Package 'kstMatrix'

January 23, 2023

Type Package

Version 0.1-5

Date 2023-01-23

- Title Basic Functions in Knowledge Space Theory Using Matrix Representation
- Description Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework, which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The 'kstMatrix' package provides basic functionalities to generate, handle, and manipulate knowledge structures and knowledge spaces. Opposed to the 'kst' package, 'kstMatrix' uses matrix representations for knowledge structures. Furthermore, 'kstMatrix' contains several knowledge spaces developed by the research group around Cornelia Dowling through querying experts.

Depends R (>= 3.5.0)

Suggests knitr, rmarkdown

Imports stats, igraph, grDevices

Maintainer Cord Hockemeyer <cord.hockemeyer@uni-graz.at>

License GPL-3

NeedsCompilation no

Repository CRAN

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

Author Cord Hockemeyer [aut, cre], Wai Wong [aut]

Date/Publication 2023-01-23 15:30:02 UTC

R topics documented:

cad	2
fractions	3
kmbasis	4
kmcolors	4
kmdist	5
kmeqreduction	5
kmfringe	6
kmhasse	6
kmiswellgraded	7
kmneighbourhood	7
kmnneighbourhood	8
kmnotions	9
kmsimulate	9
kmsurmiserelation	10
kmsymmsetdiff	11
kmtrivial	11
kmunionclosure	12
kmvalidate	13
readwrite	14
xpl	14
	10
	16

Index

cad

Knowledge spaces on AutoCAD knowledge

Description

Bases of knowledge spaces on AutoCAD knowledge obtained from querying experts.

Usage

cad

Format

A list containing seven bases (cad1 to cad6, and cadmaj) in binary matrix form. Each matrix has 28 columns representing the different knowledge items and a varying number of rows containing the basis elements.

Details

Six experts were queried about prerequisite relationships between 28 AutoCAD knowledge items (Dowling, 1991; 1993). A seventh basis represents those prerequisite relationships on which the majority (4 out of 6) of the experts agree (Dowling & Hockemeyer, 1998).

fractions

References

Dowling, C. E. (1991). Constructing Knowledge Structures from the Judgements of Experts. Habilitationsschrift, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany.

Dowling, C. E. (1993). Applying the basis of a knowledge space for controlling the questioning of an expert. Journal of Mathematical Psychology, 37, 21–48.

Dowling, C. E. & Hockemeyer, C. (1998). Computing the intersection of knowledge spaces using only their basis. In Cornelia E. Dowling, Fred S. Roberts, & Peter Theuns, editors, Recent Progress in Mathematical Psychology, pp. 133–141. Lawrence Erlbaum Associates Ltd., Mahwah, NJ.

fractions

Knowledge spaces on fractions

Description

Bases of knowledge spaces on fractions obtained from querying experts.

Usage

fractions

Format

A list containing four bases (frac1 to frac3, and fracmaj) in binary matrix form. Each matrix has 77 columns representing the different knowledge items and a varying number of rows containing the basis elements.

Details

Three experts were queried about prerequisite relationships between 77 items on fractions (Baumunk & Dowling, 1997). A forth basis represents those prerequisite relationships on which the majority of the experts agree (Dowling & Hockemeyer, 1998).

References

Baumunk, K. & Dowling, C. E. (1997). Validity of spaces for assessing knowledge about fractions. Journal of Mathematical Psychology, 41,99–105.

Dowling, C. E. & Hockemeyer, C. (1998). Computing the intersection of knowledge spaces using only their basis. In Cornelia E. Dowling, Fred S. Roberts, & Peter Theuns, editors, Recent Progress in Mathematical Psychology, pp. 133–141. Lawrence Erlbaum Associates Ltd., Mahwah, NJ.

kmbasis

Description

kmbasis returns a matrix representing the basis of a knowledge space. If x is a knowledge structure or an arbitrary family of sets kmbasis returns the basis of the smallest knowledge space containing x.

Usage

kmbasis(x)

Arguments

Х

Binary matrix representing a knowledge space

Value

Binary matrix representing the basis of the knowledge space.

Examples

kmbasis(xpl\$space)

kmcolors

Determine a color vector based on probabilities

Description

kmcolors takes a probabilty vector and a color palette and creates a color vector to be used with kmhasse.

Usage

kmcolors(prob, palette = cm.colors)

Arguments

prob	Probability vector
palette	Color palette (default = cm.colors)

kmdist

Description

kmdist returns a named vector with the frequencies of distances between a set of response patterns and a knowledge structure. This vector can be used to compute, e.g., the Discrepancy Index (DI) or the Distance Agreement Coefficient (DA).

Usage

kmdist(data, struct)

Arguments

data	Binary matrix representing a set of response patterns
struct	Binary matrix representing a knowledge structure

Value

Distance distribution vector

Examples

kmdist(xpl\$data, xpl\$space)

kmeqreduction Reduce a family of knowledge states with respect to item equivalence

Description

kmeqreduction takes a family of knowledge states and returns its reduction to non-equivalent items.

Usage

kmeqreduction(x)

Arguments

x Binary matrix

Value

Binary matrix reduced by equivalences

kmhasse

Examples

```
kmeqreduction(xpl$space)
```

kmfringe

Compute the fringe of a state within a knowledge structure

Description

kmfringe computes the fringe of a state within a knowledge structure, i.e. the set of items by which the state differs from its neighbours.

Usage

kmfringe(state, struct)

Arguments

state	Binary vector representing a knowledge state
struct	Binary matrix representing a knowledge structure

Value

Binary vector representing the fringe

Examples

kmfringe(c(1,0,0,0), xpl\$space)

```
kmhasse
```

Plot the Hasse diagram of a knowledge structure stored as a matrix

Description

kmhasse takes a matrix representing a knowledge structure and a color vector and draws a Hasse diagram. If the color vector is NULL the states are drawn in green.

Usage

kmhasse(struc, horizontal = TRUE, colors = NULL)

Arguments

struc	Binary matrix representing a knowledge structure
horizontal	Boolean defining orientation of the graph, default TRUE
colors	Color vector (default NULL)

6

kmiswellgraded Check for wellgradedness of a knowledge structure

Description

kmiswellgraded returns whether a knowledge structure is wellgraded.

Usage

```
kmiswellgraded(x)
```

Arguments

```
х
```

Binary matrix representing a knowledge space

Value

Logical value specifying whether 'x' is wellgraded

References

Doignon, J.-P. & Falmagne, J.-C. (1999). Knowledge Spaces. Springer-Verlag, Berlin.

Examples

kmiswellgraded(xpl\$space)

kmneighbourhood Compute the neighbourhod of a state within a knowledge structure

Description

kmneighbourhood computes the neighbourhood of a state within a knowledge structure, i.e. the family of all other states with a symmetric set difference of 1.

Usage

```
kmneighbourhood(state, struct)
```

Arguments

state	Binary vector representing a knowledge state
struct	Binary matrix representing a knowledge structure

8

Value

Matrix containing the neighbouring states, one per row

Examples

kmneighbourhood(c(1,1,0,0), xpl\$space)

kmnneighbourhood Compute the n-neighbourhod of a state within a knowledge structure

Description

kmnneighbourhood computes the n-neighbourhood of a state within a knowledge structure, i.e. the family of all other states with a symmetric set difference maximal n.

Usage

kmnneighbourhood(state, struct, distance)

Arguments

state	Binary vector representing a knowledge state
struct	Binary matrix representing a knowledge structure
distance	Size of the n-neighbourhood

Value

Matrix containing the neighbouring states, one per row

Examples

kmnneighbourhood(c(1,1,0,0), xpl\$space, 2)

kmnotions

Description

kmnotions returns a matrix representing the notions of a knowledge structure.

Usage

```
kmnotions(x)
```

Arguments

х

Binary matrix representing a knowledge structure

Value

Binary matrix representing notions in the knowledge structure

The matrix has a '1' in row 'i' and column 'j' if 'i' and 'j' belong to the same notion (i.e. are equivalent). It is a symmetric matrix with '1's in the main diagonal.

Examples

kmnotions(xpl\$space)

kmsimulate

Simulate a set of response patterns according to the BLIM

Description

kmsimulate returns a data set of n simulated response patterns based on the knowledge structure x given as a binary matrix. The simulation follows the BLIM (Basic Local Independence Model; see Doigon & Falmagne, 1999).

Usage

kmsimulate(x, n, beta, eta)

Arguments

х	Binary matrix representing a knowledge space
n	Number of simulated response patterns
beta	Careless error probability value or vector
eta	Lucky guess probability value or vector

Details

The beta and eta parameters must be either single numericals or vectors with a length identical to the number of rows in the x matrix. A mixture is possible.

The 'sample' function used by 'kmsimulate' might work inaccurately for knowledge structures 'x' with 2^31 or more states.

Value

Binary matrix representing the simulated data set

References

Doignon, J.-P. & Falmagne, J.-C. (1999). Knowledge Spaces. Springer-Verlag, Berlin.

Examples

kmsimulate(xpl\$space, 50, 0.2, 0.1)
kmsimulate(xpl\$space, 50, c(0.2, 0.25, 0.15, 0.2), c(0.1, 0.15, 0.05, 0.1))
kmsimulate(xpl\$space, 50, c(0.2, 0.25, 0.15, 0.2), 0)

kmsurmiserelation Compute the surmise relation of a quasi-ordinal knowledge space

Description

kmsurmiserelation returns a matrix representing the surmise relation of a quasi-ordinal knowledge space. If x is a general knowledge space, a knowledge structure or an arbitrary family of sets, kmsurmiserelation returns the surmise relation of the smallest quasi-ordinal knowledge space containing x.

Usage

```
kmsurmiserelation(x)
```

Arguments

```
Х
```

Binary matrix representing a quasi-ordinal knowledge space

Value

Binary matrix representing the surmise relation of the corresponding quasi-ordinal knowledge space

Note: The columns of the surmise relation matrix describe the minimal state for the respective item in the quasi-ordinal knowledge space.

Examples

kmsurmiserelation(xpl\$space)

kmsymmsetdiff

Description

Compute the symmetric set difference between two sets

Usage

```
kmsymmsetdiff(x, y)
```

kmsetdistance(x, y)

Arguments

х	Binary vector representing a set
У	Binary vector representing a set

Value

kmsymmsetdiff: Symmetric set difference between 'x' and 'y'

kmsetdistance: Distance between the sets 'x' and 'y', i.e. the cardinality of the symmetric set difference

Examples

kmsymmsetdiff(c(1,0,0), c(1,1,0))

kmsetdistance(c(1,0,0), c(1,1,0))

kmtrivial

Create trivial knowledge spaces

Description

These functions create trivial knowledge spaces of a given item number. The minimal space contains just the empty set and the full item set while the maximal space is equal to the power set.

Usage

kmminimalspace(noi)

kmmaximalspace(noi)

Arguments noi

Number of items

Details

Please note that the computation time for creating large power sets can grow quite large easily.

Value

A binary matrix representing the respective knowledge space

Examples

kmminimalspace(5)
kmmaximalspace(5)

kmunionclosure Clo

Close a family of sets under union

Description

kmunionclosure returns a matrix representing a knowledge space. Please note that it takes quite some time for computing larger knowledge spaces.

Usage

```
kmunionclosure(x)
```

Arguments

х

Binary matrix representing a family of sets

Value

Binary matrix representing the corresponding knowledge space, i.e. the closure of the family under union including the empty set and the full set.

kmconstrDowling implements the irredundant algorithm deveoped by Dowling (1993).

References

Dowling, C. E. (1993). On the irredundant construction of knowledge spaces. Journal of Mathematical Psychology, 37, 49–62.

Examples

kmunionclosure(xpl\$basis)

kmvalidate

Description

kmvalidate returns a list with three elements, a named vector with the frequencies of distances between a set of response patterns and a knowledge structure, the Discrepancy Index (DI), and the Distance Agreement Coefficient (DA).

Usage

kmvalidate(data, struct)

Arguments

data	Binary matrix representing a set of response patterns
struct	Binary matrix representing a knowledge structure

Value

A list with three elements:

dist Distance distribution vector

- **DI** Discrepancy Index
- DA Distance Agreement Coefficient

Warning

The DA computation can take quite some time for larger item sets as the power set has to be computed.

Examples

kmvalidate(xpl\$data, xpl\$space)

readwrite

Description

Bases of knowledge spaces on reading/writing abilities obtained from querying experts.

Usage

readwrite

Format

A list containing four bases (rw1 to rw3, and rwmaj) in binary matrix form. Each matrix has 48 columns representing the different knowledge items and a varying number of rows containing the basis elements.

Details

Three experts were queried about prerequisite relationships between 48 items on reading and writing abilities (Dowling, 1991; 1993). A forth basis represents those prerequisite relationships on which the majority of the experts agree (Dowling & Hockemeyer, 1998).

References

Dowling, C. E. (1991). Constructing Knowledge Structures from the Judgements of Experts. Habilitationsschrift, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany.

Dowling, C. E. (1993). Applying the basis of a knowledge space for controlling the questioning of an expert. Journal of Mathematical Psychology, 37, 21–48.

Dowling, C. E. & Hockemeyer, C. (1998). Computing the intersection of knowledge spaces using only their basis. In Cornelia E. Dowling, Fred S. Roberts, & Peter Theuns, editors, Recent Progress in Mathematical Psychology, pp. 133–141. Lawrence Erlbaum Associates Ltd., Mahwah, NJ.

xpl

Small example knowledge space

Description

Basis and space matrix of a small fictional knowledge space, and a small data set to be used in examples.

Usage

xpl

Format

A list containing the basis, the space, and the data matrix

Index

```
* data
    cad, 2
    fractions, 3
    readwrite, 14
    xpl, 14
* math
    kmbasis,4
    kmcolors, 4
    kmdist, 5
    kmeqreduction, 5
    kmfringe, 6
    kmhasse, 6
    kmiswellgraded, 7
    kmneighbourhood, 7
    kmnneighbourhood, 8
    kmnotions, 9
    kmsimulate, 9
    kmsurmiserelation, 10
    kmsymmsetdiff, 11
    kmtrivial, 11
    kmunionclosure, 12
    kmvalidate, 13
cad, 2
fractions, 3
kmbasis,4
kmcolors, 4
kmdist, 5
kmeqreduction, 5
kmfringe, 6
kmhasse, 6
kmiswellgraded, 7
kmmaximalspace (kmtrivial), 11
kmminimalspace (kmtrivial), 11
kmneighbourhood, 7
kmnneighbourhood, 8
kmnotions, 9
```

kmsetdistance(kmsymmsetdiff), 11

kmsimulate, 9
kmsurmiserelation, 10
kmsymmsetdiff, 11
kmtrivial, 11
kmunionclosure, 12
kmvalidate, 13
readwrite, 14
xpl, 14