Package 'isocalcR'

October 13, 2022

Title Isotope Calculations in R Version 0.1.0 **Author** Justin Mathias **Date** 2022-07-14 Maintainer Justin Mathias < justin.m.mathias@gmail.com> **Description** Perform common calculations based on published stable isotope theory, such as calculating carbon isotope discrimination and intrinsic water use efficiency from wood or leaf carbon isotope composition. See Farquhar, O'Leary, and Berry (1982) <doi:10.1071/PP9820121>. License GPL-3 URL https://github.com/justinmathias/isocalcR BugReports https://github.com/justinmathias/isocalcR/issues **Depends** R (>= 4.0.0) **Imports Encoding** UTF-8 Language en-US LazyData true **Suggests** rmarkdown, knitr, testthat (>= 3.0.0), ggplot2, tidyr, dplyr VignetteBuilder knitr Config/testthat/edition 3 RoxygenNote 7.1.1 NeedsCompilation no Repository CRAN **Date/Publication** 2022-07-15 16:30:02 UTC

Type Package

2 CO2data

R topics documented:

	CO2data														2
	custom.calc														3
	d13C.to.Ci														5
	d13C.to.CiCa														7
	d13C.to.D13C														
	d13C.to.diffCaCi														
	d13C.to.iWUE .														
	piru13C														15
Index															16
C02da	ata	CO2data													

Description

Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Data are from Belmecheri, Lavergne, 2020, Dendrochronologia. Updated based on their methodology beyond C.E. 2019.

Usage

```
data(CO2data)
```

Format

A data frame with 2020 rows and 3 variables:

yr Year of CO2 and d13CO2 measurement

Ca Atmospheric CO2 concentration, in ppm

d13C.atm Atmospheric d13CO2, in per mille, %■

Source

https://www.sciencedirect.com/science/article/abs/pii/S1125786520300874

References

Belmecheri, S. & Lavergne, A. (2020). Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 63, 125748.

Examples

data(CO2data)
head(CO2data)

custom.calc 3

custom.calc custom.calc

Description

Calculates D13C, Ci, CiCa, diffCaCi, or iWUE with user specified values of d13C.plant, d13CO2.atm, atmospheric CO2, temperature, and elevation. The user can also specify whether to calculate each physiological index using the 'simple', 'photorespiration', or 'mesophyll' formulation in all calculations where Ci is computed. Method defaults to 'simple' assuming 'leaf' tissue and incorporates an apparent fractionation by Rubisco, b, of 27 permille (Cernusak and Ubierna 2022). If 'wood' tissue is supplied as an argument in the 'simple' method, the apparent fractionation by Rubisco, b, is updated to 25.5 permille (Cernusak and Ubierna 2022).

Usage

```
custom.calc(
  d13C.plant,
  d13C.atm,
  frac = 0,
  outvar = "D13C",
  Ca = NULL,
  elevation = NULL,
  temp = NULL,
  method = "simple",
  tissue = "leaf"
)
```

Arguments

d13C.plant	Measured plant tissue carbon isotope signature, per mille (% ■)
d13C.atm	Atmospheric d13CO2, per mille (% ■)
frac	Post-photosynthetic fractionation factor, defaults to 0 assuming leaf material, user should supply reasonable value if from wood (generally -1.92.1)
outvar	Variable of interest to calculate from the following: D13C, Ci, CiCa, diffCaCi, or iWUE. Defaults to D13C.
Ca	Atmospheric CO2 concentration (ppm).
elevation	Elevation (m.a.s.l.) of the sample, necessary to account for photorespiration processes
temp	Leaf temperature (°C)
method	Method to calculate iWUE (simple, photorespiration, or mesophyll). Defaults to 'simple'. See Lavergne et al. 2022, Ma et al. 2021, Gong et al. 2022.
tissue	Plant tissue of the sample (i.e. leaf or wood) used only during calculations using the simple formulation. Defaults to 'leaf'.

4 custom.calc

Value

One of the specified outvars: D13C (permille), Ci (ppm), CiCa (unitless), diffCaCi (ppm), or iWUE (micromol CO2 per mol H2O). Defaults to 'D13C'.

References

Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. & Ghashghaie, J. (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun. Mass Spectrom., 19, 1381–1391.

Belmecheri, S. & Lavergne, A. (2020). Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 63, 125748.

Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.R. & Long, S.P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ., 24, 253–259.

Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3, 53–92.

Cernusak, L. A. & Ubierna, N. Carbon Isotope Effects in Relation to CO2 Assimilation by Tree Canopies. in Stable Isotopes in Tree Rings: inferring physiological, climatic, and environmental responses 291–310 (2022). doi:10.1007/978-3-030-92698-4_9.

Davies, J.A. & Allen, C.D. (1973). Equilibrium, Potential and Actual Evaporation from Cropped Surfaces in Southern Ontario. J. Appl. Meteorol., 12, 649–657.

Farquhar, G., O'Leary, M. & Berry, J. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol., 9, 121–137.

Frank, D.C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., et al. (2015). Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang., 5, 579–583.

Gong, X. Y. et al. Overestimated gains in water-use efficiency by global forests. Glob. Chang. Biol. 1–12 (2022) doi:10.1111/gcb.16221.

Lavergne, A. et al. Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. Glob. Chang. Biol. 28, 524–541 (2022).

Ma, W. T. et al. Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytol. 229, 1326–1338 (2021).

Tsilingiris, P.T. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100°C. Energy Convers. Manag., 49, 1098–1110.

Ubierna, N. & Farquhar, G.D. (2014). Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant. Cell Environ., 37, 1494–1498.

Examples

custom.calc(d13C.plant = -27, d13C.atm = -8.7)

d13C.to.Ci 5

d13C.to.Ci d13C.to.Ci

Description

Calculates leaf intercellular CO2 concentration given plant tissue d13C signature. Defaults to the 'simple' formulation (See Lavergne et al. 2022) and 'leaf' tissue to calculate leaf Ci. Under the 'simple' formulation the apparent fractionation by Rubisco is 27 permille if from 'leaf' tissue and 25.5 permille if from wood tissue (Cernusak and Ubierna 2022).

Usage

```
d13C.to.Ci(
  d13C.plant,
  year,
  elevation,
  temp,
  method = "simple",
  tissue = "leaf",
  frac = 0
)
```

Arguments

d13C.pl	Measured plant tissue carbon isotope signature, per mille (%■)	
year	Year to which the sample corresponds	
elevati	Elevation (m.a.s.l.) of the sample, necessary to account for photorespiration processes	
temp	Leaf temperature (°C)	
method	Method to calculate CiCa (simple, photorespiration, or mesophyll). See Lavergne et al. 2022, Ma et al. 2021, Gong et al. 2022	
tissue	Plant tissue of the sample (i.e. leaf or wood) used only during calculations using the simple formulation. Defaults to "leaf".	
frac	Post-photosynthetic fractionation factor, defaults to 0 assuming leaf material, user should supply reasonable value if from wood (generally -1.92.1)	

Value

The concentration of leaf internal CO2 (ppm)

References

Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. & Ghashghaie, J. (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun. Mass Spectrom., 19, 1381–1391.

6 d13C.to.Ci

Belmecheri, S. & Lavergne, A. (2020). Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 63, 125748.

Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.R. & Long, S.P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ., 24, 253–259.

Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3, 53–92.

Cernusak, L. A. & Ubierna, N. Carbon Isotope Effects in Relation to CO2 Assimilation by Tree Canopies. in Stable Isotopes in Tree Rings: inferring physiological, climatic, and environmental responses 291–310 (2022). doi:10.1007/978-3-030-92698-4_9.

Davies, J.A. & Allen, C.D. (1973). Equilibrium, Potential and Actual Evaporation from Cropped Surfaces in Southern Ontario. J. Appl. Meteorol., 12, 649–657.

Farquhar, G., O'Leary, M. & Berry, J. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol., 9, 121–137.

Frank, D.C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., et al. (2015). Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang., 5, 579–583.

Gong, X. Y. et al. Overestimated gains in water-use efficiency by global forests. Glob. Chang. Biol. 1–12 (2022) doi:10.1111/gcb.16221.

Lavergne, A. et al. Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. Glob. Chang. Biol. 28, 524–541 (2022).

Ma, W. T. et al. Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytol. 229, 1326–1338 (2021).

Tsilingiris, P.T. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100°C. Energy Convers. Manag., 49, 1098–1110.

Ubierna, N. & Farquhar, G.D. (2014). Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant. Cell Environ., 37, 1494–1498.

Examples

d13C.to.CiCa 7

d13C.to.CiCa

d13C.to.CiCa

Description

Calculates the ratio of the concentration of leaf intercellular to atmospheric CO2, unitless. Defaults to the 'simple' formulation (See Lavergne et al. 2022) and 'leaf' tissue to calculate leaf Ci, and subsequently CiCa. Under the 'simple' formulation the apparent fractionation by Rubisco is 27 permille if from 'leaf' tissue and 25.5 permille if from wood tissue (Cernusak and Ubierna 2022).

Usage

```
d13C.to.CiCa(
  d13C.plant,
  year,
  elevation,
  temp,
  method = "simple",
  tissue = "leaf",
  frac = 0
)
```

Arguments

d13C.plant	Measured plant tissue carbon isotope signature, per mille ($\%$
year	Year to which the sample corresponds
elevation	Elevation (m.a.s.l.) of the sample, necessary to account for photorespiration processes
temp	Leaf temperature (°C)
method	Method to calculate CiCa (simple, photorespiration, or mesophyll). See Lavergne et al. 2022, Ma et al. 2021, Gong et al. 2022
tissue	Plant tissue of the sample (i.e. leaf or wood) used only during calculations using the simple formulation. Defaults to "leaf".
frac	Post-photosynthetic fractionation factor, defaults to 0 assuming leaf material, user should supply reasonable value if from wood (generally -1.92.1)

8 d13C.to.CiCa

Value

The ratio of leaf intercellular to atmospheric CO2 (Ci/Ca), unitless

References

Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. & Ghashghaie, J. (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun. Mass Spectrom., 19, 1381–1391.

Belmecheri, S. & Lavergne, A. (2020). Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 63, 125748.

Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.R. & Long, S.P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ., 24, 253–259.

Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3, 53–92.

Cernusak, L. A. & Ubierna, N. Carbon Isotope Effects in Relation to CO2 Assimilation by Tree Canopies. in Stable Isotopes in Tree Rings: inferring physiological, climatic, and environmental responses 291–310 (2022). doi:10.1007/978-3-030-92698-4_9.

Davies, J.A. & Allen, C.D. (1973). Equilibrium, Potential and Actual Evaporation from Cropped Surfaces in Southern Ontario. J. Appl. Meteorol., 12, 649–657.

Farquhar, G., O'Leary, M. & Berry, J. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol., 9, 121–137.

Frank, D.C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., et al. (2015). Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang., 5, 579–583.

Gong, X. Y. et al. Overestimated gains in water-use efficiency by global forests. Glob. Chang. Biol. 1–12 (2022) doi:10.1111/gcb.16221.

Lavergne, A. et al. Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. Glob. Chang. Biol. 28, 524–541 (2022).

Ma, W. T. et al. Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytol. 229, 1326–1338 (2021).

Tsilingiris, P.T. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100°C. Energy Convers. Manag., 49, 1098–1110.

Ubierna, N. & Farquhar, G.D. (2014). Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant. Cell Environ., 37, 1494–1498.

Examples

```
d13C.to.CiCa(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "simple",
```

d13C.to.D13C

```
tissue = "leaf")
d13C.to.CiCa(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "simple",
tissue = "wood")
d13C.to.CiCa(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "photorespiration")
```

d13C.to.D13C

d13C.to.D13C

Description

Calculates leaf carbon isotope discrimination given plant tissue d13C signature.

Usage

```
d13C.to.D13C(d13C.plant, year, frac = 0)
```

Arguments

d13C.plant Measured plant tissue carbon isotope signature, per mille (%■)

year Year to which the sample corresponds

frac Post-photosynthetic fractionation factor, defaults to 0 assuming leaf material

with no post-photosynthetic fractionation. User should supply reasonable value if leaf fractionation present or if samples are from wood (generally -1.9 - -2.1).

Value

Carbon isotope discrimination in units of per mille (%**■**).

References

Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. & Ghashghaie, J. (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun. Mass Spectrom., 19, 1381–1391.

Belmecheri, S. & Lavergne, A. (2020). Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 63, 125748.

10 d13C.to.diffCaCi

Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3, 53–92.

Cernusak, L. A. & Ubierna, N. Carbon Isotope Effects in Relation to CO2 Assimilation by Tree Canopies. in Stable Isotopes in Tree Rings: inferring physiological, climatic, and environmental responses 291–310 (2022). doi:10.1007/978-3-030-92698-4_9.

Farquhar, G., O'Leary, M. & Berry, J. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol., 9, 121–137.

Frank, D.C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., et al. (2015). Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang., 5, 579–583.

Ubierna, N. & Farquhar, G.D. (2014). Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant. Cell Environ., 37, 1494–1498.

Examples

```
d13C.to.D13C(d13C.plant = -27, year = 2015)
```

d13C.to.diffCaCi

d13C.to.diffCaCi

Description

Calculates the difference between the atmospheric CO2 concentration and the leaf intercellular CO2 concentration in parts per mil (ppm). Defaults to the 'simple' formulation (See Lavergne et al. 2022) and 'leaf' tissue to calculate leaf Ci, and subsequently diffCaCi. Under the 'simple' formulation the apparent fractionation by Rubisco is 27 permille if from 'leaf' tissue and 25.5 permille if from wood tissue (Cernusak and Ubierna 2022).

Usage

```
d13C.to.diffCaCi(
  d13C.plant,
  year,
  elevation,
  temp,
  method = "simple",
  tissue = "leaf",
  frac = 0
)
```

d13C.to.diffCaCi

Arguments

d13C.plant Measured plant tissue carbon isotope signature, per mille (%■)

year Year to which the sample corresponds

elevation Elevation (m.a.s.l.) of the sample, necessary to account for photorespiration

processes

temp Leaf temperature ($^{\circ}$ C)

method Method to calculate CiCa (simple, photorespiration, or mesophyll). See Lavergne

et al. 2022, Ma et al. 2021, Gong et al. 2022

tissue Plant tissue of the sample (i.e. leaf or wood) used only during calculations using

the simple formulation. Defaults to "leaf".

frac Post-photosynthetic fractionation factor, defaults to 0 assuming leaf material,

user should supply reasonable value if from wood (generally -1.9 - -2.1)

Value

The difference between atmospheric and leaf intercellular CO2 concentrations (ppm).

References

Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. & Ghashghaie, J. (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun. Mass Spectrom., 19, 1381–1391.

Belmecheri, S. & Lavergne, A. (2020). Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 63, 125748.

Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.R. & Long, S.P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ., 24, 253–259.

Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3, 53–92.

Cernusak, L. A. & Ubierna, N. Carbon Isotope Effects in Relation to CO2 Assimilation by Tree Canopies. in Stable Isotopes in Tree Rings: inferring physiological, climatic, and environmental responses 291–310 (2022). doi:10.1007/978-3-030-92698-4_9.

Davies, J.A. & Allen, C.D. (1973). Equilibrium, Potential and Actual Evaporation from Cropped Surfaces in Southern Ontario. J. Appl. Meteorol., 12, 649–657.

Farquhar, G., O'Leary, M. & Berry, J. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol., 9, 121–137.

Frank, D.C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., et al. (2015). Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang., 5, 579–583.

Gong, X. Y. et al. Overestimated gains in water-use efficiency by global forests. Glob. Chang. Biol. 1–12 (2022) doi:10.1111/gcb.16221.

d13C.to.iWUE

Lavergne, A. et al. Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. Glob. Chang. Biol. 28, 524–541 (2022).

Ma, W. T. et al. Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytol. 229, 1326–1338 (2021).

Tsilingiris, P.T. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100°C. Energy Convers. Manag., 49, 1098–1110.

Ubierna, N. & Farquhar, G.D. (2014). Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant. Cell Environ., 37, 1494–1498.

Examples

```
d13C.to.diffCaCi(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "simple",
tissue = "leaf")
d13C.to.diffCaCi(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "simple",
tissue = "wood")
d13C.to.diffCaCi(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "photorespiration")
```

d13C.to.iWUE

d13C.to.iWUE

Description

Calculates leaf intrinsic water use efficiency given plant tissue d13C signature. Defaults to the 'simple' formulation (See Lavergne et al. 2022) and 'leaf' tissue to calculate leaf Ci, and subsequently iWUE. Under the 'simple' formulation the apparent fractionation by Rubisco is 27 permille if from 'leaf' tissue and 25.5 permille if from wood tissue (Cernusak and Ubierna 2022).

d13C.to.iWUE

Usage

```
d13C.to.iWUE(
  d13C.plant,
  year,
  elevation,
  temp,
  method = "simple",
  tissue = "leaf",
  frac = 0
)
```

Arguments

d13C.plant Measured plant tissue carbon isotope signature, per mille (%■)

year Year to which the sample corresponds

elevation Elevation (m.a.s.l.) of the sample, necessary to account for photorespiration

processes

temp Leaf temperature (°C)

method Method to calculate iWUE (simple, photorespiration, or mesophyll). See Lavergne

et al. 2022, Ma et al. 2021, Gong et al. 2022

tissue Plant tissue of the sample (i.e. leaf or wood) used only during calculations using

the simple formulation. Defaults to "leaf".

frac Post-photosynthetic fractionation factor, defaults to 0 assuming leaf material,

user should supply reasonable value if from wood (generally -1.9 - -2.1)

Value

Intrinsic water use efficiency in units of micromol CO2 per mol H2O.

References

Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. & Ghashghaie, J. (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun. Mass Spectrom., 19, 1381–1391.

Belmecheri, S. & Lavergne, A. (2020). Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 63, 125748.

Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.R. & Long, S.P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ., 24, 253–259.

Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3, 53–92.

Cernusak, L. A. & Ubierna, N. Carbon Isotope Effects in Relation to CO2 Assimilation by Tree Canopies. in Stable Isotopes in Tree Rings: inferring physiological, climatic, and environmental responses 291–310 (2022). doi:10.1007/978-3-030-92698-4_9.

14 d13C.to.iWUE

Davies, J.A. & Allen, C.D. (1973). Equilibrium, Potential and Actual Evaporation from Cropped Surfaces in Southern Ontario. J. Appl. Meteorol., 12, 649–657.

Farquhar, G., O'Leary, M. & Berry, J. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol., 9, 121–137.

Frank, D.C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., et al. (2015). Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang., 5, 579–583.

Gong, X. Y. et al. Overestimated gains in water-use efficiency by global forests. Glob. Chang. Biol. 1–12 (2022) doi:10.1111/gcb.16221.

Lavergne, A. et al. Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. Glob. Chang. Biol. 28, 524–541 (2022).

Ma, W. T. et al. Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytol. 229, 1326–1338 (2021).

Tsilingiris, P.T. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100°C. Energy Convers. Manag., 49, 1098–1110.

Ubierna, N. & Farquhar, G.D. (2014). Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant. Cell Environ., 37, 1494–1498.

Examples

```
d13C.to.iWUE(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "simple",
tissue = "leaf")
d13C.to.iWUE(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "simple",
tissue = "wood")
d13C.to.iWUE(d13C.plant = -27,
year = 2015,
elevation = 900,
temp = 24,
method = "photorespiration")
```

piru13C 15

piru13C

piru13C

Description

Accompanying tree ring carbon isotope signature data for "Mathias, J.M. & Thomas, R.B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob. Chang. Biol. 24, 3938–3953 (2018)."

Usage

data(piru13C)

Format

A data frame with 223 rows and 6 variables:

Year Year of sample

Site Study location name

wood.d13C Measured tree ring (i.e. wood) d13C, in per mille, %■

MGT_C Mean growing season temperature, °C

Elevation_m Elevation of study location, meters

frac Leaf-to-wood fractionation factor

Source

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14273

References

Mathias, J.M. & Thomas, R.B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob. Chang. Biol. 24, 3938–3953 (2018).

Examples

data(piru13C)
head(piru13C)

Index