Package 'konfound'

October 13, 2022

Type Package

Title Quantify the Robustness of Causal Inferences

Version 0.4.0

Description Statistical methods that quantify the conditions necessary to alter inferences, also known as sensitivity analysis, are becoming increasingly important to a variety of quantitative sciences. A series of recent works, including Frank (2000) <doi:10.1177/0049124100029002001> and Frank et al. (2013) <doi:10.3102/0162373713493129> extend previous sensitivity analyses by considering the characteristics of omitted variables or unobserved cases that would change an inference if such variables or cases were observed. These analyses generate statements such as ``an omitted variable would have to be correlated at xx with the predictor of interest (e.g., treatment) and outcome to invalidate an inference of a treatment effect". Or ``one would have to replace pp percent of the observed data with null hypothesis cases to invalidate the inference". We implement these recent developments of sensitivity analysis and provide modules to calculate these two robustness indices and generate such statements in R. In particular, the functions konfound(), pkonfound() and mkonfound() allow users to calculate the robustness of inferences for a user's own model, a single published study and multiple studies respectively.

License MIT + file LICENSE

Imports broom, broom.mixed, crayon, dplyr, ggplot2, mice, purrr, rlang, tidyr, tibble

Suggests margins, pbkrtest, devtools, forcats, knitr, lme4, rmarkdown, roxygen2, testthat, ggrepel, covr

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

URL https://github.com/jrosen48/konfound

BugReports https://github.com/jrosen48/konfound/issues
Depends R (>= 2.10)

concord1

NeedsCompilation no

Author Joshua M Rosenberg [aut, cre], Ran Xu [ctb], Qinyun Lin [ctb], Spiro Maroulis [ctb], Kenneth A Frank [ctb]

Maintainer Joshua M Rosenberg < jmichaelrosenberg@gmail.com>

Repository CRAN

Date/Publication 2021-06-01 07:40:05 UTC

R topics documented:

ary_dummy_data	2
ncord1	2
nfound	3
nch_shiny	4
onfound	5
onfound_ex	6
onfound	6
nmary.konfound	9
1	0

Index

binary_dummy_data Binary dummy data

Description

This data is made-up data for use in examples.

Format

A data.frame with 107 rows and 2 variables.

concord1

Concord1 data

Description

This data is from Hamilton (1983)

Format

A data.frame with 496 rows and 10 variables.

2

konfound

References

Hamilton, Lawrence C. 1983. Saving water: A causal model of household conservation. Sociological Perspectives 26(4):355-374.

konfound

Perform sensitivity analysis on fitted models

Description

For fitted models, this command calculates (1) how much bias there must be in an estimate to invalidate/sustain an inference; (2) the impact of an omitted variable necessary to invalidate/sustain an inference for a regression coefficient. Currently works for: models created with lm() (linear models).

Usage

```
konfound(
  model_object,
  tested_variable,
  alpha = 0.05,
  tails = 2,
  index = "RIR",
  to_return = "print",
  test_all = FALSE,
  two_by_two = FALSE,
  n_treat = NULL,
  switch_trm = TRUE,
  replace = "control"
)
```

Arguments

<pre>model_object</pre>	output from a model (currently works for: lm)		
tested_variable			
	Variable associated with the unstandardized beta coefficient to be tested		
alpha	probability of rejecting the null hypothesis (defaults to 0.05)		
tails	integer whether hypothesis testing is one-tailed (1) or two-tailed (2; defaults to 2)		
index	whether output is RIR or IT (impact threshold); defaults to "RIR"		
to_return	whether to return a data.frame (by specifying this argument to equal "raw_outp for use in other analyses) or a plot ("plot"); default is to print ("print") the outp to the console; can specify a vector of output to return		
test_all	whether to carry out the sensitivity test for all of the coefficients (defaults to FALSE)		

two_by_two	whether or not the tested variable is a dichotomous variable in a GLM; if so, the 2X2 table approach is used; only works for single variables at present (so test_all = TRUE will return an error)
n_treat	the number of cases associated with the treatment condition; applicable only when model_type = "logistic"
switch_trm	whether to switch the treatment and control cases; defaults to FALSE; applicable only when model_type = "logistic"
replace	whether using entire sample or the control group to calculate the base rate; default is the entire sample

Value

prints the bias and the number of cases that would have to be replaced with cases for which there is no effect to invalidate the inference

Examples

```
# using lm() for linear models
m1 <- lm(mpg ~ wt + hp, data = mtcars)</pre>
konfound(m1, wt)
konfound(m1, wt, test_all = TRUE)
konfound(m1, wt, to_return = "table")
# using glm() for non-linear models
if (requireNamespace("forcats")) {
  d <- forcats::gss_cat</pre>
  d$married <- ifelse(d$marital == "Married", 1, 0)
  m2 <- glm(married ~ age, data = d, family = binomial(link = "logit"))</pre>
  konfound(m2, age)
}
# using lme4 for mixed effects (or multi-level) models
if (requireNamespace("lme4")) {
  library(lme4)
  m3 <- fm1 <- lme4::lmer(Reaction ~ Days + (1 | Subject), sleepstudy)</pre>
  konfound(m3, Days)
}
m4 <- glm(outcome ~ condition, data = binary_dummy_data, family = binomial(link = "logit"))</pre>
konfound(m4, condition, two_by_two = TRUE, n_treat = 55)
```

mkonfound

Description

Open interactive web application for konfound

Usage

launch_shiny()

Details

Open the Shiny interactive web application in a browser

Value

Launches a web browser

mkonfound

Perform meta-analyses including sensitivity analysis

Description

For fitted models, this command carries out sensitivity analysis for a number of models, when their parameters stored in a data.frame.

Usage

mkonfound(d, t, df, alpha = 0.05, tails = 2, return_plot = FALSE)

Arguments

d	data.frame or tibble with the t-statistics and associated degrees of freedom	
t	t-statistic or vector of t-statistics	
df	degrees of freedom or vector of degrees of freedom associated with the t-statistics in the t argument	
alpha	probability of rejecting the null hypothesis (defaults to 0.05)	
tails	integer whether hypothesis testing is one-tailed (1) or two-tailed (2; defaults to 2)	
return_plot	whether to return a plot of the percent bias; defaults to FALSE	

Value

prints the bias and the number of cases that would have to be replaced with cases for which there is no effect to invalidate the inference for each of the cases in the data.frame

pkonfound

Examples

Not run: mkonfound_ex str(d) mkonfound(mkonfound_ex, t, df) ## End(Not run)

mkonfound_ex

Example data for the mkonfound function

Description

A dataset containing t and df values from example studies from Educational Evaluation and Policy Analysis (as detailed in Frank et al., 2013): https://drive.google.com/file/d/1aGhxGjvMvEPVAgOA8rrxvA97uUO5TTMe/vie

Usage

mkonfound_ex

Format

A data frame with 30 rows and 2 variables:

t t value

df degrees of freedom associated with the t value ...

Source

https://drive.google.com/file/d/1aGhxGjvMvEPVAgOA8rrxvA97uUO5TTMe/view

pkonfound

Perform sensitivity analysis for published studies

Description

For published studies, this command calculates (1) how much bias there must be in an estimate to invalidate/sustain an inference; (2) the impact of an omitted variable necessary to invalidate/sustain an inference for a regression coefficient.

6

pkonfound

Usage

```
pkonfound(
 est_eff,
  std_err,
 n_obs,
 n_covariates = 1,
  alpha = 0.05,
  tails = 2,
  index = "RIR",
  nu = 0,
 n_treat = NULL,
 switch_trm = TRUE,
 model_type = "ols",
 a = NULL,
 b = NULL,
 c = NULL,
 d = NULL,
  two_by_two_table = NULL,
  test = "fisher",
 replace = "control",
  to_return = "print"
)
```

Arguments

est_eff	the estimated effect (such as an unstandardized beta coefficient or a group mean difference)
std_err	the standard error of the estimate of the unstandardized regression coefficient
n_obs	the number of observations in the sample
n_covariates	the number of covariates in the regression model
alpha	probability of rejecting the null hypothesis (defaults to 0.05)
tails	integer whether hypothesis testing is one-tailed (1) or two-tailed (2; defaults to 2)
index	whether output is RIR or IT (impact threshold); defaults to "RIR"
nu	what hypothesis to be tested; defaults to testing whether est_eff is significantly different from 0
n_treat	the number of cases associated with the treatment condition; applicable only when model_type = "logistic"
switch_trm	whether to switch the treatment and control cases; defaults to FALSE; applicable only when model_type = "logistic"
<pre>model_type</pre>	the type of model being estimated; defaults to "ols" for a linear regression model; the other option is "logistic"
а	cell is the number of cases in the control group showing unsuccessful results
b	cell is the number of cases in the control group showing successful results

с	cell is the number of cases in the treatment group showing unsuccessful results	
d	cell is the number of cases in the treatment group showing successful results	
two_by_two_tabl	e	
	table that is a matrix or can be coerced to one (data.frame, tibble, tribble) from which the a, b, c, and d arguments can be extracted	
test	whether using Fisher's Exact Test or A chi-square test; defaults to Fisher's Exact Test	
replace	whether using entire sample or the control group to calculate the base rate; default is the entire sample	
to_return	whether to return a data.frame (by specifying this argument to equal "raw_output" for use in other analyses) or a plot ("plot"); default is to print ("print") the output to the console; can specify a vector of output to return	

Value

prints the bias and the number of cases that would have to be replaced with cases for which there is no effect to invalidate the inference

Examples

```
# using pkonfound for linear models
pkonfound(2, .4, 100, 3)
pkonfound(-2.2, .65, 200, 3)
pkonfound(.5, 3, 200, 3)
pkonfound(-0.2, 0.103, 20888, 3, n_treat = 17888, model_type = "logistic")
pkonfound(2, .4, 100, 3, to_return = "thresh_plot")
pkonfound(2, .4, 100, 3, to_return = "corr_plot")
pkonfound_output <- pkonfound(2, .4, 200, 3,</pre>
 to_return = c("raw_output", "thresh_plot", "corr_plot")
)
summary(pkonfound_output)
pkonfound_output$raw_output
pkonfound_output$thresh_plot
pkonfound_output$corr_plot
# using pkonfound for a 2x2 table
pkonfound(a = 35, b = 17, c = 17, d = 38)
pkonfound(a = 35, b = 17, c = 17, d = 38, alpha = 0.01)
pkonfound(a = 35, b = 17, c = 17, d = 38, alpha = 0.01, switch_trm = FALSE)
pkonfound(a = 35, b = 17, c = 17, d = 38, test = "chisq")
```

summary.konfound Concise summary of konfound output

Description

Concise summary of konfound output

Usage

S3 method for class 'konfound'
summary(object, ...)

Arguments

object	A 'konfound' object
	Additional arguments

Details

Prints a concise summary of konfound output with multiple types of data specified in the to_return argument

Index

* datasets mkonfound_ex, 6

 $\texttt{binary_dummy_data, 2}$

concord1, 2

konfound, 3

launch_shiny,4

mkonfound, 5
mkonfound_ex, 6

pkonfound, 6

summary.konfound,9