Package ‘insight’

November 24, 2022

Type Package

Title Easy Access to Model Information for Various Model Objects
Version 0.18.8

Maintainer Daniel Liidecke <d.luedecke@uke.de>

Description A tool to provide an easy, intuitive and consistent
access to information contained in various R models, like model
formulas, model terms, information about random effects, data that was
used to fit the model or data from response variables. 'insight'
mainly revolves around two types of functions: Functions that find
(the names of) information, starting with 'find_', and functions that
get the underlying data, starting with 'get_'. The package has a
consistent syntax and works with many different model objects, where
otherwise functions to access these information are missing.

License GPL-3
URL https://easystats.github.io/insight/

BugReports https://github.com/easystats/insight/issues
Depends R (>=3.5)
Imports methods, stats, utils

Suggests AER, afex, aod, BayesFactor, bayestestR, bbmle, bdsmatrix,
betareg, bife, biglm, blavaan, blme, boot, brms, censReg, cgam,
clubSandwich, coxme, cplm, crch, datawizard, effectsize,
emmeans, epiR, estimatr, feisr, fixest, fungible, gam, gamlss,
gamm4, gbm, gee, geepack, GLMMadaptive, glmmTMB, gmnl, gt,
httr, ivreg, JM, knitr, lavaan, lavaSearch2, Ife, Ime4,

ImerTest, Imtest, logistf, logitr, MASS, marginaleffects,

Matrix, mclogit, mclust, MCMCglmm, merTools, metaBMA, mgcv,
mice, mlogit, mhurdle, multgee, nlme, nnet, nonnest2, ordinal,
panelr, parameters, parsnip, pbkrtest, performance, plm,

poorman, pscl, psych, quantreg, rmarkdown, rms, robustbase,
robustlmm, rstanarm (>= 2.21.1), rstantools, rstudioapi,

sandwich, speedglm, splines, statmod, survey, survival,

testthat, truncreg, tweedie, VGAM

https://easystats.github.io/insight/
https://github.com/easystats/insight/issues

2 R topics documented:

VignetteBuilder knitr
Encoding UTF-8
Language en-US
RoxygenNote 7.2.2
Config/testthat/edition 3

Config/Needs/website rstudio/bslib, r-lib/pkgdown,
easystats/easystatstemplate

NeedsCompilation no

Author Daniel Liidecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>,

@strengejacke),

Dominique Makowski [aut, ctb] (<https://orcid.org/0000-0001-5375-9967>,
@Dom_Makowski),

Indrajeet Patil [aut, ctb] (<https://orcid.org/0000-0003-1995-6531>,
@patilindrajeets),

Philip Waggoner [aut, ctb] (<https://orcid.org/0000-0002-7825-7573>),

Mattan S. Ben-Shachar [aut, ctb]
(<https://orcid.org/0000-0002-4287-4801>),

Brenton M. Wiernik [aut] (<https://orcid.org/0000-0001-9560-6336>,
@bmwiernik),

Vincent Arel-Bundock [aut, ctb]
(<https://orcid.org/0000-0003-2042-7063>),

Alex Hayes [rev] (<https://orcid.org/0000-0002-4985-5160>),

Grant McDermott [ctb] (<https://orcid.org/0000-0001-7883-8573>),

Rémi Thériault [ctb] (<https://orcid.org/0000-0003-4315-6788>,
@rempsyc)

Repository CRAN
Date/Publication 2022-11-24 10:10:02 UTC

R topics documented:

all_models_equal e 5
check_if installed 6
clean_names e e e 7
clean_parameters e e e e e e e e e 8
color_if e e e e e 9
compact_character e e e 11
compact_liSt L. e e e e e 11
display o e e e 12
download_model e 13
ellipsis_info e e 13
export_table e 14
find_algorithm 17
find_formula e 18
find_interactions e e 20

find_offset e 21

https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0002-7825-7573
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0003-2042-7063
https://orcid.org/0000-0002-4985-5160
https://orcid.org/0000-0001-7883-8573
https://orcid.org/0000-0003-4315-6788

R topics documented: 3

find_parameters e e e e e e 22
find_parameters.averaging oL 23
find_parameters.betamfx L 25
find_parameters BGGM L 26
find_parameters.emmGrid L. 29
find_parameters.gamlsso 30
find_parameters.glmmTMB oL 31
find_parameters.zeroinfl 32
find_predictors L e 34
find_random L e 36
find_random_slopes 37
find_response e e e e e e 37
find_smooth 38
find_StatistiC e e e 39
find_terms e 40
find_transformation e e 41
find_variables e 42
find_weights e 44
fish. . . . e e e e e 44
format_bf 45
format_capitalize 46
format_ci e e e e e 46
format_message e e 48
format_number e 50
format_p. e e e 51
format_pd e 52
format_rope 53
format_string 53
format_table e e e e 54
format_value e 56
get_auxiliary 58
get_call e e 60
get_data e 60
get_datagrid 62
get_deviance e 66
get df . .o e e 67
get_family 69
GELUINEEICEPL e e e 70
get_loglikelihood 71
get_modelmatrix e e e 72
GEL_PATAMELETS . . .« . v v e e e e e e e e e e e e e e e e e e e 73
get_parameters.betamfx 74
get_parameters.betareg L. L 75
get_parameters. BGGM L 77
get_parameters.emmGrid L. 80
et_parameters.Gammml ou e e e e e e e e e e e e e e e e 81
get_parameters.glmm L.l 82

get_parameters.htest L. 84

Index

R topics documented:

get_parameters.zeroinfl L L L 84
get_predicted e e 85
get_predicted_Ci. e 91
get_prediCtors e e e e e 94
GELPIIOTS © . o o v i e e e e e e e e e e e e e 95
get_random L e e e e e e e 95
get_residuals L. e 96
GEL_TESPONSE . . . v v v v e e e e e e e e e e e e e e 97
GEL_SIgMA e e 98
GEL_StAtiStiC L e e e e e 99
get_transformation L.l e e 101
GELLVAICOV « . v v v it e e e e e e e e e e e e e e e 102
GEL_VAMIANCE o v v e e e e e e e e e e e e e 105
get_weights L. 108
has_intercept 109
is_converged 109
is_empty_object e 111
is_gam_model 111
is_mixed_model e e 112
is_model e e e 113
is_model_supported 114
Is_multivariate L e e e e e e e e e 115
is_nested_models e e 116
is_nullmodel e e 116
link_function e e 117
Ink_dnverse e 118
model_info 119
model_name e e e e e e 121
null_model 122
N_ODS . . o e e 123
N_PATAMELerS« v v v v e 124
object_has_names L. e 126
print_color. e 127
Print_parameters e e e e e e e e e e 128
standardize _column_order 130
standardize names e e, 131
text_remove_backticks 132
ML WS . . o o e e e e e e 134

136

all_models_equal

all_models_equal Checks if all objects are models of same class

Description

Small helper that checks if all objects are supported (regression) model objects and of same class.

Usage
all_models_equal(..., verbose = FALSE)
all_models_same_class(..., verbose = FALSE)
Arguments
A list of objects.
verbose Toggle off warnings.
Value

A logical, TRUE if x are all supported model objects of same class.

Examples

if (require("lmed4")) {
data(mtcars)
data(sleepstudy)

ml <- lm(mpg ~ wt + cyl + vs, data = mtcars)

m2 <- lm(mpg ~ wt + cyl, data = mtcars)

m3 <- lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
m4 <- glm(formula = vs ~ wt, family = binomial(), data = mtcars)

all_models_same_class(m1l, m2)

all_models_same_class(ml, m2, m3)

all_models_same_class(ml, m4, m2, m3, verbose = TRUE)
all_models_same_class(m1, m4, mtcars, m2, m3, verbose = TRUE)

check_if installed

check_if_installed Checking if needed package is installed

Description

Checking if needed package is installed

Usage

check_if_installed(

package,

reason = "for this function to work”,

stop = TRUE,

minimum_version = NULL,
quietly = FALSE,
prompt = interactive(),

Arguments

package

reason

stop

minimum_version

quietly

prompt

Value

A character vector naming the package(s), whose installation needs to be checked
in any of the libraries.

A phrase describing why the package is needed. The default is a generic de-
scription.

Logical that decides whether the function should stop if the needed package is
not installed.

A character vector, representing the minimum package version that is required
for each package. Should be of same length as package. If NULL, no check for
minimum version is done.

Logical, if TRUE, invisibly returns a vector of logicals (TRUE for each installed
package, FALSE otherwise), and does not stop or throw a warning. If quietly =
TRUE, arguments stop and prompt are ignored. Use this argument to internally
check for package dependencies without stopping or warnings.

If TRUE, will prompt the user to install needed package(s). Ignored if quietly =
TRUE.

Currently ignored

If stop = TRUE, and package is not yet installed, the function stops and throws an error. Else, a
named logical vector is returned, indicating which of the packages are installed, and which not.

clean_names 7

Examples

Not run:

check_if_installed("insight")
try(check_if_installed("nonexistent_package"))
try(check_if_installed("insight"”, minimum_version = "99.8.7"))
try(check_if_installed(c("nonexistent”, "also_not_here"), stop = FALSE))

End(Not run)

clean_names Get clean names of model terms

Description

This function "cleans" names of model terms (or a character vector with such names) by removing
patterns like log() or as.factor() etc.

Usage

clean_names(x, ...)

S3 method for class 'character'

clean_names(x, include_names = FALSE, ...)
Arguments
X A fitted model, or a character vector.

Currently not used.

include_names Logical, if TRUE, returns a named vector where names are the original values of
X.

Value

The "cleaned" variable names as character vector, i.e. pattern like s() for splines or log() are
removed from the model terms.

Note

Typically, this method is intended to work on character vectors, in order to remove patterns that
obscure the variable names. For convenience reasons it is also possible to call clean_names()
also on a model object. If x is a regression model, this function is (almost) equal to calling
find_variables(). The main difference is that clean_names() always returns a character vector,
while find_variables() returns a list of character vectors, unless flatten = TRUE. See ’Exam-
ples’.

8 clean_parameters

Examples

example from ?stats::glm

counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

outcome <- as.numeric(gl(3, 1, 9))

treatment <- gl(3, 3)

m <- glm(counts ~ log(outcome) + as.factor(treatment), family = poisson())
clean_names(m)

difference "clean_names()"” and "find_variables()"
if (require(”"1me4")) {
m <- glmer(
cbind(incidence, size - incidence) ~ period + (1 | herd),
data = cbpp,
family = binomial

)

clean_names(m)
find_variables(m)
find_variables(m, flatten = TRUE)

clean_parameters Get clean names of model parameters

Description

This function "cleans" names of model parameters by removing patterns like "r_" or "b[]" (mostly
applicable to Stan models) and adding columns with information to which group or component pa-
rameters belong (i.e. fixed or random, count or zero-inflated...)

The main purpose of this function is to easily filter and select model parameters, in particular of -
but not limited to - posterior samples from Stan models, depending on certain characteristics. This
might be useful when only selective results should be reported or results from all parameters should
be filtered to return only certain results (see print_parameters()).

Usage

clean_parameters(x, ...)
Arguments

X A fitted model.

Currently not used.

color_if

Details

The Effects column indicate if a parameter is a fixed or random effect. The Component can ei-
ther be conditional or zero_inflated. For models with random effects, the Group column indicates
the grouping factor of the random effects. For multivariate response models from brms or rsta-
narm, an additional Response column is included, to indicate which parameters belong to which
response formula. Furthermore, Cleaned_Parameter column is returned that contains "human read-
able" parameter names (which are mostly identical to Parameter, except for for models from brms

or rstanarm, or for specific terms like smooth- or spline-terms).

Value

A data frame with "cleaned" parameter names and information on effects, component and group
where parameters belong to. To be consistent across different models, the returned data frame
always has at least four columns Parameter, Effects, Component and Cleaned_Parameter. See

’Details’.

Examples

Not run:
library(brms)

model <- download_model("brms_zi_2")

clean_parameters(model)

End(Not run)

color_if

Color-formatting for data columns based on condition

Description

Convenient function that formats columns in data frames with color codes, where the color is chosen

based on certain conditions. Columns are then printed in color in the console.

Usage

color_if(
X,
columns,
predicate =
value = 0,

color_if = "green",

color_else =
digits = 2

colour_if(
X,

10 color_if

columns,
predicate = *>*,
value = 0,
colour_if = "green",
colour_else = "red”,
digits = 2
)
Arguments
X A data frame
columns Character vector with column names of x that should be formatted.
predicate A function that takes columns and value as input and which should return TRUE
or FALSE, based on if the condition (in comparison with value) is met.
value The comparator. May be used in conjunction with predicate to quickly set

up a function which compares elements in colums to value. May be ignored
when predicate is a function that internally computes other comparisons. See
’Examples’.

color_if, colour_if
Character vector, indicating the color code used to format values in x that meet
the condition of predicate and value. May be one of "red”, "yellow",
"green”, "blue”, "violet”, "cyan” or "grey"”. Formatting is also possible
with "bold” or "italic".

color_else, colour_else
See color_if, but only for conditions that are not met.

digits Digits for rounded values.

Details

The predicate-function simply works like this: which(predicate(x[, columns], value))

Value

The .

Examples

all values in Sepal.Length larger than 5 in green, all remaining in red

x <- color_if(iris[1:10,], columns = "Sepal.lLength”, predicate = ‘>, value = 5)
X

cat(x$Sepal.Length)

all levels "setosa” in Species in green, all remaining in red
N

X <- color_if(iris, columns = "Species"”, predicate = ‘==‘, value = "setosa")
cat(x$Species)

own function, argument "value"” not needed here
p <- function(x, y) {
X >= 4.9 & x <= 5.1

compact_character

}

all values in Sepal.Length between 4.9 and 5.1 in green, all remaining in red

x <- color_if(iris[1:10, 1, columns = "Sepal.Length”, predicate = p)
cat(x$Sepal.Length)

11

compact_character Remove empty strings from character

Description

Remove empty strings from character

Usage

compact_character(x)

Arguments

X A single character or a vector of characters.

Value

A character or a character vector with empty strings removed.

Examples

compact_character(c(”x", "y", NA))

compact_character(c(”x", "NULL", "", "y"))
compact_list Remove empty elements from lists
Description

Remove empty elements from lists

Usage

compact_list(x, remove_na = FALSE)

Arguments

X A list or vector.

remove_na Logical to decide if NAs should be removed.

12 display

Examples

compact_list(list(NULL, 1, c(NA, NA)))
compact_list(c(1, NA, NA))
compact_list(c(1, NA, NA), remove_na = TRUE)

display Generic export of data frames into formatted tables

Description

display() is a generic function to export data frames into various table formats (like plain text,
markdown, ...). print_md() usually is a convenient wrapper for display(format = "markdown"”).
Similar, print_html() is a shortcut for display(format = "html"). See the documentation for
the specific objects’ classes.

Usage
display(object, ...)
print_md(x, ...)
print_html(x, ...)

S3 method for class 'data.frame'
display(object, format = "markdown”, ...)

S3 method for class 'data.frame'
print_md(x, ...)

S3 method for class 'data.frame'

print_html(x, ...)
Arguments
object, x A data frame.

Arguments passed to other methods.

format String, indicating the output format. Can be "markdown” or "html".

Value

Depending on format, either an object of class gt_tbl or a character vector of class knitr_kable.

Examples

display(iris[1:5, 1)

download_model 13

download_model Download circus models

Description
Downloads pre-compiled models from the circus-repository. The circus-repository contains a vari-
ety of fitted models to help the systematic testing of other packages

Usage
download_model(name, url = NULL)

Arguments
name Model name.
url String with the URL from where to download the model data. Optional, and
should only be used in case the repository-URL is changing. By default, models
are downloaded from https://raw.github.com/easystats/circus/master/data/.
Details

The code that generated the model is available at the https://easystats.github.io/circus/
reference/index.html.

Value

A model from the circus-repository.

References

https://easystats.github.io/circus/

ellipsis_info Gather information about objects in ellipsis (dot dot dot)

Description
Provides information regarding the models entered in an ellipsis. It detects whether all are models,
regressions, nested regressions etc., assigning different classes to the list of objects.

Usage
ellipsis_info(objects, ...)

Default S3 method:
ellipsis_info(..., only_models = TRUE, verbose = TRUE)

https://easystats.github.io/circus/reference/index.html
https://easystats.github.io/circus/reference/index.html
https://easystats.github.io/circus/

14 export_table

Arguments

objects, ... Arbitrary number of objects. May also be a list of model objects.
only_models Only keep supported models (default to TRUE).

verbose Toggle warnings.

Value

The list with objects that were passed to the function, including additional information as attributes
(e.g. if models have same response or are nested).

Examples

ml <- Im(Sepal.Length ~ Petal.Width + Species, data = iris)
m2 <- Im(Sepal.Length ~ Species, data = iris)

m3 <- Im(Sepal.Length ~ Petal.Width, data = iris)

m4 <- Im(Sepal.Length ~ 1, data = iris)

m5 <- Im(Petal.Width ~ 1, data = iris)

objects <- ellipsis_info(m1, m2, m3, m4)
class(objects)

objects <- ellipsis_info(m1l, m2, m4)
attributes(objects)$is_nested

objects <- ellipsis_info(m1, m2, m5)
attributes(objects)$same_response

export_table Data frame and Tables Pretty Formatting

Description

Data frame and Tables Pretty Formatting

Usage

export_table(
X)
sep =" |",
header = "-"
cross = NULL,
empty_line = NULL,
digits = 2,
protect_integers = TRUE,
missing = "",
width = NULL,

format = NULL,

export_table

title = NULL,

15

caption = title,
subtitle = NULL,

footer =

NULL,
align = NULL,

group_by = NULL,
zap_small = FALSE,
table_width = NULL,
verbose = TRUE,

Arguments

X

sep
header
Ccross

empty_line

digits

A data frame. May also be a list of data frames, to export multiple data frames
into multiple tables.

Column separator.
Header separator. Can be NULL.
Character that is used where separator and header lines cross.

Separator used for empty lines. If NULL, line remains empty (i.e. filled with
whitespaces).

Number of digits for rounding or significant figures. May also be "signif” to
return significant figures or "scientific” to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4”
to have scientific notation with 4 decimal places, or digits = "signif5" for 5
significant figures (see also signif()).

protect_integers

missing

width

format

Should integers be kept as integers (i.e., without decimals)?

Value by which NA values are replaced. By default, an empty string (i.e. "") is
returned for NA.

Refers to the width of columns (with numeric values). Can be either NULL,
a number or a named numeric vector. If NULL, the width for each column is
adjusted to the minimum required width. If a number, columns with numeric
values will have the minimum width specified in width. If a named numeric
vector, value names are matched against column names, and for each match,
the specified width is used (see ’Examples’). Only applies to text-format (see
format).

Name of output-format, as string. If NULL (or "text"), returned output is used
for basic printing. Can be one of NULL (the default) resp. "text" for plain text,
"markdown” (or "md") for markdown and "html” for HTML output.

title, caption, subtitle

Table title (same as caption) and subtitle, as strings. If NULL, no title or subtitle is
printed, unless it is stored as attributes (table_title, orits alias table_caption,
and table_subtitle). If x is a list of data frames, caption may be a list of ta-
ble captions, one for each table.

16 export_table

footer Table footer, as string. For markdown-formatted tables, table footers, due to the
limitation in markdown rendering, are actually just a new text line under the
table. If x is a list of data frames, footer may be a list of table captions, one for
each table.

align Column alignment. For markdown-formatted tables, the default align = NULL
will right-align numeric columns, while all other columns will be left-aligned. If
format = "html”, the default is left-align first column and center all remaining.
May be a string to indicate alignment rules for the complete table, like "left”,
"right"”, "center” or "firstleft"” (to left-align first column, center remain-
ing); or maybe a string with abbreviated alignment characters, where the length
of the string must equal the number of columns, for instance, align = "lccrl”
would left-align the first column, center the second and third, right-align column
four and left-align the fifth column. For HTML-tables, may be one of "center”,
"left" or "right"”.

group_by Name of column in x that indicates grouping for tables. Only applies when
format = "html”. group_by is passed down to gt: : gt (groupname_col = group_by).

zap_small Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

table_width Numeric, or "auto”, indicating the width of the complete table. If table_width
= "auto" and the table is wider than the current width (i.e. line length) of the
console (or any other source for textual output, like markdown files), the table is
split into two parts. Else, if table_width is numeric and table rows are larger
than table_width, the table is split into two parts.

verbose Toggle messages and warnings.

Currently not used.

Value

A data frame in character format.

Note

The values for caption, subtitle and footer can also be provided as attributes of x, e.g. if
caption =NULL and x has attribute table_caption, the value for this attribute will be used as
table caption. table_subtitle is the attribute for subtitle, and table_footer for footer.

See Also

Vignettes Formatting, printing and exporting tables and Formatting model parameters.

Examples

export_table(head(iris))
export_table(head(iris), cross = "+"
export_table(head(iris), sep = " ", header = "x" 6 digits = 1)

split longer tables

https://easystats.github.io/insight/articles/display.html
https://easystats.github.io/parameters/articles/model_parameters_formatting.html

find_algorithm 17

export_table(head(iris), table_width = 30)

Not run:

colored footers

data(iris)

x <- as.data.frame(iris[1:5, 1)

attr(x, "table_footer”) <- c("This is a yellow footer line.”, "yellow")

export_table(x)

attr(x, "table_footer"”) <- list(
c("\nA yellow line”, "yellow"),
c("\nAnd a red line”, "red"),
c("\nAnd a blue line"”, "blue")

)

export_table(x)

attr(x, "table_footer”) <- list(
c("Without the ", "yellow"),
c("new-line character ", "red"),
c("we can have multiple colors per line.”, "blue")

)
export_table(x)

End(Not run)

column-width
d <- data.frame(

X = c(1’ 2’ 3)!
y = c(100, 200, 300),
z = c(10000, 20000, 30000)

)
export_table(d)
export_table(d, width

8)

export_table(d, width = c¢(x =5, z = 10))
export_table(d, width = c¢(x =5, y =5, z = 10), align = "lcr")
find_algorithm Find sampling algorithm and optimizers

Description

Returns information on the sampling or estimation algorithm as well as optimization functions, or
for Bayesian model information on chains, iterations and warmup-samples.

Usage

find_algorithm(x, ...)

18 find_formula
Arguments
X A fitted model.
Currently not used.
Value

A list with elements depending on the model.
For frequentist models:

e algorithm, for instance "OLS" or "ML"

* optimizer, name of optimizing function, only applies to specific models (like gam)
For frequentist mixed models:

e algorithm, for instance "REML" or "ML"

* optimizer, name of optimizing function
For Bayesian models:

e algorithm, the algorithm

¢ chains, number of chains

* iterations, number of iterations per chain

* warmup, number of warmups per chain

Examples

if (require("1lme4")) {
data(sleepstudy)
m <- lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
find_algorithm(m)
3
Not run:
library(rstanarm)
m <- stan_lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
find_algorithm(m)

End(Not run)

find_formula Find model formula

Description

Returns the formula(s) for the different parts of a model (like fixed or random effects, zero-inflated
component, ...). formula_ok() checks if a model formula has valid syntax regarding writing TRUE
instead of T inside poly() and that no data names are used (i.e. no data$variable, but rather
variable).

find_formula 19

Usage

find_formula(x, verbose = TRUE, ...)

formula_ok(x, verbose = TRUE, ...)
Arguments

X A fitted model.

verbose Toggle warnings.

Currently not used.

Value

A list of formulas that describe the model. For simple models, only one list-element, conditional,
is returned. For more complex models, the returned list may have following elements:

Note

conditional, the "fixed effects" part from the model (in the context of fixed-effects or instru-
mental variable regression, also called regressors) . One exception are DirichletRegModel
models from DirichletReg, which has two or three components, depending on model.

random, the "random effects" part from the model (or the id for gee-models and similar)
zero_inflated, the "fixed effects" part from the zero-inflation component of the model

zero_inflated_random, the "random effects" part from the zero-inflation component of the
model

dispersion, the dispersion formula

instruments, for fixed-effects or instrumental variable regressions like ivreg::ivreg(),
1fe::felm() or plm: :plm(), the instrumental variables

cluster, for fixed-effects regressions like 1fe: : felm(), the cluster specification

correlation, for models with correlation-component like nlme: :gls(), the formula that
describes the correlation structure

slopes, for fixed-effects individual-slope models like feisr::feis(), the formula for the
slope parameters

precision, for DirichletRegModel models from DirichletReg, when parametrization (i.e.
model) is "alternative”.

For models of class 1me or gls the correlation-component is only returned, when it is explicitly
defined as named argument (form), e.g. corAR1(form=~1 | Mare)

Examples

data(mtcars)

m <-

Im(mpg ~ wt + cyl + vs, data = mtcars)

find_formula(m)

if (require("lmed4")) {

20 find_interactions

m <- lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris)
f <~ find_formula(m)

f.‘

format (f)

find_interactions Find interaction terms from models

Description

Returns all lowest to highest order interaction terms from a model.

Usage

find_interactions(
X,
component = c("all"”, "conditional”, "zi
flatten = FALSE

n

, "zero_inflated”, "dispersion”, "instruments"),

)
Arguments
X A fitted model.
component Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
Value

A list of character vectors that represent the interaction terms. Depending on component, the re-
turned list has following elements (or NULL, if model has no interaction term):
* conditional, interaction terms that belong to the "fixed effects" terms from the model

e zero_inflated, interaction terms that belong to the "fixed effects" terms from the zero-
inflation component of the model

e instruments, for fixed-effects regressions like ivreg, felm or plm, interaction terms that
belong to the instrumental variables

find_offset

Examples

data(mtcars)

m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_interactions(m)

m <- Im(mpg ~ wt * cyl + vs * hp * gear + carb, data = mtcars)
find_interactions(m)

21

find_offset Find possible offset terms in a model

Description

Returns a character vector with the name(s) of offset terms.

Usage
find_offset(x)

Arguments

X A fitted model.

Value

A character vector with the name(s) of offset terms.

Examples

Generate some zero-inflated data

set.seed(123)

N <- 100 # Samples

X <= runif(N, @, 10) # Predictor

off <- rgamma(N, 3, 2) # Offset variable

yhat <- -1 + x *x 0.5 + log(off) # Prediction on log scale

dat <- data.frame(y = NA, x, logOff = log(off))

dat$y <- rpois(N, exp(yhat)) # Poisson process

dat$y <- ifelse(rbinom(N, 1, 0.3), @, dat$y) # Zero-inflation

if (require("pscl”)) {
ml <- zeroinfl(y ~ offset(logOff) + x | 1, data = dat, dist
find_offset(ml)

m2 <- zeroinfl(y ~ x | 1, data = dat, offset = logOff, dist
find_offset(m2)
3

process

"poisson")

"poisson")

22 find_parameters

find_parameters Find names of model parameters

Description

Returns the names of model parameters, like they typically appear in the summary() output. For
Bayesian models, the parameter names equal the column names of the posterior samples after coer-
cion from as.data.frame(). See the documentation for your object’s class:

* Bayesian models (rstanarm, brms, MCMCglmm, ...)

¢ Generalized additive models (mgev, VGAM, ...)

* Marginal effects models (mfx)

» Estimated marginal means (emmeans)

¢ Mixed models (Ime4, glmmTMB, GLMMadaptive, ...)

e Zero-inflated and hurdle models (pscl, ...)

* Models with special components (betareg, MuMIn, ...)

Usage

find_parameters(x, ...)

Default S3 method:

find_parameters(x, flatten = FALSE, verbose = TRUE, ...)
Arguments
X A fitted model.
Currently not used.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
verbose Toggle messages and warnings.
Value

A list of parameter names. For simple models, only one list-element, conditional, is returned.

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

* "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

find_parameters.averaging 23

e "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

* "zero_inflated” (or "zi"): returns the zero-inflation component.

* "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, beta orprecision
(and other auxiliary parameters) are returned.

Examples

data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.averaging
Find model parameters from models with special components

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage

S3 method for class 'averaging'
find_parameters(x, component = c(”conditional”, "full"”), flatten = FALSE, ...)

S3 method for class 'betareg'
find_parameters(
X)
component = c¢("all”, "conditional”, "precision”, "location", "distributional”,
"auxiliary"),
flatten = FALSE,

S3 method for class 'DirichletRegModel’
find_parameters(
X,
component = c("all”, "conditional”, "precision”, "location", "distributional”,
"auxiliary"),

24

flatten

find_parameters.averaging

FALSE,

S3 method for class 'mjoint'
find_parameters(

X’
component = c("all”, "conditional”, "survival”),
flatten = FALSE,

S3 method for class 'glmx'
find_parameters(

X,

component = c("all”, "conditional”, "extra"),
flatten = FALSE,

Arguments

X

component

flatten

Value

A fitted model.

Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects from mfx. May be
abbreviated. Note that the conditional component is also called count or mean
component, depending on the model. There are three convenient shortcuts:
component = "all” returns all possible parameters. If component = "location”,
location parameters such as conditional, zero_inflated, smooth_terms, or
instruments are returned (everything that are fixed or random effects - depend-
ing on the effects argument - but no auxiliary parameters). For component =
"distributional” (or "auxiliary"), components like sigma, dispersion,
beta or precision (and other auxiliary parameters) are returned.

Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

A list of parameter names. The returned list may have following elements:

» conditional, the "fixed effects" part from the model.

e full, parameters from the full model.

find_parameters.betamfx 25

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.betamfx
Find names of model parameters from marginal effects models

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage

S3 method for class 'betamfx'
find_parameters(
X,
component = c("all”, "conditional”, "precision”, "marginal”, "location",
"distributional”, "auxiliary"),
flatten = FALSE,

S3 method for class 'logitmfx'

find_parameters(
X’
component = c("all”, "conditional”, "marginal”, "location”),
flatten = FALSE,

)
Arguments
X A fitted model.
component Which type of parameters to return, such as parameters for the conditional

model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects from mfx. May be
abbreviated. Note that the conditional component is also called count or mean
component, depending on the model. There are three convenient shortcuts:
component = "all” returns all possible parameters. If component = "location”,
location parameters such as conditional, zero_inflated, smooth_terms, or
instruments are returned (everything that are fixed or random effects - depend-
ing on the effects argument - but no auxiliary parameters). For component =
"distributional” (or "auxiliary"), components like sigma, dispersion,
beta or precision (and other auxiliary parameters) are returned.

26 find_parameters. BGGM

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

Value
A list of parameter names. The returned list may have following elements:
» conditional, the "fixed effects" part from the model.

* marginal, the marginal effects.

* precision, the precision parameter.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.BGGM Find names of model parameters from Bayesian models

Description

Returns the names of model parameters, like they typically appear in the summary() output. For
Bayesian models, the parameter names equal the column names of the posterior samples after coer-
cion from as.data. frame().

Usage

S3 method for class 'BGGM'

find_parameters(
X,
component = c("correlation”, "conditional”, "intercept”, "all"),
flatten = FALSE,

)

S3 method for class 'BFBayesFactor'
find_parameters(

X,
effects = c("all”, "fixed"”, "random"),
component = c("all”, "extra"),

flatten = FALSE,

S3 method for class 'MCMCglmm'

find_parameters. BGGM 27

find_parameters(x, effects = c("all”, "fixed"”, "random”), flatten = FALSE, ...)

S3 method for class 'bamlss'
find_parameters(
X,
flatten = FALSE,
component = c("all”, "conditional”, "location”, "distributional”, "auxiliary"),
parameters = NULL,

)

S3 method for class 'brmsfit'
find_parameters(

X,
effects = "all",
component = "all",

flatten = FALSE,
parameters = NULL,

)

S3 method for class 'bayesx'
find_parameters(
X,
component = c("all”, "conditional”, "smooth_terms"),
flatten = FALSE,
parameters = NULL,

)

S3 method for class 'stanreg'
find_parameters(

X’
effects = c("all”, "fixed", "random"),
component = c("location”, "all”, "conditional”, "smooth_terms”, "sigma",

"distributional”, "auxiliary"),
flatten = FALSE,
parameters = NULL,

)

S3 method for class 'sim.merMod'
find_parameters(
X)
effects = c("all”, "fixed", "random"),
flatten = FALSE,
parameters = NULL,

28

Arguments

X

component

flatten

effects

parameters

Value

find_parameters. BGGM

A fitted model.

Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects from mfx. May be
abbreviated. Note that the conditional component is also called count or mean
component, depending on the model. There are three convenient shortcuts:
component = "all” returns all possible parameters. If component = "location”,
location parameters such as conditional, zero_inflated, smooth_terms, or
instruments are returned (everything that are fixed or random effects - depend-
ing on the effects argument - but no auxiliary parameters). For component =
"distributional” (or "auxiliary"), components like sigma, dispersion,
beta or precision (and other auxiliary parameters) are returned.

Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

Should parameters for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.

Regular expression pattern that describes the parameters that should be returned.

A list of parameter names. For simple models, only one list-element, conditional, is returned.
For more complex models, the returned list may have following elements:

conditional, the "fixed effects" part from the model

random, the "random effects" part from the model

zero_inflated, the "fixed effects" part from the zero-inflation component of the model

zero_inflated_random, the "random effects" part from the zero-inflation component of the

model

smooth_terms, the smooth parameters

Furthermore, some models, especially from brms, can also return auxiliary parameters. These may
be one of the following:

sigma, the residual standard deviation (auxiliary parameter)

dispersion, the dispersion parameters (auxiliary parameter)

beta, the beta parameter (auxiliary parameter)

simplex, simplex parameters of monotonic effects (brms only)

mix, mixture parameters (brms only)

shiftprop, shifted proportion parameters (brms only)

find_parameters.emmGrid 29

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.emmGrid
Find model parameters from estimated marginal means objects

Description

Returns the parameter names from a model.

Usage
S3 method for class 'emmGrid'
find_parameters(x, flatten = FALSE, merge_parameters = FALSE, ...)
Arguments
X A fitted model.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-

cated values are removed.

merge_parameters
Logical, if TRUE and x has multiple columns for parameter names (like emmGrid
objects may have), these are merged into a single parameter column, with pa-
rameters names and values as values.

Currently not used.

Value

A list of parameter names. For simple models, only one list-element, conditional, is returned.

Examples

data(mtcars)
model <- Im(mpg ~ wt * factor(cyl), data = mtcars)
if (require(”emmeans”, quietly = TRUE)) {
emm <- emmeans(model, c("wt", "cyl"))
find_parameters(emm)

}

30 find_parameters.gamlss

find_parameters.gamlss
Find names of model parameters from generalized additive models

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage

S3 method for class 'gamlss'
find_parameters(x, flatten = FALSE, ...)

S3 method for class 'gam'

find_parameters(
X,
component = c("all”, "conditional”, "smooth_terms"”, "location”),
flatten = FALSE,

Arguments

X A fitted model.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects from mfx. May be
abbreviated. Note that the conditional component is also called count or mean
component, depending on the model. There are three convenient shortcuts:
component = "all” returns all possible parameters. If component = "location”,
location parameters such as conditional, zero_inflated, smooth_terms, or
instruments are returned (everything that are fixed or random effects - depend-
ing on the effects argument - but no auxiliary parameters). For component =
"distributional” (or "auxiliary"), components like sigma, dispersion,
beta or precision (and other auxiliary parameters) are returned.

Value

A list of parameter names. The returned list may have following elements:

* conditional, the "fixed effects" part from the model.

* smooth_terms, the smooth parameters.

find_parameters.glmmTMB 31

Examples

data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.glmmTMB
Find names of model parameters from mixed models

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage

S3 method for class 'glmmTMB'
find_parameters(

X,
effects = c("all”, "fixed"”, "random"),
component = c(”all”, "conditional”, "zi", "zero_inflated”, "dispersion”),

flatten = FALSE,

)

S3 method for class 'nlmerMod'’
find_parameters(

X’
effects = c("all”, "fixed", "random"),
component = c("all”, "conditional”, "nonlinear"),

flatten = FALSE,

)

S3 method for class 'merMod’

find_parameters(x, effects = c("all”, "fixed”, "random”), flatten = FALSE, ...)
Arguments

X A fitted model.

effects Should parameters for fixed effects, random effects or both be returned? Only

applies to mixed models. May be abbreviated.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model or the dispersion term? Applies
to models with zero-inflated and/or dispersion formula. Note that the condi-
tional component is also called count or mean component, depending on the
model. There are three convenient shortcuts: component = "all"” returns all

32 find_parameters.zeroinfl

possible parameters. If component = "location”, location parameters such as
conditional or zero_inflated are returned (everything that are fixed or ran-
dom effects - depending on the effects argument - but no auxiliary param-
eters). For component = "distributional” (or "auxiliary"), components
like sigma or dispersion (and other auxiliary parameters) are returned.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

Value
A list of parameter names. The returned list may have following elements:

» conditional, the "fixed effects" part from the model.
* random, the "random effects" part from the model.
» zero_inflated, the "fixed effects" part from the zero-inflation component of the model.

* zero_inflated_random, the "random effects" part from the zero-inflation component of the
model.

* dispersion, the dispersion parameters (auxiliary parameter)

* nonlinear, the parameters from the nonlinear formula.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

find_parameters.zeroinfl
Find names of model parameters from zero-inflated models

Description

Returns the names of model parameters, like they typically appear in the summary () output.

Usage

S3 method for class 'zeroinfl'

find_parameters(
X7
component = c("all”, "conditional"”, "zi", "zero_inflated"),
flatten = FALSE,

S3 method for class 'mhurdle'

find_parameters.zeroinfl 33

find_parameters(
X,
component = c("all"”, "conditional”, "zi
"auxiliary"),
flatten = FALSE,

n ns.n

, "zero_inflated", "infrequent_purchase”, "ip”,

Arguments

X A fitted model.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects from mfx. May be
abbreviated. Note that the conditional component is also called count or mean
component, depending on the model. There are three convenient shortcuts:
component = "all” returns all possible parameters. If component = "location”,
location parameters such as conditional, zero_inflated, smooth_terms, or
instruments are returned (everything that are fixed or random effects - depend-
ing on the effects argument - but no auxiliary parameters). For component =
"distributional” (or "auxiliary"), components like sigma, dispersion,
beta or precision (and other auxiliary parameters) are returned.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Currently not used.

Value

A list of parameter names. The returned list may have following elements:

» conditional, the "fixed effects" part from the model.

* zero_inflated, the "fixed effects" part from the zero-inflation component of the model.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
find_parameters(m)

34 find_predictors

find_predictors Find names of model predictors

Description
Returns the names of the predictor variables for the different parts of a model (like fixed or random
effects, zero-inflated component, ...). Unlike find_parameters(), the names from find_predictors()
match the original variable names from the data that was used to fit the model.

Usage
find_predictors(x, ...)

Default S3 method:
find_predictors(

X,
effects = c("fixed”, "random”, "all"),
component = c("all"”, "conditional”, "zi", "zero_inflated”, "dispersion”, "instruments”,

"correlation”, "smooth_terms"),
flatten = FALSE,
verbose = TRUE,

)
Arguments
X A fitted model.
Currently not used.
effects Should variables for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.
component Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
verbose Toggle warnings.
Value

A list of character vectors that represent the name(s) of the predictor variables. Depending on the
combination of the arguments effects and component, the returned list has following elements:

e conditional, the "fixed effects" terms from the model

find_predictors 35

* random, the "random effects" terms from the model
* zero_inflated, the "fixed effects" terms from the zero-inflation component of the model

* zero_inflated_random, the "random effects" terms from the zero-inflation component of the
model

* dispersion, the dispersion terms
* instruments, for fixed-effects regressions like ivreg, felm or plm, the instrumental variables

» correlation, for models with correlation-component like gls, the variables used to describe
the correlation structure

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

* "all": returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

e "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

e "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

e "zero_inflated” (or "zi"): returns the zero-inflation component.

» "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

* "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.

Examples

data(mtcars)
m <- 1lm(mpg ~ wt + cyl + vs, data = mtcars)
find_predictors(m)

36 find_random

find_random Find names of random effects

Description

Return the name of the grouping factors from mixed effects models.

Usage

find_random(x, split_nested = FALSE, flatten = FALSE)

Arguments

X A fitted mixed model.

split_nested Logical, if TRUE, terms from nested random effects will be returned as separated
elements, not as single string with colon. See ’Examples’.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Value

A list of character vectors that represent the name(s) of the random effects (grouping factors). De-
pending on the model, the returned list has following elements:

* random, the "random effects" terms from the conditional part of model

e zero_inflated_random, the "random effects" terms from the zero-inflation component of the
model

Examples

if (require(”"1me4")) {
data(sleepstudy)
sleepstudy$mygrp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$mysubgrp <- NA
for (i in 1:5) {
filter_group <- sleepstudy$mygrp == i
sleepstudy$mysubgrp[filter_group] <-
sample(1:30, size = sum(filter_group), replace = TRUE)
}

m <- Imer(
Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject),
data = sleepstudy

)

find_random(m)
find_random(m, split_nested = TRUE)

find_random_slopes 37

find_random_slopes Find names of random slopes

Description

Return the name of the random slopes from mixed effects models.

Usage

find_random_slopes(x)

Arguments

X A fitted mixed model.

Value

A list of character vectors with the name(s) of the random slopes, or NULL if model has no random
slopes. Depending on the model, the returned list has following elements:

* random, the random slopes from the conditional part of model

* zero_inflated_random, the random slopes from the zero-inflation component of the model

Examples

if (require("1lmed4")) {
data(sleepstudy)
m <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
find_random_slopes(m)

}

find_response Find name of the response variable

Description

Returns the name(s) of the response variable(s) from a model object.

Usage

find_response(x, combine = TRUE, ...)

38 find_smooth

Arguments
X A fitted model.
combine Logical, if TRUE and the response is a matrix-column, the name of the response
matches the notation in formula, and would for instance also contain patterns
like "cbind(...)". Else, the original variable names from the matrix-column
are returned. See ’Examples’.
Currently not used.
Value

The name(s) of the response variable(s) from x as character vector, or NULL if response variable
could not be found.

Examples

if (require(”1lme4")) {
data(cbpp)
cbpp$trials <- cbpp$size - cbpp$incidence
m <- glm(cbind(incidence, trials) ~ period, data = cbpp, family = binomial)

find_response(m, combine = TRUE)
find_response(m, combine = FALSE)

find_smooth Find smooth terms from a model object

Description

Return the names of smooth terms from a model object.

Usage

find_smooth(x, flatten = FALSE)

Arguments
X A (gam) model.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
Value

A character vector with the name(s) of the smooth terms.

find_statistic 39

Examples

if (require("mgev")) {
data(iris)
model <- gam(Petal.Length ~ Petal.Width + s(Sepal.Length), data = iris)
find_smooth(model)

}

find_statistic Find statistic for model

Description

Returns the statistic for a regression model (z-statistic, z-statistic, etc.).

Small helper that checks if a model is a regression model object and return the statistic used.

Usage
find_statistic(x, ...)
Arguments
X An object.
Currently not used.
Value

A character describing the type of statistic. If there is no statistic available with a distribution, NULL
will be returned.

Examples

regression model object

data(mtcars)

m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
find_statistic(m)

40 find_terms

find_terms Find all model terms

Description

Returns a list with the names of all terms, including response value and random effects, "as is". This
means, on-the-fly tranformations or arithmetic expressions like log(), I(), as.factor() etc. are

preserved.
Usage
find_terms(x, flatten = FALSE, verbose = TRUE, ...)
Arguments
X A fitted model.
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.
verbose Toggle warnings.
Currently not used.
Value

A list with (depending on the model) following elements (character vectors):

* response, the name of the response variable

» conditional, the names of the predictor variables from the conditional model (as opposed to
the zero-inflated part of a model)

* random, the names of the random effects (grouping factors)

* zero_inflated, the names of the predictor variables from the zero-inflated part of the model
* zero_inflated_random, the names of the random effects (grouping factors)

* dispersion, the name of the dispersion terms

e instruments, the names of instrumental variables

Returns NULL if no terms could be found (for instance, due to problems in accessing the formula).

Note

The difference to find_variables() is that find_terms() may return a variable multiple times
in case of multiple transformations (see examples below), while find_variables() returns each
variable name only once.

find_transformation 41

Examples

if (require("1lmed4")) {
data(sleepstudy)
m <- lmer(
log(Reaction) ~ Days + I(Days”2) + (1 + Days + exp(Days) | Subject),
data = sleepstudy
)

find_terms(m)

}

find_transformation Find possible transformation of response variables

Description

This functions checks whether any transformation, such as log- or exp-transforming, was applied
to the response variable (dependent variable) in a regression formula. Currently, following patterns
are detected: log, loglp, log2, log10, exp, expml, sqrt, log(x+<number>), log-log and power
(to 2nd power, like I(x*2)).

Usage

find_transformation(x)

Arguments

X A regression model.

Value

A string, with the name of the function of the applied transformation. Returns "identity"” for no
transformation, and e.g. "log(x+3)" when a specific values was added to the response variables
before log-transforming. For unknown transformations, returns NULL.

Examples

identity, no transformation
model <- Im(Sepal.Length ~ Species, data = iris)
find_transformation(model)

log-transformation
model <- Im(log(Sepal.Length) ~ Species, data = iris)
find_transformation(model)

log+2
model <- 1m(log(Sepal.Length + 2) ~ Species, data = iris)
find_transformation(model)

42

find_variables

find_variables

Find names of all variables

Description

Returns a list with the names of all variables, including response value and random effects.

Usage

find_variables(

X,

effects = "all”,
component = "all",
flatten = FALSE,

verbose

Arguments

X
effects

component

flatten
verbose

Value

TRUE

A fitted model.

Should variables for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.

Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.

Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Toggle warnings.

A list with (depending on the model) following elements (character vectors):

* response, the name of the response variable

» conditional, the names of the predictor variables from the conditional model (as opposed to
the zero-inflated part of a model)

* cluster, the names of cluster or grouping variables

* dispersion, the name of the dispersion terms

e instruments, the names of instrumental variables

* random, the names of the random effects (grouping factors)

» zero_inflated, the names of the predictor variables from the zero-inflated part of the model

* zero_inflated_random, the names of the random effects (grouping factors)

find_variables 43

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

* "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

e "zero_inflated” (or "zi"): returns the zero-inflation component.

* "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

* "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.

Note

The difference to find_terms() is that find_variables() returns each variable name only once,
while find_terms() may return a variable multiple times in case of transformations or when arith-
metic expressions were used in the formula.

Examples

if (require(”"1me4")) {
data(cbpp)
data(sleepstudy)
some data preparation...
cbpp$trials <- cbpp$size - cbpp$incidence
sleepstudy$mygrp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$mysubgrp <- NA
for (i in 1:5) {
filter_group <- sleepstudy$mygrp == i
sleepstudy$mysubgrp[filter_group] <-
sample(1:30, size = sum(filter_group), replace = TRUE)
}

ml <- glmer(
cbind(incidence, size - incidence) ~ period + (1 | herd),
data = cbpp,
family = binomial

)

44 fish

find_variables(m1)

m2 <- lmer(
Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject),
data = sleepstudy

)

find_variables(m2)

find_variables(m2, flatten = TRUE)

find_weights Find names of model weights

Description

Returns the name of the variable that describes the weights of a model.

Usage
find_weights(x, ...)
Arguments
X A fitted model.
Currently not used.
Value

The name of the weighting variable as character vector, or NULL if no weights were specified.

Examples

data(mtcars)

mtcars$weight <- rnorm(nrow(mtcars), 1, .3)

m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars, weights = weight)
find_weights(m)

fish Sample data set

Description

A sample data set, used in tests and some examples.

format_bf 45

format_bf Bayes Factor formatting

Description

Bayes Factor formatting

Usage

format_bf (
bf,
stars = FALSE,
stars_only = FALSE,
name = "BF",
protect_ratio = FALSE,
na_reference = NA,
exact = FALSE

)
Arguments
bf Bayes Factor.
stars Add significance stars (e.g., p < .001%%%),
stars_only Return only significance stars.
name Name prefixing the text. Can be NULL.

protect_ratio Should values smaller than 1 be represented as ratios?
na_reference How to format missing values (NA).

exact Should very large or very small values be reported with a scientific format (e.g.,
4.24e5), or as truncated values (as "> 1000" and "< 1/1000").

Value

A formatted string.

Examples

format_bf (bfs <- c(0.000045, 0.033, NA, 1557, 3.54))
format_bf(bfs, exact = TRUE, name = NULL)
format_bf(bfs, stars = TRUE)

format_bf(bfs, protect_ratio = TRUE)

format_bf(bfs, protect_ratio = TRUE, exact = TRUE)
format_bf(bfs, na_reference = 1)

46

format_ci

format_capitalize

Capitalizes the first letter in a string

Description

This function converts the first letter in a string into upper case.

Usage

format_capitalize(x, verbose = TRUE)

Arguments

X

verbose

Value

A character vector or a factor. The latter is coerced to character. All other objects
are returned unchanged.

Toggle warnings.

x, with first letter capitalized.

Examples

format_capitalize(”"hello")
format_capitalize(c("hello”, "world"))
unique(format_capitalize(iris$Species))

format_ci

Confidence/Credible Interval (CI) Formatting

Description

Confidence/Credible Interval (CI) Formatting

Usage

format_ci(

CI_low,

CI_high,

ci = 0.95,

digits = 2,
brackets = TRUE,
width = NULL,
width_low = width,
width_high = width,
missing = ""
zap_small = FALSE

format_ci

Arguments

CI_low
CI_high
ci

digits

brackets

width

47

Lower CI bound.
Upper CI bound.
CI level in percentage.

Number of digits for rounding or significant figures. May also be "signif” to
return significant figures or "scientific” to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4”
to have scientific notation with 4 decimal places, or digits = "signif5"” for 5
significant figures (see also signif()).

Either a logical, and if TRUE (default), values are encompassed in square brack-
ets. If FALSE or NULL, no brackets are used. Else, a character vector of length
two, indicating the opening and closing brackets.

Minimum width of the returned string. If not NULL and width is larger than the
string’s length, leading whitespaces are added to the string. If width="auto",
width will be set to the length of the longest string.

width_low, width_high

missing

zap_small

Value

Like width, but only applies to the lower or higher confidence interval value.
This can be used when the values for the lower and upper CI are of very different
length.

Value by which NA values are replaced. By default, an empty string (i.e. "") is
returned for NA.

Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

A formatted string.

Examples

format_ci(1.
format_ci(1.
format_ci(1.
format_ci(1.

20,
20,
20,
20,

3.57, ci = 0.90)

3.57, ci = NULL)

3.57, ci = NULL, brackets = FALSE)

3.57, ci = NULL, brackets = c("(", ")"))

format_ci(c(1.205645, 23.4), c(3.57, -1.35), ci = 0.90)
format_ci(c(1.20, NA, NA), c(3.57, -1.35, NA), ci = 0.90)

automatic alignment of width, useful for printing multiple CIs in columns
x <- format_ci(c(1.205, 23.4, 100.43), c(3.57, -13.35, 9.4))
cat(x, sep = "\n")

x <- format_ci(c(1.205, 23.4, 100.43), c(3.57, -13.35, 9.4), width = "auto”)
cat(x, sep = "\n")

48 format_message

format_message Format messages and warnings

Description

Inserts line breaks into a longer message or warning string. Line length is adjusted to maximum
length of the console, if the width can be accessed. By default, new lines are indented by two
spaces.

format_alert() is a wrapper that combines formatting a string with a call to message (), warning()
or stop(). By default, format_alert() creates amessage(). format_warning() and format_error ()
change the default type of exception to warning() and stop(), respectively.

Usage

format_message(
string,

line_length = 0.9 * getOption("width", 80),
indent = " "

)

format_alert(
string,

line_length = 0.9 * getOption("width", 80),

indent = " ",
type = "message”,
call. = FALSE

)
format_warning(...)

format_error(...)

Arguments

string A string.
Further strings that will be concatenated as indented new lines.

line_length Numeric, the maximum length of a line. The default is 90% of the width of the
console window.

indent Character vector. If further lines are specified in . . ., a user-defined string can be
specified to indent subsequent lines. Defaults to " " (two white spaces), hence
for each start of the line after the first line, two white space characters are in-
serted.

type Type of exception alert to raise. Can be "message” for message(), "warning"
for warning(), or "error” for stop().

format_message 49

call. Logical. Indicating if the call should be included in the the error message. This
is usually confusing for users when the function producing the warning or error
is deep within another function, so the default is FALSE.

Details

There is an experimental formatting feature implemented in this function. You can use following
tags:

* {.b text} for bold formatting

e {.i text} to use italic font style

e {.url www.url.com} formats the string as URL (i.e., enclosing URL in < and >, blue color
and italic font style)

e {.pkg packagename} formats the text in blue color.

This features has some limitations: it’s hard to detect the exact length for each line when the string
has multiple lines (after line breaks) and the string contains formatting tags. Thus, it can happen
that lines are wrapped at an earlier length than expected. Furthermore, if you have multiple words
in a format tag ({ .b one two three}), a line break might occur inside this tag, and the formatting
no longer works (messing up the message-string).

Value

For format_message(), a formatted string. For format_alert() and related functions, the re-
quested exception, with the exception formatted using format_message().

Examples

msg <- format_message("Much too long string for just one line, I guess!”,
line_length = 15
)

message(msg)

msg <- format_message(”"Much too long string for just one line, I guess!”,
"First new line”,
"Second new line”,
"(both indented)",
line_length = 30
)

message(msg)

msg <- format_message("Much too long string for just one line, I guess!”,
"First new line”,
"Second new line”,
"(not indented)”,
line_length = 30,
indent = ""
)

message(msg)

Caution, experimental! See 'Details’
msg <- format_message(

50 format_number

"This is {.i italic}, visit {.url easystats.github.io/easystats}”,
line_length = 30
)

message(msg)

Not run:

format_alert(”"This is a message.")
format_alert("This is a warning.", type = "warning")
format_warning("This is a warning.")
try(format_error("This is an error."))

End(Not run)

format_number Convert number to words

Description

Convert number to words

Usage
format_number(x, textual = TRUE, ...)
Arguments
X Number.
textual Return words. If FALSE, will run format_value().
Arguments to be passed to format_value() if textual is FALSE.
Value

A formatted string.

Note

The code has been adapted from here https://github.com/ateucher/useful_code/blob/master/R/numbers2words.r

Examples

format_number (2)
format_number (45)
format_number (324.68765)

format_p

51

format_p

p-values formatting

Description

Format p-values.

Usage

format_p(

P,
stars = FALSE

’

stars_only = FALSE,
whitespace = TRUE,

n.n

name = "p",

nn

missing = ,

decimal_separator = NULL,

digits = 3,

Arguments

p

stars
stars_only

whitespace

name

missing

value or vector of p-values.
Add significance stars (e.g., p < .001%%%),
Return only significance stars.

Logical, if TRUE (default), preserves whitespaces. Else, all whitespace characters
are removed from the returned string.

Name prefixing the text. Can be NULL.

Value by which NA values are replaced. By default, an empty string (i.e. "") is
returned for NA.

decimal_separator

digits

Value

A formatted string.

Character, if not NULL, will be used as decimal separator.

Number of significant digits. May also be "scientific” to return exact p-
values in scientific notation, or "apa” to use an APA 7th edition-style for p-
values (equivalent to digits =3). If "scientific”, control the number of
digits by adding the value as a suffix, e.g.m digits = "scientific4” to have
scientific notation with 4 decimal places.

Arguments from other methods.

52 format_pd

Examples

format_p(c(.02, .065, 0, .23))
format_p(c(.02, .065, @, .23), name = NULL)
format_p(c(.02, .065, @, .23), stars_only = TRUE)

model <- lm(mpg ~ wt + cyl, data = mtcars)
p <- coef(summary(model))[, 4]

format_p(p, digits = "apa”)

format_p(p, digits = "scientific”)
format_p(p, digits = "scientific2")

format_pd Probability of direction (pd) formatting

Description

Probability of direction (pd) formatting

Usage

format_pd(pd, stars = FALSE, stars_only = FALSE, name = "pd")

Arguments
pd Probability of direction (pd).
stars Add significance stars (e.g., p < .001%%%),
stars_only Return only significance stars.
name Name prefixing the text. Can be NULL.
Value

A formatted string.

Examples

format_pd(0.12)
format_pd(c(@.12, 1, 0.9999, 0.98, ©.995, 0.96), name = NULL)
format_pd(c(@0.12, 1, 0.9999, 0.98, 0.995, 0.96), stars = TRUE)

format_rope 53

format_rope Percentage in ROPE formatting

Description

Percentage in ROPE formatting

Usage

format_rope(rope_percentage, name = "in ROPE"”, digits = 2)

Arguments

rope_percentage
Value or vector of percentages in ROPE.

name Name prefixing the text. Can be NULL.

digits Number of significant digits. May also be "scientific” to return exact p-
values in scientific notation, or "apa” to use an APA 7th edition-style for p-
values (equivalent to digits =3). If "scientific”, control the number of
digits by adding the value as a suffix, e.g.m digits = "scientific4” to have
scientific notation with 4 decimal places.

Value

A formatted string.

Examples

format_rope(c(0.02, 0.12, 0.357, @))
format_rope(c(0.02, 0.12, 0.357, @), name = NULL)

format_string String Values Formatting

Description

String Values Formatting
Usage
format_string(x, ...)

S3 method for class 'character'
format_string(x, length = NULL, abbreviate = "...", ...)

54 format _table

Arguments
X String value.
Arguments passed to or from other methods.
length Numeric, maximum length of the returned string. If not NULL, will shorten the
string to a maximum length, however, it will not truncate inside words. Le.
if the string length happens to be inside a word, this word is removed from the
returned string, so the returned string has a maximum length of length, but
might be shorter.
abbreviate String that will be used as suffix, if x was shortened.
Value

A formatted string.

Examples

s <- "This can be considered as very long string!”
string is shorter than max.length, so returned as is
format_string(s, 60)

string is shortened to as many words that result in
a string of maximum 20 chars
format_string(s, 20)

format_table Parameter table formatting

Description

This functions takes a data frame with model parameters as input and formats certain columns into
a more readable layout (like collapsing separate columns for lower and upper confidence interval
values). Furthermore, column names are formatted as well. Note that format_table() converts all
columns into character vectors!

Usage

format_table(
X,
pretty_names = TRUE,
stars = FALSE,

digits = 2,
ci_width = "auto”,
ci_brackets = TRUE,
ci_digits = 2,
p_digits = 3,
rope_digits = 2,

format_table 55

ic_digits = 1,

zap_small = FALSE,

preserve_attributes = FALSE,

exact = TRUE,

use_symbols = getOption("insight_use_symbols"”, FALSE),
verbose = TRUE,

Arguments

X A data frame of model’s parameters, as returned by various functions of the
easystats-packages. May also be a result from broom: : tidy().

pretty_names Return "pretty" (i.e. more human readable) parameter names.

stars If TRUE, add significance stars (e.g., p < .007T*#*x). Can also be a character
vector, naming the columns that should include stars for significant values. This
is especially useful for Bayesian models, where we might have multiple columns
with significant values, e.g. BF for the Bayes factor or pd for the probability
of direction. In such cases, use stars =c("pd"”, "BF") to add stars to both
columns, or stars = "BF" to only add stars to the Bayes factor and exclude the
pd column. Currently, following columns are recognized: "BF"”, "pd"” and "p".

digits, ci_digits, p_digits, rope_digits, ic_digits
Number of digits for rounding or significant figures. May also be "signif” to
return significant figures or "scientific” to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4”
to have scientific notation with 4 decimal places, or digits = "signif5"” for 5
significant figures (see also signif()).

ci_width Minimum width of the returned string for confidence intervals. If not NULL and

width is larger than the string’s length, leading whitespaces are added to the
string. If width="auto", width will be set to the length of the longest string.

ci_brackets Logical, if TRUE (default), CI-values are encompassed in square brackets (else
in parentheses).

zap_small Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

preserve_attributes
Logical, if TRUE, preserves all attributes from the input data frame.

exact Formatting for Bayes factor columns, in case the provided data frame contains
such a column (i.e. columns named "BF" or "log_BF"). For exact = TRUE, very
large or very small values are then either reported with a scientific format (e.g.,
4.24e5), else as truncated values (as "> 1000" and "< 1/1000").

use_symbols Logical, if TRUE, column names that refer to particular effectsizes (like Phi,
Omega or Epsilon) include the related unicode-character instead of the writ-
ten name. This only works on Windows for R >=4.2, and on OS X or Linux for
R >=4.0. It is possible to define a global option for this setting, see "Note’.
verbose Toggle messages and warnings.

Arguments passed to or from other methods.

56 format_value

Value

A data frame. Note that format_table() converts all columns into character vectors!

Note

options(insight_use_symbols = TRUE) override the use_symbols argument and always dis-
plays symbols, if possible.

See Also

Vignettes Formatting, printing and exporting tables and Formatting model parameters.

Examples

format_table(head(iris), digits = 1)

if (require(”parameters”)) {
x <- model_parameters(lm(Sepal.Length ~ Species * Sepal.Width, data = iris))
as.data.frame(format_table(x))
as.data.frame(format_table(x, p_digits = "scientific"))

}

if (require(”rstanarm”, warn.conflicts = FALSE) &&
require("parameters”, , warn.conflicts = FALSE)) {
model <- stan_glm(Sepal.Length ~ Species, data = iris, refresh = 0, seed = 123)
x <- model_parameters(model, ci = c(0.69, .89, 0.95))
as.data.frame(format_table(x))

format_value Numeric Values Formatting

Description

format_value() converts numeric values into formatted string values2, where formatting can
be something like rounding digits, scientific notation etc. format_percent() is a short-cut for
format_value(as_percent = TRUE).

Usage

format_value(x, ...)

S3 method for class 'data.frame'
format_value(

X,

digits = 2,

protect_integers = FALSE,

https://easystats.github.io/insight/articles/display.html
https://easystats.github.io/parameters/articles/model_parameters_formatting.html

format_value

nn

missing = ,
width = NULL,

57

as_percent = FALSE,
zap_small = FALSE,

)

S3 method for class

format_value(
X,
digits

2,

protect_integers

nn

missing = ,
width = NULL,

'numeric'

FALSE,

as_percent = FALSE,
zap_small = FALSE,

)

format_percent(x,

Arguments

X

digits

)

Numeric value.
Arguments passed to or from other methods.

Number of digits for rounding or significant figures. May also be "signif” to
return significant figures or "scientific” to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4”
to have scientific notation with 4 decimal places, or digits = "signif5" for 5
significant figures (see also signif()).

protect_integers

missing

width

as_percent

zap_small

Value

A formatted string.

Should integers be kept as integers (i.e., without decimals)?

Value by which NA values are replaced. By default, an empty string (i.e. "") is
returned for NA.

Minimum width of the returned string. If not NULL and width is larger than the
string’s length, leading whitespaces are added to the string.

Logical, if TRUE, value is formatted as percentage value.

Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

58 get_auxiliary

Examples

format_value(1.20)

format_value(1.2)

format_value(1.2012313)

format_value(c(0.0045, 234, -23))

format_value(c(0.0045, .12, .34))

format_value(c(0.0045, .12, .34), as_percent = TRUE)
format_value(c(0.0045, .12, .34), digits = "scientific")
format_value(c(0.0045, .12, .34), digits = "scientific2")

default

format_value(c(0.0045, .123, .345))

significant figures

format_value(c(0.0045, .123, .345), digits = "signif")

format_value(as.factor(c("A", "B", "A")))
format_value(iris$Species)

format_value(3)
format_value(3, protect_integers = TRUE)

format_value(head(iris))

get_auxiliary Get auxiliary parameters from models

Description

Returns the requested auxiliary parameters from models, like dispersion, sigma, or beta...

Usage

get_auxiliary(
X,
type = "sigma",
summary = TRUE,
centrality = "mean”,
verbose = TRUE,

)
Arguments
X A model.
type The name of the auxiliary parameter that should be retrieved. "sigma” is avail-

able for most models, "dispersion” for models of class glm, glmerMod or
glmmTMB as well as brmsfit. "beta” and other parameters are currently only
returned for brmsfit models. See *Details’.

get_auxiliary

summary

centrality

verbose

Details

59

Logical, indicates whether the full posterior samples (summary = FALSE)) or
the summarized centrality indices of the posterior samples (summary = TRUE))
should be returned as estimates.

Only for models with posterior samples, and when summary = TRUE. In this
case, centrality = "mean” would calculate means of posterior samples for
each parameter, while centrality = "median” would use the more robust me-
dian value as measure of central tendency.

Toggle warnings.

Currently not used.

Currently, only sigma and the dispersion parameter are returned, and only for a limited set of mod-

els.

Sigma Parameter: See get_sigma().

Dispersion Parameter: There are many different definitions of "dispersion", depending on the
context. get_auxiliary() returns the dispersion parameters that usually can be considered as
variance-to-mean ratio for generalized (linear) mixed models. Exceptions are models of class
g1mmTMB, where the dispersion equals o2. In detail, the computation of the dispersion parameter
for generalized linear models is the ratio of the sum of the squared working-residuals and the
residual degrees of freedom. For mixed models of class glmer, the dispersion parameter is also
called ¢ and is the ratio of the sum of the squared Pearson-residuals and the residual degrees of

freedom. For models of class glmmTMB, dispersion is o“.

2

brms models: For models of class brmsfit, there are different options for the type argument.
See a list of supported auxiliary parameters here: find_parameters.BGGM().

Value

The requested auxiliary parameter, or NULL if this information could not be accessed.

Examples

from ?glm

clotting <- data.frame(
u = c(5, 19, 15, 20, 30, 40, 60, 80, 100),
lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18),
lot2 = c(69, 35, 26, 21, 18, 16, 13, 12, 12)

)

model <- glm(lot1l ~ log(u), data = clotting, family = Gamma())
get_auxiliary(model, type = "dispersion”) # same as summary(model)$dispersion

60

get_data

get_call Get the model’s function call

Description

Returns the model’s function call when available.

Usage
get_call(x)

Arguments

X A fitted mixed model.

Value

A function call.

Examples

data(mtcars)
m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars)
get_call(m)

if (require("lme4")) {

m <- lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data

get_call(m)
3

= iris)

get_data Get the data that was used to fit the model

Description

This functions tries to get the data that was used to fit the model and returns it as data frame.

Usage
get_data(x, ...)

Default S3 method:
get_data(x, verbose = TRUE, ...)

S3 method for class 'glmmTMB'

get_data(x, effects = "all”, component = "all"”, verbose

S3 method for class 'afex_aov'
get_data(x, shape = c("long”, "wide"), ...)

= TRUE, ...)

get_data 61

Arguments
X A fitted model.
Currently not used.
verbose Toggle messages and warnings.
effects Should model data for fixed effects ("fixed"), random effects ("random”) or
both ("all") be returned? Only applies to mixed or gee models.
component Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.
shape Return long or wide data? Only applicable in repeated measures designs.
Value

The data that was used to fit the model.

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all"”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

* "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms": returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

e "zero_inflated” (or "zi"): returns the zero-inflation component.

* "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

* "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, betaorprecision
(and other auxiliary parameters) are returned.

Note

Unlike model. frame(), which may contain transformed variables (e.g. if poly() or scale() was
used inside the formula to specify the model), get_data() aims at returning the "original", untrans-
formed data (if possible). Consequently, column names are changed accordingly, i.e. "log(x)" will
become "x" etc. for all data columns with transformed values.

62 get_datagrid

Examples

if (require("lmed4")) {
data(cbpp, package = "lme4")
cbpp$trials <- cbpp$size - cbpp$incidence
m <- glm(cbind(incidence, trials) ~ period, data = cbpp, family = binomial)
head(get_data(m))

get_datagrid Create a reference grid

Description
Create a reference matrix, useful for visualisation, with evenly spread and combined values. Usually
used to make generate predictions using get_predicted(). See this vignette for a tutorial on how
to create a visualisation matrix using this function.

Usage
get_datagrid(x, ...)

S3 method for class 'data.frame'
get_datagrid(

X,

at = "all”,

factors = "reference”,
numerics = "mean”,

preserve_range = FALSE,
reference = x,

length = 10,

range = "range”,

S3 method for class 'numeric'
get_datagrid(x, length = 10, range = "range"”, ...)

S3 method for class 'factor'
get_datagrid(x, ...)

Default S3 method:
get_datagrid(

X)

at = "all"”,

factors = "reference”,
numerics = "mean”,

preserve_range = TRUE,

https://easystats.github.io/modelbased/articles/visualisation_matrix.html

get_datagrid 63

reference = X,
include_smooth = TRUE,
include_random = FALSE,
include_response = FALSE,
data = NULL,

verbose = TRUE,

)
Arguments
X An object from which to construct the reference grid.
Arguments passed to or from other methods (for instance, length or range to
control the spread of numeric variables.).
at Indicates the focal predictors (variables) for the reference grid and at which

values focal predictors should be represented. If not specified otherwise, repre-
sentative values for numeric variables or predictors are evenly distributed from
the minimum to the maximum, with a total number of length values covering
that range (see ’Examples’). Possible options for at are:

e "all”, which will include all variables or predictors.

* acharacter vector of one or more variable or predictor names, like c("Species”,
"Sepal.Width"), which will create a grid of all combinations of unique
values. For factors, will use all levels, for numeric variables, will use a
range of length length (evenly spread from minimum to maximum) and
for character vectors, will use all unique values.

* alist of named elements, indicating focal predictors and their representative
values, e.g. at = list(Sepal.Length =c(2, 4), Species = "setosa").

* astring with assignments, e.g. at = "Sepal.Length = 2" orat = c("Sepal.Length
=2", "Species = 'setosa'") - note the usage of single and double quotes
to assign strings within strings.

There is a special handling of assignments with brackets, i.e. values defined
inside [and].For numeric variables, the value(s) inside the brackets should
either be

* two values, indicating minimum and maximum (e.g. at = "Sepal.lLength
= [0, 5]"), for which a range of length length (evenly spread from given
minimum to maximum) is created.

¢ more than two numeric values at = "Sepal.Length=1[2,3,4,5]", in which
case these values are used as representative values.

* a "token" that creates pre-defined representative values:
— for mean and -/+ 1 SD around the mean: "x = [sd]"
for median and -/+ 1 MAD around the median: "x = [mad]”

for Tukey’s five number summary (minimum, lower-hinge, median,
upper-hinge, maximum): "x = [fivenum]”

for terciles, including minimum and maximum: "x = [terciles]”

for terciles, excluding minimum and maximum: "x = [terciles2]”

for quartiles, including minimum and maximum: "x = [quartiles]”

64

factors

numerics

preserve_range

reference

length

range

get_datagrid

- for quartiles, excluding minimum and maximum: "x = [quartiles2]”
— for minimum and maximum value: "x = [minmax]"
— for 0 and the maximum value: "x = [zeromax]"
For factor variables, the value(s) inside the brackets should indicate one or more
factor levels, like at = "Species = [setosa, versicolor]”. Note: the length
argument will be ignored when using brackets-tokens.
The remaining variables not specified in at will be fixed (see also arguments
factors and numerics).

Type of summary for factors. Can be "reference” (set at the reference level),
"mode” (set at the most common level) or "all” to keep all levels.

Type of summary for numeric values. Can be "all” (will duplicate the grid
for all unique values), any function ("mean”, "median”, ...) or a value (e.g.,
numerics = Q).

In the case of combinations between numeric variables and factors, setting preserve_range

= TRUE will drop the observations where the value of the numeric variable is
originally not present in the range of its factor level. This leads to an unbal-
anced grid. Also, if you want the minimum and the maximum to closely match
the actual ranges, you should increase the length argument.

The reference vector from which to compute the mean and SD. Used when stan-
dardizing or unstandardizing the grid using effectsize: :standardize.

Length of numeric target variables selected in "at”. This arguments controls the
number of (equally spread) values that will be taken to represent the continuous
variables. A longer length will increase precision, but can also substantially
increase the size of the datagrid (especially in case of interactions). If NA, will
return all the unique values. In case of multiple continuous target variables,
length can also be a vector of different values (see examples).

Option to control the representative values given in at, if no specific values were
provided. range can be one of the following:

* "range"” (default), will use the minimum and maximum of the original data
vector as end-points (min and max).

« if an interval type is specified, such as "iqr"”, "ci”, "hdi"” or "eti”, it
will spread the values within that range (the default CI width is 95% but
this can be changed by adding for instance ci =@.90.) See IQR() and
bayestestR::ci(). This can be useful to have more robust change and
skipping extreme values.

* if "sd” or "mad”, it will spread by this dispersion index around the mean or
the median, respectively. If the length argument is an even number (e.g.,
4), it will have one more step on the positive side (i.e., -1, @, +1, +2).
The result is a named vector. See "Examples.’

e "grid" will create a reference grid that is useful when plotting predictions,
by choosing representative values for numeric variables based on their po-
sition in the reference grid. If a numeric variable is the first predictor in
at, values from minimum to maximum of the same length as indicated in
length are generated. For numeric predictors not specified at first in at,
mean and -1/+1 SD around the mean are returned. For factors, all levels are
returned.

get_datagrid 65

include_smooth If x is a model object, decide whether smooth terms should be included in the
data grid or not.

include_random If x is a mixed model object, decide whether random effect terms should be
included in the data grid or not. If include_random is FALSE, but x is a mixed
model with random effects, these will still be included in the returned grid, but
set to their "population level" value (e.g., NA for glmmTMB or @ for merMod).
This ensures that common predict() methods work properly, as these usually
need data with all variables in the model included.

include_response
If x is a model object, decide whether the response variable should be included
in the data grid or not.

data Optional, the data frame that was used to fit the model. Usually, the data is
retrieved via get_data().
verbose Toggle warnings.
Value

Reference grid data frame.

See Also

get_predicted()

Examples

Datagrids of variables and dataframes
if (require(”bayestestR", quietly = TRUE) & require("datawizard”, quietly = TRUE)) {
Single variable is of interest; all others are "fixed" -----------------—-

Factors
get_datagrid(iris, at = "Species”) # Returns all the levels
get_datagrid(iris, at = "Species = c('setosa', 'versicolor')") # Specify an expression

Numeric variables
get_datagrid(iris, at = "Sepal.Length”) # default spread length = 10
get_datagrid(iris, at = "Sepal.Length”, length = 3) # change length
get_datagrid(iris[2:150,],

at = "Sepal.Length”,

factors = "mode”, numerics = "median”
) # change non-targets fixing
get_datagrid(iris, at = "Sepal.Length"”, range = "ci”, ci = 0.90) # change min/max of target
get_datagrid(iris, at = "Sepal.Length = [0, 1]1") # Manually change min/max
get_datagrid(iris, at = "Sepal.Length = [sd]") # -1 SD, mean and +1 SD
get_datagrid(iris, at = "Sepal.Length = [quartiles]"”) # quartiles

Numeric and categorical variables, generating a grid for plots

default spread length = 10

get_datagrid(iris, at = c("Sepal.Length”, "Species"”), range = "grid")
default spread length = 3 (-1 SD, mean and +1 SD)
get_datagrid(iris, at = c("Species”, "Sepal.Length"”), range

"grid")

66

get_deviance

Standardization and unstandardization

data <- get_datagrid(iris, at = "Sepal.Length”, range = "sd", length = 3)
data$Sepal.Length # It is a named vector (extract names with ‘names(out$Sepal.Length)*)
datawizard: :standardize(data, select = "Sepal.Length")

data <- get_datagrid(iris, at = "Sepal.Length = c(-2, @, 2)") # Manually specify values
data

datawizard: :unstandardize(data, select = "Sepal.Length")

Multiple variables are of interest, creating a combination --------------
get_datagrid(iris, at = c("”Sepal.Length”, "Species”), length = 3)
get_datagrid(iris, at = c("Sepal.Length”, "Petal.Length"), length = c(3, 2))
get_datagrid(iris, at = c(1, 3), length = 3)

get_datagrid(iris, at = c("Sepal.Length”, "Species"), preserve_range = TRUE)
get_datagrid(iris, at = c("Sepal.Length”, "Species"), numerics = @)
get_datagrid(iris, at = c("Sepal.Length = 3", "Species”))

get_datagrid(iris, at = c("Sepal.Length = c(3, 1)", "Species = 'setosa'"))

With list-style at-argument
get_datagrid(iris, at = list(Sepal.Length = c(1, 3), Species = "setosa"))

With models
Fit a linear regression
model <- Im(Sepal.Length ~ Sepal.Width x Petal.Length, data = iris)
Get datagrid of predictors
data <- get_datagrid(model, length = c(20, 3), range = c("range"”, "sd"))
same as: get_datagrid(model, range = "grid”, length = 20)
Add predictions
data$Sepal.Length <- get_predicted(model, data = data)
Visualize relationships (each color is at -1 SD, Mean, and + 1 SD of Petal.lLength)
plot(data$Sepal.Width, data$Sepal.Length,
col = data$Petal.Length,
main = "Relationship at -1 SD, Mean, and + 1 SD of Petal.lLength”
)

get_deviance Model Deviance

Description

Returns model deviance (see stats: :deviance()).

Usage

get_deviance(x, ...)

Default S3 method:
get_deviance(x, verbose = TRUE, ...)

get_df 67

Arguments
X A model.
Not used.
verbose Toggle warnings and messages.
Details

For GLMMs of class glmerMod, glmmTMB or MixMod, the absolute unconditional deviance is re-
turned (see ’Details’ in ?1me4: :merMod-class), i.e. minus twice the log-likelihood. To get the
relative conditional deviance (relative to a saturated model, conditioned on the conditional modes
of random effects), use deviance(). The value returned get_deviance() usually equals the
deviance-value from the summary ().

Value

The model deviance.

Examples

data(mtcars)
x <- Im(mpg ~ cyl, data = mtcars)
get_deviance(x)

get_df Extract degrees of freedom

Description

Estimate or extract residual or model-based degrees of freedom from regression models.

Usage
get_df(x, ...)

Default S3 method:

get_df(x, type = "residual”, verbose = TRUE, ...)
Arguments
X A statistical model.

Currently not used.

type Can be "residual”, "wald”, "normal”, or "model”. "analytical” is an alias
for "residual”.

68 get_df

* "residual” (aka "analytical”) returns the residual degrees of freedom,
which usually is what stats: :df.residual() returns. If a model object
has no method to extract residual degrees of freedom, these are calculated
as n-p, i.e. the number of observations minus the number of estimated
parameters. If residual degrees of freedom cannot be extracted by either
approach, returns Inf.

* "wald" returns residual (aka analytical) degrees of freedom for models with
t-statistic, 1 for models with Chi-squared statistic, and Inf for all other
models. Also returns Inf if residual degrees of freedom cannot be ex-
tracted.

* "normal” always returns Inf.

* "model” returns model-based degrees of freedom, i.e. the number of (esti-
mated) parameters.

* For mixed models, can also be "ml1" (approximation of degrees of free-
dom based on a "m-I-1" heuristic as suggested by Elff et al. 2019) or
"betwithin”, and for models of class merMod, type can also be "satterthwaite”
or "kenward-roger”. See ’Details’.

Usually, when degrees of freedom are required to calculate p-values or confi-
dence intervals, type = "wald" is likely to be the best choice in most cases.

verbose Toggle warnings.

Details

Degrees of freedom for mixed models

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed
models when the number of clusters is small (even if the sample size of level-1 units is high). In
such cases it is recommended to approximate a more accurate number of degrees of freedom for
such inferential statistics (see Li and Redden 2015).

m-1-1 degrees of freedom

The m-I-1 heuristic is an approach that uses a t-distribution with fewer degrees of freedom. In par-
ticular for repeated measure designs (longitudinal data analysis), the m-1-1 heuristic is likely to be
more accurate than simply using the residual or infinite degrees of freedom, because get_df (type
="ml1") returns different degrees of freedom for within-cluster and between-cluster effects. Note
that the "m-1-1" heuristic is not applicable (or at least less accurate) for complex multilevel designs,
e.g. with cross-classified clusters. In such cases, more accurate approaches like the Kenward-Roger
approximation is recommended. However, the "m-1-1" heuristic also applies to generalized mixed
models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models
only.

Between-within degrees of freedom

The Between-within denominator degrees of freedom approximation is, similar to the "m-1-1"
heuristic, recommended in particular for (generalized) linear mixed models with repeated mea-
surements (longitudinal design). get_df (type = "betwithin”) implements a heuristic based on
the between-within approach, i.e. this type returns different degrees of freedom for within-cluster
and between-cluster effects. Note that this implementation does not return exactly the same results
as shown in Li and Redden 2015, but similar.

Satterthwaite and Kenward-Rogers degrees of freedom

get_family 69

Unlike simpler approximation heuristics like the "m-1-1" rule (type = "ml11"), the Satterthwaite
or Kenward-Rogers approximation is also applicable in more complex multilevel designs. How-
ever, the "m-1-1" or "between-within" heuristics also apply to generalized mixed models, while
approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

References

* Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from re-
stricted maximum likelihood. Biometrics, 983-997.

* Satterthwaite FE (1946) An approximate distribution of estimates of variance components.
Biometrics Bulletin 2 (6):110-4.

 Elff, M.; Heisig, J.P.; Schaeffer, M.; Shikano, S. (2019). Multilevel Analysis with Few Clus-
ters: Improving Likelihood-based Methods to Provide Unbiased Estimates and Accurate In-
ference, British Journal of Political Science.

e Li, P, Redden, D. T. (2015). Comparing denominator degrees of freedom approximations
for the generalized linear mixed model in analyzing binary outcome in small sample cluster-
randomized trials. BMC Medical Research Methodology, 15(1), 38

Examples

model <- 1m(Sepal.Length ~ Petal.Length * Species, data = iris)
get_df(model) # same as df.residual(model)
get_df(model, type = "model”) # same as attr(logLik(model), "df")

get_family A robust alternative to stats::family

Description

A robust and resilient alternative to stats: : family. To avoid issues with models like gamm4.

Usage
get_family(x, ...)
Arguments
X A statistical model.

Further arguments passed to methods.

70 get_intercept

Examples

data(mtcars)
x <- glm(vs ~ wt, data = mtcars, family = "binomial”)
get_family(x)

if (require("mgcv")) {
x <= mgcv: :gamm(
vs ~ am + s(wt),
random = list(cyl = ~1),
data = mtcars,
family = "binomial”
)
get_family(x)
3

get_intercept Get the value at the intercept

Description

Returns the value at the intercept (i.e., the intercept parameter), and NA if there isn’t one.

Usage
get_intercept(x, ...)
Arguments
X A model.
Not used.
Value

The value of the intercept.

Examples

get_intercept(1lm(Sepal.Length ~ Petal.Width, data = iris))
get_intercept(1lm(Sepal.Length ~ @ + Petal.Width, data = iris))

if (require(”"1me4")) {
get_intercept(lme4: :1mer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris))
3
if (require(”"gamm4")) {
get_intercept(gamm4: :gamm4 (Sepal.Length ~ s(Petal.Width), data = iris))
3

get_loglikelihood 71

get_loglikelihood Log-Likelihood

Description
A robust function to compute the log-likelihood of a model, as well as individual log-likelihoods
(for each observation) whenever possible. Can be used as a replacement for stats: :logLik() out
of the box, as the returned object is of the same class (and it gives the same results by default).
Usage
get_loglikelihood(x, ...)

loglikelihood(x, ...)

S3 method for class 'lm'
get_loglikelihood(

X)
estimator = "ML",
REML = FALSE,

check_response = FALSE,
verbose = TRUE,

Arguments

X A model.
Passed down to loglLik(), if possible.

estimator Corresponds to the different estimators for the standard deviation of the errors. If
estimator="ML" (default), the scaling is done by n (the biased ML estimator),
which is then equivalent to using stats::logLik(). If estimator="0LS", it
returns the unbiased OLS estimator. estimator="REML" will give same results
as loglLik(..., REML=TRUE).

REML Only for linear models. This argument is present for compatibility with stats: :logLik ().

Setting it to TRUE will overwrite the estimator argument and is thus equivalent
to setting estimator="REML". It will give the same results as stats: :loglLik(...,
REML=TRUE). Note that individual log-likelihoods are not available under REML.

check_response Logical, if TRUE, checks if the response variable is transformed (like log() or
sqrt()), and if so, returns a corrected log-likelihood. To get back to the original
scale, the likelihood of the model is multiplied by the Jacobian/derivative of the
transformation.

verbose Toggle warnings and messages.

72 get_modelmatrix

Value

An object of class "loglLik", also containing the log-likelihoods for each observation as a per_observation
attribute (attributes(get_loglikelihood(x))$per_observation) when possible. The code
was partly inspired from the nonnest2 package.

Examples

x <- Im(Sepal.Length ~ Petal.Width + Species, data = iris)

get_loglikelihood(x, estimator = "ML") # Equivalent to stats::logLik(x)
get_loglikelihood(x, estimator = "REML") # Equivalent to stats::loglLik(x, REML=TRUE)
get_loglikelihood(x, estimator = "OLS")

get_modelmatrix Model Matrix

Description

Creates a design matrix from the description. Any character variables are coerced to factors.

Usage
get_modelmatrix(x, ...)
Arguments
X An object.
Passed down to other methods (mainly model.matrix()).
Examples
data(mtcars)

model <- Im(am ~ vs, data = mtcars)
get_modelmatrix(model)

https://CRAN.R-project.org/package=nonnest2

get_parameters 73

get_parameters Get model parameters

Description

Returns the coefficients (or posterior samples for Bayesian models) from a model. See the docu-
mentation for your object’s class:

* Bayesian models (rstanarm, brms, MCMCglmm, ...)

* Estimated marginal means (emmeans)

* Generalized additive models (mgcv, VGAM, ...)

* Marginal effects models (mfx)

¢ Mixed models (Ime4, glmmTMB, GLMMadaptive, ...)

¢ Zero-inflated and hurdle models (pscl, ...)

* Models with special components (betareg, MuMIn, ...)

* Hypothesis tests (htest)

Usage

get_parameters(x, ...)

Default S3 method:

get_parameters(x, verbose = TRUE, ...)
Arguments
X A fitted model.
Currently not used.
verbose Toggle messages and warnings.
Details

In most cases when models either return different "effects" (fixed, random) or "components" (con-
ditional, zero-inflated, ...), the arguments effects and component can be used.

get_parameters() is comparable to coef (), however, the coefficients are returned as data frame
(with columns for names and point estimates of coefficients). For Bayesian models, the posterior
samples of parameters are returned.

Value
* for non-Bayesian models, a data frame with two columns: the parameter names and the related
point estimates.

 for Anova (aov()) with error term, a list of parameters for the conditional and the random
effects parameters

74 get_parameters.betamfx

Model components

Possible values for the component argument depend on the model class. Following are valid op-
tions:

e "all”: returns all model components, applies to all models, but will only have an effect for
models with more than just the conditional model component.

* "conditional”: only returns the conditional component, i.e. "fixed effects" terms from the
model. Will only have an effect for models with more than just the conditional model compo-
nent.

* "smooth_terms”: returns smooth terms, only applies to GAMs (or similar models that may
contain smooth terms).

e "zero_inflated” (or "zi"): returns the zero-inflation component.

» "dispersion”: returns the dispersion model component. This is common for models with
zero-inflation or that can model the dispersion parameter.

e "instruments”: for instrumental-variable or some fixed effects regression, returns the instru-
ments.

e "location”: returns location parameters such as conditional, zero_inflated, smooth_terms,
or instruments (everything that are fixed or random effects - depending on the effects ar-
gument - but no auxiliary parameters).

e "distributional” (or "auxiliary"): components like sigma, dispersion, beta orprecision
(and other auxiliary parameters) are returned.

Examples

data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_parameters.betamfx
Get model parameters from marginal effects models

Description

Returns the coefficients from a model.

Usage

S3 method for class 'betamfx'
get_parameters(
X7
component = c("all”, "conditional"”, "precision”, "marginal"),

S3 method for class 'logitmfx'
get_parameters(x, component = c("all”, "conditional”, "marginal”), ...)

get_parameters.betareg 75

Arguments
X A fitted model.
component Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.
Currently not used.
Value

A data frame with three columns: the parameter names, the related point estimates and the compo-
nent.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_parameters.betareg
Get model parameters from models with special components

Description

Returns the coefficients from a model.

Usage

S3 method for class 'betareg'
get_parameters(
X,
component = c("all”, "conditional”, "precision”, "location", "distributional”,
"auxiliary"),

S3 method for class 'DirichletRegModel'’
get_parameters(
X)
component = c("all”, "conditional”, "precision”, "location”, "distributional”,
"auxiliary"),

76 get_parameters.betareg

S3 method for class 'averaging'
get_parameters(x, component = c("conditional”, "full"), ...)

S3 method for class 'glmx'
get_parameters(
X,
component = c("all"”, "conditional”, "extra"”, "location”, "distributional”, "auxiliary"),

S3 method for class 'clm2'
get_parameters(x, component = c("all”, "conditional”, "scale"), ...)

S3 method for class 'mvord'
get_parameters(

X’
component = c("all”, "conditional”, "thresholds”, "correlation"),
)
S3 method for class 'mjoint'
get_parameters(x, component = c("all”, "conditional”, "survival"), ...)
Arguments
X A fitted model.
component Should all predictor variables, predictor variables for the conditional model, the

zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.

Currently not used.

Value

A data frame with three columns: the parameter names, the related point estimates and the compo-
nent.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_parameters. BGGM

77

get_parameters.BGGM Get model parameters from Bayesian models

Description

Returns the coefficients (or posterior samples for Bayesian models) from a model.

Usage

S3 method for class 'BGGM'
get_parameters(

X’

component = c("correlation”, "conditional”, "intercept”, "all"),
summary = FALSE,

centrality = "mean”,

S3 method for class 'MCMCglmm'
get_parameters(

X,
effects = c("fixed”, "random”, "all"),
summary = FALSE,

centrality = "mean”,

)

S3 method for class 'BFBayesFactor'
get_parameters(

X)
effects = c("all”, "fixed", "random"),
component = c("all”, "extra"),

iterations = 4000,
progress = FALSE,
verbose = TRUE,
summary = FALSE,
centrality = "mean”,

S3 method for class 'stanmvreg'
get_parameters(
X)
effects = c("fixed”, "random”, "all"),
parameters = NULL,
summary = FALSE,
centrality = "mean”,

78

get_parameters. BGGM

S3 method for class 'brmsfit'
get_parameters(

X’
effects = "fixed",
component = "all"”,

parameters = NULL,
summary = FALSE,
centrality = "mean”,

S3 method for class 'stanreg'
get_parameters(

X’
effects = c("fixed”, "random”, "all"),
component = c("location”, "all”, "conditional”, "smooth_terms”, "sigma",

"distributional”, "auxiliary"),
parameters = NULL,
summary = FALSE,
centrality = "mean”,

S3 method for class 'bayesx'
get_parameters(

X’

component = c("conditional”, "smooth_terms”, "all"),
summary = FALSE,

centrality = "mean”,

S3 method for class 'bamlss'
get_parameters(
X)
component = c("all"”, "conditional”, "smooth_terms"”, "location”, "distributional”,
"auxiliary"),
parameters = NULL,
summary = FALSE,
centrality = "mean”,

S3 method for class 'sim.merMod'
get_parameters(

get_parameters. BGGM 79
X ’
effects = c("fixed"”, "random”, "all"),
parameters = NULL,
summary = FALSE,
centrality = "mean”,
)
S3 method for class 'sim'
get_parameters(x, parameters = NULL, summary = FALSE, centrality = "mean"”, ...)
Arguments
X A fitted model.
component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects from mfx. May be
abbreviated. Note that the conditional component is also called count or mean
component, depending on the model. There are three convenient shortcuts:
component = "all” returns all possible parameters. If component = "location”,
location parameters such as conditional, zero_inflated, smooth_terms, or
instruments are returned (everything that are fixed or random effects - depend-
ing on the effects argument - but no auxiliary parameters). For component =
"distributional” (or "auxiliary"), components like sigma, dispersion,
beta or precision (and other auxiliary parameters) are returned.
summary Logical, indicates whether the full posterior samples (summary = FALSE)) or
the summarized centrality indices of the posterior samples (summary = TRUE))
should be returned as estimates.
centrality Only for models with posterior samples, and when summary = TRUE. In this
case, centrality = "mean” would calculate means of posterior samples for
each parameter, while centrality = "median” would use the more robust me-
dian value as measure of central tendency.
Currently not used.
effects Should parameters for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.
iterations Number of posterior draws.
progress Display progress.
verbose Toggle messages and warnings.
parameters Regular expression pattern that describes the parameters that should be returned.
Details

In most cases when models either return different "effects" (fixed, random) or "components" (con-
ditional, zero-inflated, ...), the arguments effects and component can be used.

80 get_parameters.emmGrid

Value

The posterior samples from the requested parameters as data frame. If summary = TRUE, returns
a data frame with two columns: the parameter names and the related point estimates (based on
centrality).

BFBayesFactor Models

Note that for BFBayesFactor models (from the BayesFactor package), posteriors are only ex-
tracted from the first numerator model (i.e., mode1[1]). If you want to apply some function foo()
to another model stored in the BFBayesFactor object, index it directly, e.g. foo(model[2]),
foo(1/model[5]), etc. See also bayestestR: :weighted_posteriors().

Examples

data(mtcars)
m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_parameters.emmGrid
Get model parameters from estimated marginal means objects

Description

Returns the coefficients from a model.

Usage

S3 method for class 'emmGrid'
get_parameters(x, summary = FALSE, merge_parameters = FALSE, ...)

S3 method for class 'emm_list'

get_parameters(x, summary = FALSE, ...)
Arguments
X A fitted model.
summary Logical, indicates whether the full posterior samples (summary = FALSE)) or

the summarized centrality indices of the posterior samples (summary = TRUE))
should be returned as estimates.

merge_parameters
Logical, if TRUE and x has multiple columns for parameter names (like emmGrid
objects may have), these are merged into a single parameter column, with pa-
rameters names and values as values.

Currently not used.

get_parameters.gamm 81

Value

A data frame with two columns: the parameter names and the related point estimates.

Note

Note that emmGrid or emm_list objects returned by functions from emmeans have a different
structure compared to usual regression models. Hence, the Parameter column does not always
contain names of variables, but may rather contain values, e.g. for contrasts. See an example for
pairwise comparisons below.

Examples

data(mtcars)
model <- lm(mpg ~ wt * factor(cyl), data = mtcars)
if (require("emmeans”, quietly = TRUE)) {

emm <- emmeans(model, "cyl")

get_parameters(emm)

emm <- emmeans(model, pairwise ~ cyl)
get_parameters(emm)

}

get_parameters.gamm Get model parameters from generalized additive models

Description

Returns the coefficients from a model.

Usage

S3 method for class 'gamm'
get_parameters(
X,
component = c("all”, "conditional”, "smooth_terms”, "location”),

S3 method for class 'gam'
get_parameters(
X,
component = c("all”, "conditional”, "smooth_terms"”, "location"),

S3 method for class 'rgss'
get_parameters(x, component = c("all”, "conditional”, "smooth_terms"), ...)

82

Arguments

X

component

Value

get_parameters.glmm

A fitted model.

Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.

Currently not used.

For models with smooth terms or zero-inflation component, a data frame with three columns: the
parameter names, the related point estimates and the component.

Examples

data(mtcars)

m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars)

get_parameters(m)

get_parameters.glmm Get model parameters from mixed models

Description

Returns the coefficients from a model.

Usage

S3 method for class 'glmm'
get_parameters(x, effects = c("all”, "fixed”, "random"), ...)

S3 method for class 'coxme'
get_parameters(x, effects = c("fixed”, "random"), ...)

S3 method for class 'nlmerMod'

get_parameters(

X,
effects = c("fixed”, "random”),
component = c("all”, "conditional”, "nonlinear"),

S3 method for class 'merMod'
get_parameters(x, effects = c("fixed”, "random"), ...)

get_parameters.glmm

83

S3 method for class 'glmmTMB'

get_parameters(

X7
effects = c("fixed”, "random"),
component = c("all"”, "conditional”, "zi", "zero_inflated”, "dispersion"”),
)
S3 method for class 'glimML'
get_parameters(x, effects = c("fixed”, "random”, "all"), ...)
Arguments
X A fitted model.
effects Should parameters for fixed effects, random effects or both be returned? Only

component

Details

applies to mixed models. May be abbreviated.
Currently not used.

Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model or the dispersion term? Applies
to models with zero-inflated and/or dispersion formula. Note that the condi-
tional component is also called count or mean component, depending on the
model. There are three convenient shortcuts: component = "all"” returns all
possible parameters. If component = "location”, location parameters such as
conditional or zero_inflated are returned (everything that are fixed or ran-
dom effects - depending on the effects argument - but no auxiliary param-
eters). For component = "distributional” (or "auxiliary"), components
like sigma or dispersion (and other auxiliary parameters) are returned.

In most cases when models either return different "effects" (fixed, random) or "components" (con-
ditional, zero-inflated, ...), the arguments effects and component can be used.

Value

If effects = "fixed", a data frame with two columns: the parameter names and the related point
estimates. If effects = "random”, a list of data frames with the random effects (as returned by
ranef()), unless the random effects have the same simplified structure as fixed effects (e.g. for
models from MCMCglmm).

Examples

data(mtcars)

m <- Im(mpg ~ wt + cyl + vs, data = mtcars)

get_parameters(m)

84 get_parameters.zeroinfl

get_parameters.htest Get model parameters from htest-objects

Description

Returns the parameters from a hypothesis test.

Usage
S3 method for class 'htest'
get_parameters(x, ...)
Arguments
X A fitted model.

Currently not used.

Value

A data frame with two columns: the parameter names and the related point estimates.

Examples

get_parameters(t.test(1:10, y = c(7:20)))

get_parameters.zeroinfl
Get model parameters from zero-inflated and hurdle models

Description

Returns the coefficients from a model.

Usage

S3 method for class 'zeroinfl'
get_parameters(
X,
component = c("all”, "conditional”, "zi", "zero_inflated"),

S3 method for class 'zcpglm'
get_parameters(
X,

get_predicted 85

component = c("all”, "conditional”, "zi", "zero_inflated”),
)
S3 method for class 'mhurdle’
get_parameters(
X ’
component = c("all"”, "conditional”, "zi", "zero_inflated”, "infrequent_purchase”, "ip",
"auxiliary"),
)
Arguments
X A fitted model.
component Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.
Currently not used.
Value

For models with smooth terms or zero-inflation component, a data frame with three columns: the
parameter names, the related point estimates and the component.

Examples

data(mtcars)
m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)

get_predicted Model predictions (robust) and their confidence intervals

Description

The get_predicted() function is a robust, flexible and user-friendly alternative to base R predict ()
function. Additional features and advantages include availability of uncertainty intervals (CI), boot-
strapping, a more intuitive API and the support of more models than base R’s predict() function.
However, although the interface are simplified, it is still very important to read the documentation
of the arguments. This is because making "predictions" (a lose term for a variety of things) is a
non-trivial process, with lots of caveats and complications. Read the ’Details’ section for more
information.

86

get_predicted

get_predicted_ci() returns the confidence (or prediction) interval (CI) associated with predic-
tions made by a model. This function can be called separately on a vector of predicted values.
get_predicted() usually returns confidence intervals (included as attribute, and accessible via the

as.data. frame() method) by default.

Usage

get_predicted(x, ...)

Default S3 method:
get_predicted(

)

X,
data = NULL,

predict = "expectation”,
ci = NULL,

ci_type = "confidence"”,
ci_method = NULL,
dispersion_method = "sd",
vcov = NULL,

vcov_args = NULL,
verbose = TRUE,

S3 method for class 'lm'
get_predicted(

)

S3 method for class 'stanreg'

X,

data = NULL,

predict = "expectation”,
ci = NULL,

iterations = NULL,
verbose = TRUE,

get_predicted(

X,

data = NULL,

predict = "expectation”,
iterations = NULL,

ci = NULL,

ci_method = NULL,

include_random = "default”,

include_smooth = TRUE,
verbose = TRUE,

get_predicted 87

S3 method for class 'gam'
get_predicted(
X,
data = NULL,
predict = "expectation”,
ci = NULL,
include_random = TRUE,
include_smooth = TRUE,
iterations = NULL,
verbose = TRUE,

)

S3 method for class 'lmerMod'
get_predicted(

X,

data = NULL,

predict = "expectation”,

ci = NULL,

ci_method = NULL,
include_random = "default”,

iterations = NULL,
verbose = TRUE,

)
S3 method for class 'principal’
get_predicted(x, data = NULL, ...)
Arguments
X A statistical model (can also be a data.frame, in which case the second argument

has to be a model).
Other argument to be passed, for instance to get_predicted_ci().

data An optional data frame in which to look for variables with which to predict. If
omitted, the data used to fit the model is used. Visualization matrices can be
generated using get_datagrid().

predict string or NULL

e "link” returns predictions on the model’s link-scale (for logistic models,
that means the log-odds scale) with a confidence interval (CI).

e "expectation” (default) also returns confidence intervals, but this time the
output is on the response scale (for logistic models, that means probabili-
ties).

* "prediction” also gives an output on the response scale, but this time
associated with a prediction interval (PI), which is larger than a confidence
interval (though it mostly make sense for linear models).

88

ci

ci_type

ci_method

get_predicted

* "classification” only differs from "prediction” for binomial models
where it additionally transforms the predictions into the original response’s
type (for instance, to a factor).

* Other strings are passed directly to the type argument of the predict()
method supplied by the modelling package.

* When predict = NULL, alternative arguments such as type will be captured
by the ... ellipsis and passed directly to the predict() method supplied
by the modelling package. Note that this might result in conflicts with
multiple matching type arguments - thus, the recommendation is to use the
predict argument for those values.

* Notes: You can see the 4 options for predictions as on a gradient from "close

"non

to the model" to "close to the response data": "link", "expectation", "pre-
diction", "classification". The predict argument modulates two things: the
scale of the output and the type of certainty interval. Read more about in

the Details section below.

The interval level. Default is NULL, to be fast even for larger models. Set the
interval level to an explicit value, e.g. 0. 95, for 95% CI).

Can be "prediction” or "confidence"”. Prediction intervals show the range
that likely contains the value of a new observation (in what range it would fall),
whereas confidence intervals reflect the uncertainty around the estimated param-
eters (and gives the range of the link; for instance of the regression line in a linear
regressions). Prediction intervals account for both the uncertainty in the model’s
parameters, plus the random variation of the individual values. Thus, prediction
intervals are always wider than confidence intervals. Moreover, prediction in-
tervals will not necessarily become narrower as the sample size increases (as
they do not reflect only the quality of the fit). This applies mostly for "simple"
linear models (like 1m), as for other models (e.g., glm), prediction intervals are
somewhat useless (for instance, for a binomial model for which the dependent
variable is a vector of 1s and Os, the prediction interval is... [0, 1]).

The method for computing p values and confidence intervals. Possible values
depend on model type.
* NULL uses the default method, which varies based on the model type.
* Most frequentist models: "wald” (default), "residual” or "normal”.
* Bayesian models: "quantile” (default), "hdi”, "eti”, and "spi”.
e Mixed effects Ime4 models: "wald” (default), "residual”, "normal”,
"satterthwaite”, and "kenward-roger".

See get_df () for details.

dispersion_method

VCoVv

Bootstrap dispersion and Bayesian posterior summary: "sd" or "mad”.

Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

* A covariance matrix
* A function which returns a covariance matrix (e.g., stats: :vcov())

get_predicted

vcov_args

verbose

iterations

include_random

include_smooth

Details

89

* A string which indicates the kind of uncertainty estimates to return.
— Heteroskedasticity-consistent: "vcovHC", "HC", "HC@", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5". See ?sandwich: : vcovHC
— Cluster-robust: "vcovCR"”, "CR@", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich: :vcovCR()

n on

— Bootstrap: "vcovBS”, "xy", "residual”, "wild"”, "mammen”, "webb".
See ?sandwich: :vcovBS

— Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL",
"vcovPL".

List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich: : vcovHAC) to see the list of
available arguments. If no estimation type (argument type) is given, the default
type for "HC" (or "vcovHC") equals the default from the sandwich package; for
type "CR" (or "vcoCR"), the default is set to "CR3".

Toggle warnings.

For Bayesian models, this corresponds to the number of posterior draws. If
NULL, will return all the draws (one for each iteration of the model). For fre-
quentist models, if not NULL, will generate bootstrapped draws, from which
bootstrapped CIs will be computed. Iterations can be accessed by running
as.data.frame(..., keep_iterations = TRUE) on the output.

If "default”, include all random effects in the prediction, unless random effect
variables are not in the data. If TRUE, include all random effects in the predic-
tion (in this case, it will be checked if actually all random effect variables are in
data). If FALSE, don’t take them into account. Can also be a formula to specify
which random effects to condition on when predicting (passed to the re.form
argument). If include_random = TRUE and data is provided, make sure to in-
clude the random effect variables in data as well.

For General Additive Models (GAMs). If FALSE, will fix the value of the smooth
to its average, so that the predictions are not depending on it. (default), mean(),
or bayestestR: :map_estimate().

In insight::get_predicted(), the predict argument jointly modulates two separate concepts,
the scale and the uncertainty interval.

Confidence Interval (CI) vs. Prediction Interval (PI)):

e Linear models - 1m(): For linear models, Prediction intervals (predict="prediction")
show the range that likely contains the value of a new observation (in what range it is likely
to fall), whereas confidence intervals (predict="expectation” or predict="1ink") reflect
the uncertainty around the estimated parameters (and gives the range of uncertainty of the
regression line). In general, Prediction Intervals (PIs) account for both the uncertainty in
the model’s parameters, plus the random variation of the individual values. Thus, prediction
intervals are always wider than confidence intervals. Moreover, prediction intervals will not
necessarily become narrower as the sample size increases (as they do not reflect only the
quality of the fit, but also the variability within the data).

90 get_predicted

* Generalized Linear models - glm(): For binomial models, prediction intervals are some-
what useless (for instance, for a binomial (Bernoulli) model for which the dependent variable
is a vector of 1s and Os, the prediction interval is... [@, 1]).

Link scale vs. Response scale: When users set the predict argument to "expectation”, the
predictions are returned on the response scale, which is arguably the most convenient way to un-
derstand and visualize relationships of interest. When users set the predict argument to "1ink”,
predictions are returned on the link scale, and no transformation is applied. For instance, for a
logistic regression model, the response scale corresponds to the predicted probabilities, whereas
the link-scale makes predictions of log-odds (probabilities on the logit scale). Note that when
users select predict="classification” in binomial models, the get_predicted() function
will first calculate predictions as if the user had selected predict="expectation”. Then, it will
round the responses in order to return the most likely outcome.

Heteroscedasticity consistent standard errors: The arguments vcov and vcov_args can be
used to calculate robust standard errors for confidence intervals of predictions. These arguments,
when provided in get_predicted(), are passed down to get_predicted_ci(), thus, see the
related documentation there for more details.

Bayesian and Bootstrapped models and iterations: For predictions based on multiple itera-

tions, for instance in the case of Bayesian models and bootstrapped predictions, the function used

to compute the centrality (point-estimate predictions) can be modified via the centrality_function

argument. For instance, get_predicted(model, centrality_function = stats::median). The

default is mean. Individual draws can be accessed by running iter <- as.data.frame(get_predicted(model)),
and their iterations can be reshaped into a long format by bayestestR: : reshape_iterations(iter).

Value
The fitted values (i.e. predictions for the response). For Bayesian or bootstrapped models (when
iterations !=NULL), iterations (as columns and observations are rows) can be accessed via as.data.frame().

See Also

get_datagrid()

Examples

data(mtcars)
x <= Im(mpg ~ cyl + hp, data = mtcars)

predictions <- get_predicted(x, ci = 0.95)
predictions

Options and methods --------------—-—--—-
get_predicted(x, predict = "prediction”)

Get CI
as.data.frame(predictions)

if (require("boot")) {
Bootstrapped

get_predicted_ci 91

as.data.frame(get_predicted(x, iterations = 4))
Same as as.data.frame(..., keep_iterations = FALSE)
summary(get_predicted(x, iterations = 4))

}

Different prediction types ------------------—---—-
data(iris)
data <- droplevels(iris[1:100, 1)

Fit a logistic model
x <- glm(Species ~ Sepal.Length, data = data, family = "binomial")

Expectation (default): response scale + CI
pred <- get_predicted(x, predict = "expectation”, ci = 0.95)
head(as.data.frame(pred))

Prediction: response scale + PI
pred <- get_predicted(x, predict = "prediction”, ci = 0.95)
head(as.data.frame(pred))

Link: link scale + CI
pred <- get_predicted(x, predict = "link"”, ci = 0.95)
head(as.data.frame(pred))

Classification: classification "type" + PI
pred <- get_predicted(x, predict = "classification”, ci = 0.95)
head(as.data.frame(pred))

get_predicted_ci Confidence intervals around predicted values

Description

Confidence intervals around predicted values

Usage

get_predicted_ci(x, ...)

Default S3 method:
get_predicted_ci(
X,
predictions = NULL,
data = NULL,
se = NULL,
ci =0.95,
ci_type = "confidence"”,
ci_method = NULL,

92 get_predicted_ci

dispersion_method = "sd",
vcov = NULL,

vcov_args = NULL,

verbose = TRUE,

Arguments

X A statistical model (can also be a data.frame, in which case the second argument
has to be a model).

Other argument to be passed, for instance to get_predicted_ci().

predictions A vector of predicted values (as obtained by stats: :fitted(), stats::predict()
or get_predicted()).

data An optional data frame in which to look for variables with which to predict. If
omitted, the data used to fit the model is used. Visualization matrices can be
generated using get_datagrid().

se Numeric vector of standard error of predicted values. If NULL, standard errors
are calculated based on the variance-covariance matrix.

ci The interval level. Default is NULL, to be fast even for larger models. Set the
interval level to an explicit value, e.g. 0. 95, for 95% CI).

ci_type Can be "prediction” or "confidence"”. Prediction intervals show the range
that likely contains the value of a new observation (in what range it would fall),
whereas confidence intervals reflect the uncertainty around the estimated param-
eters (and gives the range of the link; for instance of the regression line in a linear
regressions). Prediction intervals account for both the uncertainty in the model’s
parameters, plus the random variation of the individual values. Thus, prediction
intervals are always wider than confidence intervals. Moreover, prediction in-
tervals will not necessarily become narrower as the sample size increases (as
they do not reflect only the quality of the fit). This applies mostly for "simple"
linear models (like 1m), as for other models (e.g., glm), prediction intervals are
somewhat useless (for instance, for a binomial model for which the dependent
variable is a vector of 1s and Os, the prediction interval is... [@, 1]).

ci_method The method for computing p values and confidence intervals. Possible values
depend on model type.
* NULL uses the default method, which varies based on the model type.
* Most frequentist models: "wald” (default), "residual” or "normal”.
* Bayesian models: "quantile” (default), "hdi”, "eti”, and "spi”.
¢ Mixed effects Ime4 models: "wald” (default), "residual”, "normal”,
"satterthwaite”, and "kenward-roger".
See get_df () for details.
dispersion_method
Bootstrap dispersion and Bayesian posterior summary: "sd” or "mad”.

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function

get_predicted_ci 93

which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.
¢ A covariance matrix
* A function which returns a covariance matrix (e.g., stats: :vcov())
* A string which indicates the kind of uncertainty estimates to return.
— Heteroskedasticity-consistent: "vcovHC", "HC", "HC@", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5". See ?sandwich: : vcovHC

— Cluster-robust: "vcovCR"”, "CRQ", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich: :vcovCR()

n on

— Bootstrap: "vcovBS", "xy", "residual”, "wild", "mammen”, "webb".
See ?sandwich: :vcovBS

— Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL",
"vcovPL".

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich: : vcovHAC) to see the list of
available arguments. If no estimation type (argument type) is given, the default
type for "HC" (or "vcovHC") equals the default from the sandwich package; for
type "CR" (or "vcoCR"), the default is set to "CR3".

verbose Toggle warnings.

Examples

Confidence Intervals for Model Predictions

data(mtcars)
Linear model

x <= Im(mpg ~ cyl + hp, data = mtcars)
predictions <- predict(x)

ci_vals <- get_predicted_ci(x, predictions, ci_type = "prediction")
head(ci_vals)
ci_vals <- get_predicted_ci(x, predictions, ci_type = "confidence")

head(ci_vals)
ci_vals <- get_predicted_ci(x, predictions, ci = c(0.8, 0.9, 0.95))
head(ci_vals)

Bootstrapped

if (require("boot")) {
predictions <- get_predicted(x, iterations = 500)
get_predicted_ci(x, predictions)

}

if (require("datawizard”) && require("bayestestR")) {
ci_vals <- get_predicted_ci(x, predictions, ci = c(0.80, 0.95))
head(ci_vals)

94

datawizard: :reshape_ci(ci_vals)

ci_vals <- get_predicted_ci(x,
predictions,
dispersion_method = "MAD",
ci_method = "HDI"

)

head(ci_vals)

Logistic model

x <- glm(vs ~ wt, data = mtcars, family = "binomial")

predictions <- predict(x, type = "link")

ci_vals <- get_predicted_ci(x, predictions, ci_type
head(ci_vals)

ci_vals <- get_predicted_ci(x, predictions, ci_type
head(ci_vals)

get_predictors

"prediction”)

"confidence")

get_predictors

Get the data from model predictors

Description

Returns the data from all predictor variables (fixed effects).

Usage

get_predictors(x, verbose = TRUE)

Arguments

X A fitted model.

verbose Toggle messages and warnings.
Value

The data from all predictor variables, as data frame.

Examples

m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
head(get_predictors(m))

get_priors 95

get_priors Get summary of priors used for a model

Description

Provides a summary of the prior distributions used for the parameters in a given model.

Usage

get_priors(x, ...)

S3 method for class 'brmsfit'

get_priors(x, verbose = TRUE, ...)
Arguments
X A Bayesian model.

Currently not used.

verbose Toggle warnings and messages.

Value

A data frame with a summary of the prior distributions used for the parameters in a given model.

Examples

Not run:

library(rstanarm)

model <- stan_glm(Sepal.Width ~ Species * Petal.Length, data = iris)
get_priors(model)

End(Not run)

get_random Get the data from random effects

Description

Returns the data from all random effects terms.

Usage

get_random(x)

96 get_residuals

Arguments

X A fitted mixed model.

Value

The data from all random effects terms, as data frame. Or NULL if model has no random effects.

Examples

if (require("lmed4")) {
data(sleepstudy)
prepare some data...
sleepstudy$mygrp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$mysubgrp <- NA
for (i in 1:5) {
filter_group <- sleepstudy$mygrp == i
sleepstudy$mysubgrp[filter_group] <-
sample(1:30, size = sum(filter_group), replace = TRUE)
}

m <- Imer(
Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject),
data = sleepstudy

)

head(get_random(m))

get_residuals Extract model residuals

Description

Returns the residuals from regression models.

Usage

get_residuals(x, ...)

Default S3 method:

get_residuals(x, weighted = FALSE, verbose = TRUE, ...)
Arguments
X A model.

Passed down to residuals(), if possible.
weighted Logical, if TRUE, returns weighted residuals.

verbose Toggle warnings and messages.

get_response 97

Value

The residuals, or NULL if this information could not be accessed.

Note

This function returns the default type of residuals, i.e. for the response from linear models, the
deviance residuals for models of class glm etc. To access different types, pass down the type argu-
ment (see ’Examples’).

This function is a robust alternative to residuals(), as it works for some special model objects
that otherwise do not respond properly to calling residuals().

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_residuals(m)

m <- glm(vs ~ wt + cyl + mpg, data = mtcars, family = binomial())
get_residuals(m) # type = "deviance” by default

get_residuals(m, type = "response")
get_response Get the values from the response variable
Description

Returns the values the response variable(s) from a model object. If the model is a multivariate
response model, a data frame with values from all response variables is returned.

Usage

get_response(x, select = NULL, verbose = TRUE)

Arguments
X A fitted model.
select Optional name(s) of response variables for which to extract values. Can be used
in case of regression models with multiple response variables.
verbose Toggle warnings.
Value

The values of the response variable, as vector, or a data frame if x has more than one defined
response variable.

98 get_sigma

Examples

if (require(”"1me4")) {
data(cbpp)
cbpp$trials <- cbpp$size - cbpp$incidence

m <- glm(cbind(incidence, trials) ~ period, data = cbpp, family = binomial)
head(get_response(m))
get_response(m, select = "incidence")

}

data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_response(m)

get_sigma Get residual standard deviation from models

Description

Returns sigma, which corresponds the estimated standard deviation of the residuals. This function
extends the sigma() base R generic for models that don’t have implemented it. It also computes
the confidence interval (CI), which is stored as an attribute.

Sigma is a key-component of regression models, and part of the so-called auxiliary parameters that
are estimated. Indeed, linear models for instance assume that the residuals comes from a normal
distribution with mean O and standard deviation sigma. See the details section below for more
information about its interpretation and calculation.

Usage

get_sigma(x, ci = NULL, verbose = TRUE)

Arguments
X A model.
ci Scalar, the CI level. The default (NULL) returns no CI.
verbose Toggle messages and warnings.

Details

Interpretation of Sigma: The residual standard deviation, o, indicates that the predicted out-
come will be within +/- o units of the linear predictor for approximately 68% of the data points
(Gelman, Hill & Vehtari 2020, p.84). In other words, the residual standard deviation indicates
the accuracy for a model to predict scores, thus it can be thought of as “a measure of the aver-
age distance each observation falls from its prediction from the model” (Gelman, Hill & Vehtari
2020, p.168). o can be considered as a measure of the unexplained variation in the data, or of the
precision of inferences about regression coefficients.

get_statistic 99

Calculation of Sigma: By default, get_sigma() tries to extract sigma by calling stats: :sigma().
If the model-object has no sigma() method, the next step is calculating sigma as square-root of
the model-deviance divided by the residual degrees of freedom. Finally, if even this approach
fails, and x is a mixed model, the residual standard deviation is accessed using the square-root
from get_variance_residual().

Value

The residual standard deviation (sigma), or NULL if this information could not be accessed.

References

Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories. Cambridge University
Press.

Examples

data(mtcars)
m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars)
get_sigma(m)

get_statistic Get statistic associated with estimates

Description

Returns the statistic (¢, z, ...) for model estimates. In most cases, this is the related column from
coef (summary()).

Usage

get_statistic(x, ...)

Default S3 method:
get_statistic(x, column_index = 3, verbose = TRUE, ...)

S3 method for class 'glmmTMB'
get_statistic(
X)
component = c("all”, "conditional”, "zi", "zero_inflated”, "dispersion"),

S3 method for class 'clm2'
get_statistic(x, component = c("all", "conditional”, "scale"), ...)

S3 method for class 'betamfx'
get_statistic(

100 get_statistic

X’
component = c("all”, "conditional”, "precision”, "marginal"),

S3 method for class 'logitmfx'
get_statistic(x, component = c("all"”, "conditional”, "marginal"), ...)

S3 method for class 'mjoint'
get_statistic(x, component = c("”all”, "conditional”, "survival”), ...)

S3 method for class 'emmGrid'
get_statistic(x, ci = 0.95, adjust = "none", merge_parameters = FALSE, ...)

S3 method for class 'gee'
get_statistic(x, robust = FALSE, ...)

S3 method for class 'betareg'
get_statistic(x, component = c("all", "conditional”, "precision”), ...)

S3 method for class 'DirichletRegModel'’

get_statistic(x, component = c("all”, "conditional”, "precision"”), ...)
Arguments
X A model.

Currently not used.
column_index For model objects that have no defined get_statistic() method yet, the de-
fault method is called. This method tries to extract the statistic column from
coef (summary()), where the index of the column that is being pulled is column_index.
Defaults to 3, which is the default statistic column for most models’ summary-

output.
verbose Toggle messages and warnings.
component Should all parameters, parameters for the conditional model, or for the zero-

inflated part of the model be returned? Applies to models with zero-inflated
component. component may be one of "conditional”, "zi", "zero-inflated”
or "all"” (default). For models with smooth terms, component = "smooth_terms”
is also possible. May be abbreviated. Note that the conditional component is

also called count or mean component, depending on the model.

ci Confidence Interval (CI) level. Default to @.95 (95%). Currently only applies to
objects of class emmGrid.

adjust Character value naming the method used to adjust p-values or confidence inter-

vals. See ?emmeans: : summary .emmGrid for details.
merge_parameters

Logical, if TRUE and x has multiple columns for parameter names (like emmGrid
objects may have), these are merged into a single parameter column, with pa-
rameters names and values as values.

robust Logical, if TRUE, test statistic based on robust standard errors is returned.

get_transformation 101

Value

A data frame with the model’s parameter names and the related test statistic.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
get_statistic(m)

get_transformation Return function of transformed response variables

Description

This functions checks whether any transformation, such as log- or exp-transforming, was applied to
the response variable (dependent variable) in a regression formula, and returns the related function
that was used for transformation.

Usage

get_transformation(x)

Arguments

X A regression model.

Value

A list of two functions: $transformation, the function that was used to transform the response
variable; $inverse, the inverse-function of $transformation (can be used for "back-transformation").
If no transformation was applied, both list-elements $transformation and $inverse just return
function(x) x. If transformation is unknown, NULL is returned.

Examples

identity, no transformation
model <- Im(Sepal.Length ~ Species, data = iris)
get_transformation(model)

log-transformation
model <- 1m(log(Sepal.Length) ~ Species, data = iris)
get_transformation(model)

log-function
get_transformation(model)$transformation(.3)
log(.3)

inverse function is exp()
get_transformation(model)$inverse(.3)
exp(.3)

102 get_varcov

get_varcov Get variance-covariance matrix from models

Description

Returns the variance-covariance, as retrieved by stats: : vcov (), but works for more model objects
that probably don’t provide a vcov ()-method.

Usage

get_varcov(x, ...)

Default S3 method:
get_varcov(x, verbose = TRUE, vcov = NULL, vcov_args = NULL, ...)

S3 method for class 'betareg'

get_varcov(
X,
component = c("conditional”, "precision”, "all"),
verbose = TRUE,

S3 method for class 'clm2'
get_varcov(x, component = c("all"”, "conditional”, "scale"), ...)

S3 method for class 'truncreg'
get_varcov(x, component = c("conditional”, "all"), verbose = TRUE, ...)

S3 method for class 'hurdle'
get_varcov(

X,
component = c("conditional”, "zero_inflated”, "zi", "all"),
vcov = NULL,

vcov_args = NULL,
verbose = TRUE,

S3 method for class 'glmmTMB'

get_varcov(
X,
component = c(”conditional”, "zero_inflated”, "zi", "dispersion”, "all"),
verbose = TRUE,

get_varcov 103

S3 method for class 'MixMod'
get_varcov(
X,
effects = c("fixed”, "random”),
component = c("conditional”, "zero_inflated”, "zi
verbose = TRUE,

n

, "dispersion”, "auxiliary", "all"),

S3 method for class 'brmsfit'
get_varcov(x, component = "conditional”, verbose = TRUE, ...)

S3 method for class 'betamfx'

get_varcov(
X)
component = c("conditional”, "precision”, "all"),
verbose = TRUE,

S3 method for class 'aov'
get_varcov(x, complete = FALSE, verbose = TRUE, ...)

S3 method for class 'mixor'

get_varcov(x, effects = c("all”, "fixed”, "random"), verbose = TRUE, ...)
Arguments
X A model.
Currently not used.
verbose Toggle warnings.
vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-

bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

* A covariance matrix
* A function which returns a covariance matrix (e.g., stats: :vcov())
* A string which indicates the kind of uncertainty estimates to return.
— Heteroskedasticity-consistent: "vcovHC", "HC", "HC@", "HC1", "HC2",
"HC3", "HC4", "HC4m", "HC5". See ?sandwich: : vcovHC

— Cluster-robust: "vcovCR"”, "CRQ", "CR1", "CR1p", "CR1S", "CR2", "CR3".
See ?clubSandwich: :vcovCR()

n on

— Bootstrap: "vcovBS”, "xy", "residual”, "wild", "mammen”, "webb".
See ?sandwich: :vcovBS

— Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL",
"vcovPL".

104 get_varcov

vcov_args List of arguments to be passed to the function identified by the vcov argument.
This function is typically supplied by the sandwich or clubSandwich packages.
Please refer to their documentation (e.g., ?sandwich: : vcovHAC) to see the list of
available arguments. If no estimation type (argument type) is given, the default
type for "HC" (or "vcovHC") equals the default from the sandwich package; for
type "CR" (or "vcoCR"), the default is set to "CR3".

component Should the complete variance-covariance matrix of the model be returned, or
only for specific model components only (like count or zero-inflated model
parts)? Applies to models with zero-inflated component, or models with pre-
cision (e.g. betareg) component. component may be one of "conditional”,
"zi", "zero-inflated", "dispersion”, "precision”, or "all”. May be ab-
breviated. Note that the conditional component is also called count or mean

component, depending on the model.

effects Should the complete variance-covariance matrix of the model be returned, or
only for specific model parameters only? Currently only applies to models of
class mixor.

complete Logical, if TRUE, for aov, returns the full variance-covariance matrix.

Value

The variance-covariance matrix, as matrix-object.

Note

get_varcov() tries to return the nearest positive definite matrix in case of negative eigenvalues
of the variance-covariance matrix. This ensures that it is still possible, for instance, to calculate
standard errors of model parameters. A message is shown when the matrix is negative definite and
a corrected matrix is returned.

Examples

data(mtcars)
m <- 1lm(mpg ~ wt + cyl + vs, data = mtcars)
get_varcov(m)

vcov of zero-inflation component from hurdle-model

if (require("pscl”)) {
data("bioChemists”, package = "pscl”)
mod <- hurdle(art ~ phd + fem | ment, data = bioChemists, dist = "negbin")
get_varcov(mod, component = "zero_inflated”)

}

robust vcov of, count component from hurdle-model
if (require("pscl”) && require(”sandwich”)) {
data("bioChemists"”, package = "pscl”)
mod <- hurdle(art ~ phd + fem | ment, data = bioChemists, dist = "negbin")
get_varcov(
mod,
component = "conditional”,
vcov = "BS",

get_variance 105

vcov_args = list(R = 50)
)
3

get_variance Get variance components from random effects models

Description

This function extracts the different variance components of a mixed model and returns the result
as list. Functions like get_variance_residual (x) or get_variance_fixed(x) are shortcuts for
get_variance(x, component = "residual”) etc.

Usage

get_variance(
X7
component = c("all", "fixed", "random”, "residual”, "distribution”, "dispersion”,
"intercept”, "slope", "rho@1”, "rhoo"),
verbose = TRUE,

get_variance_residual(x, verbose = TRUE, ...)
get_variance_fixed(x, verbose = TRUE, ...)
get_variance_random(x, verbose = TRUE, tolerance = 1e-05, ...)
get_variance_distribution(x, verbose = TRUE, ...)
get_variance_dispersion(x, verbose = TRUE, ...)
get_variance_intercept(x, verbose = TRUE, ...)
get_variance_slope(x, verbose = TRUE, ...)
get_correlation_slope_intercept(x, verbose = TRUE, ...)

get_correlation_slopes(x, verbose = TRUE, ...)

Arguments

X A mixed effects model.

component Character value, indicating the variance component that should be returned. By
default, all variance components are returned. The distribution-specific ("distribution”)
and residual ("residual”) variance are the most computational intensive com-
ponents, and hence may take a few seconds to calculate.

106 get_variance

verbose Toggle off warnings.
Currently not used.

tolerance Tolerance for singularity check of random effects, to decide whether to compute
random effect variances or not. Indicates up to which value the convergence
result is accepted. The larger tolerance is, the stricter the test will be. See
performance: :check_singularity().

Details

This function returns different variance components from mixed models, which are needed, for
instance, to calculate r-squared measures or the intraclass-correlation coefficient (ICC).

Fixed effects variance: The fixed effects variance, 012[, is the variance of the matrix-multiplication
8 * X (parameter vector by model matrix).

Random effects variance: The random effect variance, of, represents the mean random effect
variance of the model. Since this variance reflect the "average" random effects variance for mixed
models, it is also appropriate for models with more complex random effects structures, like ran-
dom slopes or nested random effects. Details can be found in Johnson 2014, in particular equation
10. For simple random-intercept models, the random effects variance equals the random-intercept
variance.

Distribution-specific variance: The distribution-specific variance, Ufl, depends on the model
family. For Gaussian models, it is o2 (i.e. sigma(model)~2). For models with binary outcome, it
is 72 /3 for logit-link, 1 for probit-link, and 72 /6 for cloglog-links. Models from Gamma-families
use 12 (as obtained from family$variance()). For all other models, the distribution-specific
variance is based on lognormal approximation, log(1 + var(zx)/u?) (see Nakagawa et al. 2017).
The expected variance of a zero-inflated model is computed according to Zuur et al. 2012, p277.

Variance for the additive overdispersion term: The variance for the additive overdispersion
term, Ug, represents “the excess variation relative to what is expected from a certain distribution”
(Nakagawa et al. 2017). In (most? many?) cases, this will be .

2

Residual variance: The residual variance, o

, is simply 0% + o2.
Random intercept variance: The random intercept variance, or between-subject variance (7yg),

is obtained from VarCorr(). It indicates how much groups or subjects differ from each other,
while the residual variance o2 indicates the within-subject variance.

Random slope variance: The random slope variance (711) is obtained from VarCorr(). This
measure is only available for mixed models with random slopes.

Random slope-intercept correlation: The random slope-intercept correlation (pg;) is obtained
from VarCorr(). This measure is only available for mixed models with random intercepts and
slopes.

get_variance 107

Value

A list with following elements:

e var.fixed, variance attributable to the fixed effects

¢ var.random, (mean) variance of random effects

* var.residual, residual variance (sum of dispersion and distribution)

* var.distribution, distribution-specific variance

* var.dispersion, variance due to additive dispersion

* var.intercept, the random-intercept-variance, or between-subject-variance (7yg)
* var.slope, the random-slope-variance (711)

* cor.slope_intercept, the random-slope-intercept-correlation (pg1)

* cor.slopes, the correlation between random slopes (poo)

Note

This function supports models of class merMod (including models from blme), clmm, cpglmm,
glmmadmb, glmmTMB, MixMod, 1me, mixed, rlmerMod, stanreg, brmsfit or wbm. Support for ob-
jects of class MixMod (GLMMadaptive), 1me (nlme) or brmsfit (brms) is experimental and may
not work for all models.

References

* Johnson, P. C. D. (2014). Extension of Nakagawa & Schielzeth’s R2 GLMM to random slopes
models. Methods in Ecology and Evolution, 5(9), 944-946. doi:10.1111/2041210X.12225

» Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2
and intra-class correlation coefficient from generalized linear mixed-effects models revisited
and expanded. Journal of The Royal Society Interface, 14(134), 20170213. doi:10.1098/
rsif.2017.0213

* Zuur, A. F, Savel’ev, A. A., & Ieno, E. N. (2012). Zero inflated models and generalized linear
mixed models with R. Newburgh, United Kingdom: Highland Statistics.

Examples

Not run:

library(1lme4)

data(sleepstudy)

m <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)

get_variance(m)
get_variance_fixed(m)

get_variance_residual(m)

End(Not run)

https://doi.org/10.1111/2041-210X.12225
https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.1098/rsif.2017.0213

108 get_weights

get_weights Get the values from model weights

Description

Returns weighting variable of a model.

Usage

get_weights(x, ...)

Default S3 method:

get_weights(x, na_rm = FALSE, null_as_ones = FALSE, ...)
Arguments
X A fitted model.

Currently not used.
na_rm Logical, if TRUE, removes possible missing values.

null_as_ones Logical, if TRUE, will return a vector of 1 if no weights were specified in the
model (as if the weights were all set to 1).

Value

The weighting variable, or NULL if no weights were specified. If the weighting variable should also
be returned (instead of NULL) when all weights are set to 1 (i.e. no weighting), set null_as_ones =
TRUE.

Examples

data(mtcars)
set.seed(123)
mtcars$weight <- rnorm(nrow(mtcars), 1, .3)

LMs
m <- Im(mpg ~ wt + cyl + vs, data = mtcars, weights = weight)
get_weights(m)

get_weights(Im(mpg ~ wt, data = mtcars), null_as_ones = TRUE)

GLMs

m <- glm(vs ~ disp + mpg, data = mtcars, weights = weight, family = quasibinomial)
get_weights(m)

m <- glm(cbind(cyl, gear) ~ mpg, data = mtcars, weights = weight, family = binomial)
get_weights(m)

has_intercept

109

has_intercept Checks if model has an intercept

Description

Checks if model has an intercept.

Usage

has_intercept(x, verbose = TRUE)

Arguments
X A model object.
verbose Toggle warnings.
Value

TRUE if x has an intercept, FALSE otherwise.

Examples

model <- Im(mpg ~ @ + gear, data = mtcars)
has_intercept(model)

model <- Im(mpg ~ gear, data = mtcars)
has_intercept(model)

if (require("lmed4")) {

model <- lmer(Reaction ~ @ + Days + (Days | Subject), data

has_intercept(model)

model <- lmer(Reaction ~ Days + (Days | Subject), data

has_intercept(model)

}

sleepstudy)

sleepstudy)

is_converged Convergence test for mixed effects models

Description

is_converged() provides an alternative convergence test for merMod-objects.

Usage

is_converged(x, tolerance = 0.001, ...)

110 is_converged

Arguments
X A merMod or glmmTMB-object.
tolerance Indicates up to which value the convergence result is accepted. The smaller
tolerance is, the stricter the test will be.
Currently not used.
Details

Convergence and log-likelihood: Convergence problems typically arise when the model hasn’t
converged to a solution where the log-likelihood has a true maximum. This may result in unreli-
able and overly complex (or non-estimable) estimates and standard errors.

Inspect model convergence: Ime4 performs a convergence-check (see ?1me4: : convergence),
however, as as discussed here and suggested by one of the Ime4-authors in this comment, this
check can be too strict. is_converged() thus provides an alternative convergence test for merMod-
objects.

Resolving convergence issues: Convergence issues are not easy to diagnose. The help page
on ?1me4: : convergence provides most of the current advice about how to resolve convergence
issues. Another clue might be large parameter values, e.g. estimates (on the scale of the linear
predictor) larger than 10 in (non-identity link) generalized linear model might indicate complete
separation. Complete separation can be addressed by regularization, e.g. penalized regression or
Bayesian regression with appropriate priors on the fixed effects.

Convergence versus Singularity: Note the different meaning between singularity and conver-
gence: singularity indicates an issue with the "true" best estimate, i.e. whether the maximum
likelihood estimation for the variance-covariance matrix of the random effects is positive definite
or only semi-definite. Convergence is a question of whether we can assume that the numerical
optimization has worked correctly or not.

Value

TRUE if convergence is fine and FALSE if convergence is suspicious. Additionally, the convergence
value is returned as attribute.

Examples

if (require("lmed4")) {
data(cbpp)
set.seed(1)
cbpp$x <- rnorm(nrow(cbpp))
cbpp$x2 <- runif(nrow(cbpp))

model <- glmer(
cbind(incidence, size - incidence) ~ period + x + x2 + (1 + x | herd),
data = cbpp,
family = binomial()

)

is_converged(model)

https://github.com/lme4/lme4/issues/120
https://github.com/lme4/lme4/issues/120#issuecomment-39920269
https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/
https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/

is_empty_object

}

Not run:
if (require(”glmmTMB")) {

model <- glmmTMB(Sepal.Length ~ poly(Petal.Width, 4) * poly(Petal.lLength, 4) +

(1 + poly(Petal.Width, 4) | Species), data = iris)

is_converged(model)

}

End(Not run)

111

is_empty_object Check if object is empty

Description

Check if object is empty

Usage

is_empty_object(x)

Arguments

X A list, a vector, or a dataframe.

Value

A logical indicating whether the entered object is empty.

Examples

is_empty_object(c(1, 2, 3, NA))
is_empty_object(list(NULL, c(NA, NA)))
is_empty_object(list(NULL, NA))

is_gam_model Checks if a model is a generalized additive model

Description

Small helper that checks if a model is a generalized additive model.

Usage

is_gam_model (x)

112 is_mixed_model

Arguments

X A model object.

Value

A logical, TRUE if x is a generalized additive model and has smooth-terms

Note

This function only returns TRUE when the model inherits from a typical GAM model class and
when smooth terms are present in the model formula. If model has no smooth terms or is not from
a typical gam class, FALSE is returned.

Examples

if (require("mgev")) {
data(iris)
modell <- Im(Petal.Length ~ Petal.Width + Sepal.Length, data = iris)
model2 <- gam(Petal.Length ~ Petal.Width + s(Sepal.Length), data = iris)
is_gam_model (modell)
is_gam_model (model2)

is_mixed_model Checks if a model is a mixed effects model

Description

Small helper that checks if a model is a mixed effects model, i.e. if it the model has random effects.

Usage

is_mixed_model (x)

Arguments

X A model object.

Value

A logical, TRUE if x is a mixed model.

1s_model 113

Examples

data(mtcars)
model <- Im(mpg ~ wt + cyl + vs, data = mtcars)
is_mixed_model(model)

if (require("lmed")) {
data(sleepstudy)
model <- lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
is_mixed_model (model)

}

is_model Checks if an object is a regression model or statistical test object

Description
Small helper that checks if a model is a regression model or a statistical object. is_regression_model ()
is stricter and only returns TRUE for regression models, but not for, e.g., htest objects.

Usage

is_model(x)

is_regression_model (x)

Arguments

X An object.

Details

This function returns TRUE if x is a model object.

Value

A logical, TRUE if x is a (supported) model object.

Examples

data(mtcars)
m <- 1lm(mpg ~ wt + cyl + vs, data = mtcars)

is_model(m)
is_model (mtcars)

test <- t.test(1:10, y = c(7:20))
is_model(test)
is_regression_model(test)

114 is_model_supported

is_model_supported Checks if a regression model object is supported in insight package

Description

Small helper that checks if a model is a supported (regression) model object. supported_models()
prints a list of currently supported model classes.

Usage

is_model_supported(x)

supported_models()

Arguments

X An object.

Details

This function returns TRUE if x is a model object that works with the package’s functions. A list of
supported models can also be found here: https://github.com/easystats/insight.

Value

A logical, TRUE if x is a (supported) model object.

Examples
data(mtcars)
m <- Ilm(mpg ~ wt + cyl + vs, data = mtcars)

is_model_supported(m)
is_model_supported(mtcars)

to see all supported models
supported_models()

https://github.com/easystats/insight

is_multivariate 115

is_multivariate Checks if an object stems from a multivariate response model

Description

Small helper that checks if a model is a multivariate response model, i.e. a model with multiple
outcomes.

Usage

is_multivariate(x)

Arguments

X A model object, or an object returned by a function from this package.

Value

A logical, TRUE if either x is a model object and is a multivariate response model, or TRUE if a return
value from a function of insight is from a multivariate response model.

Examples

Not run:
library(rstanarm)
data("pbcLong")
model <- stan_mvmer(
formula = list(
logBili ~ year + (1 | id),
albumin ~ sex + year + (year | id)
),
data = pbclong,
chains = 1, cores = 1, seed = 12345, iter = 1000
)
f <- find_formula(model)
is_multivariate(model)

is_multivariate(f)

End(Not run)

116 is_nullmodel

is_nested_models Checks whether a list of models are nested models

Description
Checks whether a list of models are nested models, strictly following the order they were passed to
the function.

Usage

is_nested_models(...)

Arguments

Multiple regression model objects.

Value

TRUE if models are nested, FALSE otherwise. If models are nested, also returns two attributes that
indicate whether nesting of models is in decreasing or increasing order.

Examples

ml <- Im(Sepal.Length ~ Petal.Width + Species, data = iris)
m2 <- Im(Sepal.Length ~ Species, data = iris)

m3 <- Im(Sepal.Length ~ Petal.Width, data = iris)

m4 <- Im(Sepal.Length ~ 1, data = iris)

is_nested_models(m1, m2, m4)
is_nested_models(m4, m2, ml)
is_nested_models(m1, m2, m3)

is_nullmodel Checks if model is a null-model (intercept-only)

Description
Checks if model is a null-model (intercept-only), i.e. if the conditional part of the model has no
predictors.

Usage

is_nullmodel(x)

Arguments

X A model object.

link_function 117

Value

TRUE if x is a null-model, FALSE otherwise.

Examples

model <- Im(mpg ~ 1, data = mtcars)
is_nullmodel (model)

model <- Im(mpg ~ gear, data = mtcars)
is_nullmodel (model)

if (require(”"1me4")) {
model <- lmer(Reaction ~ 1 + (Days | Subject), data = sleepstudy)
is_nullmodel (model)

model <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy)
is_nullmodel (model)

3

link_function Get link-function from model object

Description

Returns the link-function from a model object.
Usage
link_function(x, ...)

S3 method for class 'betamfx'
link_function(x, what = c("mean”, "precision”), ...)

S3 method for class 'gamlss'
link_function(x, what = c("mu”, "sigma"”, "nu”, "tau"), ...)

S3 method for class 'betareg'
link_function(x, what = c("mean”, "precision”"), ...)

S3 method for class 'DirichletRegModel’

link_function(x, what = c("mean”, "precision”), ...)
Arguments
X A fitted model.

Currently not used.

what For gamlss models, indicates for which distribution parameter the link (in-
verse) function should be returned; for betareg or DirichletRegModel, can
be "mean” or "precision”.

118 link_inverse

Value

A function, describing the link-function from a model-object. For multivariate-response models, a
list of functions is returned.

Examples

example from ?stats::glm

counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

outcome <- gl(3, 1, 9)

treatment <- gl(3, 3)

m <- glm(counts ~ outcome + treatment, family = poisson())

link_function(m)(.3)
same as
log(.3)

link_inverse Get link-inverse function from model object

Description

Returns the link-inverse function from a model object.
Usage
link_inverse(x, ...)

S3 method for class 'betareg'
link_inverse(x, what = c("mean”, "precision”), ...)

S3 method for class 'DirichletRegModel'’
link_inverse(x, what = c("mean”, "precision”), ...)

S3 method for class 'betamfx'
link_inverse(x, what = c("mean”, "precision"”), ...)

S3 method for class 'gamlss'

link_inverse(x, what = c("mu", "sigma”, "nu”, "tau"), ...)
Arguments
X A fitted model.
Currently not used.
what For gamlss models, indicates for which distribution parameter the link (in-

verse) function should be returned; for betareg or DirichletRegModel, can
be "mean” or "precision”.

model_info

Value

119

A function, describing the inverse-link function from a model-object. For multivariate-response

models, a list of functions is returned.

Examples

example from ?stats::glm

counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

outcome <- gl(3, 1, 9)

treatment <- gl(3, 3)

m <- glm(counts ~ outcome + treatment, family = poisson())

link_inverse(m)(.3)
same as
exp(.3)

model_info Access information from model objects

Description

Retrieve information from model objects.

Usage

model_info(x, ...)

Default S3 method:

model_info(x, verbose = TRUE, ...)
Arguments
X A fitted model.
Currently not used.
verbose Toggle off warnings.
Details

model_info() returns a list with information about the model for many different model objects.

Following information is returned, where all values starting with is_ are logicals.

* is_binomial: family is binomial (but not negative binomial)

* is_bernoulli: special case of binomial models: family is Bernoulli

* is_poisson: family is poisson

* is_negbin: family is negative binomial

* is_count: model is a count model (i.e. family is either poisson or negative binomial)

120

model_info

is_beta: family is beta

is_betabinomial: family is beta-binomial
is_dirichlet: family is dirichlet

is_exponential: family is exponential (e.g. Gamma or Weibull)
is_logit: model has logit link

is_probit: model has probit link

is_linear: family is gaussian

is_tweedie: family is tweedie

is_ordinal: family is ordinal or cumulative link
is_cumulative: family is ordinal or cumulative link
is_multinomial: family is multinomial or categorical link
is_categorical: family is categorical link

is_censored: model is a censored model (has a censored response, including survival mod-
els)

is_truncated: model is a truncated model (has a truncated response)
is_survival: model is a survival model
is_zero_inflated: model has zero-inflation component

is_hurdle: model has zero-inflation component and is a hurdle-model (truncated family dis-
tribution)

is_dispersion: model has dispersion component (not only dispersion parameter)
is_mixed: model is a mixed effects model (with random effects)

is_multivariate: model is a multivariate response model (currently only works for brmsfit
objects)

is_trial: model response contains additional information about the trials
is_bayesian: model is a Bayesian model

is_gam: model is a generalized additive model

is_anova: model is an Anova object

is_ttest: model is an an object of class htest, returned by t.test()
is_correlation: model is an an object of class htest, returned by cor. test()

is_ranktest: model is an an object of class htest, returned by cor. test() (if Spearman’s
rank correlation), wilcox.text() or kruskal.test().

is_variancetest: model is an an object of class htest, returned by bartlett.test(),
shapiro.test() or car::leveneTest().

is_levenetest: model is an an object of class anova, returned by car: :leveneTest().
is_onewaytest: model is an an object of class htest, returned by oneway. test()
is_proptest: model is an an object of class htest, returned by prop.test()
is_binomtest: model is an an object of class htest, returned by binom. test()

is_chi2test: model is an an object of class htest, returned by chisq.test()

model _name 121

* is_xtab: model is an an object of class htest or BFBayesFactor, and test-statistic stems
from a contingency table (i.e. chisq.test() or BayesFactor: :contingencyTableBF()).

e link_function: the link-function

e family: name of the distributional family of the model. For some exceptions (like some
htest objects), can also be the name of the test.

e n_obs: number of observations

Value

A list with information about the model, like family, link-function etc. (see *Details’).

Examples

ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive = 20 - numdead)

dat <- data.frame(ldose, sex, SF, stringsAsFactors = FALSE)
m <- glm(SF ~ sex * ldose, family = binomial)

model_info(m)
Not run:
library(glmmTMB)
data(”Salamanders™)
m <- glmmTMB(
count ~ spp + cover + mined + (1 | site),
ziformula = ~ spp + mined,
dispformula = ~DOY,
data = Salamanders,
family = nbinom2

)

End(Not run)

model_info(m)

model_name Name the model

Description

Returns the "name" (class attribute) of a model, possibly including further information.
Usage
model_name(x, ...)

Default S3 method:
model_name(x, include_formula = FALSE, include_call = FALSE, ...)

122 null _model

Arguments

X A model.

Currently not used.
include_formula
Should the name include the model’s formula.

include_call If TRUE, will return the function call as a name.

Value

A character string of a name (which usually equals the model’s class attribute).

Examples

m <- Im(Sepal.Length ~ Petal.Width, data = iris)
model_name (m)

model_name(m, include_formula = TRUE)
model_name(m, include_call = TRUE)

if (require(”1lme4")) {
model_name(1lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris))
3

null_model Compute intercept-only model for regression models

Description

This function computes the null-model (i.e. (y ~ 1)) of a model. For mixed models, the null-model
takes random effects into account.

Usage
null_model(model, verbose = TRUE, ...)
Arguments
model A (mixed effects) model.
verbose Toggle off warnings.
Arguments passed to or from other methods.
Value

The null-model of x

n_obs

Examples

123

if (require("lmed4")) {
data(sleepstudy)
m <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)

summary (m)
summary (null_model(m))
3
n_obs Get number of observations from a model
Description

This method returns the number of observation that were used to fit the model, as numeric value.

Usage

n_obs(x,

.2

S3 method for class 'glm'
n_obs(x, disaggregate = FALSE, ...)

S3 method for class 'svyolr'
n_obs(x, weighted = FALSE, ...)

S3 method for class 'afex_aov'
n_obs(x, shape = c("long”, "wide"), ...)

S3 method for class 'stanmvreg'

n_obs(x, select = NULL, ...)
Arguments
X A fitted model.

disaggregate

weighted
shape

select

Currently not used.

For binomial models with aggregated data, n_obs () returns the number of data
rows by default. If disaggregate = TRUE, the total number of trials is returned
instead (determined by summing the results of weights() for aggregated data,
which will be either the weights input for proportion success response or the row
sums of the response matrix if matrix response, see "Examples’).

For survey designs, returns the weighted sample size.
Return long or wide data? Only applicable in repeated measures designs.

Optional name(s) of response variables for which to extract values. Can be used
in case of regression models with multiple response variables.

124

Value

n_parameters

The number of observations used to fit the model, or NULL if this information is not available.

Examples

data(mtcars)
m <- Im(mpg ~ wt + cyl + vs, data = mtcars)
n_obs(m)

if (require(”"1lme4")) {
data(cbpp, package = "lme4")

m <- glm(
cbind(incidence, size - incidence) ~ period,
data = cbpp,
family = binomial(link = "logit")

)

n_obs(m)

n_obs(m, disaggregate = TRUE)

3
n_parameters Count number of parameters in a model
Description

Returns the number of parameters (coefficients) of a model.

Usage

n_parameters(x, ...)

Default S3 method:

n_parameters(x, remove_nonestimable = FALSE,

S3 method for class 'merMod'
n_parameters(
X,
effects = c("fixed”, "random”),
remove_nonestimable = FALSE,

S3 method for class 'glmmTMB'
n_parameters(

X’
effects = c("fixed”, "random"),
component = c("all”, "conditional”, "

remove_nonestimable = FALSE,

)

, "zero_inflated"),

n_parameters 125

S3 method for class 'zeroinfl'

n_parameters(
X,
component = c("all”, "conditional”, "zi", "zero_inflated"),
remove_nonestimable = FALSE,

)

S3 method for class 'gam'

n_parameters(
X,
component = c("all”, "conditional”, "smooth_terms"),
remove_nonestimable = FALSE,

S3 method for class 'brmsfit'
n_parameters(x, effects = "all”, component = "all”, ...)

Arguments

X A statistical model.

Arguments passed to or from other methods.

remove_nonestimable
Logical, if TRUE, removes (i.e. does not count) non-estimable parameters (which
may occur for models with rank-deficient model matrix).

effects Should number of parameters for fixed effects, random effects or both be re-
turned? Only applies to mixed models. May be abbreviated.

component Should total number of parameters, number parameters for the conditional model,
the zero-inflated part of the model, the dispersion term or the instrumental vari-
ables be returned? Applies to models with zero-inflated and/or dispersion for-
mula, or to models with instrumental variable (so called fixed-effects regres-
sions). May be abbreviated.

Value

The number of parameters in the model.

Note

This function returns the number of parameters for the fixed effects by default, as returned by
find_parameters(x, effects = "fixed"). It does not include all estimated model parameters,
i.e. auxiliary parameters like sigma or dispersion are not counted. To get the number of all estimated
parameters, use get_df (x, type = "model”).

126 object_has_names

Examples

data(iris)
model <- Im(Sepal.Length ~ Sepal.Width * Species, data = iris)
n_parameters(model)

object_has_names Check names and rownames

Description
object_has_names() checks if specified names are present in the given object. object_has_rownames ()
checks if rownames are present in a dataframe.

Usage

object_has_names(x, names)

object_has_rownames(x)

Arguments
X A named object (an atomic vector, a list, a dataframe, etc.).
names A single character or a vector of characters.

Value

A logical or a vector of logicals.

Examples

check if specified names are present in the given object
object_has_names(mtcars, "am")

object_has_names(anscombe, c("x1", "z1", "y1"))
object_has_names(list("x" =1, "y" = 2), c("x", "a"))

check if a dataframe has rownames
object_has_rownames(mtcars)

print_color

127

print_color

Coloured console output

Description

Convenient function that allows coloured output in the console. Mainly implemented to reduce
package dependencies.

Usage

print_color(text, color)

print_colour(text, colour)

color_text(text, color)

colour_text(text, colour)

color_theme()

Arguments

text

color, colour

Details

The text to print.

Character vector, indicating the colour for printing. May be one of "white”,
"black”, "red”, "yellow"”, "green"”, "blue”, "violet"”, "cyan” or "grey".
Bright variants of colors are available by adding the prefix "b" (or "br_" or
"bright_"), e.g. "bred” (or "br_red” resp. "bright_red"). Background
colors can be set by adding the prefix "bg_" (e.g. "bg_red"). Formatting is also

possible with "bold" or "italic".

This function prints text directly to the console using cat (), so no string is returned. color_text(),
however, returns only the formatted string, without using cat(). color_theme() either returns
"dark” when RStudio is used with dark color scheme, "light"” when it’s used with light theme,
and NULL if the theme could not be detected.

Value

Nothing.

Examples

print_color("I'm blue dabedi dabedei”, "blue")

128 print_parameters

print_parameters Prepare summary statistics of model parameters for printing

Description

This function takes a data frame, typically a data frame with information on summaries of model pa-
rameters like bayestestR: :describe_posterior(), bayestestR: :hdi() or parameters: :model_parameters(),
as input and splits this information into several parts, depending on the model. See details below.

Usage

print_parameters(
X7

split_by = c("Effects”, "Component”, "Group”, "Response"),
format = "text”,

parameter_column = "Parameter”,

keep_parameter_column = TRUE,

remove_empty_column = FALSE,

titles = NULL,

subtitles = NULL

)
Arguments

X A fitted model, or a data frame returned by clean_parameters().
One or more objects (data frames), which contain information about the model
parameters and related statistics (like confidence intervals, HDI, ROPE, ...).

split_by split_by should be a character vector with one or more of the following el-
ements: "Effects”, "Component”, "Response” and "Group"”. These are the
column names returned by clean_parameters(), which is used to extract the
information from which the group or component model parameters belong. If
NULL, the merged data frame is returned. Else, the data frame is split into a list,
split by the values from those columns defined in split_by.

format Name of output-format, as string. If NULL (or "text"), assumed use for output is

basic printing. If "markdown”, markdown-format is assumed. This only affects

the style of title- and table-caption attributes, which are used in export_table().
parameter_column

String, name of the column that contains the parameter names. Usually, for data

frames returned by functions the easystats-packages, this will be "Parameter”.
keep_parameter_column

Logical, if TRUE, the data frames in the returned list have both a "Cleaned_Parameter”

and "Parameter” column. If FALSE, the (unformatted) "Parameter” is re-

moved, and the column with cleaned parameter names ("Cleaned_Parameter™)

is renamed into "Parameter”.

print_parameters 129

remove_empty_column
Logical, if TRUE, columns with completely empty character values will be re-
moved.

titles, subtitles
By default, the names of the model components (like fixed or random effects,
count or zero-inflated model part) are added as attributes "table_title"” and
"table_subtitle” to each list element returned by print_parameters(). These
attributes are then extracted and used as table (sub) titles in export_table().
Use titles and subtitles to override the default attribute values for "table_title”
and "table_subtitle”. titles and subtitles may be any length from 1 to
same length as returned list elements. If titles and subtitles are shorter than
existing elements, only the first default attributes are overwritten.

Details

This function prepares data frames that contain information about model parameters for clear print-
ing.

First, x is required, which should either be a model object or a prepared data frame as returned
by clean_parameters(). If x is a model, clean_parameters() is called on that model object to
get information with which model components the parameters are associated.

Then, ... take one or more data frames that also contain information about parameters from
the same model, but also have additional information provided by other methods. For instance,
a data frame in . . . might be the result of, for instance, bayestestR: :describe_posterior(), or
parameters: :model_parameters(), where we have a) a Parameter column and b) columns with
other parameter values (like CI, HDI, test statistic, etc.).

Now we have a data frame with model parameters and information about the association to the
different model components, a data frame with model parameters, and some summary statistics.
print_parameters() then merges these data frames, so the parameters or statistics of interest are
also associated with the different model components. The data frame is split into a list, so for a
clear printing. Users can loop over this list and print each component for a better overview. Further,
parameter names are "cleaned"”, if necessary, also for a cleaner print. See also ’Examples’.

Value

A data frame or a list of data frames (if split_by is not NULL). If a list is returned, the element names
reflect the model components where the extracted information in the data frames belong to, e.g.
random.zero_inflated.Intercept: persons. This is the data frame that contains the parameters
for the random effects from group-level "persons” from the zero-inflated model component.

Examples

Not run:

library(bayestestR)

model <- download_model("brms_zi_2")

x <- hdi(model, effects = "all”, component = "all")

hdi() returns a data frame; here we use only the

130 standardize_column_order

information on parameter names and HDI values
tmp <- as.data.frame(x)[, 1:4]
tmp

Based on the "split_by"” argument, we get a list of data frames that
is split into several parts that reflect the model components.
print_parameters(model, tmp)

This is the standard print()-method for "bayestestR::hdi"-objects.

For printing methods, it is easy to print complex summary statistics
in a clean way to the console by splitting the information into

different model components.

X

End(Not run)

standardize_column_order
Standardize column order

Description

Standardizes order of columns for dataframes and other objects from easystats and broom ecosys-
tem packages.

Usage

standardize_column_order(data, ...)

S3 method for class 'parameters_model'

standardize_column_order(data, style = c("easystats”, "broom"), ...)
Arguments
data A data frame. In particular, objects from easystats package functions like parameters: :model_paramete

or effectsize::effectsize() are accepted, but also data frames returned by
broom: : tidy () are valid objects.

Currently not used.

style Standardization can either be based on the naming conventions from the easystats-
project, or on broom’s naming scheme.

Value

A data frame, with standardized column order.

https://easystats.github.io/easystats/
https://easystats.github.io/easystats/

standardize_names 131

Examples

easystats conventions
df1 <- cbhind.data.frame(

CI_low = -2.873,
t = 5.494,
CI_high = -1.088,
p = 0.00001,
Parameter = -1.980,
CI = 9.95,
df = 29.234,
Method = "Student's t-test”
)
standardize_column_order(df1, style = "easystats")

broom conventions

df2 <- cbind.data.frame(
conf.low = -2.873,
statistic = 5.494,
conf.high = -1.088,

p.value = 0.00001,
estimate = -1.980,
conf.level = 0.95,
df = 29.234,
method = "Student's t-test”
)
standardize_column_order(df2, style = "broom")
standardize_names Standardize column names
Description

Standardize column names from data frames, in particular objects returned from parameters: :model_parameters(),
so column names are consistent and the same for any model object.

Usage

standardize_names(data, ...)

S3 method for class 'parameters_model'
standardize_names(
data,
style = c("easystats”, "broom"),
ignore_estimate = FALSE,

132 text_remove_backticks

Arguments
data A data frame. In particular, objects from easystats package functions like parameters: :model_paramete
or effectsize: :effectsize() are accepted, but also data frames returned by
broom: :tidy () are valid objects.
Currently not used.
style Standardization can either be based on the naming conventions from the easystats-

project, or on broom’s naming scheme.
ignore_estimate

Logical, if TRUE, column names like "mean” or "median” will not be converted
to "Coefficient” resp. "estimate”.

Details

This method is in particular useful for package developers or users who use, e.g., parameters: :model_parameters()
in their own code or functions to retrieve model parameters for further processing. As model_parameters()

returns a data frame with varying column names (depending on the input), accessing the required

information is probably not quite straightforward. In such cases, standardize_names() can be

used to get consistent, i.e. always the same column names, no matter what kind of model was used

in model_parameters().

For style = "broom”, column names are renamed to match broom’s naming scheme, i.e. Parameter
is renamed to term, Coefficient becomes estimate and so on.

For style = "easystats”, when data is an object from broom: : tidy(), column names are con-
verted from "broom"-style into "easystats"-style.

Value

A data frame, with standardized column names.

Examples

if (require("parameters”)) {
model <- Im(mpg ~ wt + cyl, data = mtcars)
mp <- model_parameters(model)

as.data.frame(mp)
standardize_names(mp)
standardize_names(mp, style = "broom")

text_remove_backticks Remove backticks from a string

Description

This function removes backticks from a string.

https://easystats.github.io/easystats/
https://easystats.github.io/easystats/

text_remove_backticks 133

Usage

text_remove_backticks(x, ...)

S3 method for class 'data.frame'

text_remove_backticks(x, column = "Parameter”, verbose = FALSE, ...)
Arguments
X A character vector, a data frame or a matrix. If a matrix, backticks are removed

from the column and row names, not from values of a character vector.
Currently not used.

column If x is a data frame, specify the column of character vectors, where backticks
should be removed. If NULL, all character vectors are processed.

verbose Toggle warnings.

Value

x, where all backticks are removed.

Note

If x is a character vector or data frame, backticks are removed from the elements of that character
vector (or character vectors from the data frame.) If x is a matrix, the behaviour slightly differs: in
this case, backticks are removed from the column and row names. The reason for this behaviour
is that this function mainly serves formatting coefficient names. For vcov() (a matrix), row and
column names equal the coefficient names and therefore are manipulated then.

Examples

example model

data(iris)

iris$ta m® <- iris$Species

iris$*Sepal Width® <- iris$Sepal.Width

model <- Im(‘Sepal Width' ~ Petal.Length + ‘*a m‘, data = iris)

remove backticks from string
names (coef (model))
text_remove_backticks(names(coef(model)))

remove backticks from character variable in a data frame
column defaults to "Parameter”.
d <- data.frame(
Parameter = names(coef(model)),
Estimate = unname(coef(model))
)
d
text_remove_backticks(d)

134 trim_ws

trim_ws Small helper functions

Description

Collection of small helper functions. trim_ws() is an efficient function to trim leading and trailing
whitespaces from character vectors or strings. n_unique () returns the number of unique values in
a vector. has_single_value() is equivalent to n_unique() == 1 but is faster. safe_deparse()
is comparable to deparsel(), i.e. it can safely deparse very long expressions into a single string.
safe_deparse_symbol() only deparses a substituted expressions when possible, which can be
much faster than deparse(substitute()) for those cases where substitute() returns no valid
object name.

Usage

trim_ws(x, ...)

S3 method for class 'data.frame'
trim_ws(x, character_only = TRUE, ...)

n_unique(x, ...)

Default S3 method:
n_unique(x, na.rm = TRUE, ...)

safe_deparse(x, ...)
safe_deparse_symbol (x)

has_single_value(x, na.rm = FALSE)

Arguments

X A (character) vector, or for some functions may also be a data frame.
Currently not used.
character_only Logical, if TRUE and x is a data frame or list, only processes character vectors.

na.rm Logical, if missing values should be removed from the input.

Value

* n_unique(): For a vector, n_unique always returns an integer value, even if the input is NULL
(the return value will be @ then). For data frames or lists, n_unique () returns a named numeric
vector, with the number of unique values for each element.

* has_single_value(): TRUE if x has only one unique value, FALSE otherwise.

e trim_ws(): A character vector, where trailing and leading white spaces are removed.

trim_ws 135

* safe_deparse(): A character string of the unevaluated expression or symbol.

» safe_deparse_symbol(): A character string of the unevaluated expression or symbol, if x
was a symbol. If x is no symbol (i.e. if is.name(x) would return FALSE), NULL is returned.

Examples

trim_ws(” no space! ")
n_unique(iris$Species)
has_single_value(c(1, 1, 2))

safe_deparse_symbol() compared to deparse(substitute())
safe_deparse_symbol(as.name("test"))
deparse(substitute(as.name("test")))

Index

x data
fish, 44

all_models_equal, 5
all_models_same_class
(all_models_equal), 5

Bayesian models, 22, 73

bayestestR::ci(), 64

bayestestR: :describe_posterior(), 126,
129

bayestestR::hdi(), 128

bayestestR: :weighted_posteriors(), 80

check_if_installed, 6
clean_names, 7
clean_parameters, 8
clean_parameters(), 128, 129
color_if, 9

color_text (print_color), 127
color_theme (print_color), 127
colour_if (color_if),9
colour_text (print_color), 127
compact_character, 11
compact_list, 11

display, 12
download_model, 13

effectsize: :effectsize(), 130, 132
ellipsis_info, 13

Estimated marginal means, 22, 73
export_table, 14
export_table(), 128, 129

find_algorithm, 17
find_formula, 18
find_interactions, 20
find_offset, 21
find_parameters, 22
find_parameters(), 34

136

find_parameters.averaging, 23
find_parameters.bamlss
(find_parameters.BGGM), 26
find_parameters.bayesx
(find_parameters.BGGM), 26
find_parameters.betamfx, 25
find_parameters.betareg
(find_parameters.averaging), 23
find_parameters.BFBayesFactor
(find_parameters.BGGM), 26
find_parameters.BGGM, 26
find_parameters.BGGM(), 59
find_parameters.brmsfit
(find_parameters.BGGM), 26
find_parameters.DirichletRegModel
(find_parameters.averaging), 23
find_parameters.emmGrid, 29
find_parameters.gam
(find_parameters.gamlss), 30
find_parameters.gamlss, 30
find_parameters.glmmTMB, 31
find_parameters.glmx
(find_parameters.averaging), 23
find_parameters.logitmfx
(find_parameters.betamfx), 25
find_parameters.MCMCglmm
(find_parameters.BGGM), 26
find_parameters.merMod
(find_parameters.glmmTMB), 31
find_parameters.mhurdle
(find_parameters.zeroinfl), 32
find_parameters.mjoint
(find_parameters.averaging), 23
find_parameters.nlmerMod
(find_parameters.glmmTMB), 31
find_parameters.sim.merMod
(find_parameters.BGGM), 26
find_parameters.stanreg
(find_parameters.BGGM), 26

INDEX

find_parameters.zeroinfl, 32
find_predictors, 34
find_random, 36
find_random_slopes, 37
find_response, 37

find_smooth, 38
find_statistic, 39
find_terms, 40

find_terms(), 43
find_transformation, 41
find_variables, 42
find_variables(), 40
find_weights, 44

fish, 44

format_alert (format_message), 48
format_bf, 45
format_capitalize, 46
format_ci, 46

format_error (format_message), 48
format_message, 48
format_number, 50

format_p, 51

format_pd, 52

format_percent (format_value), 56
format_rope, 53

format_string, 53
format_table, 54
format_value, 56
format_value(), 50
format_warning (format_message), 48
formula_ok (find_formula), 18

Generalized additive models, 22, 73

get_auxiliary, 58

get_call, 60

get_correlation_slope_intercept
(get_variance), 105

get_correlation_slopes (get_variance),

105
get_data, 60
get_datagrid, 62
get_datagrid(), 87, 90, 92
get_deviance, 66
get_df, 67
get_df (), 88, 92
get_family, 69
get_intercept, 70
get_loglikelihood, 71
get_modelmatrix, 72

137

get_parameters, 73
get_parameters.averaging
(get_parameters.betareg), 75
get_parameters.bamlss
(get_parameters.BGGM), 77
get_parameters.bayesx
(get_parameters.BGGM), 77
get_parameters.betamfx, 74
get_parameters.betareg, 75
get_parameters.BFBayesFactor
(get_parameters.BGGM), 77
get_parameters.BGGM, 77
get_parameters.brmsfit
(get_parameters.BGGM), 77
get_parameters.clm2
(get_parameters.betareg), 75
get_parameters.coxme
(get_parameters.glmm), 82
get_parameters.DirichletRegModel
(get_parameters.betareg), 75
get_parameters.emm_list
(get_parameters.emmGrid), 80
get_parameters.emmGrid, 80
get_parameters.gam
(get_parameters.gamm), 81
get_parameters.gamm, 81
get_parameters.glimML
(get_parameters.glmm), 82
get_parameters.glmm, 82
get_parameters.glmmTMB
(get_parameters.glmm), 82
get_parameters.glmx
(get_parameters.betareg), 75
get_parameters.htest, 84
get_parameters.logitmfx
(get_parameters.betamfx), 74
get_parameters.MCMCglmm
(get_parameters.BGGM), 77
get_parameters.merMod
(get_parameters.glmm), 82
get_parameters.mhurdle
(get_parameters.zeroinfl), 84
get_parameters.mjoint
(get_parameters.betareg), 75
get_parameters.mvord
(get_parameters.betareg), 75
get_parameters.nlmerMod
(get_parameters.glmm), 82

138

get_parameters.rgss
(get_parameters.gamm), 81

get_parameters.sim
(get_parameters.BGGM), 77

get_parameters.stanmvreg
(get_parameters.BGGM), 77

get_parameters.stanreg
(get_parameters.BGGM), 77

get_parameters.zcpglm
(get_parameters.zeroinfl), 84

get_parameters.zeroinfl, 84

get_predicted, 85

get_predicted(), 62, 65, 92

get_predicted_ci, 91

get_predictors, 94

get_priors, 95

get_random, 95

get_residuals, 96

get_response, 97

get_sigma, 98

get_sigma(), 59

get_statistic, 99

get_transformation, 101

get_varcov, 102

get_variance, 105

get_variance_dispersion (get_variance),
105

get_variance_distribution
(get_variance), 105

get_variance_fixed (get_variance), 105

get_variance_intercept (get_variance),
105

get_variance_random (get_variance), 105

get_variance_residual (get_variance),
105

get_variance_slope (get_variance), 105

get_weights, 108

has_intercept, 109
has_single_value (trim_ws), 134
Hypothesis tests, 73

IQR(), 64
is_converged, 109
is_empty_object, 111
is_gam_model, 111
is_mixed_model, 112
is_model, 113
is_model_supported, 114

INDEX

is_multivariate, 115
is_nested_models, 116
is_nullmodel, 116
is_regression_model (is_model), 113

link_function, 117
link_inverse, 118
loglikelihood (get_loglikelihood), 71

Marginal effects models, 22, 73

Mixed models, 22, 73

model_info, 119

model_name, 121

Models with special components, 22,73

n_obs, 123
n_parameters, 124
n_unique (trim_ws), 134
null_model, 122

object_has_names, 126
object_has_rownames (object_has_names),
126

parameters::model_parameters(),
128-132

performance: :check_singularity(), 106

predict(), 85

print_color, 127

print_colour (print_color), 127

print_html (display), 12

print_md (display), 12

print_parameters, 128

print_parameters(), 8

safe_deparse (trim_ws), 134
safe_deparse_symbol (trim_ws), 134
signif (), 15,47,55,57
standardize_column_order, 130
standardize_names, 131
stats::df.residual(), 68
supported_models (is_model_supported),
114

text_remove_backticks, 132
trim_ws, 134

Zero-inflated and hurdle models, 22, 73

	all_models_equal
	check_if_installed
	clean_names
	clean_parameters
	color_if
	compact_character
	compact_list
	display
	download_model
	ellipsis_info
	export_table
	find_algorithm
	find_formula
	find_interactions
	find_offset
	find_parameters
	find_parameters.averaging
	find_parameters.betamfx
	find_parameters.BGGM
	find_parameters.emmGrid
	find_parameters.gamlss
	find_parameters.glmmTMB
	find_parameters.zeroinfl
	find_predictors
	find_random
	find_random_slopes
	find_response
	find_smooth
	find_statistic
	find_terms
	find_transformation
	find_variables
	find_weights
	fish
	format_bf
	format_capitalize
	format_ci
	format_message
	format_number
	format_p
	format_pd
	format_rope
	format_string
	format_table
	format_value
	get_auxiliary
	get_call
	get_data
	get_datagrid
	get_deviance
	get_df
	get_family
	get_intercept
	get_loglikelihood
	get_modelmatrix
	get_parameters
	get_parameters.betamfx
	get_parameters.betareg
	get_parameters.BGGM
	get_parameters.emmGrid
	get_parameters.gamm
	get_parameters.glmm
	get_parameters.htest
	get_parameters.zeroinfl
	get_predicted
	get_predicted_ci
	get_predictors
	get_priors
	get_random
	get_residuals
	get_response
	get_sigma
	get_statistic
	get_transformation
	get_varcov
	get_variance
	get_weights
	has_intercept
	is_converged
	is_empty_object
	is_gam_model
	is_mixed_model
	is_model
	is_model_supported
	is_multivariate
	is_nested_models
	is_nullmodel
	link_function
	link_inverse
	model_info
	model_name
	null_model
	n_obs
	n_parameters
	object_has_names
	print_color
	print_parameters
	standardize_column_order
	standardize_names
	text_remove_backticks
	trim_ws
	Index

