# Load library
library(lavaan)
library(lavaanExtra)
# Define latent variables
<- list(visual = paste0("x", 1:3),
latent textual = paste0("x", 4:6),
speed = paste0("x", 7:9))
# Write the model, and check it
<- write_lavaan(latent = latent)
cfa.model cat(cfa.model)
## ##################################################
## # [---------------Latent variables---------------]
##
## visual =~ x1 + x2 + x3
## textual =~ x4 + x5 + x6
## speed =~ x7 + x8 + x9
# Fit the model fit and plot with `lavaanExtra::cfa_fit_plot`
# to get the factor loadings visually (optionally as PDF)
<- cfa_fit_plot(cfa.model, HolzingerSwineford1939) fit.cfa
## lavaan 0.6-12 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
## Standard Robust
## Test Statistic 85.306 87.132
## Degrees of freedom 24 24
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 0.979
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 918.852 880.082
## Degrees of freedom 36 36
## P-value 0.000 0.000
## Scaling correction factor 1.044
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.931 0.925
## Tucker-Lewis Index (TLI) 0.896 0.888
##
## Robust Comparative Fit Index (CFI) 0.930
## Robust Tucker-Lewis Index (TLI) 0.895
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3737.745 -3737.745
## Scaling correction factor 1.133
## for the MLR correction
## Loglikelihood unrestricted model (H1) -3695.092 -3695.092
## Scaling correction factor 1.051
## for the MLR correction
##
## Akaike (AIC) 7517.490 7517.490
## Bayesian (BIC) 7595.339 7595.339
## Sample-size adjusted Bayesian (BIC) 7528.739 7528.739
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.092 0.093
## 90 Percent confidence interval - lower 0.071 0.073
## 90 Percent confidence interval - upper 0.114 0.115
## P-value RMSEA <= 0.05 0.001 0.001
##
## Robust RMSEA 0.092
## 90 Percent confidence interval - lower 0.072
## 90 Percent confidence interval - upper 0.114
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.065 0.065
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.900 0.772
## x2 0.554 0.132 4.191 0.000 0.498 0.424
## x3 0.729 0.141 5.170 0.000 0.656 0.581
## textual =~
## x4 1.000 0.990 0.852
## x5 1.113 0.066 16.946 0.000 1.102 0.855
## x6 0.926 0.061 15.089 0.000 0.917 0.838
## speed =~
## x7 1.000 0.619 0.570
## x8 1.180 0.130 9.046 0.000 0.731 0.723
## x9 1.082 0.266 4.060 0.000 0.670 0.665
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.408 0.099 4.110 0.000 0.459 0.459
## speed 0.262 0.060 4.366 0.000 0.471 0.471
## textual ~~
## speed 0.173 0.056 3.081 0.002 0.283 0.283
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.549 0.156 3.509 0.000 0.549 0.404
## .x2 1.134 0.112 10.135 0.000 1.134 0.821
## .x3 0.844 0.100 8.419 0.000 0.844 0.662
## .x4 0.371 0.050 7.382 0.000 0.371 0.275
## .x5 0.446 0.057 7.870 0.000 0.446 0.269
## .x6 0.356 0.047 7.658 0.000 0.356 0.298
## .x7 0.799 0.097 8.222 0.000 0.799 0.676
## .x8 0.488 0.120 4.080 0.000 0.488 0.477
## .x9 0.566 0.119 4.768 0.000 0.566 0.558
## visual 0.809 0.180 4.486 0.000 1.000 1.000
## textual 0.979 0.121 8.075 0.000 1.000 1.000
## speed 0.384 0.107 3.596 0.000 1.000 1.000
##
## R-Square:
## Estimate
## x1 0.596
## x2 0.179
## x3 0.338
## x4 0.725
## x5 0.731
## x6 0.702
## x7 0.324
## x8 0.523
## x9 0.442
# Get fit indices
nice_fit(fit.cfa)
## Model chi2 df chi2.df p CFI TLI RMSEA SRMR AIC BIC
## 1 fit.cfa 85.306 24 3.554 0 0.931 0.896 0.092 0.065 7517.49 7595.339
# We can get it prettier with the `rempsyc::nice_table` integration
nice_fit(fit.cfa, nice_table = TRUE)
Model | χ2 | df | χ2∕df | p | CFI | TLI | RMSEA | SRMR | AIC | BIC |
fit.cfa | 85.31 | 24 | 3.55 | < .001 | 0.93 | 0.90 | 0.09 | 0.06 | 7,517.49 | 7,595.34 |
Ideal Value | — | — | < 2 or 3 | > .05 | ≥ .95 | ≥ .95 | < .06-.08 | ≤ .08 | Smaller is better | Smaller is better |
But let’s say you had a bad fit and wanted to remove the three items with the lowest loadings, you can do so without have to respecify the model, only what items you wish to remove:
# Fit the model fit and plot with `lavaanExtra::cfa_fit_plot`
# to get the factor loadings visually (as PDF)
<- cfa_fit_plot(cfa.model, HolzingerSwineford1939,
fit.cfa2 remove.items = paste0("x", c(2:3, 7)))
## lavaan 0.6-12 ended normally after 29 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
##
## Number of observations 301
##
## Model Test User Model:
## Standard Robust
## Test Statistic 8.442 7.313
## Degrees of freedom 7 7
## P-value (Chi-square) 0.295 0.397
## Scaling correction factor 1.154
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 674.095 599.025
## Degrees of freedom 15 15
## P-value 0.000 0.000
## Scaling correction factor 1.125
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.998 0.999
## Tucker-Lewis Index (TLI) 0.995 0.999
##
## Robust Comparative Fit Index (CFI) 0.999
## Robust Tucker-Lewis Index (TLI) 0.999
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -2429.864 -2429.864
## Scaling correction factor 1.137
## for the MLR correction
## Loglikelihood unrestricted model (H1) -2425.644 -2425.644
## Scaling correction factor 1.143
## for the MLR correction
##
## Akaike (AIC) 4887.729 4887.729
## Bayesian (BIC) 4939.628 4939.628
## Sample-size adjusted Bayesian (BIC) 4895.228 4895.228
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.026 0.012
## 90 Percent confidence interval - lower 0.000 0.000
## 90 Percent confidence interval - upper 0.079 0.069
## P-value RMSEA <= 0.05 0.713 0.814
##
## Robust RMSEA 0.013
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.078
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.016 0.016
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 1.165 1.000
## textual =~
## x4 1.000 0.990 0.852
## x5 1.115 0.066 16.910 0.000 1.104 0.857
## x6 0.923 0.061 15.181 0.000 0.914 0.835
## speed =~
## x8 1.000 0.515 0.510
## x9 1.722 0.398 4.322 0.000 0.887 0.881
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.462 0.087 5.292 0.000 0.400 0.400
## speed 0.266 0.072 3.674 0.000 0.443 0.443
## textual ~~
## speed 0.149 0.055 2.726 0.006 0.291 0.291
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.000 0.000 0.000
## .x4 0.370 0.050 7.356 0.000 0.370 0.274
## .x5 0.441 0.056 7.822 0.000 0.441 0.266
## .x6 0.362 0.047 7.689 0.000 0.362 0.302
## .x8 0.756 0.090 8.407 0.000 0.756 0.740
## .x9 0.228 0.167 1.359 0.174 0.228 0.224
## visual 1.358 0.120 11.367 0.000 1.000 1.000
## textual 0.981 0.121 8.093 0.000 1.000 1.000
## speed 0.266 0.082 3.248 0.001 1.000 1.000
##
## R-Square:
## Estimate
## x1 1.000
## x4 0.726
## x5 0.734
## x6 0.698
## x8 0.260
## x9 0.776
Let’s compare the fit to see if it’s better now:
nice_fit(fit.cfa, fit.cfa2, nice_table = TRUE)
Model | χ2 | df | χ2∕df | p | CFI | TLI | RMSEA | SRMR | AIC | BIC |
fit.cfa | 85.31 | 24 | 3.55 | < .001 | 0.93 | 0.90 | 0.09 | 0.06 | 7,517.49 | 7,595.34 |
fit.cfa2 | 8.44 | 7 | 1.21 | .295 | 1.00 | 0.99 | 0.03 | 0.02 | 4,887.73 | 4,939.63 |
Ideal Value | — | — | < 2 or 3 | > .05 | ≥ .95 | ≥ .95 | < .06-.08 | ≤ .08 | Smaller is better | Smaller is better |
It is! If you like this table, you may also wish to save it to Word. Also easy:
# Save fit table as an object
<- nice_fit(fit.cfa, fit.cfa2, nice_table = TRUE)
fit_table
# Save fit table to Word!
save_as_docx(fit_table, path = "fit_table.docx")
Here is a structural equation model example. We start with a path analysis first.
One might decide to look at the saturated lavaan
model
first.
# Calculate scale averages
<- HolzingerSwineford1939
data $visual <- rowMeans(data[paste0("x", 1:3)])
data$textual <- rowMeans(data[paste0("x", 4:6)])
data$speed <- rowMeans(data[paste0("x", 7:9)])
data
# Define our variables
<- "visual"
M <- c("ageyr", "grade")
IV <- c("speed", "textual")
DV
# Define our lavaan lists
<- list(speed = M, textual = M, visual = IV)
mediation <- list(speed = IV, textual = IV)
regression <- list(speed = "textual", ageyr = "grade")
covariance
# Write the model, and check it
<- write_lavaan(mediation, regression, covariance)
model.saturated cat(model.saturated)
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ visual
## textual ~ visual
## visual ~ ageyr + grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ ageyr + grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
This looks good so far, but we might also want to check our indirect
effects (mediations). For this, we have to obtain the path names by
setting label = TRUE
. This will allow us to define our
indirect effects and feed them back to write_lavaan
.
# We can run the model again.
# However, we set `label = TRUE` to get the path names
<- write_lavaan(mediation, regression, covariance, label = TRUE)
model.saturated cat(model.saturated)
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ visual_speed*visual
## textual ~ visual_textual*visual
## visual ~ ageyr_visual*ageyr + grade_visual*grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ ageyr + grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
Here, if we check the mediation section of the model, we see that it
has been “augmented” with the path names. Those are
visual_speed
, visual_textual
,
ageyr_visual
, and grade_visual
. The logic for
the determination of the path names is predictable: it is always the
predictor variable, on the left, followed by the predicted variable, on
the right. So if we were to test all possible indirect effects, we would
define our indirect
object as such:
# Define indirect object
<- list(ageyr_visual_speed = c("ageyr_visual", "visual_speed"),
indirect ageyr_visual_textual = c("ageyr_visual", "visual_textual"),
grade_visual_speed = c("grade_visual", "visual_speed"),
grade_visual_textual = c("grade_visual", "visual_textual"))
# Write the model, and check it
<- write_lavaan(mediation, regression, covariance,
model.saturated label = TRUE)
indirect, cat(model.saturated)
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ visual_speed*visual
## textual ~ visual_textual*visual
## visual ~ ageyr_visual*ageyr + grade_visual*grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ ageyr + grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
##
## ##################################################
## # [--------Mediations (indirect effects)---------]
##
## ageyr_visual_speed := ageyr_visual * visual_speed
## ageyr_visual_textual := ageyr_visual * visual_textual
## grade_visual_speed := grade_visual * visual_speed
## grade_visual_textual := grade_visual * visual_textual
If preferred (e.g., when dealing with long variable names), one can choose to use letters for the predictor variables. Note however that this tends to be somewhat more confusing and ambiguous.
# Write the model, and check it
<- write_lavaan(mediation, regression, covariance,
model.saturated label = TRUE, use.letters = TRUE)
cat(model.saturated)
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ a_speed*visual
## textual ~ a_textual*visual
## visual ~ a_visual*ageyr + b_visual*grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ ageyr + grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
In this case, the path names are a_speed
,
a_textual
, a_visual
, and
b_visual
. So we would define our indirect
object as such:
# Define indirect object
<- list(ageyr_visual_speed = c("a_visual", "a_speed"),
indirect ageyr_visual_textual = c("a_visual", "a_textual"),
grade_visual_speed = c("b_visual", "a_speed"),
grade_visual_textual = c("b_visual", "a_textual"))
# Write the model, and check it
<- write_lavaan(mediation, regression, covariance,
model.saturated label = TRUE, use.letters = TRUE)
indirect, cat(model.saturated)
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ a_speed*visual
## textual ~ a_textual*visual
## visual ~ a_visual*ageyr + b_visual*grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ ageyr + grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
##
## ##################################################
## # [--------Mediations (indirect effects)---------]
##
## ageyr_visual_speed := a_visual * a_speed
## ageyr_visual_textual := a_visual * a_textual
## grade_visual_speed := b_visual * a_speed
## grade_visual_textual := b_visual * a_textual
There is also an experimental feature that attempts to produce the
indirect effects automatically. This feature requires specifying your
independent, dependent, and mediator variables as “IV”, “M”, and “DV”,
respectively, in the indirect
object. In our case, we have
already defined those earlier, so we can just feed the proper
objects.
# Define indirect object
<- list(IV = IV, M = M, DV = DV)
indirect
# Write the model, and check it
<- write_lavaan(mediation, regression, covariance,
model.saturated label = TRUE)
indirect, cat(model.saturated)
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ visual_speed*visual
## textual ~ visual_textual*visual
## visual ~ ageyr_visual*ageyr + grade_visual*grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ ageyr + grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
##
## ##################################################
## # [--------Mediations (indirect effects)---------]
##
## ageyr_visual_speed := ageyr_visual * visual_speed
## ageyr_visual_textual := ageyr_visual * visual_textual
## grade_visual_speed := grade_visual * visual_speed
## grade_visual_textual := grade_visual * visual_textual
We are now satisfied with our model, so we can finally fit it!
# Fit the model with `lavaan`
<- sem(model.saturated, data = data)
fit.saturated
# Get regression parameters only
# And make it pretty with the `rempsyc::nice_table` integration
lavaan_reg(fit.saturated, nice_table = TRUE, highlight = TRUE)
Outcome | Predictor | β | p |
speed | visual | 0.21 | < .001 |
textual | visual | 0.24 | < .001 |
visual | ageyr | -0.16 | .014 |
visual | grade | 0.28 | < .001 |
speed | ageyr | 0.04 | .568 |
speed | grade | 0.31 | < .001 |
textual | ageyr | -0.40 | < .001 |
textual | grade | 0.36 | < .001 |
So speed
as predicted by ageyr
isn’t
significant. We could remove that path from the model it if we are
trying to make a more parsimonious model. Let’s make the non-saturated
path analysis model next.
Because we use lavaanExtra
, we don’t have to redefine
the entire model: simply what we want to update. In this case, the
regressions and the indirect effects.
<- list(speed = "grade", textual = IV)
regression
# We can run the model again, setting `label = TRUE` to get the path names
<- write_lavaan(mediation, regression, covariance, label = TRUE)
model.path cat(model.path)
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ visual_speed*visual
## textual ~ visual_textual*visual
## visual ~ ageyr_visual*ageyr + grade_visual*grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
# We check that we have removed "ageyr" correctly from "speed" in the
# regression section. OK.
# Define just our indirect effects of interest
<- list(age_visual_speed = c("ageyr_visual", "visual_speed"),
indirect grade_visual_textual = c("grade_visual", "visual_textual"))
# We run the model again, with the indirect effects
<- write_lavaan(mediation, regression, covariance,
model.path label = TRUE)
indirect, cat(model.path)
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ visual_speed*visual
## textual ~ visual_textual*visual
## visual ~ ageyr_visual*ageyr + grade_visual*grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
##
## ##################################################
## # [--------Mediations (indirect effects)---------]
##
## age_visual_speed := ageyr_visual * visual_speed
## grade_visual_textual := grade_visual * visual_textual
# Fit the model with `lavaan`
<- sem(model.path, data = data)
fit.path
# Get regression parameters only
lavaan_reg(fit.path)
## Outcome Predictor B p
## 1 speed visual 0.206 0.000
## 2 textual visual 0.235 0.000
## 3 visual ageyr -0.161 0.014
## 4 visual grade 0.281 0.000
## 5 speed grade 0.327 0.000
## 6 textual ageyr -0.403 0.000
## 7 textual grade 0.358 0.000
# We can get it prettier with the `rempsyc::nice_table` integration
lavaan_reg(fit.path, nice_table = TRUE, highlight = TRUE)
Outcome | Predictor | β | p |
speed | visual | 0.21 | < .001 |
textual | visual | 0.24 | < .001 |
visual | ageyr | -0.16 | .014 |
visual | grade | 0.28 | < .001 |
speed | grade | 0.33 | < .001 |
textual | ageyr | -0.40 | < .001 |
textual | grade | 0.36 | < .001 |
# We only kept significant regressions. Good (for this demo).
# Get covariance indices
lavaan_cov(fit.path)
## Variable.1 Variable.2 r p
## 8 speed textual 0.131 0.024
## 9 ageyr grade 0.511 0.000
## 10 speed speed 0.824 0.000
## 11 textual textual 0.765 0.000
## 12 visual visual 0.942 0.000
## 13 ageyr ageyr 1.000 0.000
## 14 grade grade 1.000 0.000
# We can get it prettier with the `rempsyc::nice_table` integration
lavaan_cov(fit.path, nice_table = TRUE)
Variable 1 | Variable 2 | r | p |
speed | textual | .13 | .024 |
ageyr | grade | .51 | < .001 |
speed | speed | .82 | < .001 |
textual | textual | .76 | < .001 |
visual | visual | .94 | < .001 |
ageyr | ageyr | 1.0 | < .001 |
grade | grade | 1.0 | < .001 |
# Get nice fit indices with the `rempsyc::nice_table` integration
nice_fit(fit.cfa, fit.saturated, fit.path, nice_table = TRUE)
Model | χ2 | df | χ2∕df | p | CFI | TLI | RMSEA | SRMR | AIC | BIC |
fit.cfa | 85.31 | 24 | 3.55 | < .001 | 0.93 | 0.90 | 0.09 | 0.06 | 7,517.49 | 7,595.34 |
fit.saturated | 0.00 | 0 | 1.00 | 1.00 | 0.00 | 0.00 | 3,483.46 | 3,539.02 | ||
fit.path | 0.33 | 1 | 0.33 | .568 | 1.00 | 1.03 | 0.00 | 0.01 | 3,481.79 | 3,533.64 |
Ideal Value | — | — | < 2 or 3 | > .05 | ≥ .95 | ≥ .95 | < .06-.08 | ≤ .08 | Smaller is better | Smaller is better |
# Let's get the indirect effects only
lavaan_ind(fit.path)
## Indirect.Effect Paths B p
## 15 age_visual_speed ageyr_visual*visual_speed -0.033 0.037
## 16 grade_visual_textual grade_visual*visual_textual 0.066 0.002
# We can get it prettier with the `rempsyc::nice_table` integration
lavaan_ind(fit.path, nice_table = TRUE)
Indirect Effect | Paths | β | p |
age_visual_speed | ageyr_visual*visual_speed | -0.03 | .037 |
grade_visual_textual | grade_visual*visual_textual | 0.07 | .002 |
# Get modification indices only
modindices(fit.path, sort = TRUE, maximum.number = 5)
## lhs op rhs mi epc sepc.lv sepc.all sepc.nox
## 29 visual ~ textual 0.326 1.622 1.622 1.975 1.975
## 35 grade ~ textual 0.326 -0.228 -0.228 -0.488 -0.488
## 34 grade ~ speed 0.326 -0.038 -0.038 -0.062 -0.062
## 19 speed ~~ grade 0.326 -0.021 -0.021 -0.056 -0.056
## 25 speed ~ textual 0.326 -0.067 -0.067 -0.087 -0.087
For reference, this is our model, visually speaking
We could also attempt to draw it with
lavaanExtra::nice_tidySEM
, a convenience wrapper around the
amazing tidySEM
package.
<- list(ageyr = "Age (year)",
labels grade = "Grade",
visual = "Visual",
speed = "Speed",
textual = "Textual")
<- list(IV = IV, M = M, DV = DV)
layout
nice_tidySEM(fit.path, layout = layout, label = labels,
hide_nonsig_edges = TRUE)
Finally, perhaps we change our mind and decide to run a full SEM instead, with latent variables. Fear not: we don’t have to redo everything again. We can simply define our latent variables and proceed. In this example, we have already defined our latent variable for our CFA earlier, so we don’t even need to write that again!
<- write_lavaan(mediation, regression, covariance,
model.latent label = TRUE)
indirect, latent, cat(model.latent)
## ##################################################
## # [---------------Latent variables---------------]
##
## visual =~ x1 + x2 + x3
## textual =~ x4 + x5 + x6
## speed =~ x7 + x8 + x9
##
## ##################################################
## # [-----------Mediations (named paths)-----------]
##
## speed ~ visual_speed*visual
## textual ~ visual_textual*visual
## visual ~ ageyr_visual*ageyr + grade_visual*grade
##
## ##################################################
## # [---------Regressions (Direct effects)---------]
##
## speed ~ grade
## textual ~ ageyr + grade
##
## ##################################################
## # [------------------Covariances-----------------]
##
## speed ~~ textual
## ageyr ~~ grade
##
## ##################################################
## # [--------Mediations (indirect effects)---------]
##
## age_visual_speed := ageyr_visual * visual_speed
## grade_visual_textual := grade_visual * visual_textual
# Run model
<- sem(model.latent, data = HolzingerSwineford1939)
fit.latent
# Get nice fit indices with the `rempsyc::nice_table` integration
nice_fit(fit.cfa, fit.saturated, fit.path, fit.latent, nice_table = TRUE)
Model | χ2 | df | χ2∕df | p | CFI | TLI | RMSEA | SRMR | AIC | BIC |
fit.cfa | 85.31 | 24 | 3.55 | < .001 | 0.93 | 0.90 | 0.09 | 0.06 | 7,517.49 | 7,595.34 |
fit.saturated | 0.00 | 0 | 1.00 | 1.00 | 0.00 | 0.00 | 3,483.46 | 3,539.02 | ||
fit.path | 0.33 | 1 | 0.33 | .568 | 1.00 | 1.03 | 0.00 | 0.01 | 3,481.79 | 3,533.64 |
fit.latent | 118.92 | 37 | 3.21 | < .001 | 0.92 | 0.89 | 0.09 | 0.06 | 8,638.79 | 8,746.20 |
Ideal Value | — | — | < 2 or 3 | > .05 | ≥ .95 | ≥ .95 | < .06-.08 | ≤ .08 | Smaller is better | Smaller is better |