Package 'jointVIP'

December 21, 2022

Title Prioritize Variables with Joint Variable Importance Plot in Observational Study Design

Version 0.1.0

Description In the observational study design stage, matching/weighting methods are conducted. However, when many background variables are present, the decision as to which variables to prioritize for matching/weighting is not trivial. Thus, the joint treatment-outcome variable importance plots are created to guide variable selection. The joint variable importance plots enhance variable comparisons via bias curves, derived using the classical omitted variable bias framework. The joint variable importance plots translate variable importance into recommended values for tuning parameters in existing methods. Post-matching and/or weighting plots can also be used to visualize and assess the quality of the observational study design.

```
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.1
Depends R (>= 3.3)
Suggests causaldata, devtools (>= 2.4.5), knitr, MatchIt, WeightIt,
      optmatch, optweight (>= 0.2.4), rmarkdown (>= 2.18), testthat
      (>=3.0.0)
Config/testthat/edition 3
Collate 'measures.R' 'general.R'
Imports ggrepel (>= 0.9.2), ggplot2 (>= 3.4.0)
VignetteBuilder knitr
URL https://github.com/ldliao/jointVIP
BugReports https://github.com/ldliao/jointVIP/issues
NeedsCompilation no
Author Lauren D. Liao [aut, cre] (<a href="https://orcid.org/0000-0003-4697-6909">https://orcid.org/0000-0003-4697-6909</a>),
      Samuel D. Pimentel [aut] (<a href="https://orcid.org/0000-0002-0409-6586">https://orcid.org/0000-0002-0409-6586</a>)
Maintainer Lauren D. Liao <ldliao@berkeley.edu>
Repository CRAN
Date/Publication 2022-12-21 12:20:06 UTC
```

2 add_OVB_curves

R topics documented:

	add_OVB_curves	2
	add_variable_labels	
	bootstrap.plot	3
	ceiling_dec	4
	check_measures	5
	create_jointVIP	5
	create_post_jointVIP	6
	floor_dec	
	get_boot_measures	
	get_measures	8
	get_post_measures	9
	plot.jointVIP	9
	plot.post_jointVIP	10
	print.jointVIP	12
	print.post_jointVIP	13
	summary.jointVIP	
	summary.post_jointVIP	15
Index		17

add_OVB_curves

support function to plot bias curves

Description

support function to plot bias curves

Usage

```
add_0VB_curves(p, ...)
```

Arguments

p plot made with jointVIP object... encompasses other variables needed

Value

a joint variable importance plot of class ggplot with curves

add_variable_labels 3

add_variable_labels

support function to plot variable text labels

Description

support function to plot variable text labels

Usage

```
add_variable_labels(p, ...)
```

Arguments

p plot made with jointVIP object... encompasses other variables needed

Value

a joint variable importance plot of class ggplot with curves

bootstrap.plot

plot the bootstrap version of the jointVIP object

Description

plot the bootstrap version of the jointVIP object

Usage

```
bootstrap.plot(
    x,
    ...,
    smd = "OVB-based",
    use_abs = TRUE,
    plot_title = "Joint Variable Importance Plot",
    B = 100
)
```

Arguments

```
x a jointVIP object
... custom options: bias_curve_cutoffs, text_size, max.overlaps, label_cut_std_md, label_cut_outcome_cor, label_cut_bias, OVB_curves, add_var_labs
smd specify the standardized mean difference is OVB-based or standard
use_abs TRUE (default) for absolute measures
plot_title optional string for plot title
B 100 (default) for the number of times the bootstrap step wished to run
```

4 ceiling_dec

Value

a joint variable importance plot of class ggplot

Examples

```
data <- data.frame(year = rnorm(50, 200, 5),</pre>
                   pop = rnorm(50, 1000, 500),
                   gdpPercap = runif(50, 100, 1000),
                   trt = rbinom(50, 1, 0.5),
                   out = rnorm(50, 1, 0.2))
# random 20 percent of control as pilot data
pilot_sample_num = sample(which(data$trt == 0),
                          length(which(data$trt == 0)) *
                          0.2)
pilot_df = data[pilot_sample_num, ]
analysis_df = data[-pilot_sample_num, ]
treatment = "trt"
outcome = "out"
covariates = names(analysis_df)[!names(analysis_df)
                                %in% c(treatment, outcome)]
new_jointVIP = create_jointVIP(treatment = treatment,
                               outcome = outcome,
                               covariates = covariates,
                               pilot_df = pilot_df,
                               analysis_df = analysis_df)
# more bootstrap number B would be typically used in real settings
# this is just a small example
set.seed(1234567891)
bootstrap.plot(new_jointVIP, B = 15)
```

ceiling_dec

support function for ceiling function with decimals

Description

support function for ceiling function with decimals

Usage

```
ceiling_dec(num, dec_place = 1)
```

Arguments

num numeric

dec_place decimal place that is desired ceiling for

Value

numeric number desired

check_measures 5

check_measures	Check measures Check to see if there is any missing values or variables without any variation or identical rows (only unique rows will be used)

Description

Check measures Check to see if there is any missing values or variables without any variation or identical rows (only unique rows will be used)

Usage

```
check_measures(measures)
```

Arguments

measures measures needed for jointVIP

Value

measures needed for jointVIP

create_jointVIP create jointVIP object

Description

This is creates the jointVIP object & check inputs

Usage

```
create_jointVIP(treatment, outcome, covariates, pilot_df, analysis_df)
```

Arguments

treatment string denoting the name of the treatment variable outcome string denoting the name of the outcome variable

covariates vector of strings or list denoting column names of interest

pilot_df data.frame of the pilot data
analysis_df data.frame of the analysis data

Value

```
a jointVIP object
```

Examples

```
data <- data.frame(year = rnorm(50, 200, 5),</pre>
                   pop = rnorm(50, 1000, 500),
                   gdpPercap = runif(50, 100, 1000),
                   trt = rbinom(50, 1, 0.5),
                   out = rnorm(50, 1, 0.2))
# random 20 percent of control as pilot data
pilot_sample_num = sample(which(data$trt == 0),
                          length(which(data$trt == 0)) *
                          0.2)
pilot_df = data[pilot_sample_num, ]
analysis_df = data[-pilot_sample_num, ]
treatment = "trt"
outcome = "out"
covariates = names(analysis_df)[!names(analysis_df)
                                %in% c(treatment, outcome)]
new_jointVIP = create_jointVIP(treatment = treatment,
                               outcome = outcome,
                               covariates = covariates,
                               pilot_df = pilot_df,
                               analysis_df = analysis_df)
```

```
create_post_jointVIP create jointVIP object
```

Description

This is creates the post_jointVIP object & check inputs

Usage

```
create_post_jointVIP(object, post_analysis_df)
```

Arguments

```
object a jointVIP object

post_analysis_df

post matched or weighted data.frame
```

Value

```
a post_jointVIP object (subclass of jointVIP)
```

floor_dec 7

Examples

```
data <- data.frame(year = rnorm(50, 200, 5),</pre>
                   pop = rnorm(50, 1000, 500),
                   gdpPercap = runif(50, 100, 1000),
                   trt = rbinom(50, 1, 0.5),
                   out = rnorm(50, 1, 0.2))
# random 20 percent of control as pilot data
pilot_sample_num = sample(which(data$trt == 0),
                          length(which(data$trt == 0)) *
                          0.2)
pilot_df = data[pilot_sample_num, ]
analysis_df = data[-pilot_sample_num, ]
treatment = "trt"
outcome = "out"
covariates = names(analysis_df)[!names(analysis_df)
                                %in% c(treatment, outcome)]
new_jointVIP = create_jointVIP(treatment = treatment,
                               outcome = outcome,
                               covariates = covariates,
                               pilot_df = pilot_df,
                               analysis_df = analysis_df)
## at this step typically you may wish to do matching or weighting
## the results after can be stored as a post_data
## the post_data here is not matched or weighted, only for illustrative purposes
post_data <- data.frame(year = rnorm(50, 200, 5),</pre>
                        pop = rnorm(50, 1000, 500),
                        gdpPercap = runif(50, 100, 1000),
                        trt = rbinom(50, 1, 0.5),
                        out = rnorm(50, 1, 0.2))
post_dat_jointVIP = create_post_jointVIP(new_jointVIP, post_data)
```

floor_dec

support function for floor function with decimals

Description

support function for floor function with decimals

Usage

```
floor_dec(num, dec_place = 1)
```

Arguments

```
num numeric
dec_place decimal place that is desired floor for
```

get_measures

Value

numeric number desired

<pre>get_boot_measures</pre>	Calculate bootstrapped variation additional tool to help calculate the uncertainty of each variable's bias

Description

Calculate bootstrapped variation additional tool to help calculate the uncertainty of each variable's bias

Usage

```
get_boot_measures(object, smd = "OVB-based", use_abs = TRUE, B = 100)
```

Arguments

object jointVIP object

smd calculate standardized mean difference either using OVB-based or standard

use_abs TRUE (default) for absolute measures

B 100 (default) for the number of times the bootstrap step wished to run

Value

bootstrapped measures needed for bootstrap-jointVIP

get_measures	Prepare data frame to plot standardized omitted variable bias
	Marginal standardized mean differences and outcome correlation

Description

Prepare data frame to plot standardized omitted variable bias Marginal standardized mean differences and outcome correlation

Usage

```
get_measures(object, smd = "OVB-based")
```

Arguments

object jointVIP object

smd calculate standardized mean difference either using OVB-based or standard

get_post_measures 9

Value

measures needed for jointVIP

get_post_measures

Post-measures data frame to plot post-standardized omitted variable bias

Description

Post-measures data frame to plot post-standardized omitted variable bias

Usage

```
get_post_measures(object, smd = "OVB-based")
```

Arguments

object post_jointVIP object

smd calculate standardized mean difference either using OVB-based or standard

Value

measures needed for jointVIP

plot.jointVIP

plot the jointVIP object

Description

```
plot the jointVIP object
```

Usage

```
## S3 method for class 'jointVIP'
plot(
    x,
    ...,
    smd = "OVB-based",
    use_abs = TRUE,
    plot_title = "Joint Variable Importance Plot"
)
```

10 plot.post_jointVIP

Arguments

```
x a jointVIP object
... custom options: bias_curve_cutoffs, text_size, max.overlaps, label_cut_std_md, label_cut_outcome_cor, label_cut_bias, OVB_curves, add_var_labs, expanded_y_curvelab smd specify the standardized mean difference is OVB-based or standard use_abs TRUE (default) for absolute measures plot_title optional string for plot title
```

Value

a joint variable importance plot of class ggplot

Examples

```
data <- data.frame(year = rnorm(50, 200, 5),</pre>
                   pop = rnorm(50, 1000, 500),
                   gdpPercap = runif(50, 100, 1000),
                   trt = rbinom(50, 1, 0.5),
                   out = rnorm(50, 1, 0.2))
# random 20 percent of control as pilot data
pilot_sample_num = sample(which(data$trt == 0),
                          length(which(data$trt == 0)) *
                          0.2)
pilot_df = data[pilot_sample_num, ]
analysis_df = data[-pilot_sample_num, ]
treatment = "trt"
outcome = "out"
covariates = names(analysis_df)[!names(analysis_df)
                                %in% c(treatment, outcome)]
new_jointVIP = create_jointVIP(treatment = treatment,
                               outcome = outcome,
                               covariates = covariates,
                               pilot_df = pilot_df,
                               analysis_df = analysis_df)
plot(new_jointVIP)
```

plot the post_jointVIP object this plot uses the same custom options as the jointVIP object

Description

plot the post_jointVIP object this plot uses the same custom options as the jointVIP object

plot.post_jointVIP 11

Usage

```
## $3 method for class 'post_jointVIP'
plot(
    x,
    ...,
    smd = "OVB-based",
    use_abs = TRUE,
    plot_title = "Joint Variable Importance Plot",
    add_post_labs = TRUE,
    post_label_cut_bias = 0.005
)
```

Arguments

Value

a post-analysis joint variable importance plot of class ggplot

```
data <- data.frame(year = rnorm(50, 200, 5),</pre>
                   pop = rnorm(50, 1000, 500),
                   gdpPercap = runif(50, 100, 1000),
                   trt = rbinom(50, 1, 0.5),
                   out = rnorm(50, 1, 0.2))
# random 20 percent of control as pilot data
pilot_sample_num = sample(which(data$trt == 0),
                          length(which(data$trt == 0)) *
                          0.2)
pilot_df = data[pilot_sample_num, ]
analysis_df = data[-pilot_sample_num, ]
treatment = "trt"
outcome = "out"
covariates = names(analysis_df)[!names(analysis_df)
                                %in% c(treatment, outcome)]
new_jointVIP = create_jointVIP(treatment = treatment,
                               outcome = outcome,
```

12 print.jointVIP

print.jointVIP

Obtains a print for jointVIP object

Description

Obtains a print for jointVIP object

Usage

```
## S3 method for class 'jointVIP'
print(x, ..., smd = "OVB-based", use_abs = TRUE, bias_tol = 0.01)
```

Arguments

X	a jointVIP object
	not used
smd	specify the standardized mean difference is OVB-based or standard
use_abs	TRUE (default) for absolute measures
bias tol	numeric 0.01 (default) any bias above the absolute bias tol will be printe

Value

measures used to create the plot of jointVIP

print.post_jointVIP 13

print.post_jointVIP

Obtains a print for post_jointVIP object

Description

Obtains a print for post_jointVIP object

Usage

```
## S3 method for class 'post_jointVIP'
print(x, ..., smd = "OVB-based", use_abs = TRUE, bias_tol = 0.01)
```

Arguments

X	a post_jointVIP object
	not used
smd	specify the standardized mean difference is OVB-based or standard
use_abs	TRUE (default) for absolute measures
bias tol	numeric 0.01 (default) any bias above the absolute bias tol will be printed

Value

measures used to create the plot of jointVIP

14 summary.jointVIP

```
length(which(data$trt == 0)) *
pilot_df = data[pilot_sample_num, ]
analysis_df = data[-pilot_sample_num, ]
treatment = "trt"
outcome = "out"
covariates = names(analysis_df)[!names(analysis_df)
                                %in% c(treatment, outcome)]
new_jointVIP = create_jointVIP(treatment = treatment,
                               outcome = outcome,
                               covariates = covariates,
                               pilot_df = pilot_df,
                               analysis_df = analysis_df)
## at this step typically you may wish to do matching or weighting
## the results after can be stored as a post_data
## the post_data here is not matched or weighted, only for illustrative purposes
post_data <- data.frame(year = rnorm(50, 200, 5),</pre>
                        pop = rnorm(50, 1000, 500),
                        gdpPercap = runif(50, 100, 1000),
                        trt = rbinom(50, 1, 0.5),
                        out = rnorm(50, 1, 0.2))
post_dat_jointVIP = create_post_jointVIP(new_jointVIP, post_data)
print(post_dat_jointVIP)
```

summary.jointVIP

Obtains a summary jointVIP object

Description

Obtains a summary jointVIP object

Usage

```
## S3 method for class 'jointVIP'
summary(object, ..., smd = "OVB-based", use_abs = TRUE, bias_tol = 0.01)
```

Arguments

object a jointVIP object

... not used

smd specify the standardized mean difference is OVB-based or standard

use_abs TRUE (default) for absolute measures

bias_tol numeric 0.01 (default) any bias above the absolute bias_tol will be summarized

Value

no return value

summary.post_jointVIP

Examples

```
data <- data.frame(year = rnorm(50, 200, 5),</pre>
                   pop = rnorm(50, 1000, 500),
                   gdpPercap = runif(50, 100, 1000),
                   trt = rbinom(50, 1, 0.5),
                   out = rnorm(50, 1, 0.2))
# random 20 percent of control as pilot data
pilot_sample_num = sample(which(data$trt == 0),
                          length(which(data$trt == 0)) *
                          0.2)
pilot_df = data[pilot_sample_num, ]
analysis_df = data[-pilot_sample_num, ]
treatment = "trt"
outcome = "out"
covariates = names(analysis_df)[!names(analysis_df)
                                %in% c(treatment, outcome)]
new_jointVIP = create_jointVIP(treatment = treatment,
                               outcome = outcome,
                               covariates = covariates,
                               pilot_df = pilot_df,
                               analysis_df = analysis_df)
summary(new_jointVIP)
```

summary.post_jointVIP Obtains a summary post_jointVIP object

Description

Obtains a summary post_jointVIP object

Usage

```
## $3 method for class 'post_jointVIP'
summary(
  object,
    ...,
  smd = "OVB-based",
    use_abs = TRUE,
  bias_tol = 0.01,
  post_bias_tol = 0.005
```

Arguments

```
object a post_jointVIP object
... not used
smd specify the standardized mean difference is OVB-based or standard
use_abs TRUE (default) for absolute measures
```

bias_tol numeric 0.01 (default) any bias above the absolute bias_tol will be summarized post_bias_tol numeric 0.005 (default) any bias above the absolute bias_tol will be summarized

Value

no return value

```
data <- data.frame(year = rnorm(50, 200, 5),
                   pop = rnorm(50, 1000, 500),
                   gdpPercap = runif(50, 100, 1000),
                   trt = rbinom(50, 1, 0.5),
                   out = rnorm(50, 1, 0.2))
# random 20 percent of control as pilot data
pilot_sample_num = sample(which(data$trt == 0),
                          length(which(data$trt == 0)) *
                          0.2)
pilot_df = data[pilot_sample_num, ]
analysis_df = data[-pilot_sample_num, ]
treatment = "trt"
outcome = "out"
covariates = names(analysis_df)[!names(analysis_df)
                                %in% c(treatment, outcome)]
new_jointVIP = create_jointVIP(treatment = treatment,
                               outcome = outcome,
                               covariates = covariates,
                               pilot_df = pilot_df,
                               analysis_df = analysis_df)
## at this step typically you may wish to do matching or weighting
## the results after can be stored as a post_data
## the post_data here is not matched or weighted, only for illustrative purposes
post_data <- data.frame(year = rnorm(50, 200, 5),</pre>
                        pop = rnorm(50, 1000, 500),
                        gdpPercap = runif(50, 100, 1000),
                        trt = rbinom(50, 1, 0.5),
                        out = rnorm(50, 1, 0.2))
post_dat_jointVIP = create_post_jointVIP(new_jointVIP, post_data)
summary(post_dat_jointVIP)
```

Index

```
add_OVB_curves, 2
{\tt add\_variable\_labels, 3}
\verb|bootstrap.plot|, 3
ceiling_dec, 4
{\tt check\_measures}, {\tt 5}
create_jointVIP, 5
{\tt create\_post\_jointVIP, 6}
floor_dec, 7
get_boot_measures, 8
{\tt get\_measures}, \color{red} 8
\verb"get_post_measures", 9
plot.jointVIP, 9
plot.post_jointVIP, 10
print.jointVIP, 12
print.post_jointVIP, 13
summary.jointVIP, 14
\verb|summary.post_jointVIP|, 15|
```