This is an example of how to run a numerical experimental design with landsepi.
library(landsepi)
First create a dataframe containing, for each line, the value of target parameters (i.e. those destined to vary from one simulation to anoter). The dataframe must also contain columns to store simulation outputs.
For the sake of simplicity, the following numerical design contains only 5 simulations for which 7 target parameters have been arbitrarily chosen to vary and 3 output variable are to be computed. Off course, real numerical designs will include more simulations, in particular those representing factorial experimental plans.
<- data.frame(nTSpY = c(120, 110, 100, 90, 80)
myDesign pI0 = c(0, 1E-4, 5E-4, 1E-3, 1E-2)
, infection_rate = c(0.5, 0.4, 0.3, 0.2, 0.1)
, id_landscape = 1:5
, aggreg = c(0.07, 0.07, 0.25, 10, 10)
, R_efficiency = c(1.00, 0.90, 0.80, 0.70, 0.60)
, growth_rate = c(0.1, 0.2, 0.3, 0.1, 0.1)
, ## create columns to store outputs
durab_MG1 = NA
, durab_MG2 = NA
, mean_audpc = NA) ,
Then add an identifier for each simulation and specify a random seed (for stochasticity).
<- nrow(myDesign)
n <- cbind(simul = 1:n, seed = sample(n*100, n), myDesign)
myDesign
myDesign#> simul seed nTSpY pI0 infection_rate id_landscape aggreg R_efficiency
#> 1 1 472 120 0e+00 0.5 1 0.07 1.0
#> 2 2 334 110 1e-04 0.4 2 0.07 0.9
#> 3 3 71 100 5e-04 0.3 3 0.25 0.8
#> 4 4 384 90 1e-03 0.2 4 10.00 0.7
#> 5 5 315 80 1e-02 0.1 5 10.00 0.6
#> growth_rate durab_MG1 durab_MG2 mean_audpc
#> 1 0.1 NA NA NA
#> 2 0.2 NA NA NA
#> 3 0.3 NA NA NA
#> 4 0.1 NA NA NA
#> 5 0.1 NA NA NA
Create the object simul_params
and a repository to store
inputs and outputs of the simulations.
<- createSimulParams(outputDir = getwd()) simul_params
Then run the experimental design by updating target parameters with
the values stored in myDesign
. Note that some parameters
vary jointly (e.g. landscape and dispersal matrix). See tutorial on
how to run a simple simulation
for details on the different functions.
for (i in 1:n){
print(paste("Running simulation", i, "/", n))
## Set Nyears and nTSpY
<- setTime(simul_params
simul_params Nyears = 6
, nTSpY = myDesign$nTSpY[i]) ## update nTSpY
,
## set seed (to run stochastic replicates)
<- setSeed(simul_params, myDesign$seed[i]) ## update seed
simul_params
## Pathogen parameters
@ReproSexProb <- logical(0) ## initialize vector of sexual probability (one for each time step)
simul_params<- loadPathogen("rust")
basic_patho_param $infection_rate <- myDesign$infection_rate[i] ## update inf. rate
basic_patho_param<- setPathogen(simul_params, basic_patho_param)
simul_params
## Initial conditions
<- setInoculum(simul_params, myDesign$pI0[i]) ## update pI0
simul_params
## Landscape parameters
<- loadLandscape(myDesign$id_landscape[i]) ## update landscape
landscape <- setLandscape(simul_params, landscape)
simul_params
## Dispersal parameters
<- loadDispersalPathogen(myDesign$id_landscape[i])[[1]] ## update dispersal
disp_patho <- setDispersalPathogen(simul_params, disp_patho)
simul_params
## Genes
<- loadGene(name = "MG 1", type = "majorGene")
gene1 $mutation_prob<-1e-4
gene1<- loadGene(name = "MG 2", type = "majorGene")
gene2 $mutation_prob<-1e-4
gene2<- data.frame(rbind(gene1, gene2), stringsAsFactors = FALSE)
genes $efficiency <- myDesign$R_efficiency[i] ## update resistance efficiency
genes<- setGenes(simul_params, genes)
simul_params
## Cultivars
<- loadCultivar(name = "Susceptible", type = "growingHost")
cultivar1 <- loadCultivar(name = "Resistant1", type = "growingHost")
cultivar2 <- loadCultivar(name = "Resistant2", type = "growingHost")
cultivar3 <- data.frame(rbind(cultivar1, cultivar2, cultivar3)
cultivars stringsAsFactors = FALSE)
, $growth_rate <- myDesign$growth_rate[i] ## update growth rate
cultivars<- setCultivars(simul_params, cultivars)
simul_params
## Allocate genes to cultivars
<- allocateCultivarGenes(simul_params, "Resistant1", c("MG 1"))
simul_params <- allocateCultivarGenes(simul_params, "Resistant2", c("MG 2"))
simul_params
## Allocate cultivars to croptypes
<- loadCroptypes(simul_params, names = c("Susceptible crop"
croptypes "Resistant crop 1"
, "Resistant crop 2"))
, <- allocateCroptypeCultivars(croptypes, "Susceptible crop", "Susceptible")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 1", "Resistant1")
croptypes <- allocateCroptypeCultivars(croptypes, "Resistant crop 2", "Resistant2")
croptypes <- setCroptypes(simul_params, croptypes)
simul_params
## Allocate croptypes to landscape
<- croptypes$croptypeID ## No rotation: 1 rotation_sequence element
rotation_sequence <- 0 ## same croptypes every years
rotation_period <- c(1/3, 1/3, 1/3) ## croptypes proportions
prop <- myDesign$aggreg[i]
aggreg <- allocateLandscapeCroptypes(simul_params,
simul_params rotation_period = rotation_period,
rotation_sequence = rotation_sequence,
rotation_realloc = FALSE,
prop = prop,
aggreg = aggreg,
graphic = FALSE)
## configure outputs
<- loadOutputs(epid_outputs = "audpc", evol_outputs = "durability")
outputlist <- setOutputs(simul_params, outputlist)
simul_params
## Check, (save) and run simulation
checkSimulParams(simul_params)
# simul_params <- saveDeploymentStrategy(simul_params, overwrite = TRUE)
<- runSimul(simul_params, writeTXT=FALSE, graphic = FALSE)
res
## Extract outputs
$durab_MG1[i] <- res$evol_outputs$durability[,"MG 1"]
myDesign$durab_MG2[i] <- res$evol_outputs$durability[,"MG 2"]
myDesign$mean_audpc[i] <- mean(res$epid_outputs$audpc$total)
myDesign
## Create myDesign.txt at first simulation and then append
if (i ==1){
write.table(myDesign[i,], paste(simul_params@OutputDir, "/myDesign.txt", sep="")
append=FALSE, row.names = FALSE, col.names = TRUE)
, else {
} write.table(myDesign[i,], paste(simul_params@OutputDir, "/myDesign.txt", sep="")
append=TRUE, row.names = FALSE, col.names = FALSE)
,
}
}
myDesign
The argument “keepRawResults” from function runSimul()
allows to keep a set of binary files after the end of the
simulation.
This set of binary files is composed of one file per simulated year and per compartment:
- H: healthy hosts,
- Hjuv: juvenile healthy hosts,
- L: latently infected hosts,
- I: infectious hosts,
- R: removed hosts,
- P: propagules.
Each file indicates for every time-step the number of individuals in each field, and when appropriate for each host and pathogen genotypes.
## Disable computation of outputs:
<- loadOutputs(epid_outputs = "", evol_outputs = "")
outputlist <- setOutputs(simul_params, outputlist)
simul_params
## Run simulation and keep raw binary files:
runSimul(simul_params, writeTXT=FALSE, graphic = FALSE, keepRawResults = TRUE)
The following code loads the content of the binary files in lists (named “H”, “Hjuv”, “P”, “L”, “I”, “R”). Each element of these lists contains a matrix or an array of the number of individuals associated with each field, host genotype and pathogen genotype for a given time step (i.e. the number of elements of each list is the total number of time steps). Then, users can compute their own output variables using these lists.
## retrieve parameters from the object simul_params
<- simul_params@OutputDir
path <- simul_params@TimeParam$Nyears
Nyears <- simul_params@TimeParam$nTSpY
nTSpY <- Nyears * nTSpY ## Total number of time-steps
nTS
<- nrow(simul_params@Landscape)
Npoly <- nrow(simul_params@Cultivars)
Nhost <- Npatho <- prod(simul_params@Genes$Nlevels_aggressiveness)
Npatho
## Initialise lists
<- as.list(1:nTS)
H <- as.list(1:nTS)
Hjuv <- as.list(1:nTS)
P <- as.list(1:nTS)
L <- as.list(1:nTS)
I <- as.list(1:nTS)
R <- 0
index
## Read binary files and store values in the lists as matrices or arrays
for (year in 1:Nyears) {
<- file(paste(path, sprintf("/H-%02d", year), ".bin", sep = ""), "rb")
binfileH <- readBin(con = binfileH, what = "int", n = Npoly * Nhost * nTSpY, size = 4
H.tmp signed = T, endian = "little")
, close(binfileH)
= file(paste(path, sprintf("/Hjuv-%02d", year), ".bin",sep=""), "rb")
binfileHjuv <- readBin(con=binfileHjuv, what="int", n=Npoly*Nhost*nTSpY, size = 4
Hjuv.tmp signed=T,endian="little")
, close(binfileHjuv)
<- file(paste(path, sprintf("/P-%02d", year), ".bin", sep = ""), "rb")
binfileP <- readBin(con = binfileP, what = "int", n = Npoly * Npatho * nTSpY, size = 4
P.tmp signed = T, endian = "little")
, close(binfileP)
<- file(paste(path, sprintf("/L-%02d", year), ".bin", sep = ""), "rb")
binfileL <- readBin(con = binfileL, what = "int", n = Npoly * Npatho * Nhost * nTSpY
L.tmp size = 4 , signed = T, endian = "little")
, close(binfileL)
<- file(paste(path, sprintf("/I-%02d", year), ".bin", sep = ""), "rb")
binfileI <- readBin(con = binfileI, what = "int", n = Npoly * Npatho * Nhost * nTSpY
I.tmp size = 4 , signed = T, endian = "little")
, close(binfileI)
<- file(paste(path, sprintf("/R-%02d", year), ".bin", sep = ""), "rb")
binfileR <- readBin(con = binfileR, what = "int", n = Npoly * Npatho * Nhost * nTSpY
R.tmp size = 4 , signed = T, endian = "little")
, close(binfileR)
## Convert vectors in matrices or arrays
for (t in 1:nTSpY) {
+ index]] <- matrix(H.tmp[((Nhost * Npoly) * (t-1)+1):(t * (Nhost * Npoly))]
H[[t ncol = Nhost, byrow = T)
, + index]] <- matrix(Hjuv.tmp[((Nhost*Npoly)*(t-1)+1):(t*(Nhost*Npoly))]
Hjuv[[t ncol=Nhost,byrow=T)
, + index]] <- matrix(P.tmp[((Npatho * Npoly) * (t-1)+1):(t * (Npatho * Npoly))]
P[[t ncol = Npatho, byrow = T)
, + index]] <- array(data = L.tmp[((Npatho * Npoly * Nhost) *
L[[t -1)+1):(t * (Npatho * Npoly * Nhost))]
(tdim = c(Nhost, Npatho, Npoly))
, + index]] <- array(data = I.tmp[((Npatho * Npoly * Nhost) *
I[[t -1)+1):(t * (Npatho * Npoly * Nhost))]
(tdim = c(Nhost, Npatho, Npoly))
, + index]] <- array(data = R.tmp[((Npatho * Npoly * Nhost) *
R[[t -1)+1):(t * (Npatho * Npoly * Nhost))]
(tdim = c(Nhost, Npatho, Npoly))
,
}
<- index + nTSpY
index }