Package ‘1dt’

January 16, 2023
Title Let Data Talk
Version 0.1.1.0

Description Methods and tools for creating a model set and estimating and evaluating the explana-
tion or prediction power of its members.
'SUR' modelling (for parameter estimation), 'logit’/'probit' modelling (for binary classifica-
tion), and 'VARMA' modelling (for time-series forecasting) are implemented.
Evaluations are both in-sample and out-of-sample.
It can be used for stepwise regression analysis <https:
//en.wikipedia.org/wiki/Stepwise_regression>,
automatic model selection and model averag-
ing (Claeskens and Hjort (2008, ISBN:1139471805, 9781139471800)),
calculating benchmarks, and doing sensitivity analysis (Leamer (1983) <https:
//www. jstor.org/stable/1803924> proposal).

License GPL (>=3)

URL https://github.com/rmojab63/LDT
VignetteBuilder knitr

Encoding UTF-8

SystemRequirements C++17
RoxygenNote 7.2.3

Depends R (>=3.5.0)

Imports Rcpp, readxl, jsonlite

Suggests knitr, testthat, rmarkdown, kableExtra, MASS
LinkingTo BH, Rcpp
Config/testthat/edition 3

LazyData true

NeedsCompilation yes

Author Ramin Mojab [aut, cre],
Microsoft Corporation [cph] (MIT license. Code from LightGBM package is
used for AUC calculations.),
Michael Hutt [cph] (MIT license. Original code for Nelder-Mead
algorithm.),

https://en.wikipedia.org/wiki/Stepwise_regression
https://en.wikipedia.org/wiki/Stepwise_regression
https://www.jstor.org/stable/1803924
https://www.jstor.org/stable/1803924
https://github.com/rmojab63/LDT

2 R topics documented:

Stephen Becker [cph] (BSD 3-clause license. Original code for
Nelder-Mead algorithm. The L-BFGS-B algorithm was written in the
1990s (mainly 1994, some revisions 1996) by Ciyou Zhu (in
collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal). L-BFGS-B
Version 3.0 is an algorithmic update from 2011, with coding changes
by J. L. Morales),

Math.NET [cph] (MIT license. Code from the 'Math.NET Numerics' library
is used in calculating running statistics.),

Christian Ammer [cph] (CC BY-SA 3.0 license. Code is used for
transosing a matrix.)

Maintainer Ramin Mojab <rmojab63@gmail.com>
Repository CRAN
Date/Publication 2023-01-16 10:30:02 UTC

R topics documented:

BindVariables e e 4
ClusterH e e e e 4
ClusterHGroup e 5
CoefTable e e e e e e 6
combineSearch e 8
CreateProject e 8
Data_Berkalloan e 10
Data_Pcp e e 12
Data_VestaFraud e 12
Data. Wdi e 13
Data_WdiSearchFor e 14
DcEstim e e e e e e e 15
DcSearch e e e e 16
DcSearch_s e 18
F CrossSection e 18
F Daily e 19
F_DailyInWeek e e 20
F_Hourly e e e 20
F ListDate 21
F_ListString o o o e 22
F_Minute_ly e 22
F_Monthly 23
F_MultiDaily 23
F_MultiWeekly e 24
F_MultiYearly o 25
F_Quarterly o 25
F_Second_ly e 26
F_Weekly e 26
F_XTimesADay e 27
F _XTimesAYear 28

F XTimesZYear. o 28

R topics documented: 3

Index

F_Yearly o e e e 29
GetAuc e e 29
GetCombinationdMoments e e e e e 30
GetDistance e e e e e 31
getDUMMY oL e e e e 31
GetEstim e e e e e 32
GetGldFromMoments e e e e e 33
GetLmbfgsOptions 34
GetMeasureFromWeighto 35
GetMeasureOptions e e e e e e e 35
GetModelCheckItems e 36
GetNelderMeadOptions e 37
GetNewtonOptions v v vt e e e e e 38
GetPca e e e 39
GetPcaOptions e 39
GetSearchltems L 40
GetSearchOptions e e e 41
GetWeightFromMeasure e 42
GldDensityQuantileo o 42
GldQuantile e e e 43
IsEmailValid e e 43
IsGuidValid e 44
LongrunGrowth 44
Parse F e 45
PlotCoefs e e e e 46
printldtf e e 48
printIdtsearch 48
printIdtv 49
RemoveNaStrategies 49
Search_S L e 50
Sequence_F e 51
summary.ldtsearch 51
SurEstim e e e 52
SurSearch e e e 53
SurSearch_s e e 55
to.dataframe L. L e e e 56
ToClassString_F e 57
ToString_ F e 58
ToString_FO e e e 58
Variable e e 59
VariableToString 59
VarmaEstim e 60
VarmaSearch e 61
VarmaSearch S e s e 63
vig_data ... L e e 63

65

4 ClusterH

BindVariables Binds a List of Variables

Description

Binds a List of Variables

Usage

BindVariables(varList)

Arguments

varList A list of variables ((i.e., 1dtv objects)) with similar frequency class

Value

A matrix with variables in the columns and frequencies as the row names.

Examples

vl = 1dt::Variable(c(1,2,3,2,3,4,5),"V1",F_Monthly(2022,12), list())
v2 = 1dt::Variable(c(19,20,30,20,30,40,50),"V2" ,F_Monthly(2022,8), list())
vs = ldt::BindVariables(list(v1,v2))

ClusterH Hierarchical Clustering

Description

Hierarchical Clustering

Usage
ClusterH(distances, numVariables, linkage = "single"”)
Arguments
distances (numeric vector) Determines the distances. This must be the lower triangle of a

(symmetric) distance matrix (without the diagonal).

numVariables (int) Determines the number of variables. This should hold: ’2 * length(distances)
= numVariables(numVariables - 1)’.

linkage (string) Determines how Distances are calculated in a left-right node merge. It
can be single, complete, uAverage, wAverage, ward.

ClusterHGroup 5

Value
A list:
merge (integer matrix)
height (numeric vector)
order (integer vector)
ClusterHGroup Groups Variables with Hierarchical Clustering
Description

Groups Variables with Hierarchical Clustering

Usage
ClusterHGroup(
data,
nGroups = 2L,
threshold = 0,
distance = "correlation”,
linkage = "single”,
correlation = "pearson”
)
Arguments
data (numeric matrix) Data with variables in the columns.
nGroups (int) Number of groups
threshold (double) A threshold for omitting variables. If distance between two variables
in a group is less than this value, the second one will be omitted. Note that a
change in the order of the columns might change the results.
distance (string) Determines how distances are calculated. It can be correlation, absCorrelation,
euclidean, manhattan, maximum.
linkage (string) Determines how Distances are calculated in a left-right node merge. It
can be single, complete, uAverage, wAverage, ward.
correlation (string) If distance is correlation, it determines the type of the correlation. It
can be pearson, spearman.
Details

The results might be different from R’s ’cutree’ function. I don’t know how ’cutree’ works, but
here I iterate over the nodes and whenever a split occurs, I add a group until the required number of
groups is reached.

6 CoefTable

Value
A list:
groups (List of integer vectors) indexes of variables in each group.
removed (integer vector) indexes of removed variables.
CoefTable Extract Coefficients from a list of 1dtestim object
Description

Extract Coefficients from a list of 1dtestim object

Usage

CoefTable(
list,
depInd = 1,
regInfo = list(c("", " "), c("num_obs"”, "No. Obs."), c("num_eq"”, "No. Eq."), c("num_x",
"No. Exo."), c("sigma2", "S.E. Reg."), c("aic"”, "AIC"), c("sic", "SIC")),
hnameFun = function(x) x,
vnamesFun = function(x) x,

vnamesFun_sub = list(c("%", "\\\\%"), c("_", "_")),
vhamesFun_max = 20,
tableFun = "coef_star”,
formatNumFun = function(colIndex, x) {
X
1,

numCoefs = NA,
formatLatex = TRUE

)
Arguments

list a named list of 1dtestim objects.

depInd index of the dependent variable.

regInfo A list of pairs of keys and names to determine the information at the bottom of
the table. Use "" (empty) for empty rows. num_eq and num_endo (and num_x
and num_exo) will be different with PCA analysis enabled.

hnameFun A function to change the name of the headers.

vhamesFun A function to change the name of the variables or the codes in regInfo.

vnamesFun_sub A list for replacing special characters vectors in vhamesFun.

vnamesFun_max Maximum length for names in vnamesFun.

CoefTable 7

tableFun A function (i.e., function(coef,std,pvalue,minInColm,maxInCol)) one of

non "non

the following for default sign or coefficients table: "sign", "sign_star", "coef",

"non

"coef_star", "coef_star_std"

formatNumFun A function to format the numbers if tableFun uses default values.

numCoefs if NA, it inserts all coefficients. If a positive number, it inserts that number of
coefficients.
formatLatex If true, default options are for ’latex’, otherwise, "html’.
Details

Possible codes (first element) for regInfo:

Value

: empty line
num_obs : No. Obs.; number of observations.

num_endo : No. Eq. (orig.); original number of equations or endogenous variables before
being changed by PCA analysis.

pca_y_exact : PCA Count (y);

pca_y_cutoff : PCA Cutoff (y)

pca_y_max : PCA Max (y)

num_eq : No. Eq.; number of equations after PCA analysis.
num_exo : No. Exo. (orig.)

pca_x_exact : PCA Count (x)

pca_x_cutoff : PCA Cutoff (x)

pca_x_max : PCA Max (x)

num_x : No. Exo.

num_x_all : No. Exo. (all); number of explanatory variables in all equations.
num_rest : No. Rest.; number of restrictions in the equation
sigma2 : S.E. Reg.

... others can be a measure name (i.e., elements of measures’ item in the results)

the generated table.

8 CreateProject
combineSearch Combine More Than One ldtsearch Objects
Description
Combine More Than One 1dtsearch Objects
Usage
combineSearch(list, typelName = "coefs")
Arguments
list a list with 1dtsearch objects
type1Name the name of ’typel’ in the object
Value
the combined ldtsearch object
CreateProject Creates JSON Data for an LDTSurvey Project
Description
Creates JSON Data for an LDTSurvey Project
Usage
CreateProject(
data,
description = list(c("Title"”, "Short Description”, "Long Description”, "en")),

relatedIds = list(),

survey_IsEnabled = TRUE,

survey_RulesChange = TRUE,

survey_MaxHorizon = 2,

survey_MinRequired = 1,

survey_showAI = FALSE,

survey_showUser = FALSE,

survey_RestrictTo = list(),

survey_RestrictType = c("none”, "view", "submit"),

survey_EndConditionOn = c("none"”, "dayOfYear”, "dayOfHalfYear"”, "dayOfQuarter”,

"dayOfMonth", "dayOfWeek"”, "hourOfDay"),
survey_EndConditionValue = 0,
forecast_IsEnabled = TRUE,

CreateProject 9

forecast_External = list(),
forecast_ExternalDesc = ""

)
Arguments

data A list of Variables with consistent frequency. Use Variable function. Target is
the one with ’role:target; field or if missing, the first variable.

description A list of string arrays that provides basic information. Each array provides 4
elements: 1. title of the project, 2. a short description in plain text, 3. a longer
description in mark-down format, and, 4. culture-name of the information. The
first array is the default and culture-name must be unique.

relatedIds ID of the related projects (e.g., this can be a project with the same data but in

another frequency).
survey_IsEnabled
If FALSE, users cannot submit prediction.
survey_RulesChange
If TRUE, owner can change the survey rules in the future edits.
survey_MaxHorizon
Prediction horizons. E.g., 2 means a users can submit her prediction for the next
2 periods. It can be 1 to 5.
survey_MinRequired
Required minimum number of data points to be predicted by a user.

survey_showAI If TRUE, user must submit her prediction first, before being able to see any auto-
matic algorithm-based forecast
survey_showUser
If TRUE, user must submit her prediction first, before being able to see any other
user-based prediction.
survey_RestrictTo
A list of e-mails for restricting access (see survey_RestrictType). Leave it
empty for a public page. Otherwise, don’t forget to add your email or you cannot
submit prediction.
survey_RestrictType
Type of the restriction (see survey_RestrictTo). view means only the permit-
ted users can view the page. submit means everyone can view, but the permitted
users can submit prediction. none means no restriction (use it for communica-
tion purposes).
survey_EndConditionOn
Determines the type of the condition to end a survey automatically (see survey_EndCondition).
survey_EndConditionValue
Determines a condition to end a survey automatically. E.g., if survey_EndConditionOn
is hourOfDay and this value is 20, the session will end (and users cannot submit
predictions) on and after 20:00 (based on Gregorian calendar and UTC).
forecast_IsEnabled
If TRUE, an automatic algorithm-based forecast is reported (see also survey_showAI).

10 Data_Berkal oan

forecast_External
An array for providing an external forecast up to survey_MaxHorizon. A fore-
cast should be "up’ or ’down’ for a direction forecast, a number for a point
forecast, and ’dist:distribution-name(comma-separated parameters)’ for a distri-
bution forecast (e.g., "normal(0,1)")

forecast_ExternalDesc

A short description on what is provided in forecast_External (e.g., the name
of the numerical method)

Value

The JSON content

Data_BerkalLoan Use ’Berka’ Data and create Loan-Series Table

Description

Use ’Berka’ Data and create Loan-Series Table

Usage

Data_BerkalLoan(
dirPath,
positive = c("B", "D"),
negative = c("A", "C"),
rateFun = function(amount, duration, paymentPerMonth) {
((paymentPerMonth *
duration)/amount - 1) * 100

3
)
Arguments

dirPath path to the downloaded data directory.

positive determines the positive class. There are four types of loans: A’ stands for con-
tract finished, no problems, 'B’ stands for contract finished, loan not payed, C’
stands for running contract, OK so far, ’D’ stands for running contract, client in
debt

negative similar to positive

ratefFun a function to calculate interest rate in loans

Data_Berkal oan 11

Value
data.frame with the following columns:

¢ loan_id: record identifier
* status: original status of the data (A, B, C, or D)

o label: status of paying off the loan transformed to numeric (0,1) by using positive and
negative arguments. value=1 means default.

* amount: amount of money

* payments: monthly payments

* rate: rates calculated by rateFun function

* duration_# (#=12,24,36,48,60): dummy variables for the duration of the loan

* account_frequency_?: dummy variables for the frequency of issuance of statements. ?="POPLATEK
MESICNE" stands for monthly issuance, ?="POPLATEK TYDNE" stands for weekly is-
suance, 7="POPLATEK PO OBRATU" stands for issuance after transaction

* order_num: number of the payment orders issued for the account of the loan
 order_sum_amount: sum of amounts of the payment orders issued for the account of the loan

* order_related_account_num: unique number of ’account of the recipient’ in the payment or-
ders issued for the account of the loan

* order_related_bank_num: unique number of ’bank of the recipient’ in the payment orders
issued for the account of the loan

 order_has_?: dummy variables fo ’characterization of the payment’ in the payment orders
issued for the account of the loan

e trans_?num: number of transactions dealt with the account of the loan (in different groups)

e trans_?amount_mean: mean of ’amount of money’ in the transactions dealt with the account
of the loan (in different groups)

* trans_?amount_div_balance: mean of amount of money’/’balance after transaction’ in the
transactions dealt with the account of the loan (in different groups)

e trans_related_account_num: unique number of ’account of the partner’ in the transactions
dealt with the account of the loan

* trans_related_account_num: unique number of "bank of the partner’ in the transactions dealt
with the account of the loan

¢ dist_inhabitants_num: no. of inhabitants in the location of the branch of the account of the
loan

* dist_muni_#1#2: no. of municipalities with inhabitants #1-#2 in the location of the branch of
the account of the loan

e dist_cities_num: no. of cities in the location of the branch of the account of the loan

e dist_ratio_urban_inhabitants: ratio of urban inhabitants in the location of the branch of the
account of the loan

* dist_avg_salary: average salary in the location of the branch of the account of the loan

* dist_unemployment95: unemployment rate *95 in the location of the branch of
the account of the loan

12 Data_VestaFraud

¢ dist_unemployment96: unemployment rate 96 in the location of the branch of the account of
the loan

o dist_entrepreneurs_num_per1000: no. of entrepreneurs per 1000 inhabitants in the location
of the branch of the account of the loan

e dist_crimes95_num: no. of committed crimes ’95 in the location of the branch of the account

of the loan
e dist_crimes96_num: no. of committed crimes ’96 in the location of the branch of the account
of the loan
Data_Pcp Use 'PCP’ Data (i.e., 'IMF’s Primary Commodity Prices’) and create
Date-Series Table
Description

Use 'PCP’ Data (i.e., 'IMF’s Primary Commodity Prices’) and create Date-Series Table

Usage
Data_Pcp(dirPath, makeReal = FALSE)

Arguments
dirPath path to the downloaded data data. It must also contain a file with the US CPL
makeReal uses the first column (which must be US-CPI) and converts nominal variables to
real
Value

a list with data, descriptions, etc.

Data_VestaFraud Use ’Vesta’ Data (i.e., 'IEEE-CIS Fraud Detection’) and create
Fraud-Series Table

Description

Use *Vesta’ Data (i.e., 'IEEE-CIS Fraud Detection’) and create Fraud-Series Table

Usage

Data_VestaFraud(
dirPath,
training = TRUE,
t_dumCols = NULL,
i_dumCols = NULL,
cat_min_unique_skip = 6

Data_Wdi 13

Arguments
dirPath path to the downloaded data directory.
training If FALSE, it loads test data
t_dumCols a list with name and values of (categorical) columns in "transaction’ file to be
converted to dummy variables. If training is FALSE and this is NULL, a warning
is raised.
i_dumCols similar to t_dumCols but for ’identity’ file.

cat_min_unique_skip
If t_dumCols or i_dumCols is NULL, for a categorical variable, if number of
unique values is equal or larger than this value, it is omitted.

Value
a list:
* data: a data.frame with the data
e t_dumCols: a list with name and values in ’transaction’ data, used for creating the dummy
variable
e i_dumCols: a list with name and values in ’identity’ data, used for creating the dummy
variable
Data_Wdi Aggregate WDI Data and create Country-Series Table
Description

Aggregate WDI Data and create Country-Series Table

Usage

Data_Wdi(
dirPath,
minYear = 1960,
maxYear = 2020,
aggFunction = function(data, code, name, unit, definition, aggMethod) {
isPerc <-
unit == "%" || grepl(".ZG", code)
if (isPerc) {
NA
3

else {
LongrunGrowth(data, 30, 5, FALSE, TRUE, isPerc)

b

14 Data_WdiSearchFor

keepFunction = function(X) {
var(X, na.rm = TRUE) > 1e-12 && sum((is.na(X)) ==

FALSE) >= 50
})
)
Arguments

dirPath (character) path to the data directory in CSV format. It must have "WDICountry-
Series.csv’, "WDIData.csv’, "WDICountry.csv’, "WDISeries.csv’. Download it
from the WDI site.

minYear (integer) a year where aggregation starts

maxYear (integer) a year where aggregation ends.

aggFunction (function) aggregation function, such as: function(data,code,name,unit,defintion,aggMethod)mean(data,

na.rm = TRUE); where ’data’ is the data-points from minYear to maxYear, ’unit’
is the unit of measurement, ’definition’ is the long definition of the series, ’ag-
gMethod’ is the method of aggregation.

keepFunction (function) a function to determine how to keep or omit a series (i.e., column).
default function skips growth rates, checks the variance and the number of non-
NA data-points.

additional arguments

Value

data, countries information (rows in data), and series information (columns in data)

Data_WdiSearchFor Search For Series in WDI Data

Description

it searches in code, (name and description) of the series.

Usage
Data_WdiSearchFor(
series,
keywords,
searchName = TRUE,

searchDesc = FALSE,
topickeywords = NULL,
findOne = FALSE,

DcEstim 15

Arguments
series The series member of an output from Data_Wdi function.
keywords (character array) strings to search for.
searchName if FALSE, it does not search in the name
searchDesc if FALSE, it does not search in the description

topickeywords If given, topic of a matched case must contain this string, too.
findOne Raises error if TRUE and more than 1 series is found. default is FALSE.

additional arguments

Value

a list with series information or if findOne is TRUE a series information.

Examples

#data <- Data_Wdi() # this is time-consuming and requires WDI dataset files
#res <- Data_WdiSearchFor(data$series, c("GDP per capita”),

TRUE, topickeywords = "national account”)
DcEstim Estimates an Discrete Choice Model
Description

Estimates an Discrete Choice Model

Usage

DcEstim(
Y,
X,
w = NULL,
distType = "logit"”,
newX = NULL,
pcaOptionsX = NULL,
costMatrices = NULL,
simFixSize = 200L,
simTrainRatio = 0.5,
simTrainFixSize = 0oL,
simSeed = 0L,
weightedEval = FALSE,
printMsg = FALSE

16 DcSearch
Arguments
y (numeric matrix) Data with dependent variable in the column. Given the number
of choices ’n’, it must contain 0,1,...,n-1 and ’sum(y==1)>0" for i=0,...,n-1.
X (numeric matrix) Exogenous data with variables in the columns.
W (numeric vector) Weights of the observations in y. Null means equal weights.
distType (string) Distribution assumption. It can be logit or probit.
newX (numeric matrix) If not null, probabilities are projected for each row of this
matrix.
pcaOptionsX (list) A list of options in order to use principal components of the x, instead of
the actual values. set null to disable. Use GetPcaOptions() for initialization.
costMatrices (list of matrices) Each cost table determines how you score the calculated prob-
abilities.
simFixSize (int) Number of pseudo out-of-sample simulations. Use zero to disable the sim-
ulation. (see GetMeasureOptions()).
simTrainRatio (double) Size of the training sample as a ratio of the number of the observations.
It is effective only if simTrainFixSize is zero.
simTrainFixSize
(int) A fixed size for the training sample. If zero, simTrainRatio is used.
simSeed (int) A seed for the pseudo out-of-sample simulation.
weightedEval (bool) If true, weights will be used in evaluations.
printMsg (bool) Set false to disable printing the details.
Value
A list:
DcSearch Discrete Choice Search
Description

Discrete Choice Search

Usage

DcSearch(

Y,

X,

w = NULL,
xSizes = NULL
xPartitions
costMatrices
searchlLogit

’

NULL,
NULL,
TRUE,

DcSearch

searchProbit
optimOptions

17

= FALSE,
= NULL,

measureOptions = NULL,
modelCheckItems = NULL,

searchltems =
searchOptions

Arguments

xSizes

xPartitions

costMatrices

searchlLogit
searchProbit

optimOptions

measureOptions

modelCheckItems

searchItems

searchOptions

Value

A list

NULL,
= NULL

(numeric vector) endogenous data with variables in the columns.
(numeric matrix) exogenous data with variables in the columns.
(numeric vector) weights of the observations in y. null means equal weights.

(nullable int vector) Number of exogenous variables in the regressions. E.g.,
¢(1,2) means the model set contains all the regressions with 1 and 2 exogenous
variables. If null, c(1) is used.

(nullable list of int vector) a partition over the indexes of the exogenous vari-
ables. No regression is estimated with two variables in the same group. If null,
each variable is placed in its own group and the size of the model set is maxi-
mized.

(list ofnumeric matrix) each cost matrix determines how to score the calculated
probabilities. Given the number of choices 'n’, a cost matrix is a 'm X n+1’
matrix. The first column determines the thresholds. Cells in the j-th column
determines the costs corresponding to the (j-1)-th choice in y. It can be null if it
is not selected in measureOptions.

(bool) if TRUE, logit regressions are added to the model set.
(bool) if TRUE, probit regressions are added to the model set.

(list) Newton optimization options. see [GetNewtonOptions()]. Use null for
default values.

(nullable list) see [GetMeasureOptions()].

(nullable list) see [GetModelCheckItems()].
(nullable list) see [GetSearchItems()].

(nullable list) see [GetSearchOptions()].

18 F CrossSection

DcSearch_s Step-wise Discrete Choice Search

Description

A helper class to deal with large model sets. It selects a subset of variables from smaller models
and moves to the bigger ones.

Usage

DcSearch_s(
X,
xSizes = list(c(1, 2), c(3, 4), c(5), c(6:10)),
counts = c(NA, 40, 30, 20),
savePre = NULL,

)
Arguments
X exogenous data
xSizes a list of model dimension to be estimated in each step.
counts a list of suggested number of variables to be used in each step. NA means all
variables. Variables are selected based on best estimations (select an appropriate
value for searchItems$bestK). All variables in the best models (all measures
and targets) are selected until corresponding suggested number is reached.
savePre if not NULL, it saves and tries to load the progress of search step in a file (name=paste@(savePre, i)
where i is the index of the step).
other arguments to pass to DcSearch() function such as endogenous data. Note
that xSizes is treated differently.
Value

A combined LdtSearch object

F_CrossSection Creates a Cross-Section Frequency

Description

This frequency is generally for indexed (or, non-time-series) data. It is an integer that represents the
position of the observation.

F_Daily

Usage

F_CrossSection(position)

Arguments

position Position of the observation

Details

e Value String: "#" (number is position)

* Class String: "cs”

Value

An object of class ’1dtf’

19

F_Daily Creates a Daily Frequency

Description

Frequency for a series that happens every day

Usage

F_Daily(year, month, day)

Arguments
year Year of the observation
month Month of the observation
day Day of the observation.
Details

* Value String: "YYYYMMDD" (similar to Weekly)
¢ Class String: "d"

Value

An object of class ’1dtf’

20 F_Hourly

F_DailyInWeek Creates an Daily-In-Week Frequency

Description

Frequency for a series that happens every in the days of a week

Usage

F_DailyInWeek(year, month, day, weekStart, weekEnd, forward)

Arguments
year Year of the observation
month Month of the observation
day First day of the observation
weekStart First day of the week. It can be sun, mon, tue, wed, thu, fri, and sat
weekEnd Last day of the week. See weekStart. Together, they define the week
forward If current date in not in the week, if true, it moves forward to the first day of the
week. Otherwise, it moves backward to the last day of the week.
Details

e Value String: "YYYYMMDD" (similar to Weekly)

* Class String: "i:...-..." (the first ... is weekStart and the second ... is weekEnd; e.g.,
i:mon-fri means a week that is from Monday to Friday)

Value

An object of class ’1dtf’

F_Hourly Creates an "Hourly’ Frequency

Description

Frequency for a series that happens every hour

Usage

F_Hourly(day, hour)

F_ListDate

Arguments
day A ’Day-based’ frequency such as Daily or Daily-In-Week
hour Index of hour in the day (1 to 24)

Details

e Value String: "YYYYMMDD: #" (the number is hour)
* Class String: ho| ... (the ... is the *Class String’ of day)

Value

An object of class ’1dtf’

F_ListDate Creates an List-Date Frequency

Description

Frequency for a series that is labeled by dates

Usage

F_ListDate(items, value)

Arguments
items Items of the list in string format: YYYYMMDD
value Current value in string format: YYYYMMDD
Details

¢ Value String: "YYYYMMDD" (i.e., item)

* Class String: Ld or Ld: . .. (in which ... is the semi-colon separated items)

Value

An object of class ’1dtf’

22

F_Minute_ly

F_ListString Creates an List-String Frequency

Description

Frequency for a series that is labeled by string

Usage

F_ListString(items, value)

Arguments
items Items of the list
value Current item
Details
e Value String: "..." (in which ... is the value)
* Class String: Ls or Ls: ... (in which ... is the semi-colon separated items)
Value

An object of class ’1dtf’

F_Minute_ly Creates an "Minute-ly’ Frequency

Description

Frequency for a series that happens every minute

Usage
F_Minute_ly(day, minute)

Arguments
day A ’Day-based’ frequency such as daily or daily-in-week
minute Index of Minute in the day (1 to 1440)

Details

* Value String: "YYYYMMDD: #" (the number is minute)
* Class String: mi| ... (the ... is the *Class String’ of day)

F_Monthly 23

Value

An object of class ’1dtf’

F_Monthly Creates a Monthly Frequency

Description

Frequency for a series that happens every month

Usage

F_Monthly(year, month)

Arguments
year Year of the observation
month Month of the observation
Details

e Value String: "#m#" (first # is the year, second # is month (1 to 12); e.g., 2010m8 or
2010m12. Note that 2000mO0 or 2000m13 are invalid.

¢ Class String: "m"

Value

An object of class ’1dtf’

F_MultiDaily Creates an Multi-Daily Frequency

Description

Frequency for a series that happens every k days

Usage

F_MultiDaily(year, month, day, k)

Arguments
year Year of the observation
month Month of the observation
day First day of the observation

k Number of the days

24 F_MaultiWeekly

Details

* Value String: "YYYYMMDD" (similar to Weekly)

* Class String: "d#" (the number is k)

Value

An object of class ’ldtf’

F_MultiWeekly Creates a Multi-Weekly Frequency

Description

Frequency for a series that happens every 'k’ weeks

Usage

F_MultiWeekly(year, month, day, k)

Arguments
year Year of the observation
month Month of the observation
day First day of the observation. It points to the first day of the week
k Number of weeks
Details

¢ Value String: "YYYYMMDD" (similar to Weekly)

* Class String: "w#" (the number is k; e.g., w3 means every 3 weeks)

Value

An object of class ’1dtf’

F_MultiYearly 25

F_MultiYearly Creates aMulti-Yearly Frequency

Description

Frequency for a series that happens every z years

Usage
F_MultiYearly(year, z)

Arguments
year Year of the observation
z Number of years
Details

* Value String: "#" (similar to Yearly)
* Class String: "z#" (integer represents the z; e.g., z3)

Value

An object of class ’ldtf’

F_Quarterly Creates a Quarterly Frequency

Description

Frequency for a series that happens every quarter

Usage

F_Quarterly(year, quarter)

Arguments

year Year of the observation

quarter Quarter of the observation (1 to 4)
Details

* Value String: "#qg#" (first # is year, second # is quarter; e.g., 2010q3 or 2010g4. Note that
2000q0 or 2000qg5 are invalid.

* Class String: "q"

26

Value

An object of class ’ldtf’

F_Weekly

F_Second_ly Creates an ’Second-ly’ Frequency

Description

Frequency for a series that happens every second

Usage

F_Second_ly(day, second)

Arguments
day A ’Day-based’ frequency such as daily or daily-in-week
second Index of second in the day (1 to 86400)

Details

* Value String: "YYYYMMDD: #" (the number is second)
* Class String: se| ... (the ... is the *Class String’ of day)

Value

An object of class ’1dtf’

F_Weekly Creates a Weekly Frequency

Description

Frequency for a series that happens every week

Usage

F_Weekly(year, month, day)

Arguments
year Year of the observation
month Month of the observation

day Day of the observation. It points to the first day of the week

F_XTimesADay 27

Details

¢ Value String: "YYYYMMDD" (YYYY is the year, MM is month and DD is day)

¢ Class String: "w"

Value

An object of class ’ldtf’

F_XTimesADay Creates an ’X-Times-A-Day’ Frequency

Description

Frequency for a series that happens x times in a day

Usage

F_XTimesADay(day, x, position)

Arguments
day A ’Day-based’ frequency such as daily or daily-in-week
X Number of observations in a day
position Current position

Details

¢ Value String: "#" (the number is hour)

e Class String: "da#]|..." (the number is x and ... is the *Class String’ of day))

Value

An object of class ’1dtf’

28 F XTimesZ Year

F_XTimesAYear Creates an X-Times-A-Year Frequency

Description

Frequency for a series that happens x times every year

Usage

F_XTimesAYear(year, x, position)

Arguments
year Year of the observation
X Number of observation in each year
position Position of the current observation
Details

* Value String: "#:#" (first # is year and second # is position;e.g.,2010:8/12 or 2010:10/10.
Note that 2000:0/2 or 2000:13/12 are invalid.

e Class String: "y#" (the number is x)

Value

An object of class ’1dtf’

F_XTimesZYear Creates an X-Times-Z-Years Frequency

Description

Frequency for a series that happens x times each z years

Usage

F_XTimesZYear(year, x, z, position)

Arguments
year Year of the observation
X Number of partitons in each z years
z Number of years

position Position of the current observation

F_Yearly

Details

* Value String: "#:#" (Similar to X-Times-A-Year)

* Class String: "x#z#" (first # is x, second # is z; e.g., x23z4 means 23 times every 4 years)

Value

An object of class ’1dtf’

29

F_Yearly Creates a Yearly Frequency

Description

Frequency for a series that happens every year

Usage

F_Yearly(year)

Arguments

year Year of the observation

Details

¢ Value String: "#" (number is year)

 Class String: "y"

Value

An object of class ’ldtf’

GetAuc Gets the Area Under the receiver Operating Characteristic (ROC)
Curve

Description

Gets the Area Under the receiver Operating Characteristic (ROC) Curve

Usage

GetAuc(y, scores, weights = NULL)

30 GetCombination4Moments

Arguments
y (numeric vector) actual values.
scores (numeric matrix) a matrix with scores in the columns.

weights (numeric vector) weights of the observations

Value

value of the AUC

Examples

y = ¢c(0,1,0,1,0,1,0,1)

scores = matrix(c(0.4, 0.6, 0.45,
0.6, 0.4, 0.5

res = GetAuc(y,scores,NULL)

GetCombination4Moments
Combines Two Distributions Defined by their First 4 Moments

Description

Combines Two Distributions Defined by their First 4 Moments

Usage

GetCombination4Moments(mix1, mix2)

Arguments
mix1 (list) First distribution which is defined by a list with mean, variance, skewness,
kurtosis, sumWeights, count
mix2 (list) Second distribution (similar to mix1).
Value

(list) A list similar to mix1

Examples

#see its \code{test_that} function

GetDistance 31

GetDistance Gets Distances Between Variables

Description

Gets Distances Between Variables

Usage
GetDistance(
data,
distance = "correlation”,
correlation = "pearson”,
checkNan = TRUE
)
Arguments
data (numeric matrix) Data with variables in the columns.
distance (string) Determines how distances are calculated. It can be correlation, absCorrelation,
euclidean, manhattan, maximum.
correlation (string) If distance is correlation, it determines the type of the correlation. It
can be pearson, spearman.
checkNan (bool) If false, NANs are not omitted.
Value

A symmetric matrix (lower triangle as a vector).

getDummy Title

Description

Title

Usage

nn

getDummy (table, colName, pre = , min_unique_skip = 6, uniques = NULL)

32 GetEstim

Arguments
table data
colName categorical column
pre a string to put before the name of the variables

min_unique_skip
if number of unique values is equal or larger, it returns NULL

uniques if not NULL, it skips finding unique values and uses the given list. Also, if
colName column is missing, it creates zero variables for the given items

Value

data (list of dummy variables) and uniques (unique values)

GetEstim Get Estimation from Search Result

Description

Get Estimation from Search Result

Usage

GetEstim(searchRes, endoIndices, exolndices, y, x, printMsg, ...)
Arguments

searchRes an object of class 1dtsearch

endoIndices endogenous indices

exoIndices exogenous indices

y dependent variables data

X exogenous variables data

printMsg argument to be passed to the estimation methods

additional arguments

Value

estimation result

GetGldFromMoments 33

GetGldFromMoments Gets the GLD-FKML Parameters from the moments

Description

Calculates the parameters of the generalized lambda distribution (FKML), given the first four mo-
ments of the distribution.

Usage

GetGldFromMoments(
mean = 0,
variance = 1,
skewness = 0,
excessKurtosis = 0,
type = 0L,
start = NULL,
nelderMeadOptions = NULL,
printMsg = FALSE

)

Arguments
mean (double) mean of the distribution.
variance (double) variance of the distribution.
skewness (double) skewness of the distribution.

excessKurtosis (double) excess kurtosis of the distribution.

type (int) The type of the distribution.
start (numeric vector, length=2) starting value for L3 and L4. Use null for ¢(0,0).
nelderMeadOptions
(list) The optimization parameters. Use null for default.
printMsg (bool) If TRUE, details are printed.
Details

The type of the distribution is determined by one or two restrictions:

* type 0: general

* type 1: symmetric "type 0’

e type 2: uni-modal continuous tail: L3<1 & L4<1

* type 3: symmetric 'type 2’ L3==L4

* type 4: uni-modal continuous tail finite slope L3<=0.5 & L4<=5
* type 5: symmetric "type 4’ L3==L4

* type 6: uni-modal truncated density curves: L3>=2 & L4>=2 (includes uniform distribution)

34 GetLmbtgsOptions

* type 7: symmetric 'type 6’ L3==L4

* type 8: S shaped L3>2 & 1<L4<2 or 1<L.3<2 & L4>2
* type 9: U shaped 1<L.3<=2 and 1<L4<=2

* type 10: symmetric "type 9’ L4==1L4

* type 11: monotone L3>1 & L4<=1

Value

a vector with the parameters of the GLD distribution.

Examples

res = GetGldFromMoments(0,1,0,0,0,c(0,0))

GetLmbfgsOptions Options for LMBFGS Optimization

Description

Options for LMBFGS Optimization

Usage

GetLmbfgsOptions(
maxIterations = 100L,
factor = 1e+07,
projectedGradientTol = @,
maxCorrections = 5L

Arguments

maxIterations (int) A positive integer for maximum number of iterations.

factor (double) A condition for stopping the iterations. The iteration will stop when
(fAk - f2k+1)/maxIf klIf2k+11,1 < factor*epsmch where epsmch is the machine
precision, which is automatically generated by the code. Use e.g., 1lel2 for
low accuracy, 1e7 (default) for moderate accuracy and lel for extremely high
accuracy. default is 1e7
projectedGradientTol
(double) The iteration will stop when max{ |projg_i | i=1, ..., n} <projectedGradientTol
where pg_1i is the ith component of the projected gradient. default is zero.

maxCorrections (int) Maximum number of variable metric corrections allowed in the limited
memory Matrix. default is 5.

Value

A list with the given options.

GetMeasureFromWeight

35

GetMeasureFromWeight Converts a Measure to Weight

Description

Converts a Measure to Weight

Usage

GetMeasureFromWeight(value, measureName)

Arguments
value (double) the measure
measureName (string) measure name
Value

the measure

Examples

weight <- GetWeightFromMeasure(-3.4, "sic")
measure <- GetMeasureFromWeight(weight, "sic")

GetMeasureOptions Options for ’Measuring Performance’

Description

Options for "Measuring Performance’

Usage

GetMeasureOptions(
typesIn = NULL,
typesOut = NULL,
simFixSize = 10L,
trainRatio = 0.75,
trainFixSize = oL,
seed = 0OL,
horizons = NULL,
weightedEval = FALSE

36 GetModelCheckltems

Arguments

typesIn (nullable string vector) Evaluations when model is estimated using all available
data. It can be aic, sic, costMatrixIn, aucIn. Null means no measure.

typesOut (nullable string vector) Evaluations in an pseudo out-of-sample simulation. It
canbe sign, direction, rmse, scaledRmse, mae, scaledMae, crps, costMatrixOut,
aucOut. Null means no measure.

simFixSize (int) Number of pseudo out-of-sample simulations. Use zero to disable the sim-
ulation.

trainRatio (double) Number of data-points, as a ratio of the available size, in the training

sample in the pseudo out-of-sample simulation.

trainFixSize (int) Number of data-points in the training sample in the pseudo out-of-sample
simulation. If zero, trainRatio will be used.

seed (int) A seed for random number generator. Use zero for a random value.

horizons (nullable integer vector) prediction horizons to be used in pseudo out-of-sample
simulations, if model supports time-series prediction. If null, c(1) is used.

weightedEval (bool) If true, weights are used in evaluationg discrete-choice models

Value

A list with the given options.

GetModelCheckItems Options for "Model Check Items’

Description

Options for "Model Check Items’

Usage

GetModelCheckItems(
estimation = TRUE,
maxConditionNumber = 1.7e+308,
minObsCount = 0L,
minDof = OL,
minOutSim = oL,
minR2 = -1.7e+308,
maxAic = 1.7e+308,
maxSic = 1.7e+308,
prediction = FALSE,
predictionBoundMultiplier = 4

GetNelderMeadOptions 37

Arguments

estimation (bool) If true, model is estimated with all data. If false, you might get a ’best
model’ that cannot be estimated.

maxConditionNumber
(double) Maximum value for the condition number (if implemented in the search).

minObsCount (int) Minimum value for the number of observations. Use 0 to disable.

minDof (int) Minimum value for the degrees of freedom (equation-wise). Use O to dis-
able.

minOutSim (int) Minimum value for the number of valid out-of-sample simulations (if im-
plemented in the search).

minR2 (double) Minimum value for R2 (if implemented in the search).

maxAic (double) Maximum value for AIC (if implemented in the search).

maxSic (double) Maximum value for SIC (if implemented in the search).

prediction (bool) If true, model data is predicted given all data. If false, you might get a

"best model’ that cannot be used in prediction.

predictionBoundMultiplier
(double) If positive, a bound is created by multiplying this value to the average
growth rate. A model is ignored, if its prediction lies outside of this bound.

Value

A list with the given options.

GetNelderMeadOptions Options for Nelder-Mead Optimization

Description

Options for Nelder-Mead Optimization

Usage

GetNelderMeadOptions(
maxIterations = 100L,
epsilon = 1e-08,

alpha = 1,
beta = 0.5,
gamma = 2,
scale = 1

38

Arguments

maxIterations
epsilon

alpha

beta

gamma

scale

Value

GetNewtonOptions

(int) Maximum number of iterations.
(double) A small value to test convergence.
(double) the reflection coefficient.

(double) the contraction coefficient.
(double) the expansion coefficient.

(double) A scale in initializing the simplex.

A list with the given options.

GetNewtonOptions

Options for Newton Optimization

Description

Options for Newton Optimization

Usage
GetNewtonOptions(
maxIterations = 100L,
functionTol = 1e-04,
gradientTol = 0,
uselLineSearch = TRUE
)
Arguments
maxIterations (int) Maximum number of iterations.
functionTol (double) A small value to test convergence of the objective function.
gradientTol (double) A small value to test convergence of the gradient.
useLineSearch (bool) If true, it uses line search.
Value

A list with the given options.

GetPca 39

GetPca Principle Component Analysis

Description

Principle Component Analysis

Usage

GetPca(x, center = TRUE, scale = TRUE, newX = NULL)

Arguments
X (numeric matrix) data with variables in columns.
center (bool) if TRUE, it demeans the variables.
scale (bool) if TRUE, it scales the variables to unit variance.
newX (numeric matrix) data to be used in projection. Its structure must be similar to
the x.
Value
(list) results
removed@Var (integer vector) Zero-based indices of removed columns with zero variances.
directions (numeric matrix) Directions
stds (integer vector) Standard deviation of the principle components
stds2Ratio (integer vector) stds"2/sum(stds”2)
projections (numeric matrix) Projections if newX is given.
GetPcaOptions Options for PCA

Description

Options for PCA

Usage

GetPcaOptions(ignoreFirst = 1L, exactCount = OL, cutoffRate = 0.8, max = 1000L)

40

Arguments

ignoreFirst

exactCount

cutoffRate

max

Value

GetSearchltems

(int) Excludes variables at the beginning of data matrices (such as intercept)
from PCA.

(int) Determines the number of components to be used. If zero, number of
components are determined by the cutoffRate.

(double between 0 and 1) Determines the cutoff rate for cumulative variance
ratio in order to determine the number of PCA components. It is not used if
exactCount is positive.

(int) Maximum number of components when cutoffRate is used.

A list with the given options.

GetSearchItems

Options for ’Search Items’

Description

Creates a list with predefined items which determines the information to be saved and retrieved.

Usage

GetSearchItems(
model = TRUE,
typel = FALSE
type2 = FALSE
bestK = 1L,
all = FALSE,

’

’

inclusion = FALSE,

cdfs = NULL,

extremeMultiplier = 0,
mixture4 = FALSE

Arguments

model

typel

type2

bestK
all

(bool) If true, information about the models is saved.

(bool) If true and implemented, extra information is saved. This can be the
coefficients in the SUR search or predictions in VARMA search.

(bool) If true and implemented, extra information is saved. This is similar to
typel. It is reserved for future updates.

(int) Number of best items to be saved in model, type1, or type2 information.

(bool) If true, all available information is saved.

GetSearchOptions 41

inclusion (bool) If true, inclusion weights are saved in model.

cdfs (nullable numeric vector) Weighted average of the CDFs at each given point is
calculated (for type1 and type2).

extremeMultiplier
(double) Determined the multiplier in the extreme bound analysis (for typeT
and type2).

mixture4 (bool) If true, the first 4 moments of the average distributions are calculated in

typel and type2.

Value

A list with the given options.

GetSearchOptions Options for ’Search Options’

Description

Creates a list with predefined Search options.

Usage

GetSearchOptions(parallel = FALSE, reportInterval = 2L, printMsg = FALSE)

Arguments

parallel (bool) If true, it uses a parallel search. It generally changes the speed and mem-
ory usage.

reportInterval (int) Time interval (in seconds) for reporting the progress (if the change is sig-
nificant). Set zero to disable.

printMsg (bool) Set false to disable printing the details.

Value

A list with the given options.

42

GldDensityQuantile

GetWeightFromMeasure Converts a Measure to Weight

Description

Converts a Measure to Weight

Usage

GetWeightFromMeasure(value, measureName)

Arguments

value (double) the measure

measureName (string) measure name

Value

the weight

Examples

weight <- GetWeightFromMeasure(-3.4, "sic")

GldDensityQuantile Gets GLD Density Quantile

Description

Gets GLD Density Quantile

Usage

GldDensityQuantile(data, L1, L2, L3, L4)

Arguments
data (numeric vector) data
L1 (double) First parameter
L2 (double) Second parameter
L3 (double) Third parameter
L4 (double) Fourth parameter
Value

(numeric vector) result

GIdQuantile

GldQuantile Gets GLD Quantile

Description

Gets GLD Quantile

Usage

GldQuantile(data, L1, L2, L3, L4)

Arguments
data (numeric vector) data
L1 (double) First parameter
L2 (double) Second parameter
L3 (double) Third parameter
L4 (double) Fourth parameter
Value

(numeric vector) result

IsEmailvalid Determines if an email address is valid (this is not exact. Just use it to
avoid mistakes)

Description

Determines if an email address is valid (this is not exact. Just use it to avoid mistakes)

Usage

IsEmailValid(x)

Arguments

X email

Value

TRUE if email is valid, FALSE otherwise.

44 LongrunGrowth
IsGuidvalid Determines if a GUID is valid
Description
Determines if a GUID is valid
Usage
IsGuidValid(x)
Arguments
X GUID
Value
TRUE if GUID is valid, FALSE otherwise.
LongrunGrowth Calculate Long-run Growth
Description
Calculate Long-run Growth
Usage
LongrunGrowth (
data,
trimStart = 0,
trimeEnd = 0,
cont = FALSE,
skipZero = TRUE,
isPercentage = FALSE,
)
Arguments
data (integer vector) data
trimStart (integer) if the number of leading NAs is larger than this number, it returns NA.
Otherwise, it finds the first number and continue the calculations.
trimEnd (integer) if the number of trailing NAs is larger than this number, it returns NA.

Otherwise, it finds the first number and continue the calculations.

Parse F 45

cont (logical) if TRUE it will use the continuous formula.
skipZero (logical) if TRUE leading and trailing zeros are skipped.

isPercentage (logical) if the unit of measurement in data is percentage (e.g., growth rate)
use TRUE. Long-run growth rate is calculated by arithmetic mean for continuous
case, and geometric mean otherwise. If missing data exists, it returns NA.

additional arguments

Value

the growth rate (percentage)

Examples

y <- c(NA, @, c(60, 70, 80, 90), @, NA, NA)
g <- LongrunGrowth(y, 2, 3, skipZero = TRUE, isPercentage = TRUE, cont = TRUE)

Parse_F Converts back a String to 1dtf Object

Description

The format is explained in F_? functions.

Usage

Parse_F(str, classStr)

Arguments
str value of the frequency. It must be an 1dtf object returned from F_? functions.
classStr class of the frequency

Value

An object of class ’ldtf’

46

PlotCoets

PlotCoefs

Plots Estimated Coefficients

Description

Plots Estimated Coefficients

Usage
PlotCoefs(

points = NULL,
bounds = NULL,
intervals = NULL,

distributions

= NULL,

newPlot = TRUE,

xlim = NULL,
ylim = NULL,

boundFun = function(b, type) {

if (typ

0.9 x b
3
else {
1.1 %
1

1
legendsTitle

== "xmin" || type == "ymin") {

b

= c("Point"”, "Bound”, "Interval"”, "Density"),

legendTitleCex = 1.1,

legendSize =

Arguments

points

bounds

intervals

distributions

newPlot

5,

(list of list) each element is a point estimation to be drawn as a shape; defined
by l.value, 2.y (default=0), 3.shape (default="circle"), ...

(list of list) each element is a bound estimation (e.g. extreme bound analysis)
to be drawn as a rectangle; defined by 1.xmin, 2.xmax, 3.ymin (default=-0.1),
4.ymax, (default=+0.1), 5.alpha, ...

(list of list) each element is an interval estimation (similar to bounds but with a
value) to be drawn as an interval; defined by 1.value, 2.xmin, 3.xmax, ...

(list of list) each element is a distribution estimation (eg., a known distribution)
to be drawn as its density function; defined by 1.type, and for type=normal,
2.mean, 3.var, 4.sdMultiplier, for type=GLD, 2.p1,..., 5.p4, 6.quantiles, for
type==cdfs 2.xs, 3.cdfs, 4.smoothFun, ...

(logical) if TRUE, a new plot is initialized.

PlotCoets 47

x1im (numeric vector) two limits for the x axis. If NULL, it is auto generated.
ylim (numeric vector) two limits for the y axis. If NULL, it is auto generated.
boundFun (function) a function to control the x1im and ylim in the plot. Its arguments

are the computed bounds.

legendsTitle (list) a list of titles for legends.

legendTitleCex (numeric) sets title.cex in legends.

legendSize (numeric) size of the legend (width or height) in lines of text (it is passed to
oma).

additional properties for plot or legend: x1ab, ylab

Value

if plot is FALSE, a ggplot to be printed.

Examples

points <- list()

points$one <- list(value = 1, label = "Point 1")

points$two <- list(value = 2, label = "Point 2", col = "red"”, pch = 22, cex = 4)
PlotCoefs(points = points)

bounds <- 1list()
bounds$one <- list(xmin = -1, xmax = 0.5, label = "Bound 1")
bounds$two <- list(
xmin = @, xmax = 1, ymin = 0.
label = "Bound 2", alpha = 0.

)
PlotCoefs(points = points, bounds = bounds)

2, ymax = 0.3,
2, col = rgh(0, 0, 1.0, alpha = 0.3)

intervals <- list()
intervals$one <- list(value = 2, xmin = @, xmax = 3, label = "Interval 1")
intervals$two <- list(

value = 1.5, xmin = 1, xmax = 2, y = 4,

label = "Interval 2", col = "blue”, lwd = 3, pch = 11, cex = c(1.2, 3, 1.2)
)

PlotCoefs(points = points, bounds = bounds, intervals = intervals)

distributions <- list()
distributions$one <- list(type = "normal”, mean = @, var = 1, label = "Distribution 1")
distributions$two <- list(
type = "gld", p1 =0, p2 = 1.5, p3 = 1.2,
p4 = 1.2, label = "Distribution 2", col = "blue", lwd = 3
)
distributions$three <- list(
type = "cdfs”, xs = seq(-2, 2, 0.1),
cdfs = pnorm(seq(-2, 2, 0.1)), label
col = rgh(1, 0, 0, alpha = 0.5), lwd
)
PlotCoefs(
points = points, bounds = bounds, intervals = intervals,

"Distribution 3",
8

48

distributions = distributions, legendsTitle = NULL, legendSize = 7

)

print.Idtsearch

print.ldtf Prints an 1dtf object

Description

Prints an 1dtf object

Usage
S3 method for class 'ldtf'
print(x, ...)

Arguments

X An 1dtf object

additional arguments

Value

NULL

print.ldtsearch Print an 1dtsearch object

Description

Print an 1dtsearch object

Usage

S3 method for class 'ldtsearch'
print(x, ...)

Arguments
X ldtsearch object
additional arguments
Value

NULL

print.1dtv 49

print.ldtv Prints an 1dtv object

Description

Prints an 1dtv object

Usage

S3 method for class 'ldtv'

print(x, ...)
Arguments

X An 1dtv object

additional arguments

Value

NULL

RemoveNaStrategies Remove NA and Count the Number of Observations in Different Sce-
narios

Description

‘When a matrix has NA, one can omit columns with NA or rows with NA or a combination of these
two. Total number of observations is a function the order. This function tries all combinations
returns the results.

Usage

RemoveNaStrategies(data, countFun = function(nRows, nCols) nRows * nCols)

Arguments
data A matrix with NA
countFun a function to determine how strategies are sorted. Default counts the number of

observations. You might want to give columns a higher level of importance for
example by using nRows*nCols*1.5.

50 Search_s

Value

a list of lists with four elements:

* nRows: number of rows in the matrix

* nCols: number of cols in the matrix

* colFirst: whether to remove columns or rows first
* colRemove: indexes of the columns to be removed

¢ rowRemove: indexes of the rows to be removed

Examples

data <- matrix(c(NA, 2, 3, 4, NA, 5, NA, 6, 7, NA, 9, 10, 11, 12, 13, 14, 15, NA, 16, 17), 4, 5)
RemoveNaStrategies(data)

Search_s Stepwise estimation

Description

Stepwise estimation

Usage

Search_s(
method,
data,
sizes = list(c(1, 2), c(3, 4), c(5), c(6:10)),
counts = c(NA, 40, 30, 20),
savePre,
printMsg = FALSE,

)
Arguments
method sur, dc or varma
data exogenous (for sur and dc) or endogenous (for varma)
sizes detemines the steps
counts determines the size in each step
savePre if not NULL, it saves and tries to load the progress of search step in a file (name=paste@(savePre, i)
where 1i is the index of the step).
printMsg If true, some information about the steps is printed. Note that it is different from

searchers’ printMsg.

Additional arguments

Sequence_F 51

Value

the result

Sequence_F Generates a Sequence for a frequency

Description

Generates a Sequence for a frequency

Usage

Sequence_F(start, length)

Arguments

start first element of the sequence. It must be an 1dtf object returned from F_?

functions.

length Length of the sequence
Value

A list of strings

summary.ldtsearch Summarize an 1dtsearch object

Description

Summarize an 1ldtsearch object

Usage

S3 method for class 'ldtsearch'
summary (
object,
Y,
x = NULL,
addModelBests = TRUE,
addModelAll = FALSE,
addIteml1Bests = FALSE,
printMsg = FALSE,

w = NULL,
newX = NULL,
test = FALSE,

SurEstim

Arguments
object ldtsearch object
y dependent variables data (Data is not saved in object)
X exogenous variables data (Data is not saved in object)
addModelBests if TRUE and model$bests’ exists (see [GetSearchItems()]), it estimates them.
addModelAll if TRUE and ’all’ exists (see [GetSearchItems()1]), it estimates them.
addItemiBests if TRUE and ’item1’ exists (see [GetSearchItems()]), it estimates them.
printMsg if TRUE details are printed.
w weight of observations (if available, e.g., in discrete choice estimation. Data is
not saved in object)
newX new exogenous data (if available, e.g., in varma estimation. Data is not saved in
object)
test If TRUE, it helps you make sure everything is working. Please report errors.
additional arguments
Value

a list with estimated models along with other kind of information. Its structure is similar to the
given ldtsearch object.

SurEstim Estimates an SUR Model
Description
Estimates an SUR Model
Usage
SurEstim(
Y,
X)
addIntercept = TRUE,
searchSigMaxIter = oL,
searchSigMaxProb = 0.1,
restriction = NULL,
newX = NULL,
pcaOptionsY = NULL,
pcalOptionsX = NULL,
simFixSize = 0oL,
simTrainRatio = 0.75,
simTrainFixSize = 0oL,
simSeed = 0L,

simMaxConditionNumber
printMsg = FALSE

1.7e+308,

SurSearch 53

Arguments
y (numeric matrix) Endogenous data with variables in the columns.
X (numeric matrix) Exogenous data with variables in the columns.

addIntercept (bool) If true, intercept is added automatically to x.

searchSigMaxIter
(int) Maximum number of iterations in searching for significant coefficients.
Use 0 to disable the search.

searchSigMaxProb
(double) Maximum value of type I error to be used in searching for significant
coefficients. If p-value is less than this, it is interpreted as significant and re-
moved in the next iteration (if any exists).

restriction (nullable numeric matrix) A km x q matrix in which m=ncols(y), k=ncols(x) and
q is the number of unrestricted coefficients.

newX (nullable numeric matrix) Data of new exogenous variables to be used in the
predictions. Its columns must be the same as x. If null, projection is disabled.

pcaOptionsY (nullable list) A list of options in order to use principal components of the y,
instead of the actual values. Set null to disable. Use [GetPcaOptions()] for
initialization.

pcaOptionsX (nullable list) Similar to pcaOptionsY but for x. see pcaOptionsY.

simFixSize (int) Number of pseudo out-of-sample simulations. Use zero to disable the sim-

ulation. See also GetMeasureOptions()].
simTrainRatio (double) Size of the training sample as a ratio of the number of the observations.
It is effective only if simTrainFixSize is zero.
simTrainFixSize
(int) A fixed size for the training sample. If zero, simTrainRatio is used.
simSeed (int) A seed for the pseudo out-of-sample simulation.

simMaxConditionNumber
(double) Maximum value for the condition number in the simulation.

printMsg (bool) Set true to enable printing details.
Value
A list:
SurSearch SUR Search
Description

SUR Search

54 SurSearch

Usage

SurSearch(
Y,
X,
numTargets = 1L,
xSizes = NULL,
xPartitions = NULL,
numFixXPartitions = QL,
yGroups = NULL,
searchSigMaxIter = oL,
searchSigMaxProb = 0.1,
measureOptions = NULL,
modelCheckItems = NULL,
searchItems = NULL,
searchOptions = NULL

)
Arguments

y (numeric matrix) endogenous data with variables in the columns.

X (numeric matrix) exogenous data with variables in the columns.

numTargets (int) determines the number of variable in the first columns of y for which the
information is saved. It must be positive and cannot be larger than the number
of endogenous variables.

xSizes (nullable integer vector) Number of exogenous variables in the regressions. E.g.,
c(1,2) means the model set contains all the regressions with 1 and 2 exogenous
variables. If null, c(1) is used.

xPartitions (nullable list of integer vector) a partition over the indexes of the exogenous
variables. No regression is estimated with two variables in the same group. If
NULL, each variable is placed in its own group and the size of the model set is
maximized.

numFixXPartitions
(int) number of partitions at the beginning of xPartitions to be included in all
regressions.

yGroups (nullable list of integer vector) different combinations of the indexes of the en-
dogenous variables to be used as endogenous variables in the SUR regressions.

searchSigMaxIter

(int) maximum number of iterations in searching for significant coefficients. Use

0 to disable the search.
searchSigMaxProb

(double) maximum value of type I error to be used in searching for significant
coefficients. If p-value is less than this, it is interpreted as significant.
measureOptions (nullable list) see [GetMeasureOptions()].
modelCheckItems
(nullable list) see [GetModelCheckItems()].
searchItems (nullable list) see [GetSearchItems()].

searchOptions (nullable list) see [GetSearchOptions()].

SurSearch_s

Value

A list

55

SurSearch_s

Step-wise SUR Search

Description

A helper class to deal with large model sets. It selects a subset of variables from smaller models
and moves to the bigger ones.

Usage

SurSearch_s(

X’
xSizes
counts

savePre

Arguments

X
xSizes

counts

savePre

Value

list(c(1, 2), c(3, 4), c(5), c(6:10)),
c(NA, 40, 30, 20),
NULL,

exogenous data
a list of model dimension to be estimated in each step.

a list of suggested number of variables to be used in each step. NA means all
variables. Variables are selected based on best estimations (select an appropriate
value for searchItems$bestK). All variables in the best models (all measures
and targets) are selected until corresponding suggested number is reached.

if not NULL, it saves and tries to load the progress of search step in a file (name=paste@(savePre, i)
where 1 is the index of the step).

other arguments to pass to SurSearch() function such as endogenous data.
Note that xSizes is treated differently.

A combined LdtSearch object

56 to.data.frame

to.data.frame Converts an 1dtv object to a data. frame

Description

There are five types of indices in this function: measures, targets, bests, typel’s items, equations.
Use NULL to use all available information or specify them.

Usage
to.data.frame(
X,
types = c("bestweights”, "allweights”, "inclusion”, "typelbests”, "cdf”,
"extremebounds”, "mixture"),

measures = NULL,

targets = NULL,

rows = NULL,

columns = NULL,
itemIndices = NULL,
colNamFun = function(ns) {

paste(ns[lengths(ns) > @], collapse = ".")
1
rowContent = c("measure”, "target”, "item”, "row”, "column"),
cdfIndex = 0,
)
to.data.frame(
X’
types = c("bestweights”, "allweights”, "inclusion”, "typelbests”, "cdf",

"extremebounds”, "mixture"),
measures = NULL,
targets = NULL,
rows = NULL,
columns = NULL,
itemIndices = NULL,
colNamFun = function(ns) {

paste(ns[lengths(ns) > @], collapse = ".")
};owContent = c("measure”, "target”, "item", "row”, "column"),
cdfIndex = 0,
)
Arguments

X an ldtsearch object

ToClassString_F

types

measures
targets

rows

columns

itemIndices

colNamFun

rowContent

cdfIndex

Value

57

(string vector) one or more that one type of information to be included in the the
data.frame

(integer or character array) measures to be used.
(integer or character array) targets to be used.

(integer or character array) If the requested object is a matrix (or an array), it
determines the rows and cannot be NULL. For typelbests this is the name of
the variables.

(integer or character array) If the requested object is a matrix, it determines the
columns and cannot be NULL. For typelbests this is the name of the fields:
weight, mean, var

(integer array) items such as bests to be used.

(function) a function to determine the column names. The argument is a list of
names, i.e., one of the following items: target, measure, row, column, item.

(string) determines the type of information in the rows of returned data. frame.
Some items are not available for some types. row is generally for variables in
the rows of matrices such as inclusion or mixture. column is generally for
the columns of such matrices. item is for the best models or models in the all
field.

(integer) The index of CDF if type is cdf

additional arguments

a data.frame that contains data.

ToClassString_F

Converts an 1dtf Object to String

Description

The format is explained in F_? functions.

Usage

ToClassString_F(value)

Arguments

value

Value

value of the frequency. It must be an 1dtf object returned from F_? functions.

An object of class ’ldtf’

58 ToString_FO

ToString_F Converts an 1dtf Object to String

Description

The format is explained in F_? functions.

Usage

ToString_F(value)

Arguments

value value of the frequency. It must be an 1dtf object returned from F_? functions.

Value

An object of class ’ldtf’

ToString_F@ Similar to ToString_F and Return Value and Class as String

Description

The format is explained in F_? functions.

Usage

ToString_Fo(value)

Arguments

value value of the frequency. It must be an 1dtf object returned from F_? functions.

Value

An object of class ’1dtf’

Variable

59

Variable Creates a Variable

Description

Creates a Variable

Usage

Variable(data, name, startFrequency, fields)

Arguments
data Data of the variable
name Name of the variable

startFrequency Frequency of the first data-point. It is an 1dtf object. See F_? functions.

fields Named list of any other fields

Value

An object of class 1dtv.

Examples

vl = 1dt::Variable(c(1,2,3,2,3,4,5),"V1", F_Monthly(2022,12),
list(c("key1”,"valuel"), c("key2"”, "value2")))

VariableToString Converts a Variable to String

Description

Converts a Variable to String

Usage

VariableToString(w)
Arguments

w The variable
Value

String representation of the variable in compact form

60 VarmaEstim

VarmaEstim Estimates an VARMA Model

Description

Estimates an VARMA Model

Usage
VarmaEstim(
Y,
x = NULL,

params = NULL,
seasonsCount = 0L,
addIntercept = TRUE,
ImbfgsOptions = NULL,
olsStdMultiplier = 2,
pcaOptionsY = NULL,

pcalptionsX = NULL,
maxHorizon = OL,
newX = NULL,

simFixSize = oL,

simHorizons = NULL,
simUsePreviousEstim = TRUE,
simMaxConditionNumber = 1e+20,
printMsg = FALSE

)
Arguments
y (matrix) endogenous data with variables in the columns.
(matrix) exogenous data with variables in the columns.
params (integer vector, length=6) parameters of the VARMA model (p,d,q,P,D,Q).

seasonsCount (integer) number of observations per unit of time
addIntercept (logical) if TRUE, intercept is added automatically to x.
ImbfgsOptions (list) optimization options. See [GetLmbfgsOptions()].
olsStdMultiplier

(numeric) a multiplier for the standard deviation of OLS, used for restricting the
maximum likelihood estimation.

pcaOptionsY (list) a list of options in order to use principal components of the y, instead of the
actual values. set NULL to disable. Use [GetPcaOptions()] for initialization.

pcaOptionsX (list) similar to pcaOptionsY but for x. see pcaOptionsY.

maxHorizon (integer) maximum prediction horizon. Set zero to disable.

newX (matrix) data of new exogenous variables to be used in the predictions. Its

columns must be the same as x.

VarmaSearch 61

simFixSize (integer) number of pseudo out-of-sample simulations. Use zero to disable the
simulation. see also [GetMeasureOptions()].

simHorizons (integer vector) prediction horizons to be used in pseudo out-of-sample simula-
tions. see also [GetMeasureOptions()].

simUsePreviousEstim

(logical) if TRUE, parameters are initialized in just the first step of the simula-
tion. The initial values of the n-th simulation (with one more observation) is the
estimations in the previous step.

simMaxConditionNumber
(numeric) maximum value for the condition number in the pseudo out-of-sample
simulations.

printMsg (logical) set FALSE to disable printing the details.

Value

A list:

VarmaSearch VARMA Search

Description

VARMA Search

Usage

VarmaSearch(
Y,
x = NULL,
numTargets = 1L,
ySizes = NULL,
yPartitions = NULL,
xGroups = NULL,
maxParams = NULL,
seasonsCount = 0L,
maxHorizon = 0OL,
newX = NULL,
interpolate = TRUE,
adjustlLeadslLags = TRUE,
simUsePreviousEstim = TRUE,
olsStdMultiplier = 2,
ImbfgsOptions = NULL,
measureOptions = NULL,
modelCheckItems = NULL,
searchItems = NULL,
searchOptions = NULL

62 VarmaSearch

Arguments

y (numeric vector) Endogenous data with variables in the columns.

X (nullable numeric matrix) Exogenous data with variables in the columns. It can
be null.

numTargets (int) Number of variables in the first columns of y, regarded as targets. It must
be positive and cannot be larger than the number of endogenous variables.

ySizes (nullable integer vector) Determines the number of endogenous variables (or
equations) in the regressions.

yPartitions (nullable list of int vector) A partition over the indexes of the endogenous vari-
ables. No regression is estimated with two variables in the same group. If NULL,
each variable is placed in its own group.

xGroups (nullable list of int vector) different combinations of the indexes of the exoge-
nous variables to be used as exogenous variables in the SUR regressions.

maxParams (integer vector, length=6) Maximum values for the parameters of the VARMA

model (p,d,q,P,D,Q). If null, c(1,1,1,0,0,0) is used.

seasonsCount (integer) number of observations per unit of time

maxHorizon (integer) maximum value for the prediction horizon if type1 is TRUE in checkItems.
Also, it is used as the maximum prediction horizon in checking the predictions.

newX (matrix) New exogenous data for out-of-sample prediction. It must have the
same number of columns as x.

interpolate (logical) if TRUE, missing observations are interpolated.

adjustlLeadslLags

(logical) if TRUE, leads and lags in the sample are adjusted.
simUsePreviousEstim

(logical) if TRUE, parameters are initialized in just the first step of the simula-

tion. The initial values of the n-th simulation (with one more observation) is the

estimations in the previous step.

olsStdMultiplier

(numeric) a multiplier for the standard deviation of OLS, used for restricting the
maximum likelihood estimation.

ImbfgsOptions (list) Optimization options. see [GetLmbfgsOptions()]. Use null for default
values.

measureOptions (nullable list) see [GetMeasureOptions()].
modelCheckItems
(nullable list) see [GetModelCheckItems()].

searchItems (nullable list) see [GetSearchItems()].

searchOptions (nullable list) see [GetSearchOptions()].

Value

A list

VarmaSearch_s 63

VarmaSearch_s Step-wise VARMA Search

Description

A helper class to deal with large model sets. It selects a subset of variables from smaller models
and moves to the bigger ones.

Usage
VarmaSearch_s(
Y,
ySizes = list(c(1, 2), c(3, 4), c(5), c(6:10)),

counts = c(NA, 40, 30, 20),
savePre = NULL,

)
Arguments
y endogenous data
ySizes a list of model dimension to be estimated in each step.
counts a list of suggested number of variables to be used in each step. NA means all
variables. Variables are selected based on best estimations (select an appropriate
value for searchItems$bestK). All variables in the best models (all measures
and targets) are selected until corresponding suggested number is reached.
savePre if not NULL, it saves and tries to load the progress of search step in a file (name=paste@(savePre, i)
where i is the index of the step).
other arguments to pass to VarmaSearch() function such as endogenous data.
Note that ySizes is treated differently.
Value

A combined LdtSearch object

vig_data Data for Vignettes (and Tests)

Description

A subset of different data sets generally for tests and vignettes. Data is generated from Data_?
functions.

64

Format

A list

Details

¢ wdi. data from WDI data set.

¢ berka. data from Berka data set.

¢ vesta. data from Vesta data set.

* pcp. data from PCP data set.

vig_data

Index

BindVariables, 4

ClusterH, 4
ClusterHGroup, 5
CoefTable, 6
combineSearch, 8
CreateProject, 8

Data_BerkalLoan, 10
Data_Pcp, 12
Data_VestaFraud, 12
Data_Wdi, 13, 15
Data_WdiSearchFor, 14
DcEstim, 15
DcSearch, 16
DcSearch(), 18
DcSearch_s, 18

F_CrossSection, 18
F_Daily, 19
F_DailyInWeek, 20
F_Hourly, 20
F_ListDate, 21
F_ListString, 22
F_Minute_ly, 22
F_Monthly, 23
F_MultiDaily, 23
F_MultiWeekly, 24
F_MultiYearly, 25
F_Quarterly, 25
F_Second_ly, 26
F_Weekly, 26
F_XTimesADay, 27
F_XTimesAYear, 28
F_XTimesZYear, 28
F_Yearly, 29

GetAuc, 29

GetCombination4Moments, 30

GetDistance, 31

getDummy, 31

GetEstim, 32
GetGldFromMoments, 33
GetLmbfgsOptions, 34
GetMeasureFromWeight, 35
GetMeasureOptions, 35
GetMeasureOptions(), 16
GetModelCheckItems, 36
GetNelderMeadOptions, 37
GetNewtonOptions, 38
GetPca, 39
GetPcaOptions, 39
GetPcaOptions(), 16
GetSearchItems, 40
GetSearchOptions, 41
GetWeightFromMeasure, 42
GldDensityQuantile, 42
GldQuantile, 43

IsEmailvalid, 43
IsGuidValid, 44

LongrunGrowth, 44

Parse_F, 45
PlotCoefs, 46
print.1ldtf, 48
print.ldtsearch, 48
print.ldtv, 49

RemoveNaStrategies, 49

Search_s, 50
Sequence_F, 51
summary.ldtsearch, 51
SurEstim, 52
SurSearch, 53
SurSearch(), 55
SurSearch_s, 55

to.data.frame, 56

66

ToClassString_F, 57
ToString_F, 58
ToString_Fo, 58

Variable, 59
VariableToString, 59
VarmaEstim, 60
VarmaSearch, 61
VarmaSearch(), 63
VarmaSearch_s, 63
vig_data, 63

INDEX

	BindVariables
	ClusterH
	ClusterHGroup
	CoefTable
	combineSearch
	CreateProject
	Data_BerkaLoan
	Data_Pcp
	Data_VestaFraud
	Data_Wdi
	Data_WdiSearchFor
	DcEstim
	DcSearch
	DcSearch_s
	F_CrossSection
	F_Daily
	F_DailyInWeek
	F_Hourly
	F_ListDate
	F_ListString
	F_Minute_ly
	F_Monthly
	F_MultiDaily
	F_MultiWeekly
	F_MultiYearly
	F_Quarterly
	F_Second_ly
	F_Weekly
	F_XTimesADay
	F_XTimesAYear
	F_XTimesZYear
	F_Yearly
	GetAuc
	GetCombination4Moments
	GetDistance
	getDummy
	GetEstim
	GetGldFromMoments
	GetLmbfgsOptions
	GetMeasureFromWeight
	GetMeasureOptions
	GetModelCheckItems
	GetNelderMeadOptions
	GetNewtonOptions
	GetPca
	GetPcaOptions
	GetSearchItems
	GetSearchOptions
	GetWeightFromMeasure
	GldDensityQuantile
	GldQuantile
	IsEmailValid
	IsGuidValid
	LongrunGrowth
	Parse_F
	PlotCoefs
	print.ldtf
	print.ldtsearch
	print.ldtv
	RemoveNaStrategies
	Search_s
	Sequence_F
	summary.ldtsearch
	SurEstim
	SurSearch
	SurSearch_s
	to.data.frame
	ToClassString_F
	ToString_F
	ToString_F0
	Variable
	VariableToString
	VarmaEstim
	VarmaSearch
	VarmaSearch_s
	vig_data
	Index

