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bspline B-splines generation, estimation and combination

Description

Function bsplineGenerate generates a list of all basis splines with appropriate knots vector and
degree. Function bsplineComb allows to get linear combinations of these b-splines with particular
weights. Function bsplineEstimate estimates the spline at points x. The structure of this spline
should be provided via m and knots arguments.

Usage

bsplineGenerate(knots, degree, is_names = TRUE)

bsplineEstimate(x, m, knots)

bsplineComb(splines, weights)

Arguments

knots sorted in ascending order numeric vector representing knots of the spline.

degree positive integer representing degree of the spline.

is_names logical; if TRUE (default) then rows and columns of the spline matrices will
have a names. Set it to FALSE in order to get notable speed boost.

x numeric vector representing the points at which the spline should be estimated.

m numeric matrix which rows correspond to spline intervals while columns repre-
sent variables powers. Therefore the element in i-th row and j-th column rep-
resents the coefficient associated with the variable that 1) belongs to the i-th
interval i.e. between i-th and (i + 1)-th knots 2) raised to the power of (j - 1).

splines list being returned by the bsplineGenerate function or a manually constructed
list with b-splines knots and matrices entries.

weights numeric vector of the same length as splines.

Details

In contrast to bs function bsplineGenerate generates a splines basis in a form of a list containing
information concerning these b-splines structure. In order to evaluate one of these b-splines at
particular points bsplineEstimate function should be applied.

Value

Function bsplineGenerate returns a list. Each element of this list is a list containing the following
information concerning b-spline structure:

• knots - knots vector of the b-spline.
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• m - matrix representing polynomial coefficients for each interval of the spline in the same
manner as for m argument (see this argument description above).

• ind - index of the b-spline.

Function bsplineComb returns a list with the following arguments:

• knots - knots vector of the splines.
• m - linear combination of the splines matrices; coefficients of this linear combination are

given via weights argument.

Function bsplineGenerate returns a numeric vector of values being calculated at points x via
splines with knots vector and matrix m.

Examples

# Let's generate all b-splines of degree 3 with knots
# vector (-2.1, 1.5, 1.5, 2.2, 3.7, 4.2, 5)
b <- bsplineGenerate(knots = c(-2.1, 1.5, 1.5, 2.2, 3.7, 4.2, 5),

degree = 3)

# Get the first of these b-splines
b[[1]]

# Take a linear combination of these splines with
# weights 1.6, -1.2 and 3.2.
b_comb <- bsplineComb(splines = b, weights = c(1.6, -1.2, 3.2))

# Estimate this spline value at points (-3, 0.7, 2.5, 3.8, 10)
b_values <- bsplineEstimate(x = c(-3, 0.7, 2.5, 3.8, 10),

knots = b_comb$knots,
m = b_comb$m)

# Visualize the spline
s <- seq(from = 0, to = 5, length = 1000)
b_values_s <- bsplineEstimate(x = s,

knots = b_comb$knots,
m = b_comb$m)

plot(s, b_values_s)

coef.hpaBinary Extract coefficients from hpaBinary object

Description

Extract coefficients from hpaBinary object

Usage

## S3 method for class 'hpaBinary'
coef(object, ...)
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Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)

coef.hpaML Extract coefficients from hpaML object

Description

Extract coefficients from hpaML object

Usage

## S3 method for class 'hpaML'
coef(object, ...)

Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

coef.hpaSelection Extract coefficients from hpaSelection object

Description

Extract coefficients from hpaSelection object

Usage

## S3 method for class 'hpaSelection'
coef(object, ..., type = "all")

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)

type character; if "all" (default) then all estimated parameters values will be returned.
If "selection" then selection equation coefficients estimates will be provided. If
"outcome" then outcome equation coefficients estimates will be returned.
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dnorm_parallel Calculate normal pdf in parallel

Description

Calculate in parallel for each value from vector x density function of normal distribution with mean
equal to mean and standard deviation equal to sd.

Usage

dnorm_parallel(x, mean = 0, sd = 1, is_parallel = FALSE)

Arguments

x numeric vector of quantiles.

mean double value.

sd double positive value.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Examples

## Consider normal distribution with mean 3 and standard deviation 5.
## Calculate its density function at points 2 and 3.

# Create vector of points
my_points <- c(2, 3)

# Calculate pdf at these points
# (set is_parallel = TRUE in order
# to turn on parallel computations)
dnorm_parallel(my_points, 3, 5,

is_parallel = FALSE)

hpaBinary Semi-nonparametric single index binary choice model estimation

Description

This function performs semi-nonparametric (SNP) maximum likelihood estimation of single index
binary choice model using Hermite polynomial based approximating function proposed by Gallant
and Nychka in 1987. Please, see dhpa ’Details’ section to get more information concerning this
approximating function.
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Usage

hpaBinary(
formula,
data,
K = 1L,
mean_fixed = NA_real_,
sd_fixed = NA_real_,
constant_fixed = 0,
coef_fixed = TRUE,
is_x0_probit = TRUE,
is_sequence = FALSE,
x0 = numeric(0),
cov_type = "sandwich",
boot_iter = 100L,
is_parallel = FALSE,
opt_type = "optim",
opt_control = NULL,
is_validation = TRUE

)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. All variables in formula should be numeric
vectors of the same length.

data data frame containing the variables in the model.

K non-negative integer representing polynomial degree (order).

mean_fixed numeric value for binary choice equation random error density mean parameter.
Set it to NA (default) if this parameter should be estimated rather than fixed.

sd_fixed numeric value for binary choice equation random error density sd parameter.
Set it to NA (default) if this parameter should be estimated rather than fixed.

constant_fixed numeric value for binary choice equation constant parameter. Set it to NA (de-
fault) if this parameter should be estimated rather than fixed.

coef_fixed logical value indicating whether binary equation first independent variable co-
efficient should be fixed (TRUE) or estimated (FALSE).

is_x0_probit logical; if TRUE (default) then initial points for optimization routine will be ob-
tained by probit model estimated via glm function.

is_sequence if TRUE then function calculates models with polynomial degrees from 0 to K
each time using initial values obtained from the previous step. In this case func-
tion will return the list of models where i-th list element correspond to model
calculated under K=(i-1).

x0 numeric vector of optimization routine initial values. Note that x0 = c(pol_coefficients[-1],
mean, sd, coefficients).



8 hpaBinary

cov_type character determining the type of covariance matrix to be returned and used
for summary. If cov_type = "hessian" then negative inverse of Hessian ma-
trix will be applied. If cov_type = "gop" then inverse of Jacobian outer prod-
ucts will be used. If cov_type = "sandwich" (default) then sandwich covari-
ance matrix estimator will be applied. If cov_type = "bootstrap" then boot-
strap with boot_iter iterations will be used. If cov_type = "hessianFD" or
cov_type = "sandwichFD" then (probably) more accurate but computationally
demanding central difference Hessian approximation will be calculated for the
inverse Hessian and sandwich estimators correspondingly. Central differences
are computed via analytically provided gradient. This Hessian matrix estimation
approach seems to be less accurate than BFGS approximation if polynomial or-
der is high (usually greater then 5).

boot_iter the number of bootstrap iterations for cov_type = "bootstrap" covariance ma-
trix estimator type.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

opt_type string value determining the type of the optimization routine to be applied. The
default is "optim" meaning that BFGS method from the optim function will be
applied. If opt_type = "GA" then ga function will be additionally applied.

opt_control a list containing arguments to be passed to the optimization routine depending
on opt_type argument value. Please see details to get additional information.

is_validation logical value indicating whether function input arguments should be validated.
Set it to FALSE for slight performance boost (default value is TRUE).

Details

Densities Hermite polynomial approximation approach has been proposed by A. Gallant and D. W.
Nychka in 1987. The main idea is to approximate unknown distribution density with scaled Hermite
polynomial. For more information please refer to the literature listed below.

Let’s use notations introduced in dhpa ’Details’ section. Function hpaBinary maximizes the fol-
lowing quasi log-likelihood function:

lnL(γ0, γ, α, µ, σ;x) =
∑
i:zi=1

ln
(
F ξ(−(γ0 + γxi),∞;α, µ, σ)

)
+

+
∑
i:zi=0

ln
(
F ξ(−∞,−(γ0 + xiγ);α, µ, σ)

)
,

where (in addition to previously defined notations):

xi - is row vector of regressors derived from data according to formula.

γ - is column vector of regression coefficients.

γ0 - constant.

zi - binary (0 or 1) dependent variable defined in formula.

Note that ξ is one dimensional and K corresponds to K = K1.

The first polynomial coefficient (zero powers) set to 1 for identification purposes i.e. α0 = 1.
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If coef_fixed is TRUE then the coefficient for the first independent variable in formula will be
fixed to 1 i.e. γ1 = 1.

If mean_fixed is not NA then µ=mean_fixed fixed.

If sd_fixed is not NA then σ=mean_fixed fixed. However if is_x0_probit = TRUE then parameter
σ will be scale adjusted in order to provide better initial point for optimization routine. Please,
extract σ adjusted value from the function’s output list. The same is for mean_fixed.

Rows in data corresponding to variables mentioned in formula which have at least one NA value
will be ignored.

All variables mentioned in formula should be numeric vectors.

The function calculates standard errors via sandwich estimator and significance levels are reported
taking into account quasi maximum likelihood estimator (QMLE) asymptotic normality. If one
wants to switch from QMLE to semi-nonparametric estimator (SNPE) during hypothesis testing
then covariance matrix should be estimated again using bootstrap.

This function maximizes (quasi) log-likelihood function via optim function setting its method argu-
ment to "BFGS". If opt_type = "GA" then genetic algorithm from ga function will be additionally
(after optim putting its solution (par) into suggestions matrix) applied in order to perform global
optimization. Note that global optimization takes much more time (usually minutes but sometimes
hours or even days). The number of iterations and population size of the genetic algorithm will
grow linearly along with the number of estimated parameters. If it seems that global maximum
has not been found then it is possible to continue the search restarting the function setting its input
argument x0 to x1 output value. Note that if cov_type = "bootstrap" then ga function will not be
used for bootstrap iterations since it may be extremely time consuming.

If opt_type = "GA" then opt_control should be the list containing the values to be passed to
ga function. It is possible to pass arguments lower, upper, popSize, pcrossover, pmutation,
elitism, maxiter, suggestions, optim, optimArgs, seed and monitor. Note that it is possible
to set population, selection, crossover and mutation arguments changing ga default param-
eters via gaControl function. These arguments information reported in ga. In order to provide
manual values for lower and upper bounds please follow parameters ordering mentioned above
for the x0 argument. If these bounds are not provided manually then they (except those related to
the polynomial coefficients) will depend on the estimates obtained by local optimization via optim
function (this estimates will be in the middle between lower and upper). Specifically for each
sd parameter lower (upper) bound is 5 times lower (higher) than this parameter optim estimate.
For each mean and regression coefficient parameter its lower and upper bounds deviate from corre-
sponding optim estimate by two absolute values of this estimate. Finally, lower and upper bounds
for each polynomial coefficient are -10 and 10 correspondingly (do not depend on their optim
estimates).

The following arguments are differ from their defaults in ga:

• pmutation = 0.2,
• optim = TRUE,
• optimArgs = list("method" = "Nelder-Mead", "poptim" = 0.2, "pressel" = 0.5),
• seed = 8,
• elitism = 2 + round(popSize * 0.1).

Let’s denote by n_reg the number of regressors included into the formula. The arguments popSize
and maxiter of ga function have been set proportional to the number of estimated polynomial
coefficients and independent variables:
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• popSize = 10 + 5 * (K + 1) + 2 * n_reg

• maxiter = 50 * (1 + K) + 10 * n_reg

Value

This function returns an object of class "hpaBinary".

An object of class "hpaBinary" is a list containing the following components:

• optim - optim function output. If opt_type = "GA" then it is the list containing optim and ga
functions outputs.

• x1 - numeric vector of distribution parameters estimates.

• mean - mean (mu) parameter of density function estimate.

• sd - sd (sigma) parameter of density function estimate.

• pol_coefficients - polynomial coefficients estimates.

• pol_degrees - the same as K input parameter.

• coefficients - regression (single index) coefficients estimates.

• cov_mat - covariance matrix estimate.

• marginal_effects - marginal effects matrix where columns are variables and rows are ob-
servations.

• results - numeric matrix representing estimation results.

• log-likelihood - value of Log-Likelihood function.

• AIC - AIC value.

• errors_exp - random error expectation estimate.

• errors_var - random error variance estimate.

• dataframe - data frame containing variables mentioned in formula without NA values.

• model_Lists - lists containing information about fixed parameters and parameters indexes in
x1.

• n_obs - number of observations.

• z_latent - latent variable (single index) estimates.

• z_prob - probabilities of positive outcome (i.e. 1) estimates.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

See Also

summary.hpaBinary, predict.hpaBinary, plot.hpaBinary, logLik.hpaBinary



hpaBinary 11

Examples

## Estimate survival probability on Titanic

library("titanic")

# Prepare data set converting
# all variables to numeric vectors
h <- data.frame("male" = as.numeric(titanic_train$Sex == "male"))
h$class_1 <- as.numeric(titanic_train$Pclass == 1)
h$class_2 <- as.numeric(titanic_train$Pclass == 2)
h$class_3 <- as.numeric(titanic_train$Pclass == 3)
h$sibl <- titanic_train$SibSp
h$survived <- titanic_train$Survived
h$age <- titanic_train$Age
h$parch <- titanic_train$Parch
h$fare <- titanic_train$Fare

# Estimate model parameters
model_hpa_1 <- hpaBinary(survived ~class_1 + class_2 +
male + age + sibl + parch + fare,
K = 3, data = h)
#get summary
summary(model_hpa_1)

# Get predicted probabilities
pred_hpa_1 <- predict(model_hpa_1)

# Calculate number of correct predictions
hpa_1_correct_0 <- sum((pred_hpa_1 < 0.5) &

(model_hpa_1$dataframe$survived == 0))
hpa_1_correct_1 <- sum((pred_hpa_1 >= 0.5) &

(model_hpa_1$dataframe$survived == 1))
hpa_1_correct <- hpa_1_correct_1 + hpa_1_correct_0

# Plot random errors density approximation
plot(model_hpa_1)

## Estimate parameters on data simulated from Student distribution

library("mvtnorm")
set.seed(123)

# Simulate independent variables from normal distribution
n <- 5000
X <- rmvnorm(n=n, mean = c(0,0),
sigma = matrix(c(1,0.5,0.5,1), ncol=2))

# Simulate random errors from Student distribution
epsilon <- rt(n, 5) * (3 / sqrt(5))
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# Calculate latent and observable variables values
z_star <- 1 + X[, 1] + X[, 2] + epsilon
z <- as.numeric((z_star > 0))

# Store the results into data frame
h <- as.data.frame(cbind(z,X))
names(h) <- c("z", "x1", "x2")

# Estimate model parameters
model <- hpaBinary(formula = z ~ x1 + x2, data=h, K = 3)
summary(model)

# Get predicted probabilities of 1 values
predict(model)

# Plot density function approximation
plot(model)

hpaDist Probabilities and Moments Hermite Polynomial Approximation

Description

Approximation of truncated, marginal and conditional densities, moments and cumulative probabil-
ities of multivariate distributions via Hermite polynomial based approach proposed by Gallant and
Nychka in 1987.

Density approximating function is scale adjusted product of two terms. The first one is squared
multivariate polynomial of pol_degrees degrees with pol_coefficients coefficients vector. The
second is product of independent normal random variables’ densities with expected values and
standard deviations given by mean and sd vectors correspondingly. Approximating function satis-
fies properties of density function thus generating a broad family of distributions. Characteristics
of these distributions (moments, quantiles, probabilities and so on) may provide accurate approxi-
mations to characteristic of other distributions. Moreover it is usually possible to provide arbitrary
close approximation by the means of polynomial degrees increase.

Usage

dhpa(
x,
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
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sd = numeric(0),
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE

)

phpa(
x,
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE

)

ihpa(
x_lower = numeric(0),
x_upper = numeric(0),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE

)

ehpa(
x = numeric(0),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
sd = numeric(0),
expectation_powers = numeric(0),
is_parallel = FALSE,
is_validation = TRUE

)

etrhpa(
tr_left = numeric(0),
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tr_right = numeric(0),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
mean = numeric(0),
sd = numeric(0),
expectation_powers = numeric(0),
is_parallel = FALSE,
is_validation = TRUE

)

dtrhpa(
x,
tr_left = numeric(0),
tr_right = numeric(0),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE

)

itrhpa(
x_lower = numeric(0),
x_upper = numeric(0),
tr_left = numeric(0),
tr_right = numeric(0),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE

)

dhpaDiff(
x,
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
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sd = numeric(0),
type = "pol_coefficients",
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE

)

ehpaDiff(
x = numeric(0),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
sd = numeric(0),
expectation_powers = numeric(0),
type = "pol_coefficients",
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE

)

ihpaDiff(
x_lower = numeric(0),
x_upper = numeric(0),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
sd = numeric(0),
type = "pol_coefficients",
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE

)

qhpa(
p,
x = matrix(1, 1),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
mean = numeric(0),
sd = numeric(0)

)
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rhpa(
n,
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
mean = numeric(0),
sd = numeric(0)

)

Arguments

x numeric matrix of function arguments and conditional values. Note that x rows
are points (observations) while random vectors components (variables) are columns.

pol_coefficients

numeric vector of polynomial coefficients.

pol_degrees non-negative integer vector of polynomial degrees (orders).

given_ind logical or numeric vector indicating whether corresponding random vector com-
ponent is conditioned. By default it is a logical vector of FALSE values. If
give_ind[i] equals TRUE or i then i-th column of x matrix will contain condi-
tional values.

omit_ind logical or numeric vector indicating whether corresponding random component
is omitted. By default it is a logical vector of FALSE values. If omit_ind[i]
equals TRUE or i then values in i-th column of x matrix will be ignored.

mean numeric vector of expected values.

sd positive numeric vector of standard deviations.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

log logical; if TRUE then probabilities p are given as log(p) or derivatives will be
given respect to log(p).

is_validation logical value indicating whether function input arguments should be validated.
Set it to FALSE for slight performance boost (default value is TRUE).

x_lower numeric matrix of lower integration limits. Note that x_lower rows are obser-
vations while variables are columns.

x_upper numeric matrix of upper integration limits. Note that x_upper rows are obser-
vations while variables are columns.

expectation_powers

integer vector of random vector components powers.

tr_left numeric matrix of left (lower) truncation limits. Note that tr_left rows are
observations while variables are columns. If tr_left and tr_right are single
row matrices then the same truncation limits will be applied to all observations
that are determined by the first rows of these matrices.

tr_right numeric matrix of right (upper) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left and tr_right are single
row matrices then the same truncation limits will be applied to all observations
that are determined by the first rows of these matrices.
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type determines the partial derivatives to be included into the gradient. If type="pol_coefficients"
then gradient will contain partial derivatives respect to polynomial coefficients
listed in the same order as pol_coefficients. Other available types are type
= "mean" and type = "sd". For function dhpaDiff it is possible to take gra-
dient respect to the x points setting type="x". For function ihpaDiff it is
possible to take gradient respect to the x lower and upper points setting type
= "x_lower" or type = "upper" correspondingly. In order to get full gradient
please set type="all".

p numeric vector of probabilities
n positive integer representing the number of observations

Details

It is possible to approximate densities dhpa, cumulative probabilities phpa, ihpa, moments ehpa
as well as their truncated dtrhpa, itrhpa, etrhpa forms and gradients dhpaDiff, ihpaDiff. Note
that phpa is special of ihpa where x corresponds to x_upper while x_lower is matrix of negative
infinity values. So phpa intended to approximate cumulative distribution functions while ihpa
approximates probabilities that random vector components will be between values determined by
rows of x_lower and x_upper matrices. Further details are given below.

Since density approximating function is non-negative and integrates to 1 it is density function for
some m-variate random vector ξ. Approximating function fξ(x) has the following form:

fξ(x) = fξ(x;µ, σ, α) =
1

ψ

m∏
t=1

φ(xt;µt, σt)

(
K1∑
i1=0

...

Km∑
im=0

α(i1,...,im)

m∏
r=1

xirr

)2

ψ =

K1∑
i1=0

...

Km∑
im=0

K1∑
j1=0

...

Km∑
jm=0

α(i1,··· ,im)α(j1,··· ,jm)

m∏
r=1

M(ir + jr;µr, σr),

where:

x = (x1, ...xm) - is vector of arguments i.e. rows of x matrix in dhpa.

α(i1,··· ,im) - is polynomial coefficient corresponding to pol_coefficients[k] element. In order to
investigate correspondence between k and (i1, · · · , im) values please see ’Examples’ section below
or polynomialIndex function ’Details’, ’Value’ and ’Examples’ sections. Note that if m = 1 then
pol_coefficients[k] simply corresponds to αk−1.

(K1, ...,Km) - are polynomial degrees (orders) provided via pol_degrees argument so pol_degrees[i]
determines Ki.

φ(.;µt, σt) - is normal random variable density function where µt and σt are mean and standard
deviation determined by mean[t] and sd[t] arguments values.

M(q;µr, σr) - is q-th order moment of normal random variable with mean µr and standard de-
viation σr. Note that function normalMoment allows to calculate and differentiate normal random
variable’s moments.

ψ - constant term insuring that fξ(x) is density function.

Therefore dhpa allows to calculate fξ(x) values at points determined by rows of x matrix given
polynomial degrees pol_degrees (K) as well as mean (µ), sd (σ) and pol_coefficients (α) pa-
rameters values. Note that mean, sd and pol_degrees arem-variate vectors while pol_coefficients
has prod(pol_degrees + 1) elements.
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Cumulative probabilities could be approximated as follows:

P (x1 ≤ ξ1 ≤ x1, ..., xm ≤ ξm ≤ xm) =

= F̄ξ(x, x̄) = F̄ξ(x, x̄;µ, σ, α) =
1

ψ

m∏
t=1

(Φ(x̄t;µt, σt)− Φ(xt;µt, σt))∗

∗
K1∑
i1=0

...
Km∑
im=0

K1∑
j1=0

...
Km∑
jm=0

α(i1,...,im)α(j1,...,jm)

m∏
r=1
MTR (ir + jr;xr, xr, µr, σr)

where:

Φ(.;µt, σt) - is normal random variable’s cumulative distribution function where µt and σt are
mean and standard deviation determined by mean[t] and sd[t] arguments values.

MTR(q;xr, xr, µr, σr) - is q-th order moment of truncated (from above by xr and from below
by xr) normal random variable with mean µr and standard deviation σr. Note that function
truncatedNormalMoment allows to calculate and differentiate truncated normal random variable’s
moments.

x = (x1, ..., xm) - vector of upper integration limits i.e. rows of x_upper matrix in ihpa.

x = (x1, ..., xm) - vector of lower integration limits i.e. rows of x_lower matrix in ihpa.

Therefore ihpa allows to calculate interval distribution function F̄ξ(x, x̄) values at points deter-
mined by rows of x_lower (x) and x_upper (x) matrices. The rest of the arguments are similar to
dhpa.

Expected value powered product approximation is as follows:

E

(
m∏
t=1

ξktt

)
=

1

ψ

K1∑
i1=0

...

Km∑
im=0

K1∑
j1=0

...

Km∑
jm=0

α(i1,...,im)α(j1,...,jm)

m∏
r=1

M(ir + jr + kt;µr, σr)

where (k1, ..., km) are integer powers determined by expectation_powers argument of ehpa so
expectation_powers[t] assigns kt. Note that argument x in ehpa allows to determined condi-
tional values.

Expanding polynomial degrees (K1, ...,Km) it is possible to provide arbitrary close approximation
to density of some m-variate random vector ξ?. So actually fξ(x) approximates fξ?(x). Accurate
approximation requires appropriate mean, sd and pol_coefficients values selection. In order to
get sample estimates of these parameters please apply hpaML function.

In order to perform calculation for marginal distribution of some ξ components please provide omit-
ted components via omit_ind argument. For examples if ones assume m = 5-variate distribution
and wants to deal with 1-st, 3-rd, and 5-th components only i.e. (ξ1, ξ3, ξ5) then set omit_ind =
c(FALSE, TRUE, FALSE, TRUE, FALSE) indicating that ξ2 and ξ4 should be ’omitted’ from ξ since
2-nd and 4-th values of omit_ind are TRUE. Then x still should be 5 column matrix but values in
2-nd and 4-th columns will not affect calculation results. Meanwhile note that marginal distribution
of t components of ξ usually do not coincide with any marginal distribution generated by t-variate
density approximating function.

In order to perform calculation for conditional distribution i.e. given fixed values for some ξ com-
ponents please provide these components via given_ind argument. For example if ones assume
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m = 5-variate distribution and wants to deal with 1-st, 3-rd, and 5-th components given fixed val-
ues (suppose 8 and 10) for the other two components i.e. (ξ|ξ2 = 8, ξ4 = 10) then set given_ind =
c(FALSE, TRUE, FALSE, TRUE, FALSE) and x[2] = 8, x[4] = 10 where for simplicity it is assumed
that x is single row 5 column matrix; it is possible to provide different conditional values for the
same components simply setting different values to different x rows.

Note that it is possible to combine given_ind and omit_ind arguments. However it is wrong to set
both given_ind[i] and omit_ind[i] to TRUE. Also at least one value should be FALSE both for
given_ind and omit_ind.

In order to consider truncated distribution of ξ i.e.
(
ξ|a1 ≤ ξ1 ≤ b1, · · · , am ≤ ξm ≤ bm

)
please

set lower (left) truncation points a and upper (right) truncation points b via tr_left and tr_right
arguments correspondingly. Note that if lower truncation points are negative infinite and upper
truncation points are positive infinite then dtrhpa, itrhpa and etrhpa are similar to dhpa, ihpa
and ehpa correspondingly.

In order to calculate Jacobian of fξ(x;µ, σ, α) and F̄ξ(x, x̄;µ, σ, α) w.r.t all ore some particular
parameters please apply dhpaDiff and ihpaDiff functions correspondingly specifying parameters
of interest via type argument. If x or x_lower and x_upper are single row matrices then gradients
will be calculated.

For further information please see ’Examples’ section. Note that examples are given separately for
each function.

If given_ind and (or) omit_ind are numeric vectors then they are insensitive to the order of ele-
ments. For example given_ind = c(5, 2, 3) is similar to given_ind = c(2, 3, 5).

Densities Hermite polynomial approximation approach has been proposed by A. Gallant and D. W.
Nychka in 1987. The main idea is to approximate unknown distribution density with scaled Hermite
polynomial. For more information please refer to the literature listed below.

Value

Functions dhpa, phpa and dtrhpa return vector of probabilities of length nrow(x).

Functions ihpa and itrhpa return vector of probabilities of length nrow(x_upper).

If x argument has not been provided or is a single row matrix then function ehpa returns moment
value. Otherwise it returns vector of length nrow(x) containing moments values.

If tr_left and tr_right arguments are single row matrices then function etrhpa returns moment
value. Otherwise it returns vector of length max(nrow(tr_left), nrow(tr_right)) containing
moments values.

Functions dhpaDiff and ihpaDiff return Jacobin matrix. The number of columns depends on
type argument. The number of rows is nrow(x) for dhpaDiff and nrow(x_upper) for ihpaDiff

If mean or sd are not specified they assume the default values of m-dimensional vectors of 0 and 1,
respectively. If x_lower is not specified then it is the matrix of the same size as x_upper containing
negative infinity values only. If expectation_powers is not specified then it is m-dimensional
vector of 0 values.

Please see ’Details’ section for additional information.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>
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Examples

## Example demonstrating dhpa function application.
## Let's approximate some three random variables (i.e. X1, X2 and X3)
## joint density function at points x = (0,1, 0.2, 0.3) and
## y = (0.5, 0.8, 0.6) with Hermite polynomial of (1, 2, 3) degrees which
## polynomial coefficients equal 1 except coefficient related to x1*(x^3)
## polynomial element which equals 2. Also suppose that normal density
## related mean vector equals (1.1, 1.2, 1.3) while standard deviations
## vector is (2.1, 2.2, 2.3).

# Prepare initial values
x <- matrix(c(0.1, 0.2, 0.3), nrow = 1) # x point as a single row matrix
y <- matrix(c(0.5, 0.8, 0.6), nrow = 1) # y point as a single row matrix
x_y <- rbind(x, y) # matrix which rows are x and y
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

# Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2

# Visualize correspondence between polynomial
# elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)

printPolynomial(pol_degrees, pol_coefficients)

# Calculate density approximation
# at point x (note that x should be a matrix)

dhpa(x = x,
pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd)

# at points x and y
dhpa(x = x_y,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd)

# Condition second component to be 0.5 i.e. X2 = 0.5.
# Substitute x and y second components with conditional value 0.5
x <- matrix(c(0.1, 0.5, 0.3), nrow = 1) # or simply x[2] <- 0.5
y <- matrix(c(0.4, 0.5, 0.6), nrow = 1) # or simply y[2] <- 0.5
x_y <- rbind(x, y)
# Set TRUE to the second component indicating that it is conditioned
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given_ind <- c(FALSE, TRUE, FALSE)

# Calculate conditional (on X2 = 0.5) density approximation
# at point x

dhpa(x = x,
pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

# at points x and y
dhpa(x = x_y,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

# Consider third component marginal distribution conditioned on the
# second component 0.5 value i.e. (X3 | X2 = 0.5).
# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

# Calculate conditional (on x2 = 0.5) marginal (for x3) density approximation
# at point x

dhpa(x = x,
pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
omit_ind = omit_ind)

# at points x and y
dhpa(x = x_y,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
omit_ind = omit_ind)

## Example demonstrating phpa function application.
## Let's approximate some three random variables (X1, X2, X3)
## joint cumulative distribution function (cdf) at point (0,1, 0.2, 0.3)
## with Hermite polynomial of (1, 2, 3) degrees which polynomial
## coefficients equal 1 except coefficient related to x1*(x^3) polynomial
## element which equals 2. Also suppose that normal density related
## mean vector equals (1.1, 1.2, 1.3) while standard deviations
## vector is (2.1, 2.2, 2.3).

## Prepare initial values
x <- matrix(c(0.1, 0.2, 0.3), nrow = 1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
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pol_ind <- polynomialIndex(pol_degrees)

# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

# Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2

# Visualize correspondence between polynomial
# elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power",
"x3 power", "coefficients"),

optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

# Calculate cdf approximation at point x
phpa(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd)

# Condition second component to be 0.5
# Substitute x second component with conditional value 0.5
x <- matrix(c(0.1, 0.5, 0.3), nrow = 1) # or simply x[2] <- 0.5

# Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

# Calculate conditional (on X2 = 0.5) cdf approximation at point x
phpa(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

# Consider third component marginal distribution
# conditioned on the second component 0.5 value

# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

# Calculate conditional (on X2 = 0.5) marginal (for X3) cdf
# approximation at point x
phpa(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
omit_ind = omit_ind)

## Example demonstrating ihpa function application.
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## Let's approximate some three random variables (X1, X2, X3) joint interval
## distribution function (intdf) at lower and upper points (0,1, 0.2, 0.3)
## and (0,4, 0.5, 0.6) correspondingly with Hermite polynomial of (1, 2, 3)
## degrees which polynomial coefficients equal 1 except coefficient related
## to x1*(x^3) polynomial element which equals 2. Also suppose that normal
## density related mean vector equals (1.1, 1.2, 1.3) while standard
## deviations vector is (2.1, 2.2, 2.3).

## Prepare initial values
x_lower <- matrix(c(0.1, 0.2, 0.3), nrow=1)
x_upper <- matrix(c(0.4, 0.5, 0.6), nrow=1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

# Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2

# Visualize correspondence between polynomial
# elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power",
"x3 power", "coefficients"),

optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

# Calculate intdf approximation at points x_lower and x_upper
ihpa(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd)

# Condition second component to be 0.7
# Substitute x second component with conditional value 0.7
x_upper <- matrix(c(0.4, 0.7, 0.6), nrow = 1)

# Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

# Calculate conditional (on X2 = 0.5) intdf approximation
# at points x_lower and x_upper
ihpa(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)
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# Consider third component marginal distribution
# conditioned on the second component 0.7 value
# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

# Calculate conditional (on X2 = 0.5) marginal (for X3)
# intdf approximation at points x_lower and x_upper
ihpa(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind)

## Example demonstrating ehpa function application.
## Let's approximate some three random variables (X1, X2, X3) powered product
## expectation for powers (3, 2, 1) with Hermite polynomial of (1, 2, 3)
## degrees which polynomial coefficients equal 1 except coefficient
## related to x1*(x^3) polynomial element which equals 2.
## Also suppose that normal density related mean vector equals
## (1.1, 1.2, 1.3) while standard deviations vector is (2.1, 2.2, 2.3).

# Prepare initial values
expectation_powers = c(3,2,1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

#Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2

# Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power",
"x3 power", "coefficients"),

optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

# Calculate expected powered product approximation
ehpa(pol_coefficients = pol_coefficients,

pol_degrees = pol_degrees,
mean = mean, sd = sd,
expectation_powers = expectation_powers)

# Condition second component to be 0.5
# Substitute x second component with conditional value 0.5
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x <- matrix(c(NA, 0.5, NA), nrow = 1)
#Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

# Calculate conditional (on X2 = 0.5) expected powered product approximation
ehpa(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
expectation_powers = expectation_powers,
given_ind = given_ind)

# Consider third component marginal distribution
# conditioned on the second component 0.5 value
# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

# Calculate conditional (on X2 = 0.5) marginal (for X3) expected powered
# product approximation at points x_lower and x_upper
ehpa(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
expectation_powers = expectation_powers,
given_ind = given_ind,
omit_ind = omit_ind)

## Example demonstrating etrhpa function application.
## Let's approximate some three truncated random variables (X1, X2, X3)
## powered product expectation for powers (3, 2, 1) with Hermite polynomial
## of (1,2,3) degrees which polynomial coefficients equal 1 except
## coefficient related to x1*(x^3) polynomial element which equals 2. Also
## suppose that normal density related mean vector equals (1.1, 1.2, 1.3)
## while standard deviations vector is (2.1, 2.2, 2.3). Suppose that lower
## and upper truncation points are (-1.1,-1.2,-1.3) and (1.1,1.2,1.3)
## correspondingly.

# Prepare initial values
expectation_powers = c(3,2,1)
tr_left = matrix(c(-1.1,-1.2,-1.3), nrow = 1)
tr_right = matrix(c(1.1,1.2,1.3), nrow = 1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

# Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2
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# Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power",
"x3 power", "coefficients"),

optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

# Calculate expected powered product approximation for truncated distribution
etrhpa(pol_coefficients = pol_coefficients,

pol_degrees = pol_degrees,
mean = mean, sd = sd,
expectation_powers = expectation_powers,
tr_left = tr_left, tr_right = tr_right)

## Example demonstrating dtrhpa function application.
## Let's approximate some three random variables (X1, X2, X3) joint density
## function at point (0,1, 0.2, 0.3) with Hermite polynomial of (1,2,3)
## degrees which polynomial coefficients equal 1 except coefficient related
## to x1*(x^3) polynomial element which equals 2. Also suppose that normal
## density related mean vector equals (1.1, 1.2, 1.3) while standard
## deviations vector is (2.1, 2.2, 2.3). Suppose that lower and upper
## truncation points are (-1.1,-1.2,-1.3) and (1.1,1.2,1.3) correspondingly.

# Prepare initial values
x <- matrix(c(0.1, 0.2, 0.3), nrow=1)
tr_left = matrix(c(-1.1,-1.2,-1.3), nrow = 1)
tr_right = matrix(c(1.1,1.2,1.3), nrow = 1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

# Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2

# Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power",
"x3 power", "coefficients"),

optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

# Calculate density approximation at point x
dtrhpa(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
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mean = mean, sd = sd,
tr_left = tr_left,
tr_right = tr_right)

# Condition second component to be 0.5
# Substitute x second component with conditional value 0.5
x <- matrix(c(0.1, 0.5, 0.3), nrow = 1)
# Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)
# Calculate conditional (on x2 = 0.5) density approximation at point x
dtrhpa(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
tr_left = tr_left, tr_right = tr_right)

# Consider third component marginal distribution
# conditioned on the second component 0.5 value
# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

# Calculate conditional (on X2 = 0.5) marginal (for X3)
# density approximation at point x
dtrhpa(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
tr_left = tr_left, tr_right = tr_right)

## Example demonstrating itrhpa function application.
## Let's approximate some three truncated random variables (X1, X2, X3) joint
## interval distribution function at lower and upper points (0,1, 0.2, 0.3)
## and (0,4, 0.5, 0.6) correspondingly with Hermite polynomial of (1 ,2, 3)
## degrees which polynomial coefficients equal 1 except coefficient
## related to x1*(x^3) polynomial element which equals 2. Also suppose
## that normal density related mean vector equals (1.1, 1.2, 1.3) while
## standard deviations vector is (2.1, 2.2, 2.3). Suppose that lower and
## upper truncation are (-1.1,-1.2,-1.3) and (1.1,1.2,1.3) correspondingly.

# Prepare initial values
x_lower <- matrix(c(0.1, 0.2, 0.3), nrow=1)
x_upper <- matrix(c(0.4, 0.5, 0.6), nrow=1)
tr_left = matrix(c(-1.1,-1.2,-1.3), nrow = 1)
tr_right = matrix(c(1.1,1.2,1.3), nrow = 1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
# Set all polynomial coefficients to 1
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pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

# Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2
# Visualize correspondence between polynomial
# elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power",
"x3 power", "coefficients"),

optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

# Calculate intdf approximation at points x_lower and x_upper
itrhpa(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
tr_left = tr_left, tr_right = tr_right)

# Condition second component to be 0.7
# Substitute x second component with conditional value 0.7
x_upper <- matrix(c(0.4, 0.7, 0.6), nrow = 1)
# Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

# Calculate conditional (on X2 = 0.5) intdf
# approximation at points x_lower and x_upper
itrhpa(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
tr_left = tr_left, tr_right = tr_right)

# Consider third component marginal distribution
# conditioned on the second component 0.7 value
# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

# Calculate conditional (on X2 = 0.5) marginal (for X3) intdf
# approximation at points x_lower and x_upper
itrhpa(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
tr_left = tr_left, tr_right = tr_right)

## Example demonstrating dhpaDiff function application.
## Let's approximate some three random variables (X1, X2, X3) joint density
## function at point (0,1, 0.2, 0.3) with Hermite polynomial of (1,2,3)
## degrees which polynomial coefficients equal 1 except coefficient related
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## to x1*(x^3) polynomial element which equals 2. Also suppose that normal
## density related mean vector equals (1.1, 1.2, 1.3) while standard
## deviations vector is (2.1, 2.2, 2.3). In this example let's calculate
## density approximating function's gradient respect to various parameters

# Prepare initial values
x <- matrix(c(0.1, 0.2, 0.3), nrow = 1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

# Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2

# Visualize correspondence between polynomial
# elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power",
"x3 power", "coefficients"),

optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

# Calculate density approximation gradient
# respect to polynomial coefficients at point x
dhpaDiff(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd)

# Condition second component to be 0.5
# Substitute x second component with conditional value 0.5
x <- matrix(c(0.1, 0.5, 0.3), nrow = 1)
# Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

# Calculate conditional (on x2 = 0.5) density approximation's
# gradient respect to polynomial coefficients at point x
dhpaDiff(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

# Consider third component marginal distribution
# conditioned on the second component 0.5 value
# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)
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# Calculate conditional (on X2 = 0.5) marginal (for X3) density
# approximation's gradient respect to:

# polynomial coefficients
dhpaDiff(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
omit_ind = omit_ind)

# mean
dhpaDiff(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
omit_ind = omit_ind,
type = "mean")

# sd
dhpaDiff(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
omit_ind = omit_ind,
type = "sd")

# x
dhpaDiff(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
omit_ind = omit_ind,
type = "x")

## Example demonstrating ehpaDiff function application.
## Let's approximate some three random variables (X1, X2, X3) expectation
## of the form E((X1 ^ 3) * (x2 ^ 1) * (X3 ^ 2)) and calculate the gradient

# Distribution parameters
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)
pol_coefficients_n <- prod(pol_degrees + 1)
pol_coefficients <- rep(1, pol_coefficients_n)

# Set powers for expectation
expectation_powers <- c(3, 1, 2)

# Calculate expectation approximation gradient
# respect to all parameters
ehpaDiff(pol_coefficients = pol_coefficients,

pol_degrees = pol_degrees,
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mean = mean, sd = sd,
expectation_powers = expectation_powers,
type = "all")

# Let's calculate gradient of E(X1 ^ 3 | (X2 = 1, X3 = 2))
x <- c(0, 1, 2) # x[1] may be arbitrary (not NA) values
expectation_powers <- c(3, 0, 0) # expectation_powers[2:3] may be

# arbitrary (not NA) values
given_ind <- c(2, 3)
ehpaDiff(x = x,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
expectation_powers = expectation_powers,
type = "all")

## Example demonstrating ihpaDiff function application.
## Let's approximate some three random variables (X1, X2, X3 ) joint interval
## distribution function (intdf) at lower and upper points (0,1, 0.2, 0.3)
## and (0,4, 0.5, 0.6) correspondingly with Hermite polynomial of (1, 2, 3)
## degrees which polynomial coefficients equal 1 except coefficient
## related to x1*(x^3) polynomial element which equals 2.
## Also suppose that normal density related mean vector equals
## (1.1, 1.2, 1.3) while standard deviations vector is (2.1, 2.2, 2.3).
## In this example let's calculate interval distribution approximating
## function gradient respect to polynomial coefficients.

# Prepare initial values
x_lower <- matrix(c(0.1, 0.2, 0.3), nrow=1)
x_upper <- matrix(c(0.4, 0.5, 0.6), nrow=1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

# Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

# Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

# Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[apply(pol_ind, 2, function(x) all(x == c(1, 0, 2)))] <- 2

# Visualize correspondence between polynomial
# elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),

row.names = c("x1 power", "x2 power",
"x3 power", "coefficients"),

optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

# Calculate intdf approximation gradient respect to
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# polynomial coefficients at points x_lower and x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd)

# Condition second component to be 0.7
# Substitute x second component with conditional value 0.7
x_upper <- matrix(c(0.4, 0.7, 0.6), nrow = 1)

# Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

# Calculate conditional (on X2 = 0.5) intdf approximation
# respect to polynomial coefficients at points x_lower and x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

# Consider third component marginal distribution
# conditioned on the second component 0.7 value
# Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

# Calculate conditional (on X2 = 0.5) marginal (for X3) intdf approximation
# respect to:

# polynomial coefficients
ihpaDiff(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind)

# mean
ihpaDiff(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
type = "mean")

# sd
ihpaDiff(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
type = "sd")

# x_lower
ihpaDiff(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
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given_ind = given_ind, omit_ind = omit_ind,
type = "x_lower")

# x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
type = "x_upper")

## Examples demonstrating qhpa function application.

## Sub-example 1 - univariate distribution
## Consider random variable X

# Distribution parameters
mean <- 1
sd <- 2
pol_degrees <- 2
pol_coefficients <- c(1, 0.1, -0.01)

# The level of quantile
p <- 0.7

# Calculate quantile of X
qhpa(p = p,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd)

## Sub-example 2 - marginal distribution
## Consider random vector (X1, X2) and quantile of X1

# Distribution parameters
mean <- c(1, 1.2)
sd <- c(2, 3)
pol_degrees <- c(2, 2)
pol_coefficients <- c(1, 0.1, -0.01, 0.2, 0.012,

0.0013, 0.0042, 0.00025, 0)

# The level of quantile
p <- 0.7

# Calculate quantile of X1
qhpa(p = p,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
omit_ind = 2) # set omitted variable index

## Sub-example 3 - marginal and conditional distribution
## Consider random vector (X1, X2, X3) and
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## quantiles of X1|X3 and X1|(X2,X3)
mean <- c(1, 1.2, 0.9)
sd <- c(2, 3, 2.5)
pol_degrees <- c(1, 1, 1)
pol_coefficients <- c(1, 0.1, -0.01, 0.2, 0.012,

0.0013, 0.0042, 0.00025)

# The level of quantile
p <- 0.7

# Calculate quantile of X1|X3 = 0.2
qhpa(p = p,

x = matrix(c(NA, NA, 0.2), nrow = 1), # set any values to
# unconditioned and
# omitted components

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
omit_ind = 2, # set omitted variable index
given_ind = 3) # set conditioned variable index

# Calculate quantile of X1|(X2 = 0.5, X3 = 0.2)
qhpa(p = p,

x = matrix(c(NA, 0.5, 0.2), nrow = 1), # set any values to
# unconditioned and
# omitted components

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = c(2, 3)) # set conditioned

# variables indexes

## Examples demonstrating rhpa function application.

# Set seed for reproducibility
set.seed(123)

# Distribution parameters
mean <- 1
sd <- 2
pol_degrees <- 2
pol_coefficients <- c(1, 0.1, -0.01)

# Simulate two observations from this distribution
rhpa(n = 2,

pol_coefficients = pol_coefficients,
pol_degrees = pol_degrees,
mean = mean, sd = sd)

hpaDist0 Fast pdf and cdf for standardized univariate PGN distribution
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Description

This function uses fast algorithms to calculate densities and probabilities (along with their deriva-
tives) related to standardized PGN distribution.

Usage

dhpa0(
x,
pc,
mean = 0,
sd = 1,
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE,
is_grad = FALSE

)

phpa0(
x,
pc,
mean = 0,
sd = 1,
is_parallel = FALSE,
log = FALSE,
is_validation = TRUE,
is_grad = FALSE

)

Arguments

x numeric vector of functions arguments.

pc polynomial coefficients without the first term.

mean expected value (mean) of the distribution.

sd standard deviation of the distribution.

is_parallel logical; if TRUE then multiple cores will be used for some calculations. Cur-
rently unavailable.

log logical; if TRUE then probabilities p are given as log(p) or derivatives will be
given respect to log(p).

is_validation logical value indicating whether function input arguments should be validated.
Set it to FALSE for slight performance boost (default value is TRUE).

is_grad logical; if TRUE (default) then function returns gradients respect to x and pc.

Details

Functions dhpa0 and phpa0 are similar to dhpa and phpa correspondingly. However there are
two key differences. First, dhpa0 and phpa0 are deal with univariate PGN distribution only. Sec-
ond, this distribution is standardized to zero mean and unit variances. Moreover pc is similar to
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pol_coefficients argument of dhpa but without the first component i.e. pc=pol_coefficients[-1].
Also mean and sd are not the arguments of the normal density but actual mean and standard devia-
tion of the resulting distribution. So if these arguments are different from 0 and 1 correspondingly
then standardized PGN distribution will be linearly transformed to have mean mean and standard
deviation sd.

Value

Both functions return a list. Function dhpa0 returns a list with element named "den" that is a
numeric vector of density values. Function phpa0 returns a list with element named "prob" that is
a numeric vector of probabilities.

If is_grad = TRUE then elements "grad_x" and "grad_pc" will be add to the list containing gradi-
ents respect to input argument x and parameters pc correspondingly. If log = TRUE then additional
elements will be add to the list containing density, probability and gradient values for logarithms
of corresponding functions. These elements will be named as "grad_x_log", "grad_pc_log",
"grad_prob_log" and "grad_den_log".

Examples

# Calculate density and probability of standartized PGN
# distribution

# distribution parameters
pc <- c(0.5, -0.2)

# function arguments
x <- c(-0.3, 0.8, 1.5)

# probability density function
dhpa0(x, pc)

# cumulative distribution function
phpa0(x, pc)

# Additionally calculate gradients respect to arguments
# and parameters of the PGN distribution
dhpa0(x, pc, is_grad = TRUE)
phpa0(x, pc, is_grad = TRUE)

# Let's denote by X standardized PGN random variable and repeat
# calculations for 2 * X + 1
dhpa0(x, pc, is_grad = TRUE, mean = 1, sd = 2)
phpa0(x, pc, is_grad = TRUE, mean = 1, sd = 2)

hpaML Semi-nonparametric maximum likelihood estimation

Description

This function performs semi-nonparametric (SNP) maximum likelihood estimation of unknown
(possibly truncated) multivariate density using Hermite polynomial based approximating function
proposed by Gallant and Nychka in 1987. Please, see dhpa ’Details’ section to get more information
concerning this approximating function.
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Usage

hpaML(
data,
pol_degrees = numeric(0),
tr_left = numeric(0),
tr_right = numeric(0),
given_ind = numeric(0),
omit_ind = numeric(0),
x0 = numeric(0),
cov_type = "sandwich",
boot_iter = 100L,
is_parallel = FALSE,
opt_type = "optim",
opt_control = NULL,
is_validation = TRUE

)

Arguments

data numeric matrix which rows are realizations of independent identically distributed
random vectors while columns correspond to variables.

pol_degrees non-negative integer vector of polynomial degrees (orders).

tr_left numeric vector of left (lower) truncation limits.

tr_right numeric vector of right (upper) truncation limits.

given_ind logical or numeric vector indicating whether corresponding random vector com-
ponent is conditioned. By default it is a logical vector of FALSE values. If
give_ind[i] equals TRUE or i then i-th column of x matrix will contain condi-
tional values.

omit_ind logical or numeric vector indicating whether corresponding random component
is omitted. By default it is a logical vector of FALSE values. If omit_ind[i]
equals TRUE or i then values in i-th column of x matrix will be ignored.

x0 numeric vector of optimization routine initial values. Note that x0=c(pol_coefficients[-1],
mean, sd). For pol_coefficients, mean and sd documentation see dhpa func-
tion.

cov_type character determining the type of covariance matrix to be returned and used
for summary. If cov_type = "hessian" then negative inverse of Hessian ma-
trix will be applied. If cov_type = "gop" then inverse of Jacobian outer prod-
ucts will be used. If cov_type = "sandwich" (default) then sandwich covari-
ance matrix estimator will be applied. If cov_type = "bootstrap" then boot-
strap with boot_iter iterations will be used. If cov_type = "hessianFD" or
cov_type = "sandwichFD" then (probably) more accurate but computationally
demanding central difference Hessian approximation will be calculated for the
inverse Hessian and sandwich estimators correspondingly. Central differences
are computed via analytically provided gradient. This Hessian matrix estimation
approach seems to be less accurate than BFGS approximation if polynomial or-
der is high (usually greater then 5).
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boot_iter the number of bootstrap iterations for cov_type = "bootstrap" covariance ma-
trix estimator type.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

opt_type string value determining the type of the optimization routine to be applied. The
default is "optim" meaning that BFGS method from the optim function will be
applied. If opt_type = "GA" then ga function will be additionally applied.

opt_control a list containing arguments to be passed to the optimization routine depending
on opt_type argument value. Please see details to get additional information.

is_validation logical value indicating whether function input arguments should be validated.
Set it to FALSE for slight performance boost (default value is TRUE).

Details

Densities Hermite polynomial approximation approach has been proposed by A. Gallant and D. W.
Nychka in 1987. The main idea is to approximate unknown distribution density with scaled Hermite
polynomial. For more information please refer to the literature listed below.

Let’s use notations introduced in dhpa ’Details’ section. Function hpaML maximizes the following
quasi log-likelihood function:

lnL(α, µ, σ;x) =

n∑
i=1

ln (fξ(xi;α, µ, σ)) ,

where (in addition to previously defined notations):

xi - are observations i.e. data matrix rows.

n - is sample size i.e. the number of data matrix rows.

Arguments pol_degrees, tr_left, tr_right, given_ind and omit_ind affect the form of fξ (xi;α, µ, σ))
in a way described in dhpa ’Details’ section. Note that change of given_ind and omit_ind values
may result in estimator which statistical properties has not been rigorously investigated yet.

The first polynomial coefficient (zero powers) set to 1 for identification purposes i.e. α(0,...,0) = 1.

All NA and NaN values will be removed from data matrix.

The function calculates standard errors via sandwich estimator and significance levels are reported
taking into account quasi maximum likelihood estimator (QMLE) asymptotic normality. If one
wants to switch from QMLE to semi-nonparametric estimator (SNPE) during hypothesis testing
then covariance matrix should be estimated again using bootstrap.

This function maximizes (quasi) log-likelihood function via optim function setting its method argu-
ment to "BFGS". If opt_type = "GA" then genetic algorithm from ga function will be additionally
(after optim putting its solution (par) into suggestions matrix) applied in order to perform global
optimization. Note that global optimization takes much more time (usually minutes but sometimes
hours or even days). The number of iterations and population size of the genetic algorithm will
grow linearly along with the number of estimated parameters. If it seems that global maximum
has not been found then it is possible to continue the search restarting the function setting its input
argument x0 to x1 output value. Note that if cov_type = "bootstrap" then ga function will not be
used for bootstrap iterations since it may be extremely time consuming.
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If opt_type = "GA" then opt_control should be the list containing the values to be passed to
ga function. It is possible to pass arguments lower, upper, popSize, pcrossover, pmutation,
elitism, maxiter, suggestions, optim, optimArgs, seed and monitor. Note that it is possible
to set population, selection, crossover and mutation arguments changing ga default param-
eters via gaControl function. These arguments information reported in ga. In order to provide
manual values for lower and upper bounds please follow parameters ordering mentioned above
for the x0 argument. If these bounds are not provided manually then they (except those related to
the polynomial coefficients) will depend on the estimates obtained by local optimization via optim
function (this estimates will be in the middle between lower and upper). Specifically for each
sd parameter lower (upper) bound is 5 times lower (higher) than this parameter optim estimate.
For each mean and regression coefficient parameter its lower and upper bounds deviate from corre-
sponding optim estimate by two absolute values of this estimate. Finally, lower and upper bounds
for each polynomial coefficient are -10 and 10 correspondingly (do not depend on their optim
estimates).

The following arguments are differ from their defaults in ga:

• pmutation = 0.2,

• optim = TRUE,

• optimArgs = list("method" = "Nelder-Mead", "poptim" = 0.2, "pressel" = 0.5),

• seed = 8,

• elitism = 2 + round(popSize * 0.1).

The arguments popSize and maxiter of ga function have been set proportional to the number of
estimated polynomial coefficients:

• popSize = 10 + (prod(pol_degrees + 1) - 1) * 2.

• maxiter = 50 * (prod(pol_degrees + 1))

Value

This function returns an object of class "hpaML".

An object of class "hpaML" is a list containing the following components:

• optim - optim function output. If opt_type = "GA" then it is the list containing optim and ga
functions outputs.

• x1 - numeric vector of distribution parameters estimates.

• mean - density function mean vector estimate.

• sd - density function sd vector estimate.

• pol_coefficients - polynomial coefficients estimates.

• tr_left - the same as tr_left input parameter.

• tr_right - the same as tr_right input parameter.

• omit_ind - the same as omit_ind input parameter.

• given_ind - the same as given_ind input parameter.

• cov_mat - covariance matrix estimate.
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• results - numeric matrix representing estimation results.

• log-likelihood - value of Log-Likelihood function.

• AIC - AIC value.

• data - the same as data input parameter but without NA observations.

• n_obs - number of observations.

• bootstrap - list where bootstrap estimation results are stored.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

See Also

summary.hpaML, predict.hpaML, logLik.hpaML, plot.hpaML

Examples

## Approximate Student (t) distribution

# Set seed for reproducibility
set.seed(123)

# Simulate 5000 realizations of Student distribution
# with 5 degrees of freedom
n <- 5000
df <- 5
x <- matrix(rt(n, df), ncol = 1)
pol_degrees <- c(4)

# Apply pseudo maximum likelihood routine
ml_result <- hpa::hpaML(data = x, pol_degrees = pol_degrees)
summary(ml_result)

# Get predicted probabilites (density values) approximations
predict(ml_result)

# Plot density approximation
plot(ml_result)

## Approximate chi-squared distribution

# Set seed for reproducibility
set.seed(123)

# Simulate 5000 realizations of chi-squared distribution
# with 5 degrees of freedom

n <- 5000
df <- 5
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x <- matrix(rchisq(n, df), ncol = 1)
pol_degrees <- c(5)

# Apply pseudo maximum likelihood routine
ml_result <- hpaML(data = x, pol_degrees = as.vector(pol_degrees),
tr_left = 0)
summary(ml_result)

# Get predicted probabilites (density values) approximations
predict(ml_result)

# Plot density approximation
plot(ml_result)

## Approximate multivariate Student (t) distribution
## Note that calculations may take up to a minute

# Set seed for reproducibility
set.seed(123)

# Simulate 5000 realizations of three dimensional Student distribution
# with 5 degrees of freedom
library("mvtnorm")
cov_mat <- matrix(c(1, 0.5, -0.5, 0.5, 1, 0.5, -0.5, 0.5, 1), ncol = 3)
x <- rmvt(n = 5000, sigma = cov_mat, df = 5)

# Estimate approximating joint distribution parameters
ml_result <- hpaML(data = x, pol_degrees = c(1, 1, 1))

# Get summary
summary(ml_result)

# Get predicted values for joint density function
predict(ml_result)

# Plot density approximation for the
# second random variable
plot(ml_result, ind = 2)

# Plot density approximation for the
# second random variable conditioning
# on x1 = 1
plot(ml_result, ind = 2, given = c(1, NA, NA))

## Approximate Student (t) distribution and plot densities approximated
## under different hermite polynomial degrees against
## true density (of Student distribution)

# Simulate 5000 realizations of t-distribution with 5 degrees of freedom
n <- 5000
df <- 5
x <- matrix(rt(n, df), ncol=1)
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# Apply pseudo maximum likelihood routine
# Create matrix of lists where i-th element contains hpaML results for K=i
ml_result <- matrix(list(), 4, 1)
for(i in 1:4)
{
ml_result[[i]] <- hpa::hpaML(data = x, pol_degrees = i)

}

# Generate test values
test_values <- seq(qt(0.001, df), qt(0.999, df), 0.001)
n0 <- length(test_values)

# t-distribution density function at test values points
true_pred <- dt(test_values, df)

# Create matrix of lists where i-th element contains
# densities predictions for K=i
PGN_pred <- matrix(list(), 4, 1)
for(i in 1:4)
{

PGN_pred[[i]] <- predict(object = ml_result[[i]],
newdata = matrix(test_values, ncol=1))

}
# Plot the result
library("ggplot2")

# prepare the data
h <- data.frame("values" = rep(test_values,5),

"predictions" = c(PGN_pred[[1]],PGN_pred[[2]],
PGN_pred[[3]],PGN_pred[[4]],
true_pred),

"Density" = c(
rep("K=1",n0), rep("K=2",n0),
rep("K=3",n0), rep("K=4",n0),
rep("t-distribution",n0))
)

# build the plot
ggplot(h, aes(values, predictions)) + geom_point(aes(color = Density)) +

theme_minimal() + theme(legend.position = "top",
text = element_text(size=26),
legend.title=element_text(size=20),
legend.text=element_text(size=28)) +

guides(colour = guide_legend(override.aes = list(size=10))
)

# Get informative estimates summary for K=4
summary(ml_result[[4]])
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hpaSelection Perform semi-nonparametric selection model estimation

Description

This function performs semi-nonparametric (SNP) maximum likelihood estimation of sample se-
lection model using Hermite polynomial based approximating function proposed by Gallant and
Nychka in 1987. Please, see dhpa ’Details’ section to get more information concerning this approx-
imating function.

Usage

hpaSelection(
selection,
outcome,
data,
selection_K = 1L,
outcome_K = 1L,
pol_elements = 3L,
is_Newey = FALSE,
x0 = numeric(0),
is_Newey_loocv = FALSE,
cov_type = "sandwich",
boot_iter = 100L,
is_parallel = FALSE,
opt_type = "optim",
opt_control = NULL,
is_validation = TRUE

)

Arguments

selection an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the selection equation form. All variables in selection should
be numeric vectors of the same length.

outcome an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the outcome equation form. All variables in outcome should be
numeric vectors of the same length.

data data frame containing the variables in the model.

selection_K non-negative integer representing polynomial degree related to selection equa-
tion.

outcome_K non-negative integer representing polynomial degree related to outcome equa-
tion.

pol_elements number of conditional expectation approximating terms for Newey’s method.
If is_Newey_loocv is TRUE then determines maximum number of these terms
during leave-one-out cross-validation.
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is_Newey logical; if TRUE then returns only Newey’s method estimation results (default
value is FALSE).

x0 numeric vector of optimization routine initial values. Note that x0 = c(pol_coefficients[-1],
mean, sd, z_coef, y_coef).

is_Newey_loocv logical; if TRUE then number of conditional expectation approximating terms
for Newey’s method will be selected based on leave-one-out cross-validation
criteria iterating through 0 to pol_elements number of these terms.

cov_type character determining the type of covariance matrix to be returned and used
for summary. If cov_type = "hessian" then negative inverse of Hessian ma-
trix will be applied. If cov_type = "gop" then inverse of Jacobian outer prod-
ucts will be used. If cov_type = "sandwich" (default) then sandwich covari-
ance matrix estimator will be applied. If cov_type = "bootstrap" then boot-
strap with boot_iter iterations will be used. If cov_type = "hessianFD" or
cov_type = "sandwichFD" then (probably) more accurate but computationally
demanding central difference Hessian approximation will be calculated for the
inverse Hessian and sandwich estimators correspondingly. Central differences
are computed via analytically provided gradient. This Hessian matrix estimation
approach seems to be less accurate than BFGS approximation if polynomial or-
der is high (usually greater then 5).

boot_iter the number of bootstrap iterations for cov_type = "bootstrap" covariance ma-
trix estimator type.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

opt_type string value determining the type of the optimization routine to be applied. The
default is "optim" meaning that BFGS method from the optim function will be
applied. If opt_type = "GA" then ga function will be additionally applied.

opt_control a list containing arguments to be passed to the optimization routine depending
on opt_type argument value. Please see details to get additional information.

is_validation logical value indicating whether function input arguments should be validated.
Set it to FALSE for slight performance boost (default value is TRUE).

Details

Densities Hermite polynomial approximation approach has been proposed by A. Gallant and D. W.
Nychka in 1987. The main idea is to approximate unknown distribution density with scaled Hermite
polynomial. For more information please refer to the literature listed below.

Let’s use notations introduced in dhpa ’Details’ section. Function hpaSelection maximizes the
following quasi log-likelihood function:

lnL(γ, β, α, µ, σ;x) =
∑
i:zi=1

ln
(
F (ξ1|ξ2=yi−xo

iβ) (−γxsi ,∞;α, µ, σ)
)
fξ2 (yi − xoiβ) +

+
∑
i:zi=0

ln
(
F ξ(−∞,−xsiγ;α, µ, σ)

)
,

where (in addition to previously defined notations):
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xsi - is row vector of selection equation regressors derived from data according to selection
formula.

xoi - is row vector of outcome equation regressors derived from data according to outcome formula.

γ - is column vector of selection equation regression coefficients (constant will not be added by
default).

β - is column vector of outcome equation regression coefficients (constant will not be added by
default).

zi - binary (0 or 1) dependent variable defined in selection formula.

yi - continuous dependent variable defined in outcome formula.

Note that ξ is two dimensional and selection_K corresponds to K1 while outcome_K determines
K2.

The first polynomial coefficient (zero powers) set to 1 for identification purposes i.e. α0 = 1.

Rows in data corresponding to variables mentioned in selection and outcome formulas which
have at least one NA value will be ignored. The exception is continues dependent variable y which
may have NA values for observation where zi = 0.

Note that coefficient for the first independent variable in selection will be fixed to 1 i.e. γ1 = 1.

All variables mentioned in selection and outcome should be numeric vectors.

The function calculates standard errors via sandwich estimator and significance levels are reported
taking into account quasi maximum likelihood estimator (QMLE) asymptotic normality. If one
wants to switch from QMLE to semi-nonparametric estimator (SNPE) during hypothesis testing
then covariance matrix should be estimated again using bootstrap.

Initial values for optimization routine are obtained by Newey’s method (see the reference below).
In order to obtain initial values via least squares please, set pol_elements = 0. Initial values for the
outcome equation are obtained via hpaBinary function setting K to selection_K.

Note that selection equation dependent variables should have exactly two levels (0 and 1) where "0"
states for the selection results which leads to unobservable values of dependent variable in outcome
equation.

This function maximizes (quasi) log-likelihood function via optim function setting its method argu-
ment to "BFGS". If opt_type = "GA" then genetic algorithm from ga function will be additionally
(after optim putting its solution (par) into suggestions matrix) applied in order to perform global
optimization. Note that global optimization takes much more time (usually minutes but sometimes
hours or even days). The number of iterations and population size of the genetic algorithm will
grow linearly along with the number of estimated parameters. If it seems that global maximum
has not been found then it is possible to continue the search restarting the function setting its input
argument x0 to x1 output value. Note that if cov_type = "bootstrap" then ga function will not be
used for bootstrap iterations since it may be extremely time consuming.

If opt_type = "GA" then opt_control should be the list containing the values to be passed to
ga function. It is possible to pass arguments lower, upper, popSize, pcrossover, pmutation,
elitism, maxiter, suggestions, optim, optimArgs, seed and monitor. Note that it is possible
to set population, selection, crossover and mutation arguments changing ga default param-
eters via gaControl function. These arguments information reported in ga. In order to provide
manual values for lower and upper bounds please follow parameters ordering mentioned above
for the x0 argument. If these bounds are not provided manually then they (except those related to
the polynomial coefficients) will depend on the estimates obtained by local optimization via optim
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function (this estimates will be in the middle between lower and upper). Specifically for each
sd parameter lower (upper) bound is 5 times lower (higher) than this parameter optim estimate.
For each mean and regression coefficient parameter its lower and upper bounds deviate from corre-
sponding optim estimate by two absolute values of this estimate. Finally, lower and upper bounds
for each polynomial coefficient are -10 and 10 correspondingly (do not depend on their optim
estimates).

The following arguments are differ from their defaults in ga:

• pmutation = 0.2,

• optim = TRUE,

• optimArgs = list("method" = "Nelder-Mead", "poptim" = 0.2, "pressel" = 0.5),

• seed = 8,

• elitism = 2 + round(popSize * 0.1).

Let’s denote by n_reg the number of regressors included into the selection and outcome formulas.
The arguments popSize and maxiter of ga function have been set proportional to the number of
estimated polynomial coefficients and independent variables:

• popSize = 10 + 5 * (z_K + 1) * (y_K + 1) + 2 * n_reg

• maxiter = 50 * (z_K + 1) * (y_K + 1) + 10 * n_reg

Value

This function returns an object of class "hpaSelection".

An object of class "hpaSelection" is a list containing the following components:

• optim - optim function output. If opt_type = "GA" then it is the list containing optim and ga
functions outputs.

• x1 - numeric vector of distribution parameters estimates.

• Newey - list containing information concerning Newey’s method estimation results.

• selection_mean - estimate of the hermite polynomial mean parameter related to selection
equation random error marginal distribution.

• outcome_mean - estimate of the hermite polynomial mean parameter related to outcome equa-
tion random error marginal distribution.

• selection_sd - estimate of sd parameter related to selection equation random error marginal
distribution.

• outcome_sd - estimate of the hermite polynomial sd parameter related to outcome equation
random error marginal distribution.

• pol_coefficients - polynomial coefficients estimates.

• pol_degrees - numeric vector which first element is selection_K and the second is outcome_K.

• selection_coef - selection equation regression coefficients estimates.

• outcome_coef - outcome equation regression coefficients estimates.

• cov_mat - covariance matrix estimate.

• results - numeric matrix representing estimation results.
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• log-likelihood - value of Log-Likelihood function.

• re_moments - list which contains information about random errors expectations, variances
and correlation.

• data_List - list containing model variables and their partition according to outcome and
selection equations.

• n_obs - number of observations.

• ind_List - list which contains information about parameters indexes in x1.

• selection_formula - the same as selection input parameter.

• outcome_formula - the same as outcome input parameter.

Abovementioned list Newey has class "hpaNewey" and contains the following components:

• outcome_coef - regression coefficients estimates (except constant term which is part of con-
ditional expectation approximating polynomial).

• selection_coef - regression coefficients estimates related to selection equation.

• constant_biased - biased estimate of constant term.

• inv_mills - inverse mills ratios estimates and their powers (including constant).

• inv_mills_coef - coefficients related to inv_mills.

• pol_elements - the same as pol_elements input parameter. However if is_Newey_loocv
is TRUE then it will equal to the number of conditional expectation approximating terms for
Newey’s method which minimize leave-one-out cross-validation criteria.

• outcome_exp_cond - dependent variable conditional expectation estimates.

• selection_exp - selection equation random error expectation estimate.

• selection_var - selection equation random error variance estimate.

• hpaBinaryModel - object of class "hpaBinary" which contains selection equation estimation
results.

Abovementioned list re_moments contains the following components:

• selection_exp - selection equation random errors expectation estimate.

• selection_var - selection equation random errors variance estimate.

• outcome_exp - outcome equation random errors expectation estimate.

• outcome_var - outcome equation random errors variance estimate.

• errors_covariance - outcome and selection equation random errors covariance estimate.

• rho - outcome and selection equation random errors correlation estimate.

• rho_std - outcome and selection equation random errors correlation estimator standard error
estimate.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

W. K. Newey (2009) <https://doi.org/10.1111/j.1368-423X.2008.00263.x>

Mroz T. A. (1987) <doi:10.2307/1911029>
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See Also

summary.hpaSelection, predict.hpaSelection, plot.hpaSelection, logLik.hpaSelection

Examples

## Let's estimate wage equation accounting for non-random selection.
## See the reference to Mroz TA (1987) to get additional details about
## the data this examples use

# Prepare data
library("sampleSelection")
data("Mroz87")
h = data.frame("kids" = as.numeric(Mroz87$kids5 + Mroz87$kids618 > 0),
"age" = as.numeric(Mroz87$age),
"faminc" = as.numeric(Mroz87$faminc),
"educ" = as.numeric(Mroz87$educ),
"exper" = as.numeric(Mroz87$exper),
"city" = as.numeric(Mroz87$city),
"wage" = as.numeric(Mroz87$wage),
"lfp" = as.numeric(Mroz87$lfp))

# Estimate model parameters
model <- hpaSelection(selection = lfp ~ educ + age + I(age ^ 2) +

kids + log(faminc),
outcome = log(wage) ~ exper + I(exper ^ 2) +

educ + city,
selection_K = 2, outcome_K = 3,
data = h,
pol_elements = 3, is_Newey_loocv = TRUE)

summary(model)

# Plot outcome equation random errors density
plot(model, type = "outcome")
# Plot selection equation random errors density
plot(model, type = "selection")

## Estimate semi-nonparametric sample selection model
## parameters on simulated data given chi-squared random errors

set.seed(100)
library("mvtnorm")

# Sample size

n <- 1000

# Simulate independent variables
X_rho <- 0.5
X_sigma <- matrix(c(1, X_rho, X_rho,
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X_rho, 1, X_rho,
X_rho,X_rho,1),

ncol=3)
X <- rmvnorm(n=n, mean = c(0,0,0),

sigma = X_sigma)

# Simulate random errors
epsilon <- matrix(0, n, 2)
epsilon_z_y <- rchisq(n, 5)
epsilon[, 1] <- (rchisq(n, 5) + epsilon_z_y) * (sqrt(3/20)) - 3.8736
epsilon[, 2] <- (rchisq(n, 5) + epsilon_z_y) * (sqrt(3/20)) - 3.8736
# Simulate selection equation
z_star <- 1 + 1 * X[,1] + 1 * X[,2] + epsilon[,1]
z <- as.numeric((z_star > 0))

# Simulate outcome equation
y_star <- 1 + 1 * X[,1] + 1 * X[,3] + epsilon[,2]
z <- as.numeric((z_star > 0))
y <- y_star
y[z==0] <- NA
h <- as.data.frame(cbind(z, y, X))
names(h) <- c("z", "y", "x1", "x2", "x3")

# Estimate parameters
model <- hpaSelection(selection = z ~ x1 + x2,

outcome = y ~ x1 + x3,
data = h,
selection_K = 1, outcome_K = 3)

summary(model)

# Get conditional predictions for outcome equation
model_pred_c <- predict(model, is_cond = TRUE)
# Conditional predictions y|z=1
model_pred_c$y_1
# Conditional predictions y|z=0
model_pred_c$y_0

# Get unconditional predictions for outcome equation
model_pred_u <- predict(model, is_cond = FALSE)
model_pred_u$y

# Get conditional predictions for selection equation
# Note that for z=0 these predictions are NA
predict(model, is_cond = TRUE, type = "selection")
# Get unconditional predictions for selection equation
predict(model, is_cond = FALSE, type = "selection")

hsaDist Probabilities and Moments Hermite Spline Approximation
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Description

The set of functions similar to dhpa-like functions. The difference is that instead of polynomial
these functions utilize spline.

Usage

dhsa(x, m, knots, mean = 0, sd = 1, log = FALSE)

ehsa(m, knots, mean = 0, sd = 1, power = 1)

Arguments

x numeric vector of values for which the function should be estimated.

m numeric matrix which rows correspond to spline intervals while columns repre-
sent variables powers. Therefore the element in i-th row and j-th column rep-
resents the coefficient associated with the variable that 1) belongs to the i-th
interval i.e. between i-th and (i + 1)-th knots 2) raised to the power of (j - 1).

knots sorted in ascending order numeric vector representing knots of the spline.

mean expected value of a normal distribution.

sd standard deviation of a normal distribution.

log logical; if TRUE then probabilities p are given as log(p) or derivatives will be
given respect to log(p).

power non-negative integer representing the power of the expected value i.e. E(X ^
power) will be estimated.

Details

In contrast to dhpa-like functions these functions may deal with univariate distributions only. In
future this functions will be generalized to work with multivariate distributions. The main idea of
these functions is to use squared spline instead of squared polynomial in order to provide greater
numeric stability and approximation accuracy. To provide spline parameters please use m and knots
arguments (i.e. instead of pol_degrees and pol_coefficients arguments that where used to
specify the polynomial for dhpa-like functions).

Value

Function dhsa returns vector of probabilities of the same length as x. Function ehsa returns moment
value.

See Also

dhpa, bsplineGenerate
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Examples

## Examples demonstrating dhsa and ehsa functions application.

# Generate a b-splines
b <- bsplineGenerate(knots = c(-2.1, 1.5, 1.5, 2.2, 3.7, 4.2, 5),

degree = 3)

# Combine b-splines into a spline
spline <- bsplineComb(splines = b, weights = c(1.6, -1.2, 3.2))

# Assign parameters using the spline created above
knots <- spline$knots
m <- spline$m
mean <- 1
sd <- 2

# Estimate the density at particular points
x <- c(2, 3.7, 8)
dhsa(x,

m = m, knots = knots,
mean = mean, sd = sd)

# Calculate expected value
ehsa(m = m, knots = knots,

mean = mean, sd = sd,
power = 1)

# Evaluate the third moment
ehsa(m = m, knots = knots,

mean = mean, sd = sd,
power = 3)

logLik.hpaBinary Calculates log-likelihood for "hpaBinary" object

Description

This function calculates log-likelihood for "hpaBinary" object

Usage

## S3 method for class 'hpaBinary'
logLik(object, ...)

Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)
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logLik.hpaML Calculates log-likelihood for "hpaML" object

Description

This function calculates log-likelihood for "hpaML" object

Usage

## S3 method for class 'hpaML'
logLik(object, ...)

Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

logLik.hpaSelection Calculates log-likelihood for "hpaSelection" object

Description

This function calculates log-likelihood for "hpaSelection" object

Usage

## S3 method for class 'hpaSelection'
logLik(object, ...)

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)
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logLik_hpaBinary Calculates log-likelihood for "hpaBinary" object

Description

This function calculates log-likelihood for "hpaBinary" object

Usage

logLik_hpaBinary(object)

Arguments

object Object of class "hpaBinary"

logLik_hpaML Calculates log-likelihood for "hpaML" object

Description

This function calculates log-likelihood for "hpaML" object

Usage

logLik_hpaML(object)

Arguments

object Object of class "hpaML"

logLik_hpaSelection Calculates log-likelihood for "hpaSelection" object

Description

This function calculates log-likelihood for "hpaSelection" object

Usage

logLik_hpaSelection(object)

Arguments

object Object of class "hpaSelection"
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mecdf Calculates multivariate empirical cumulative distribution function

Description

This function calculates multivariate empirical cumulative distribution function at each point of the
sample

Usage

mecdf(x)

Arguments

x numeric matrix which rows are observations

normalMoment Calculate k-th order moment of normal distribution

Description

This function recursively calculates k-th order moment of normal distribution.

Usage

normalMoment(
k = 0L,
mean = 0,
sd = 1,
return_all_moments = FALSE,
is_validation = TRUE,
is_central = FALSE,
diff_type = "NO"

)

Arguments

k non-negative integer moment order.

mean numeric expected value.

sd positive numeric standard deviation.
return_all_moments

logical; if TRUE, function returns (k+1)-dimensional numeric vector of moments
of normally distributed random variable with mean = mean and standard devi-
ation = sd. Note that i-th vector’s component value corresponds to the (i-1)-th
moment.
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is_validation logical value indicating whether function input arguments should be validated.
Set it to FALSE for slight performance boost (default value is TRUE).

is_central logical; if TRUE, then central moments will be calculated.

diff_type string value indicating the type of the argument the moment should be differen-
tiated respect to. Default value is "NO" so the moments itself will be returned.
Alternative values are "mean" and "sd". Also "x_lower" and "x_upper" val-
ues are available for truncatedNormalMoment.

Details

This function estimates k-th order moment of normal distribution which mean equals to mean and
standard deviation equals to sd.

Note that parameter k value automatically converts to integer. So passing non-integer k value will
not cause any errors but the calculations will be performed for rounded k value only.

Value

This function returns k-th order moment of normal distribution which mean equals to mean and
standard deviation is sd. If return_all_moments is TRUE then see this argument description above
for output details.

Examples

## Calculate 5-th order moment of normal random variable which
## mean equals to 3 and standard deviation is 5.

# 5-th moment
normalMoment(k = 5, mean = 3, sd = 5)

# (0-5)-th moments
normalMoment(k = 5, mean = 3, sd = 5, return_all_moments = TRUE)

# 5-th moment derivative respect to mean
normalMoment(k = 5, mean = 3, sd = 5, diff_type = "mean")

# 5-th moment derivative respect to sd
normalMoment(k = 5, mean = 3, sd = 5, diff_type = "sd")

plot.hpaBinary Plot hpaBinary random errors approximated density

Description

Plot hpaBinary random errors approximated density
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Usage

## S3 method for class 'hpaBinary'
plot(x, y = NULL, ...)

Arguments

x Object of class "hpaBinary"

y this parameter currently ignored

... further arguments to be passed to plot function.

plot.hpaML Plot approximated marginal density using hpaML output

Description

Plot approximated marginal density using hpaML output

Usage

## S3 method for class 'hpaML'
plot(x, y = NULL, ..., ind = 1, given = NULL)

Arguments

x Object of class "hpaML"

y this parameter currently ignored

... further arguments to be passed to plot function.

ind index of random variable for which approximation to marginal density should
be plotted

given numeric vector of the same length as given_ind from x. Determines conditional
values for the corresponding components. NA values in given vector indicate
that corresponding random variable is not conditioned. By default all given
components are NA so unconditional marginal density will be plotted for the
ind-th random variable.
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plot.hpaSelection Plot hpaSelection random errors approximated density

Description

Plot hpaSelection random errors approximated density

Usage

## S3 method for class 'hpaSelection'
plot(x, y = NULL, ..., type = "outcome")

Arguments

x Object of class "hpaSelection"

y this parameter currently ignored

... further arguments to be passed to plot function.

type character; if "outcome" then function plots the graph for outcome equation ran-
dom errors, if "selection" then plot for selection equation random errors will be
generated.

pnorm_parallel Calculate normal cdf in parallel

Description

Calculate in parallel for each value from vector x distribution function of normal distribution with
mean equal to mean and standard deviation equal to sd.

Usage

pnorm_parallel(x, mean = 0, sd = 1, is_parallel = FALSE)

Arguments

x vector of quantiles: should be numeric vector, not just double value.

mean double value.

sd double positive value.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).
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polynomialIndex Multivariate Polynomial Representation

Description

Function polynomialIndex provides matrix which allows to iterate through the elements of multi-
variate polynomial being aware of these elements powers. So (i, j)-th element of the matrix is power
of j-th variable in i-th multivariate polynomial element.

Function printPolynomial prints multivariate polynomial given its degrees (pol_degrees) and
coefficients (pol_coefficients) vectors.

Usage

polynomialIndex(pol_degrees = numeric(0), is_validation = TRUE)

printPolynomial(pol_degrees, pol_coefficients, is_validation = TRUE)

Arguments

pol_degrees non-negative integer vector of polynomial degrees (orders).

is_validation logical value indicating whether function input arguments should be validated.
Set it to FALSE for slight performance boost (default value is TRUE).

pol_coefficients

numeric vector of polynomial coefficients.

Details

Multivariate polynomial of degrees (K1, ...,Km) (pol_degrees) has the form:

a(0,...,0)x
0
1 ∗ ... ∗ x0m + ...+ a(K1,...,Km)x

K1
1 ∗ ... ∗ xKm

m ,

where a(i1,...,im) are polynomial coefficients, while polynomial elements are:

a(i1,...,im)x
i1
1 ∗ ... ∗ ximm ,

where (i1, ..., im) are polynomial element’s powers corresponding to variables (x1, ..., xm) respec-
tively. Note that ij ∈ {0, ...,Kj}.
Function printPolynomial removes polynomial elements which coefficients are zero and variables
which powers are zero. Output may contain long coefficients representation as they are not rounded.

Value

Function polynomialIndex returns matrix which rows are responsible for variables while columns
are related to powers. So (i, j)-th element of this matrix corresponds to the power ij of the xj
variable in i-th polynomial element. Therefore i-th column of this matrix contains vector of powers
(i1, ..., im) for the i-th polynomial element. So the function transforms m-dimensional elements
indexing to one-dimensional.

Function printPolynomial returns the string which contains polynomial symbolic representation.
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Examples

## Get polynomial indexes matrix for the polynomial
## which degrees are (1, 3, 5)

polynomialIndex(c(1, 3, 5))

## Consider multivariate polynomial of degrees (2, 1) such that coefficients
## for elements which powers sum is even are 2 and for those which powers sum
## is odd are 5. So the polynomial is 2+5x2+5x1+2x1x2+2x1^2+5x1^2x2 where
## x1 and x2 are polynomial variables.

# Create variable to store polynomial degrees
pol_degrees <- c(2, 1)

# Let's represent its powers (not coefficients) in a matrix form
pol_matrix <- polynomialIndex(pol_degrees)

# Calculate polynomial elements' powers sums
pol_powers_sum <- pol_matrix[1, ] + pol_matrix[2, ]

# Let's create polynomial coefficients vector filling it
# with NA values
pol_coefficients <- rep(NA, (pol_degrees[1] + 1) * (pol_degrees[2] + 1))

# Now let's fill coefficients vector with correct values
pol_coefficients[pol_powers_sum %% 2 == 0] <- 2
pol_coefficients[pol_powers_sum %% 2 != 0] <- 5

# Finally, let's check that correspondence is correct
printPolynomial(pol_degrees, pol_coefficients)

## Let's represent polynomial 0.3+0.5x2-x2^2+2x1+1.5x1x2+x1x2^2

pol_degrees <- c(1, 2)
pol_coefficients <- c(0.3, 0.5, -1, 2, 1.5, 1)

printPolynomial(pol_degrees, pol_coefficients)

predict.hpaBinary Predict method for hpaBinary

Description

Predict method for hpaBinary

Usage

## S3 method for class 'hpaBinary'
predict(object, ..., newdata = NULL, is_prob = TRUE)
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Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original data frame (matrix) used.

is_prob logical; if TRUE (default) then function returns predicted probabilities. Other-
wise latent variable (single index) estimates will be returned.

Value

This function returns predicted probabilities based on hpaBinary estimation results.

predict.hpaML Predict method for hpaML

Description

Predict method for hpaML

Usage

## S3 method for class 'hpaML'
predict(object, ..., newdata = matrix(c(0)))

Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original data frame (matrix) used.

Value

This function returns predictions based on hpaML estimation results.
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predict.hpaSelection Predict outcome and selection equation values from hpaSelection
model

Description

This function predicts outcome and selection equation values from hpaSelection model.

Usage

## S3 method for class 'hpaSelection'
predict(
object,
...,
newdata = NULL,
method = "HPA",
is_cond = TRUE,
type = "outcome"

)

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original data frame (matrix) used.

method string value indicating prediction method based on hermite polynomial approx-
imation "HPA" or Newey method "Newey".

is_cond logical; if TRUE (default) then conditional predictions will be estimated. Other-
wise unconditional predictions will be returned.

type character; if "outcome" (default) then predictions for selection equation will be
estimated according to method. If "selection" then selection equation predic-
tions (probabilities) will be returned.

Details

Note that Newey method can’t predict conditional outcomes for zero selection equation value. Con-
ditional probabilities for selection equation could be estimated only when dependent variable from
outcome equation is observable.

Value

This function returns the list which structure depends on method, is_probit and is_outcome
values.
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predict_hpaBinary Predict method for hpaBinary

Description

Predict method for hpaBinary

Usage

predict_hpaBinary(object, newdata = NULL, is_prob = TRUE)

Arguments

object Object of class "hpaBinary"

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original data frame (matrix) used.

is_prob logical; if TRUE (default) then function returns predicted probabilities. Other-
wise latent variable (single index) estimates will be returned.

Value

This function returns predicted probabilities based on hpaBinary estimation results.

predict_hpaML Predict method for hpaML

Description

Predict method for hpaML

Usage

predict_hpaML(object, newdata = matrix(1, 1))

Arguments

object Object of class "hpaML"

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original data frame (matrix) used.

Value

This function returns predictions based on hpaML estimation results.
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predict_hpaSelection Predict outcome and selection equation values from hpaSelection
model

Description

This function predicts outcome and selection equation values from hpaSelection model.

Usage

predict_hpaSelection(
object,
newdata = NULL,
method = "HPA",
is_cond = TRUE,
is_outcome = TRUE

)

Arguments

object Object of class "hpaSelection"

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original data frame (matrix) used.

method string value indicating prediction method based on hermite polynomial approx-
imation "HPA" or Newey method "Newey".

is_cond logical; if TRUE (default) then conditional predictions will be estimated. Other-
wise unconditional predictions will be returned.

is_outcome logical; if TRUE (default) then predictions for selection equation will be esti-
mated using "HPA" method. Otherwise selection equation predictions (proba-
bilities) will be returned.

Details

Note that Newey method can’t predict conditional outcomes for zero selection equation value. Con-
ditional probabilities for selection equation could be estimated only when dependent variable from
outcome equation is observable.

Value

This function returns the list which structure depends on method, is_probit and is_outcome
values.
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print.hpaBinary Print method for "hpaBinary" object

Description

Print method for "hpaBinary" object

Usage

## S3 method for class 'hpaBinary'
print(x, ...)

Arguments

x Object of class "hpaBinary"

... further arguments (currently ignored)

print.hpaML Print method for "hpaML" object

Description

Print method for "hpaML" object

Usage

## S3 method for class 'hpaML'
print(x, ...)

Arguments

x Object of class "hpaML"

... further arguments (currently ignored)



print.hpaSelection 65

print.hpaSelection Print method for "hpaSelection" object

Description

Print method for "hpaSelection" object

Usage

## S3 method for class 'hpaSelection'
print(x, ...)

Arguments

x Object of class "hpaSelection"

... further arguments (currently ignored)

print.summary.hpaBinary

Summary for "hpaBinary" object

Description

Summary for "hpaBinary" object

Usage

## S3 method for class 'summary.hpaBinary'
print(x, ...)

Arguments

x Object of class "hpaBinary"

... further arguments (currently ignored)
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print.summary.hpaML Summary for hpaML output

Description

Summary for hpaML output

Usage

## S3 method for class 'summary.hpaML'
print(x, ...)

Arguments

x Object of class "hpaML"

... further arguments (currently ignored)

print.summary.hpaSelection

Summary for "hpaSelection" object

Description

Summary for "hpaSelection" object

Usage

## S3 method for class 'summary.hpaSelection'
print(x, ...)

Arguments

x Object of class "hpaSelection"

... further arguments (currently ignored)
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print_summary_hpaBinary

Summary for hpaBinary output

Description

Summary for hpaBinary output

Usage

print_summary_hpaBinary(x)

Arguments

x Object of class "hpaML"

print_summary_hpaML Summary for hpaML output

Description

Summary for hpaML output

Usage

print_summary_hpaML(x)

Arguments

x Object of class "hpaML"

print_summary_hpaSelection

Summary for hpaSelection output

Description

Summary for hpaSelection output

Usage

print_summary_hpaSelection(x)

Arguments

x Object of class "hpaSelection"
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summary.hpaBinary Summarizing hpaBinary Fits

Description

Summarizing hpaBinary Fits

Usage

## S3 method for class 'hpaBinary'
summary(object, ...)

Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)

Value

This function returns the same list as hpaBinary function changing its class to "summary.hpaBinary".

summary.hpaML Summarizing hpaML Fits

Description

Summarizing hpaML Fits

Usage

## S3 method for class 'hpaML'
summary(object, ...)

Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

Value

This function returns the same list as hpaML function changing its class to "summary.hpaML".
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summary.hpaSelection Summarizing hpaSelection Fits

Description

This function summarizing hpaSelection Fits

Usage

## S3 method for class 'hpaSelection'
summary(object, ...)

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)

Value

This function returns the same list as hpaSelection function changing its class to "summary.hpaSelection".

summary_hpaBinary Summarizing hpaBinary Fits

Description

Summarizing hpaBinary Fits

Usage

summary_hpaBinary(object)

Arguments

object Object of class "hpaBinary"

Value

This function returns the same list as hpaBinary function changing its class to "summary.hpaBinary".



70 summary_hpaSelection

summary_hpaML Summarizing hpaML Fits

Description

Summarizing hpaML Fits

Usage

summary_hpaML(object)

Arguments

object Object of class "hpaML"

Value

This function returns the same list as hpaML function changing its class to "summary.hpaML".

summary_hpaSelection Summarizing hpaSelection Fits

Description

This function summarizing hpaSelection Fits.

Usage

summary_hpaSelection(object)

Arguments

object Object of class "hpaSelection".

Value

This function returns the same list as hpaSelection function changing its class to "summary.hpaSelection".
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truncatedNormalMoment Calculate k-th order moment of truncated normal distribution

Description

This function recursively calculates k-th order moment of truncated normal distribution.

Usage

truncatedNormalMoment(
k = 1L,
x_lower = numeric(0),
x_upper = numeric(0),
mean = 0,
sd = 1,
pdf_lower = numeric(0),
cdf_lower = numeric(0),
pdf_upper = numeric(0),
cdf_upper = numeric(0),
cdf_difference = numeric(0),
return_all_moments = FALSE,
is_validation = TRUE,
is_parallel = FALSE,
diff_type = "NO"

)

Arguments

k non-negative integer moment order.

x_lower numeric vector of lower truncation points.

x_upper numeric vector of upper truncation points.

mean numeric expected value.

sd positive numeric standard deviation.

pdf_lower non-negative numeric matrix of precalculated normal density functions with
mean mean and standard deviation sd at points given by x_lower.

cdf_lower non-negative numeric matrix of precalculated normal cumulative distribution
functions with mean mean and standard deviation sd at points given by x_lower.

pdf_upper non-negative numeric matrix of precalculated normal density functions with
mean mean and standard deviation sd at points given by x_upper.

cdf_upper non-negative numeric matrix of precalculated normal cumulative distribution
functions with mean mean and standard deviation sd at points given by x_upper.

cdf_difference non-negative numeric matrix of precalculated cdf_upper-cdf_lower values.
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return_all_moments

logical; if TRUE, function returns the matrix of moments of normally distributed
random variable with mean = mean and standard deviation = sd under lower
and upper truncation points x_lower and x_upper correspondingly. Note that
element in i-th row and j-th column of this matrix corresponds to the i-th obser-
vation (j-1)-th order moment.

is_validation logical value indicating whether function input arguments should be validated.
Set it to FALSE for slight performance boost (default value is TRUE).

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

diff_type string value indicating the type of the argument the moment should be differen-
tiated respect to. Default value is "NO" so the moments itself will be returned.
Alternative values are "mean" and "sd". Also "x_lower" and "x_upper" val-
ues are available for truncatedNormalMoment.

Details

This function estimates k-th order moment of normal distribution which mean equals to mean and
standard deviation equals to sd truncated at points given by x_lower and x_upper. Note that
the function is vectorized so you can provide x_lower and x_upper as vectors of equal size. If
vectors values for x_lower and x_upper are not provided then their default values will be set to
-(.Machine$double.xmin * 0.99) and (.Machine$double.xmax * 0.99) correspondingly.

Note that parameter k value automatically converts to integer. So passing non-integer k value will
not cause any errors but the calculations will be performed for rounded k value only.

If there is precalculated density or cumulative distribution functions at standardized truncation
points (subtract mean and then divide by sd) then it is possible to provide them through pdf_lower,
pdf_upper, cdf_lower and cdf_upper arguments in order to decrease number of calculations.

Value

This function returns vector of k-th order moments for normally distributed random variable with
mean = mean and standard deviation = sd under x_lower and x_upper truncation points x_lower
and x_upper correspondingly. If return_all_moments is TRUE then see this argument description
above for output details.

Examples

## Calculate 5-th order moment of three truncated normal random
## variables (x1, x2, x3) which mean is 5 and standard deviation is 3.
## These random variables truncation points are given
## as follows:-1<x1<1, 0<x2<2, 1<x3<3.
k <- 3
x_lower <- c(-1, 0, 1, -Inf, -Inf)
x_upper <- c(1, 2 , 3, 2, Inf)
mean <- 3
sd <- 5

# get the moments
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truncatedNormalMoment(k, x_lower, x_upper, mean, sd)

# get matrix of (0-5)-th moments (columns) for each variable (rows)
truncatedNormalMoment(k, x_lower, x_upper,

mean, sd,
return_all_moments = TRUE)

# get the moments derivatives respect to mean
truncatedNormalMoment(k, x_lower, x_upper,

mean, sd,
diff_type = "mean")

# get the moments derivatives respect to standard deviation
truncatedNormalMoment(k, x_lower, x_upper,

mean, sd,
diff_type = "sd")

vcov.hpaBinary Extract covariance matrix from hpaBinary object

Description

Extract covariance matrix from hpaBinary object

Usage

## S3 method for class 'hpaBinary'
vcov(object, ...)

Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)

vcov.hpaML Extract covariance matrix from hpaML object

Description

Extract covariance matrix from hpaML object

Usage

## S3 method for class 'hpaML'
vcov(object, ...)
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Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

vcov.hpaSelection Extract covariance matrix from hpaSelection object

Description

Extract covariance matrix from hpaSelection object

Usage

## S3 method for class 'hpaSelection'
vcov(object, ...)

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)
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