
Package ‘iForecast’
October 13, 2022

Type Package

Title Machine Learning Time Series Forecasting

Version 1.0.6

Date 2022-07-09

Author Ho Tsung-wu

Maintainer Ho Tsung-wu <tsungwu@ntnu.edu.tw>

Description Compute both static onestep and iterative multistep time series forecasts of ma-
chine learning models.

License GPL (>= 2)

LazyData TRUE

LazyLoad yes

Depends R (>= 3.5),caret

Imports magrittr

Suggests data.table, forecast, h2o, keras, kernlab, lubridate,
tensorflow, tibble, timeSeries, timeDate, timetk, zoo

NeedsCompilation no

Repository CRAN

Date/Publication 2022-07-09 06:30:07 UTC

R topics documented:
data-sets . 2
iForecast . 2
rollingWindows . 4
ttsAutoML . 5
ttsCaret . 6
ttsLSTM . 9

Index 12

1

2 iForecast

data-sets Economic and Financial Data Sets

Description

ES_15m is 15-min realized absolute variance of e-mini S&P 500. macrodata contains monthly US
unemployment(unrate), ES_Daily is daily realized absolute variance of e-mini S&P 500. macrodata
contains monthly US unemployment(unrate) and and year-to-year changes in three regional busi-
ness cycle indices (OECD, NAFTA, and G7). bc contains monthly business cycle data, bc is binary
indicator(0=recession, 1=boom) of Taiwan’s business cycle phases, IPI_TWN is industrial produc-
tion index of Taiwan, LD_OECD, LD_G7, and LD_NAFTA are leading indicators of OECD, G7
and NAFTA regions; all four are monthly rate of changes.

Usage

data(ES_15m)
data(macrodata)
data(ES_Daily)
data(bc)

Value

an object of class "zoo".

iForecast Extract predictions and class probabilities from train objects

Description

It generates both the static and recursive time series plots of machine learning prediction object
generated by ttsCaret, ttsAutoML and ttsLSTM.

Usage

iForecast(Model,newdata,type)

Arguments

Model Object of trained model.

newdata The dataset for pediction, the column names must be the same as the trained
data.

type If type="staticfit", it computes the direct (static) forecasting values of insample
model fit; if type="recursive", it computes the recursive (dynamic) forecasting
values of insample model; for recursive forecasts, AR term is required.

iForecast 3

Details

This function generates forecasts of ttsCaret,ttsAutoML, and ttsLSTM.

Value

prediction The forecasted time series target variable. For binary case, it returns both porba-
bilities and class.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

Examples

Cross-validation takes time, example below is commented.
Machine Learning by library(caret)
#Case 1. Low frequency, regression type
data("macrodata")
dep <- macrodata[569:669,"unrate",drop=FALSE]
ind <- macrodata[569:669,-1,drop=FALSE]
train.end <- "2018-12-01"# Choosing the end dating of train

models <- c("svm","rf","rpart")[3]
type <- c("none","trend","season","both")[1]
Caret <- ttsCaret(y=dep, x=ind, arOrder=c(1), xregOrder=c(1),
method=models, tuneLength =1, train.end, type=type,resampling="cv")
testData1 <- window(Caret$data,start="2019-01-01",end=end(Caret$data))

P1 <- iForecast(Model=Caret,newdata=testData1,type="staticfit")
P2 <- iForecast(Model=Caret,newdata=testData1,type="recursive")

#tail(cbind(testData1[,1],P1))
#tail(cbind(testData1[,1],P2))

#Case 2. Low frequency, binary type
data(bc) #binary dependent variable, business cycle phases
dep=bc[,1,drop=FALSE]
ind=bc[,-1]

train.end=as.character(rownames(dep))[as.integer(nrow(dep)*0.8)]
test.start=as.character(rownames(dep))[as.integer(nrow(dep)*0.8)+1]

#Caret = ttsCaret(y=dep, x=ind, arOrder=c(1), xregOrder=c(1), method=models,
tuneLength =10, train.end, type=type)

#testData1=window(Caret$data,start=test.start,end=end(Caret$data))

#head(Caret$dataused)
#P1=iForecast(Model=Caret,newdata=testData1,type="staticfit")
#P2=iForecast(Model=Caret,newdata=testData1,type="recursive")

#tail(cbind(testData1[,1],P1),10)

4 rollingWindows

#tail(cbind(testData1[,1],P2),10)

rollingWindows Rolling timeframe for time series anaysis

Description

It extracts time stamp from a timeSeries object and separates the time into in-sample training and
out-of-sample validation ranges.

Usage

rollingWindows(x,estimation="18m",by = "6m")

Arguments

x The time series matrix (vector) with timeSeries or zoo format of "

estimation The range of insample estimation period, the default is 18 months(18m), where
the k-fold cross-section is performed. Week is also supported (see example).

by The range of out-of-sample validation/testing period, the default is 6 months(6m).Week
is also supported (see example).

Details

This function is similar to the backtesting framework in portfolio analysis. Rolling windows fixes
the origin and the training sample grows over time, moving windows can be achieved by placing
window() on dependent variable at each iteration.

Value

window The time labels of from and to

.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

Examples

data(macrodata)
y=macrodata[,1,drop=FALSE]
timeframe=rollingWindows(y,estimation="300m",by="6m")
#estimation="300m", because macrodata is monthly
FROM=timeframe$from
TO=timeframe$to

ttsAutoML 5

data(ES_Daily)
y=ES_Daily[,1,drop=FALSE]
timeframe=rollingWindows(y,estimation ="60w",by="1w")
#estimation="60w", because ES_Daily is daily(obs=60x5)
FROM=timeframe$from
TO=timeframe$to

ttsAutoML Train time series by automatic machine learning of h2o provided by
H2O.ai

Description

It generates both the static and recursive time series plots of H2O.ai object generated by package
h2o provided by H2O.ai.

Usage

ttsAutoML(y,x=NULL,train.end,arOrder=2,xregOrder=0,maxSecs=30)

Arguments

y The time series object of the target variable, or the dependent variable, with
timeSeries or zoo format, must have dimension. y can be either binary or
continuous. Time format must be "

x The time series matrix of input variables, or the independent variables, with zoo
format.Time format must be "

train.end The end date of training data, must be specificed. The default dates of train.start
and test.end are the start and the end of input data; and the test.start is the 1-
period next of train.end.

arOrder The autoregressive order of the target variable, which may be sequentially specifed
like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not al-
lowed.

xregOrder The distributed lag structure of the input variables, which may be sequentially
specifed like xregOrder=1:5; or discontinuous lags like xregOrder=c(0,3,5); zero
is allowed since contemporaneous correlation is allowed.

maxSecs The maximal run time specified, in seconds. Default=20.

Details

This function calls the h2o.automl function from package h2o to execute automatic machine learn-
ing estimation. When execution finished, it computes two types of time series forecasts: static and
recursive. The procedure of h2o.automl automatically generates a lot of time features.

6 ttsCaret

Value

output Output object generated by train function of caret.

arOrder The autoregressive order of the target variable used.

data The dataset of imputed.

dataused The data used by arOrder, xregOrder

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

Examples

Cross-validation takes time, example below is commented.
data("macrodata")
dep<-macrodata[,"unrate",drop=FALSE]
ind<-macrodata[,-1,drop=FALSE]

Choosing the dates of training and testing data
train.end<-"2008-12-01"

#autoML of H2O.ai

#autoML <- ttsAutoML(y=dep, x=ind, train.end,arOrder=c(2,4),
xregOrder=c(0,1,3), maxSecs =30)
#testData2 <- window(autoML$dataused,start="2009-01-01",end=end(autoML$data))
#P1<-iForecast(Model=autoML,newdata=testData2,type="staticfit")
#P2<-iForecast(Model=autoML,newdata=testData2,type="recursive")

#tail(cbind(testData2[,1],P1))
#tail(cbind(testData2[,1],P2))

ttsCaret Train time series by caret and produce two types of time series fore-
casts: static and recursive

Description

It generates both the static and recursive time series plots of machine learning prediction object
generated by package caret.

ttsCaret 7

Usage

ttsCaret(
y,
x=NULL,
method,
train.end,
arOrder=2,
xregOrder=0,
type,
tuneLength =10,
preProcess = NULL,
resampling="boot",
Number=NULL,
Repeat=NULL)

Arguments

y The time series object of the target variable, or the dependent variable, with
timeSeries or zoo format, must have dimension. y can be either binary or
continuous.Time format must be "

x The time series matrix of input variables, or the independent variables, with zoo
format.Time format must be "

method The train_model_list of caret. While using this, make sure that the method al-
lows regression. Methods in c("svm","rf","rpart","gamboost","BstLm","bstSm","blackboost")
are feasible.

train.end The end date of training data, must be specificed.The default dates of train.start
and test.end are the start and the end of input data; and the test.start is the 1-
period next of train.end.

arOrder The autoregressive order of the target variable, which may be sequentially specifed
like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not al-
lowed.

xregOrder The distributed lag structure of the input variables, which may be sequentially
specifed like xregOrder=0:5; or discontinuous lags like xregOrder=c(0,3,5); zero
is allowed since contemporaneous correlation is allowed.

type The additional input variables. We have four selection:
"none"=no other variables,
"trend"=inclusion of time dummy,
"season"=inclusion of seasonal dummies,
"both"=inclusion of both trend and season. No default.

tuneLength The same as the length specified in train function of package caret.

preProcess Whether to pre-process the data, current possibilities are "BoxCox", "YeoJohn-
son", "expoTrans", "center", "scale", "range", "knnImpute", "bagImpute", "me-
dianImpute", "pca", "ica" and "spatialSign".The default is no pre-processing.

8 ttsCaret

resampling The method for resampling, as trainControl function list in package caret. The
default is "boot" for bootstrapping with 25 replications. Current choices are
c("cv","boot","repeatedcv","LOOCV") where "cv" is K-fold CV with a default
K=10 or specified by the "Number" below, "LOOCV" denotes the leave-one-out
CV

Number The number of K for K-Fold CV, default (NULL) is 10; for "boot" option, the
default number of replications is 25

Repeat The number for the repeatition for "repeatedcv".

Details

This function calls the train function of package caret to execute estimation. When execution
finished, we compute two types of time series forecasts: static and recursive.

Value

output Output object generated by train function of caret.

arOrder The autoregressive order of the target variable used.

data The dataset of imputed.

dataused The data used by arOrder, xregOrder, and type.

training.Pred All tuned prediction values of training data, using besTunes to extract the best
prediction.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

Examples

Cross-validation takes time, example below is commented.
Machine Learning by library(caret)
library(zoo)
#Case 1. Low frequency
data("macrodata")
dep <- macrodata[569:669,"unrate",drop=FALSE]
ind <- macrodata[569:669,-1,drop=FALSE]
train.end <- "2018-12-01"# Choosing the end dating of train

models <- c("glm","knn","nnet","rpart","rf","svm","enet","gbm","lasso","bridge")[2]
type <- c("none","trend","season","both")[1]
Caret <- ttsCaret(y=dep, x=NULL, arOrder=c(1), xregOrder=c(1),
method=models, tuneLength =1, train.end, type=type,
resampling=c("boot","cv","repeatedcv")[2],preProcess = "center")
testData1 <- window(Caret$data,start="2019-01-01",end=end(Caret$data))

P1 <- iForecast(Model=Caret,newdata=testData1,type="staticfit")
P2 <- iForecast(Model=Caret,newdata=testData1,type="recursive")

tail(cbind(testData1[,1],P1,P2))

ttsLSTM 9

#Case 2. High frequency
#head(ES_15m)
#head(ES_Daily)
#dep <- ES_15m #SP500 15-minute realized absolute variance
#ind <- NULL
#train.end <- as.character(rownames(dep))[as.integer(nrow(dep)*0.9)]

#models<-c("svm","rf","rpart","gamboost","BstLm","bstSm","blackboost")[1]
#type<-c("none","trend","season","both")[1]
Caret <- ttsCaret(y=dep, x=ind, arOrder=c(3,5), xregOrder=c(0,2,4),
method=models, tuneLength =10, train.end, type=type,
resampling=c("boot","cv","repeatedcv")[2],preProcess = "center")
#testData1<-window(Caret$data,start="2009-01-01",end=end(Caret$data))
#P1<-iForecast(Model=Caret,newdata=testData1,type="staticfit")
#P2<-iForecast(Model=Caret,newdata=testData1,type="recursive")

ttsLSTM Train time series by LSTM of tensorflow provided by kera

Description

It generates both the static and recursive time series plots of deep learning LSTM object generated
by package tensorflow provided by kera.

Usage

ttsLSTM(y,
x=NULL,
train.end,
arOrder=1,
xregOrder=0,
type,
memoryLoops=10,
shape=NULL,
dim3=5,
batch.range=2:7,
batch.size=NULL)

Arguments

y The time series object of the target variable, or the dependent variable, with
timeSeries or zoo format, must have dimension. y can be both continuous and
discrete.Time format must be "

x The time series matrix of input variables, or the independent variables, with zoo
format.Time format must be "

10 ttsLSTM

train.end The end date of training data, must be specificed.The default dates of train.start
and test.end are the start and the end of input data; and the test.start is the 1-
period next of train.end.

arOrder The autoregressive order of the target variable, which may be sequentially specifed
like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not al-
lowed.Default is 1.

xregOrder The distributed lag structure of the input variables, which may be sequentially
specifed like xregOrder=1:5; or discontinuous lags like xregOrder=c(0,3,5); zero
is allowed since contemporaneous correlation is allowed.

type The additional input variables. We have four selection:
"none"=no other variables,
"trend"=inclusion of time dummy,
"season"=inclusion of seasonal dummies,
"both"=inclusion of both trend and season. No default.

memoryLoops Length of LSTM learning network loop, to achieve better learning results, this
not is suggested to be the same as the length of data row. Default is 10..

shape The second dmension of LSTM array. If NULL, then it will use the number of
columns of complete dataset..

dim3 The third dmension of LSTM array. Default is 5..

batch.range The range of search batch.size. The code selects the first that satisfies exact
division with the rows of data used.

batch.size The number of batch size for LSTM layer. Default is NULL determined by
searching among the batch.range..

Details

This function calls the function fit of package tensorflow to execute Long-Short Term Memory
(LSTM) estimation. When execution finished, it computes two types of time series forecasts: static
and recursive.

Value

output Output object generated by train function of caret.

batch.size The batch.size used for LSTM network.

k The third dimension of arrayin LSTM network.

SHAPE The shape size of array in LSTM network.

arOrder he autoregressive order of the target variable used.

data The dataset of used.

dataused The data used by arOrder, xregOrder, and type

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

ttsLSTM 11

Examples

Cross-validation takes time, example below is commented.
data("macrodata")
dep<-macrodata[,"unrate",drop=FALSE]
ind<-macrodata[,-1,drop=FALSE]

Choosing the dates of training and testing data
train.end<-"2008-12-01"

#RNN with LSTM network
#LSTM<-ttsLSTM(y=dep, x=ind, train.end,arOrder=c(2,4), xregOrder=c(1,4),
memoryLoops=5, type=c("none","trend","season","both")[4],
batch.range=2:7,batch.size=NULL)

#testData3<-window(LSTM$dataused,start="2009-01-01",end=end(LSTM$data))
#P1<-iForecast(Model=LSTM,newdata=testData3,type="staticfit")
#P2<-iForecast(Model=LSTM,newdata=testData3,type="recursive")

#tail(cbind(testData3[,1],P1,P2))

Index

∗ datasets
data-sets, 2

bc (data-sets), 2

data-sets, 2

ES_15m (data-sets), 2
ES_Daily (data-sets), 2

iForecast, 2

macrodata (data-sets), 2

rollingWindows, 4

ttsAutoML, 5
ttsCaret, 6
ttsLSTM, 9

12

	data-sets
	iForecast
	rollingWindows
	ttsAutoML
	ttsCaret
	ttsLSTM
	Index

