4]))
barplot(Org-Adj,

ylab = 'Original - adjusted reported good health frequencies',
las = 3,
density = 20, angle = c(45, -45), col = c('blue', 'orange'))

abline(h = 0); box(); par(mar = pmar)
legend('top', c('Man','Woman'), density = 20, angle = c(-45, 45),

fill = c('blue', 'orange'), bty = 'n', cex = 1.2)

results show that women in general tend to over-report good health,
while men aged 50-59 greatly under-report good health.

more examples can be found in the description of the boot_hopit() function.

healthsurvey Artificially generated health survey data

Description

A dataset containing artificially generated survey data

12 healthsurvey

Usage

healthsurvey

Format

A data frame with 10000 rows and 11 variables:

ID personal identification number.

health reported health, 5 levels.

diabetes has diabetes? "yes" or "no".

obese is obese? "yes" or "no".

IADL_problems has problems with Instrumental Activities of Daily Living? "yes" or "no".

hypertension has hypertension? "yes" or "no".

high_cholesterol has high cholesterol? "yes" or "no".

respiratory_problems has respiratory problems? "yes" or "no".

heart_attack_or_stroke had a stroke or a heart attack? "yes" or "no".

poor_mobility has poor mobility? "yes" or "no".

very_poor_grip cannot perform grip strength test? "yes" or "no".

depression has depression? "yes" or "no".

other_diseases has other diseases? "yes" or "no".

sex sex/gender: "woman" or "man".

ageclass categorized age: [50,60), [60,70), [70,80), [80,120).

education two levels of education: primary or lower ("prim-") and secondary or higher ("sec+".

country country: "X", "Y", or "Z".

csw cross-sectional survey weights.

psu primary statistical unit.

Source

healthsurvey is a completely artificial data set simulated using distributions of some major health
and socio-demographic characteristics. The distributions and the data structure are roughly based
on the WAVE1 SHARE database (DOIs: 10.6103/SHARE.w1.600); see (Borsch-Supan et al. 2013)
for technical details. None of the records represent any part of the true data.

The SHARE data collection has been primarily funded by the European Commission through FP5
(QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857,
SHARELIFE: CIT4-CT-2006-028812) and FP7 (SHARE-PREP: N°211909, SHARE-LEAP: N°227822,
SHARE M4: N°261982). Additional funding from the German Ministry of Education and Re-
search, the Max Planck Society for the Advancement of Science, the U.S. National Institute on
Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169,
Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C) and from various na-
tional funding sources is gratefully acknowledged (see www.share-project.org).

hopit 13

References

Borsch-Supan A, Brandt M, Hunkler C, Kneip T, Korbmacher J, Malter F, Schaan B, Stuck S,
Zuber S (2013). “Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe
(SHARE).” International Journal of Epidemiology, 42(4), 992-1001. doi:10.1093/ije/dyt088.

Examples

load *healthsurvey* dataset
data(healthsurvey)

horizontal view of the dataset (omitting ID)
print(t(healthsurvey[1:6,-1]), quote=FALSE, na.print='NA', right=TRUE)

hopit Generalized hierarchical ordered threshold models.

Description

The ordered response data classify a measure of interest into ordered categories collected during a
survey. For example, if the dependent variable is a happiness rating, a respondent typically answers
a question such as: “Taking all things together, would you say you are ... ?" and then selects from
response options along the lines of: "very happy", "pretty happy", "not too happy", and "very un-
happy" (Liao et al. 2005). Similarly, if interviewees are asked to evaluate their health in general
(e.g., “Would you say your health is ... ?”) they, can typically choose among several categories, such
as "very good", "good", "fair", "bad", and "very bad" (King et al. 2004; Jurges 2007; Rebelo and
Pereira 2014; Oksuzyan et al. 2019). In political science, a respondent may be asked for an opinion
about recent legislation (e.g. “Rate your feelings about the proposed legislation.") and asked to
choose among categories like: "strongly oppose", "mildly oppose", "indifferent", "mildly support",
and "strongly support" (Greene and Hensher 2010). It is easy to imagine other multi-level ordinal
variables that might be used during a survey and to which the methodology described below could
be applied.

In practice, it is assumed that when responding to a survey question about their general happiness,
health, feelings, attitudes or other status, participants are assessing their true value of this unob-
served continuous variable, and project it onto the discrete scale provided. The thresholds that
individuals use to categorize their true status by selecting a specific response option may be af-
fected by the reference group chosen, their earlier life experiences, and cross-cultural differences in
using scales. Thus, the responses of individuals may differ depending on their gender, age, cultural
background, education, and personality traits; among other factors (King et al. 2004; Jurges 2007;
Oksuzyan et al. 2019).
From the perspective of reporting behavior modeling, one of the main tasks researchers face is to
compute this continuous estimate of the underlying, latent measures of individuals based on several
specific characteristics of the responses considered (e.g., health variables or happiness variables),
and to account for variations in reporting across socio-demographic and cultural groups. More
specifically, to build a latent, underlying measure, a generalized hierarchical ordered threshold
model is fitted that regresses the reported status/attitude/feeling on two sets of independent vari-
ables (Boes and Winkelmann 2006; Greene et al. 2014). When the dependent reported ordered

https://doi.org/10.1093/ije/dyt088

14 hopit

variable is self-rated health status, then the first set of variables – i.e., health variables – assess
specific aspects of individuals’ health, such as measures of chronic conditions, mobility, difficulties
with a range of daily activities, grip strength, anthropometric characteristics, and lifestyle behaviors.
Using the second set of independent variables (threshold variables), the model also adjusts for dif-
ferences across socio-demographic and cultural groups, such as differences in cultural background,
gender, age, and education (King et al. 2004; Jurges 2007; Oksuzyan et al. 2019).

Ordered threshold models are used to fit ordered categorical dependent variables. The generalized
ordered threshold models (Ierza 1985; Boes and Winkelmann 2006; Greene et al. 2014) are an
extension of the ordered threshold models (McKelvey and Zavoina 1975). Whereas in the latter
models, the thresholds are constant, in the generalized models the thresholds are allowed to be
dependent on covariates. Greene and Hensher (2010); Greene et al. (2014) pointed out that for a
model to make sense, the thresholds must also be ordered. This observation motivated Greene and
coauthors to call these models HOPIT, which stands for hierarchical ordered probit models.

The fitted hopit model is used to analyze heterogeneity in reporting behavior. See standardizeCoef,
latentIndex, getCutPoints, getLevels, and boot_hopit.

Usage

hopit(
latent.formula,
thresh.formula = ~1,
data,
decreasing.levels,
start = NULL,
fit.sigma = FALSE,
design = list(),
weights = NULL,
link = c("probit", "logit"),
control = list(),
na.action = na.fail

)

Arguments

latent.formula a formula used to model the latent variable. It should not contain any thresh-
old variable. To specify the interactions between the latent and the threshold
variables, see details.

thresh.formula a formula used to model the threshold variable. It should not contain any latent
variable. To specify interactions between the latent and the threshold variables,
see details. Any dependent variable (left side of "~" in the formula) will be
ignored.

data a data frame that includes all modeled variables.
decreasing.levels

a logical indicating whether self-reported health classes are ordered in decreas-
ing order.

hopit 15

start a vector with starting coefficient values in the form c(latent_parameters,
threshold_lambdas, threshold_gammas) or c(latent_parameters, threshold_lambdas,
threshold_gammas, logSigma) if the fit.sigma == TRUE.

fit.sigma a logical indicating whether to fit an additional parameter sigma, which models
a standard deviation of the error term (e.g., the standard deviation of the cumu-
lative normal distribution in the probit model).

design an optional survey design. Use the svydesign function to specify the design.
The design cannot be specified together with parameter weights.

weights optional model weights. Use design parameter to construct survey weights.

link a link function. The possible values are "probit" (default) and "logit".

control a list with control parameters. See hopit.control.

na.action a function that indicates what should happen when the data contain NAs. The
default is na.fail, which generates an error if any missing value is found. The
alternative is na.omit (or na.exclude equivalently), which removes rows with
missing values from the data. Using na.pass will lead to an error.

Details

The function fits generalized hierarchical ordered threshold models.

latent.formula models the latent variable. If the response variable is self-rated health, then the
latent measure can depend on different health conditions and diseases (latent variables are called
health variables). Latent variables are modeled with the parallel regression assumption. Accord-
ing to this assumption, the coefficients that describe the relationship between the lowest response
category and all of the higher response categories, are the same as the coefficients that describe
the relationship between another (e.g., adjacent) lowest response category and the remaining higher
response categories. The predicted latent variable is modeled as a linear function of the health vari-
ables and the corresponding coefficients.

thresh.formula models the threshold variable. The thresholds (cut-points, alpha) are modeled by
the threshold variables gamma and the intercepts lambda. It is assumed that they model the contex-
tual characteristics of the respondent (e.g., country, gender, and age). The threshold variables are
modeled without the parallel regression assumption; thus, each threshold is modeled by a variable
independently (Boes and Winkelmann 2006; Greene et al. 2014). The hopit() function uses the
parameterization of thresholds proposed by Jurges (2007).

decreasing.levels it is the logical that determines the ordering of the levels of the categorical
response variable. It is always advisable to first check the ordering of the levels before starting (see
example 1)

It is possible to model the interactions, including interactions between the latent and the threshold
variables. The interactions added to the latent formula only model the latent measure, and the inter-
actions modeled in the threshold formula only model the thresholds. The general rule for modeling
any kind of interaction is to use "*" to specify interactions within a latent (or threshold) formula and
to use ’:’ to specify interactions between the latent and the threshold variables. In the latter case, the
main effects of an interaction must also be specified; i.e., the main latent effects must be specified

16 hopit

in the latent formula, and the main threshold effect must be speciffied in the threshold formula. See
also Example 3 below.

For more details, please see the package vignette, which is also available under this link: vig_hopit.pdf

Value

a hopit object used by other functions and methods. The object is a list with the following compo-
nents:

control a list with control parameters. See hopit.control.

link a link function used.

hasdisp a logical indicating whether fit.sigma was modeled.

use.weights a logical indicating whether any weights were used.

weights a vector with model weights.

frame a model frame.

latent.formula a latent formula used to fit the model.

latent.mm a latent model matrix.

latent.terms latent variables used, and their interactions.
cross.inter.latent

a part of the latent formula used for modeling cross-interactions in the latent
model

thresh.formula a threshold formula used to fit the model.

thresh.mm a threshold model matrix.

thresh.extd an extended threshold model matrix.

thresh.terms threshold variables used, and their interactions.
cross.inter.thresh

a part of the threshold formula used for modeling cross-interactions in the thresh-
old model

thresh.no.cov a logical indicating whether gamma parameters are present.

parcount a 3-element vector with a number of parameters for the latent variables (beta),
the threshold intercepts (lambda), and the threshold covariates (gamma).

coef a vector with model coefficients.

coef.ls model coefficients as a list.

start a vector with the starting values of the coefficients.

alpha estimated individual-specific thresholds.

y_i a vector with individual responses - the response variable.

y_latent_i a vector with predicted latent measures for each individual.

Ey_i a vector with predicted categorical responses for each individual.

J a number of response levels.

N a number of observations.

https://github.com/MaciejDanko/hopit/blob/master/vignettes/vig_hopit.pdf

hopit 17

deviance a deviance.

LL a log likelihood.

AIC an AIC for models without a survey design.

vcov a variance-covariance matrix.

vcov.basic a variance-covariance matrix that ignores the survey design.

hessian a Hessian matrix.

estfun a gradient (a vector of partial derivatives) of the log likelihood function at the
estimated coefficient values.

YYY1,YYY2,YYY3 an internal objects used for the calculation of gradient and Hessian functions.

Author(s)

Maciej J. Danko

References

Boes S, Winkelmann R (2006). “Ordered response models.” Allgemeines Statistisches Archiv,
90(1), 167–181. ISSN 1614-0176, doi:10.1007/s101820060228y.

Greene W, Harris MN, Hollingsworth B, Weterings TA (2014). “Heterogeneity in Ordered Choice
Models: A Review with Applications to Self-Assessed Health.” Journal of Economic Surveys,
28(1), 109-133. doi:10.1111/joes.12002.

Greene W, Hensher D (2010). Modeling Ordered Choices. Cambridge University Press.

Ierza JV (1985). “Ordinal probit: A generalization.” Communications in Statistics - Theory and
Methods, 14(1), 1-11. ISSN 0361-0926, doi:10.1080/03610928508828893.

Jurges H (2007). “True health vs response styles: exploring cross-country differences in self-
reported health.” Health Economics, 16(2), 163-178. doi:10.1002/hec.1134.

King G, Murray CJL, Salomon JA, Tandon A (2004). “Enhancing the Validity and Cross-Cultural
Comparability of Measurement in Survey Research.” American Political Science Review, 98(1),
191–207. doi:10.1017/S000305540400108X.

Liao P, Fu Y, Yi C (2005). “Perceived quality of life in Taiwan and Hong Kong: an intra-culture
comparison.” Journal of Happiness Studies, 6(1), 43–67. ISSN 1573-7780, doi:10.1007/s10902-
00417536.

McKelvey RD, Zavoina W (1975). “A Statistical Model for the Analysis of Ordinal Level De-
pendent Variables.” Journal of Mathematical Sociology, 4(1), 103–120.

Oksuzyan A, Danko MJ, Caputo J, Jasilionis D, Shkolnikov VM (2019). “Is the story about sen-
sitive women and stoical men true? Gender differences in health after adjustment for reporting
behavior.” Social Science & Medicine, 228, 41-50. doi:10.1016/j.socscimed.2019.03.002.

Rebelo LP, Pereira NS (2014). “Assessing health endowment, access and choice determinants:

https://doi.org/10.1007/s10182-006-0228-y
https://doi.org/10.1111/joes.12002
https://doi.org/10.1080/03610928508828893
https://doi.org/10.1002/hec.1134
https://doi.org/10.1017/S000305540400108X
https://doi.org/10.1007/s10902-004-1753-6
https://doi.org/10.1007/s10902-004-1753-6
https://doi.org/10.1016/j.socscimed.2019.03.002

18 hopit

Impact on retired Europeans’ (in)activity and quality of life.” Social Indicators Research, 119(3),
1411-1446. doi:10.1007/s1120501305421.

See Also

coef.hopit, profile.hopit, hopit.control, anova.hopit, vcov.hopit, logLik.hopit, AIC.hopit,
summary.hopit, svydesign,

For heterogeneity in reporting behavior analysis see:
standardizeCoef, latentIndex, getCutPoints, getLevels, boot_hopit,

Examples

DATA
data(healthsurvey)

first determine the order of the levels of the dependent variable
levels(healthsurvey$health)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE

Example 1 ---------------------

fitting the model:
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

summarize the fit:
summary(model1)

extract parameters in the form of a list
cm1 <- coef(model1, aslist = TRUE)

names of the returned coefficients
names(cm1)

extract the latent health coefficients
cm1$latent.params

check the fit

profile(model1)

Example 2 ---------------------

https://doi.org/10.1007/s11205-013-0542-1

hopit 19

incorporate the survey design
design <- svydesign(ids = ~ country + psu, weights = healthsurvey$csw,
data = healthsurvey)

model2 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +
heart_attack_or_stroke + poor_mobility +
very_poor_grip + depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
design = design,
control = list(trace = FALSE),
data = healthsurvey)

compare the latent variables
cbind('No survey design' = coef(model1, aslist = TRUE)$latent.par,
'Has survey design' = coef(model2, aslist = TRUE)$latent.par)

Example 3 ---------------------

defining the interactions between the threshold and the latent variables

correctly defined interactions:
model3 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility * very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases +
sex : depression + sex : diabetes + ageclass:obese,

thresh.formula = ~ sex * ageclass + country + sex : obese,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

Not run:
badly defined interactions:

1) lack of a main effect of "other_diseases" in any formula
it can be solved by adding " + other_diseases" to the latent formula
model3a <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases : sex,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

2) the main effect of sex is present in both formulas.
it can be solved by replacing "*" with ":" in "other_diseases * sex"
model3b <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

20 hopit

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases * sex,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

End(Not run)
Example 4 ---------------------

construct a naive continuous variable:
hs <- healthsurvey
hs$cont_var <- sample(5000:5020,nrow(hs),replace=TRUE)

latent.formula = health ~ hypertension + high_cholesterol +
heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases

in some cases, when continuous variables are used, the hopit:::get.hopit.start() function
do not find starting parameters (R version 3.4.4 (2018-03-15)):
Not run:
model4 <- hopit(latent.formula = latent.formula,

thresh.formula = ~ sex + cont_var,
decreasing.levels = TRUE,
data = hs)

End(Not run)
one of the solutions is to transform one or more continuous variables:
hs$cont_var_t <- hs$cont_var-min(hs$cont_var)

model4b <- hopit(latent.formula = latent.formula,
thresh.formula = ~ sex + cont_var_t,
decreasing.levels = TRUE,
data = hs)

this can also be done automatically using the the control parameter
model4c <- hopit(latent.formula = latent.formula,

thresh.formula = ~ sex + cont_var,
decreasing.levels = TRUE,
control = list(transform.thresh = 'min',

transform.latent = 'none'),
data = hs)

model4d <- hopit(latent.formula = latent.formula,
thresh.formula = ~ sex + cont_var,
decreasing.levels = TRUE,
control = list(transform.thresh = 'scale_01',

transform.latent = 'none'),
data = hs)

hopit.control 21

model4e <- hopit(latent.formula = latent.formula,
thresh.formula = ~ sex + cont_var,
decreasing.levels = TRUE,
control = list(transform.thresh = 'standardize',

transform.latent = 'none'),
data = hs)

model4f <- hopit(latent.formula = latent.formula,
thresh.formula = ~ sex + cont_var,
decreasing.levels = TRUE,
control = list(transform.thresh = 'standardize_trunc',

transform.latent = 'none'),
data = hs)

round(t(rbind(coef(model4b),
coef(model4c),
coef(model4d),
coef(model4e),
coef(model4f))),4)

hopit.control Auxiliary for controlling the fitting of a hopit model

Description

An auxiliary function for controlling the fitting of a hopit model. Use this function to set the
control parameters of the hopit and other related functions.

Usage

hopit.control(
grad.eps = 3e-05,
bgfs.maxit = 10000,
cg.maxit = 10000,
nlm.maxit = 150,
bgfs.reltol = 5e-10,
cg.reltol = 5e-10,
nlm.gradtol = 1e-07,
nlm.steptol = 1e-07,
fit.methods = "BFGS",
nlm.fit = FALSE,
trace = TRUE,
transform.latent = "none",
transform.thresh = "none"

)

22 latentIndex

Arguments

grad.eps an epsilon parameter ("a very small number") used to calculate the Hessian from
the gradient function.

bgfs.maxit, cg.maxit, nlm.maxit

the maximum number of iterations. See optim and nlm for details.
bgfs.reltol, cg.reltol

the relative convergence tolerances for the BFGS and the CG methods. See
optim for details.

nlm.gradtol, nlm.steptol

a tolerance at which the scaled gradient is considered close enough to zero and
a minimum allowable relative step length for the nlm method. See nlm.

fit.methods "CG", "BFGS", or both. If both, the CG is run first, followed by the BFGS. See
optim.

nlm.fit a logical; if FALSE (default) the nlm optimization method is omitted and only
the BFGS and/or the CG methods are run.

trace a logical for whether to trace the process of model fitting.
transform.latent, transform.thresh

a type of transformation applied to the all of the latent’s or all of the threshold’s
numeric variables. Possible values:

• "none" - no transformation
• "min" - subtract the minimum from a variable
• "scale_01" - transform the variable to fit the range from 0 to 1
• "standardize" or "standardise" - subtract the mean from a variable then di-

vide it by it’s standard deviation
• "standardize_trunc" or "standardise_trunc" - subtract the minimum from a

variable then divide it by it’s standard deviation

Author(s)

Maciej J. Danko

See Also

hopit

latentIndex Calculate the latent index

Description

Calculate the latent index from the fitted model. The latent index is a standardized latent measure
that takes values from 0 to 1, where 0 refers to the worst predicted state (the maximal observed
value for the latent measure) and 1 refers to the best predicted state (the minimal observed value for
the latent measure).

latentIndex 23

Usage

latentIndex(model, subset = NULL)

healthIndex(model, subset = NULL)

Arguments

model a fitted hopit model.

subset an optional vector that specifies a subset of observations.

Value

a vector with a latent index for each individual.

Author(s)

Maciej J. Danko

References

Jurges H (2007). “True health vs response styles: exploring cross-country differences in self-
reported health.” Health Economics, 16(2), 163-178. doi:10.1002/hec.1134.

Oksuzyan A, Danko MJ, Caputo J, Jasilionis D, Shkolnikov VM (2019). “Is the story about sen-
sitive women and stoical men true? Gender differences in health after adjustment for reporting
behavior.” Social Science & Medicine, 228, 41-50. doi:10.1016/j.socscimed.2019.03.002.

See Also

standardizeCoef, getCutPoints, getLevels, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE
levels(healthsurvey$health)

Example 1 ---------------------

fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,

https://doi.org/10.1002/hec.1134
https://doi.org/10.1016/j.socscimed.2019.03.002

24 percentile_CI

control = list(trace = FALSE),
data = healthsurvey)

calculate the health index
hi <- latentIndex(model1)

summary(hi)

plot a simple histogram of the function output
hist(hi, col='deepskyblue3')

#plot the reported health status versus the health index.
plot(hi, response = "data", ylab = 'Health index',

col='deepskyblue3', main = 'Reported health levels')

plot the model-predicted health levels versus the health index.
plot(hi, response = "fitted", ylab = 'Health index',

col='deepskyblue3', main = 'Model-predicted health levels')

percentile_CI Calculating the confidence intervals of the bootstrapped function us-
ing the percentile method

Description

Calculate the confidence intervals of the bootstrapped function using the percentile method.

Usage

percentile_CI(boot, alpha = 0.05, bounds = c("both", "lo", "up"))

Arguments

boot a matrix or a list of vectors with bootstrapped elements. If it is list, then each
element of the list is one replication.

alpha a significance level.

bounds which bounds to return; one of "both", "lo", "up".

Author(s)

Maciej J. Danko

See Also

boot_hopit, getLevels, getCutPoints, latentIndex, standardiseCoef, hopit.

Examples

see examples in boot_hopit() function.

standardizeCoef 25

standardizeCoef Standardization of the coefficients

Description

Calculate standardized the coefficients (e.g. disability weights for the health variables) using the
predicted latent measure obtained from the model.
In the self-rated health example the standardized coefficients are called disability weights Jurges
(2007) and are calculated for each health variable to provide information about the impact of a
specific health measure on the latent index (see latentIndex). The disability weight for a health
variable is equal to the ratio of the corresponding health coefficient and the difference between the
lowest and the highest values of the predicted latent health. In other words, the disability weight
reduces the latent index by some given amount or percentage (i.e., the latent index of every individ-
ual is reduced by the same amount if the person had a heart attack or other heart problems)(Jurges
2007).

Usage

standardizeCoef(model, namesf = identity)

standardiseCoef(model, namesf = identity)

disabilityWeights(model, namesf = identity)

Arguments

model a fitted hopit model.

namesf a vector of the names of coefficients or one argument function that modifies the
names of coefficients.

Value

a vector with standardized coefficients.

Author(s)

Maciej J. Danko

References

Jurges H (2007). “True health vs response styles: exploring cross-country differences in self-
reported health.” Health Economics, 16(2), 163-178. doi:10.1002/hec.1134.

Oksuzyan A, Danko MJ, Caputo J, Jasilionis D, Shkolnikov VM (2019). “Is the story about sen-
sitive women and stoical men true? Gender differences in health after adjustment for reporting
behavior.” Social Science & Medicine, 228, 41-50. doi:10.1016/j.socscimed.2019.03.002.

https://doi.org/10.1002/hec.1134
https://doi.org/10.1016/j.socscimed.2019.03.002

26 svy.varcoef_hopit

See Also

latentIndex, getCutPoints, getLevels, hopit.

Examples

DATA
data(healthsurvey)

the order of response levels decreases from the best health to
the worst health; hence the hopit() parameter decreasing.levels
is set to TRUE
levels(healthsurvey$health)

Example 1 ---------------------

fit a model
model1 <- hopit(latent.formula = health ~ hypertension + high_cholesterol +

heart_attack_or_stroke + poor_mobility + very_poor_grip +
depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
control = list(trace = FALSE),
data = healthsurvey)

a function that modifies the coefficient names.
txtfun <- function(x) gsub('_',' ',substr(x,1,nchar(x)-3))

calculate and plot the disability weights
sc <- standardizeCoef(model1, namesf = txtfun)
sc

summary(sc)

plot(sc)

svy.varcoef_hopit Calculation of the variance-covariance matrix for a specified survey
design (experimental function)

Description

This function is an equivalent of survey:::svy.varcoef. In the original approach estfun is cal-
culated from glm’s working residuals:
estfun <- model.matrix(glm.object) * resid(glm.object, "working") * glm.object$weights
In the hopit package, estfun is directly calculated as a gradient (vector of partial derivatives) of the
log likelihood function. Depending on detected design an appropriate survey function is called.

svy.varcoef_hopit 27

Usage

svy.varcoef_hopit(vcovMat, estfun, design)

Arguments

vcovMat a variance-covariance matrix.

estfun a gradient function of the log-likelihood function.

design a survey.design object.

See Also

svydesign hopit

Index

∗ datasets
healthsurvey, 11

AIC.hopit, 18
anova.hopit, 2, 18

boot_hopit, 4, 14, 18, 24

coef.hopit, 5, 18

disabilityWeights (standardizeCoef), 25

getCutPoints, 6, 7, 10, 14, 18, 23, 24, 26
getLevels, 6, 8, 9, 14, 18, 23, 24, 26

healthIndex (latentIndex), 22
healthsurvey, 11
hopit, 3, 6, 8, 10, 13, 21–24, 26, 27
hopit.control, 15, 16, 18, 21

latentIndex, 6, 8, 10, 14, 18, 22, 24–26
logLik.hopit, 18
lrt.hopit, 3

na.exclude, 15
na.fail, 15
na.omit, 15
na.pass, 15
nlm, 22

optim, 22

percentile_CI, 6, 24
print.lrt.hopit, 3
profile.hopit, 18

standardiseCoef, 6, 8, 10, 24
standardiseCoef (standardizeCoef), 25
standardizeCoef, 14, 18, 23, 25
summary.hopit, 18
svy.varcoef_hopit, 26
svydesign, 15, 18, 27

vcov.hopit, 5, 18

28

	anova.hopit
	boot_hopit
	getCutPoints
	getLevels
	healthsurvey
	hopit
	hopit.control
	latentIndex
	percentile_CI
	standardizeCoef
	svy.varcoef_hopit
	Index

