
Package ‘leastcostpath’
October 13, 2022

Title Modelling Pathways and Movement Potential Within a Landscape

Version 1.8.7

Date 2022-05-22

Maintainer Joseph Lewis <josephlewis1992@gmail.com>

URL Available at: https://CRAN.R-project.org/package=leastcostpath

Description Calculates cost surfaces based on slope to be used when modelling pathways and move-
ment potential within a landscape (Lewis, 2021) <doi:10.1007/s10816-021-09522-w>.

Depends R (>= 3.4.0)

Imports gdistance (>= 1.2-2), raster (>= 2.6-7), rgdal (>= 1.3-3),
rgeos (>= 0.3-28), sp (>= 1.3-1), parallel (>= 3.4-1), pbapply
(>= 1.4-2), methods, stats, Matrix, gstat

License GPL-3

Encoding UTF-8

Suggests knitr, rmarkdown, spdep (>= 1.1-3)

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Joseph Lewis [aut, cre]

Repository CRAN

Date/Publication 2022-06-03 07:50:06 UTC

R topics documented:
add_dem_error . 2
apply_cost . 4
calculate_slope . 6
check_locations . 6
cost_matrix . 7
create_banded_lcps . 8
create_barrier_cs . 9

1

https://CRAN.R-project.org/package=leastcostpath
https://doi.org/10.1007/s10816-021-09522-w

2 add_dem_error

create_CCP_lcps . 11
create_cost_corridor . 12
create_distance_cs . 13
create_feature_cs . 14
create_FETE_lcps . 15
create_lcp . 17
create_lcp_density . 18
create_lcp_network . 19
create_slope_cs . 20
create_stochastic_lcp . 23
create_traversal_cs . 25
create_wide_lcp . 26
crop_cs . 27
force_isotropy . 29
neighbours_32 . 30
neighbours_48 . 30
PDI_validation . 31
validate_lcp . 32
wide_path_matrix . 33

Index 35

add_dem_error Incorporate vertical error into Digital Elevation Model

Description

Incorporates vertical error into the supplied Digital Elevation Model.

Usage

add_dem_error(dem, rmse, size = "auto", vgm_model = "Sph")

Arguments

dem RasterLayer (raster package). Digital Elevation Model

rmse numeric. Vertical Root Mean Square Error of the Digital Elevation Model

size character or numeric. Size of window when applying mean filter to random
error fields. Increasing the size of the window increases the spatial autocorrel-
tion in the random error field. Size of window is automatically calculated via a
variogram when argument is ’auto’ (default). If size of window is user-supplied,
then numeric value must be odd.

vgm_model character. Variogram model type when determining window size. Accepted
values are ’Sph’ (default), ’Exp’, ’Gau’, ’Mat’. See details for more information

add_dem_error 3

Details

Digital Elevation Models (DEMs) are representations of the earth’s surface and are subject to error
(Wechsler, 1999). However the impact of the error on the results of analyses is often not evaluated
(Hunter and Goodchild, 1997; Wechsler, 1999).

The add_dem_error function incorporates vertical error into the supplied Digital Elevation Model by
assuming that the error for each cell follows a gaussian (normal) distribution around the measured
elevation value and the global Root Mean Square Error (RMSE) estimating the local error variance
around this values (Fisher and Tate, 2006). Addition of spatial autocorrelation applied by using a
mean-window filter based on a window size (Wechsler and Kroll, 2006). If size argument is ’auto’
then window size calculated via a variogram (Wechsler and Kroll, 2006).

vgm_model is the model fitted to the observed DEM variogram. This is used to calculate the
distance at which spatial autocorrelation is no longer present (i.e. the range). If the vgm model type
is not able to converge, try another model type (e.g. ’Gau’).

Examples of RMSE for various datasets:

Shuttle Radar Topography Mission (SRTM) has a RMSE of 9.73m

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Ele-
vation Model (GDEM) has a RMSE of 10.20m

Ordnance Survey OS Terrain 5 has a maximum RMSE of 2.5m

Ordnance Survey OS Terrain 50 has a maximum RMSE of 4m

Value

raster (raster package). Digital Elevation Model with a single realisation of vertical error incor-
porated

Author(s)

Joseph Lewis

References

Fisher, P. F., Tate, N. J. (2006). Causes and consequences of error in digital elevation models.
Progress in Physical Geography, 30(4), 467-489.

Hunter, G. J., Goodchild, M. F. (1997). Modeling the uncertainty of slope and aspect estimates
derived from spatial databases. Geographical Analysis, 29: 35-49.

Wechsler, S. P. (1999) Digital Elevation Model (DEM) uncertainty: evaluation and effect on to-
pographic parameters In Proceedings of the 1999 ESRI User Conference (available at: https:
//proceedings.esri.com/library/userconf/proc99/proceed/papers/pap262/p262.htm)

Wechsler, S. P. (2003). Perceptions of Digital Elevation Model Uncertainty by DEM Users, URISA
Journal, 15, 57-64.

Wechsler, S. P., Kroll, C. N. (2006). Quantifying DEM Uncertainty and its Effect on Topographic
Parameters. Photogrammetric Engineering & Remote Sensing, 72(9), 1081-1090. doi: 10.14358/
pers.72.9.1081

Wechsler, S. P. (2007). Uncertainties associated with digital elevation models for hydrologic ap-
plications: a review. Hydrology and Earth System Sciences, 11, 4, 1481-1500. doi: 10.5194/
hess1114812007

https://proceedings.esri.com/library/userconf/proc99/proceed/papers/pap262/p262.htm
https://proceedings.esri.com/library/userconf/proc99/proceed/papers/pap262/p262.htm
https://doi.org/10.14358/pers.72.9.1081
https://doi.org/10.14358/pers.72.9.1081
https://doi.org/10.5194/hess-11-1481-2007
https://doi.org/10.5194/hess-11-1481-2007

4 apply_cost

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))

r_error <- add_dem_error(r, rmse = 9.73, size = 'auto', vgm_model = 'Gau')

apply_cost Apply Cost Function to Slope (rise over run) values

Description

Creates a Conductivity surface based on the difficulty of moving up/down slope. This function
applies the cost function to the slope (rise over run) values as calcualted using calculate_slope()

Usage

apply_cost(
slope = slope,
cost_function = "tobler",
neighbours = 16,
crit_slope = 12,
max_slope = NULL,
percentile = 0.5

)

Arguments

slope TransitionLayer (gdistance package). Slope (rise over run) as calculated us-
ing calculate_slope()

cost_function character. Cost Function used in the Least Cost Path calculation. Imple-
mented cost functions include ’tobler’, ’tobler offpath’, ’irmischer-clarke male’,
’irmischer-clarke offpath male’, ’irmischer-clarke female’, ’irmischer-clarke off-
path female’, ’modified tobler’, ’wheeled transport’, ’herzog’, ’llobera-sluckin’
and ’campbell 2019’. Default is ’tobler’. See Details for more information

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected numeric values are 4, 8, 16, 32, 48 or a matrix
object. Default is numeric value 16

crit_slope numeric value. Critical Slope (in percentage) is ’the transition where switch-
backs become more effective than direct uphill or downhill paths’. Cost of
climbing the critical slope is twice as high as those for moving on flat terrain
and is used for estimating the cost of using wheeled vehicles. Default value is
12, which is the postulated maximum gradient traversable by ancient transport
(Verhagen and Jeneson, 2012). Critical slope only used in ’wheeled transport’
cost function

apply_cost 5

max_slope numeric value. Maximum percentage slope that is traversable. Slope values
that are greater than the specified max_slope are given a conductivity value of
0. If cost_function argument is ’campbell 2019’ then max_slope is fixed at 30
degrees slope to reflect the maximum slope that the cost function is parametised
to. Default is NULL

percentile numeric value. Travel rate percentile only used in ’campbell 2019’ cost_function.
Expected numeric values are 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99. Default is
numeric value 0.50

Details

Tobler’s ’Hiking Function’ is the most widely used cost function when approximating the difficulty
of moving across a landscape (Gorenflo and Gale, 1990; Wheatley and Gillings, 2001). The function
assesses the time necessary to traverse a surface and takes into account up-slope and down-slope
(Kantner, 2004; Tobler, 1993). Time unit measured in seconds.

Tobler’s offpath Hiking Function reduces the speed of the Tobler’s Hiking Function by 0.6 to take
into account walking off-path (Tobler, 1993). Time unit measured in seconds.

The Irmischer and Clark cost functions (2018) were modelled from speed estimates of United States
Military Academy (USMA) cadets while they navigated on foot over hilly, wooded terrain as part
of their summer training in map and compass navigation. Time unit measured in seconds.

The Modified Hiking cost function combines MIDE (París Roche, 2002), a method to calculate
walking hours for an average hiker with a light load (Márquez-Pérez et al. 2017), and Tobler’s
’Hiking Function’ (Tobler, 1993). Time unit measured in seconds.

Herzog (2013), based on the cost function provided by Llobera and Sluckin (2007), has provided a
cost function to approximate the cost for wheeled transport. The cost function is symmetric and is
most applicable for use when the same route was taken in both directions.

Herzog’s (2010) Sixth-degree polynomial cost function approximates the energy expenditure values
(J/(kg*m)) found in Minetti et al. (2002) but eliminates the problem of unrealistic negative energy
expenditure values for steep downhill slopes.

Llobera and Sluckin (2007) cost function approximates the metabolic energy expenditure (KJ/m)
when moving across a landscape.

Campbell (2019) cost function (Lorentz distribution) approximates the time taken to traverse a
surface based on crowdsourced GPS data (1.05 million travel rate records). Data divided into travel
rate percentiles (1st, 5th to 95th, by 5, and 99th). max_slope argument is fixed at 30 degrees slope to
reflect the maximum slope that the cost function is parametised to. Time unit measured in seconds.

Value

TransitionLayer (gdistance package) numerically expressing the difficulty of moving up/down
slope based on the cost function provided in the cost_function argument.

Author(s)

Joseph Lewis

6 check_locations

calculate_slope calculate slope (rise over run) from supplied digital elevation model
(DEM)

Description

calculate slope (rise over run) from supplied digital elevation model (DEM)

Usage

calculate_slope(dem, neighbours, exaggeration)

Arguments

dem RasterLayer (raster package). Digital Elevation Model

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected values are 4, 8, 16, 32, or 48. Default is 16

exaggeration logical. if TRUE, positive slope values (ie. up-hill movement) multiplied by
1.99 and negative slope values (ie. down-hill movement) multiplied by 2.31.

Value

TransitionMatrix (gdistance package). Anisotropic Slope (rise over run) Conductivity surface

Author(s)

Joseph Lewis

check_locations Check locations

Description

Checks that locations can be reached when calculating least cost paths

Usage

check_locations(cost_surface, locations)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used when checking
whether supplied locations are traversable from at least one adjcacent cell

locations SpatialPoints* (sp package) locations to check

cost_matrix 7

Details

Using the supplied cost surface, the function checks whether the cells of supplied locations are
traversable from at least one adjacent cell. If the cells of the supplied location are not traversable
from at least one adjacent cell then a calculated least cost path cannot traverse to that location.

Value

numeric vector of location indexes that are not traversable from at least one adjacent cell

Author(s)

Joseph Lewis

cost_matrix Create a cost based nearest neighbour matrix

Description

Creates a cost based nearest neighbour matrix of k length for each provided location. This matrix
can be used in the nb_matrix argument within the create_lcp_network function to calculate Least
Cost Paths between origins and destinations.

Usage

cost_matrix(cost_surface, locations, k)

Arguments

cost_surface TransitionLayer object (gdistance package). Cost surface to be used in calcu-
lating the k nearest neighbour

locations SpatialPoints. Locations to calculate k nearest neighbours from

k numeric number of nearest neighbours to be returned

Value

matrix cost-based k nearest neighbour for each location as specified in the locations argument. The
resultant matrix can be used in the nb_matrix argument within the create_lcp_network function.

Author(s)

Joseph Lewis

8 create_banded_lcps

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=5,'regular')

matrix <- cost_matrix(slope_cs, locs, 2)

lcp_network <- create_lcp_network(slope_cs, locations = locs,
nb_matrix = matrix, cost_distance = FALSE, parallel = FALSE)

create_banded_lcps Calculate Least Cost Paths from random locations within distances

Description

Calculates Least Cost Paths from centre location to random locations within a specified distance
band. This is based on the method proposed by Llobera (2015).

Usage

create_banded_lcps(
cost_surface,
location,
min_distance,
max_distance,
radial_points,
cost_distance = FALSE,
parallel = FALSE,
ncores = 1

)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

location SpatialPoints* (sp package). Location from which the Least Cost Paths are
calculated. If there are multiple SpatialPoints in the supplied data, only the first
SpatialPoint is taken into account

min_distance numeric value. minimum distance from centre location

max_distance numeric value. maximum distance from centre location

create_barrier_cs 9

radial_points numeric value. Number of random locations around centre location within dis-
tances

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE

parallel logical. if TRUE, the Least Cost Paths will be calculated in parallel. Default
is FALSE

ncores numeric. Number of cores used if parallel is TRUE. Default value is 1.

Value

SpatialLinesDataFrame (sp package). The resultant object contains least cost paths (number of
LCPs is dependent on radial_points argument) calculated from a centre location to random locations
within a specified distance band.

Author(s)

Joseph Lewis

References

Llobera, M. (2015). Working the digital: some thoughts from landscape archaeology. In Chap-
man R, Wylie A (eds), Material evidence: learning from archaeological practice (pp. 173-188).
Abingdon: Routledge.

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50, crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=1,'random')

lcp_network <- create_banded_lcps(cost_surface = slope_cs, location = locs, min_distance = 5,
max_distance = 25, radial_points = 10, cost_distance = FALSE, parallel = FALSE)

create_barrier_cs Create Barrier Cost Surface

Description

Creates a cost surface that incorporates barriers that inhibit movement in the landscape.

Usage

create_barrier_cs(raster, barrier, neighbours = 16, field = 0, background = 1)

10 create_barrier_cs

Arguments

raster RasterLayer (raster package). The Resolution, Extent, and Spatial Reference
System of the provided RasterLayer is used when creating the resultant Barrier
Cost Surface

barrier Spatial* (sp package) or RasterLayer (raster package). Area within the land-
scape that movement is inhibited. See details for more

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected numeric values are 4, 8, 16, 32, 48 or a matrix
object. Default is numeric value 16

field numeric value or character ’mask’. Value assigned to cells that coincide
with the barrier Spatial* or RasterLayer object. Default is numeric value 0. If
RasterLayer object supplied in barrier and field is 'mask' then RasterLayer
values are assigned to the barrier

background numeric value. Value assigned to cells that do not coincide with the Spatial* or
RasterLayer object. Default is numeric value 1

Details

The resultant Barrier Cost Surface is produced by assessing which areas of the raster coincide with
the Spatial* or RasterLayer object as specified in the barrier argument. The areas of the raster that
coincide with the barrier are given a conductance value of 0 (default value, with all other areas
given a Conductance value of 1 (default value). The conductance value of 0 ensures that movement
is inhibited within these areas. Examples of use include rivers, altitudes, and taboo areas. If a
RasterLayer object is supplied in the barrier argument then all cells with a value NOT NA will be
used as the barrier.

Value

TransitionLayer (gdistance package) numerically expressing the barriers to movement in the
landscape. The resultant TransitionLayer can be incorporated with other TransitionLayer
through Raster calculations

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))

pt = cbind(2667670, 6479000)
pt = sp::SpatialPoints(pt)
polygon <- rgeos::gBuffer(spgeom = pt, width = 200)
raster::crs(pt) <- raster::crs(r)
raster::crs(polygon) <- raster::crs(r)

barrier_pt <- create_barrier_cs(raster = r, barrier = pt)

create_CCP_lcps 11

barrier_polygon <- create_barrier_cs(raster = r, barrier = polygon)

r2 <- r
ext <- raster::extent(2667500, 2667900, 6478800, 6479500)
cells <- unlist(raster::cellFromPolygon(object = r, p = as(ext, 'SpatialPolygons')))
r2[-cells] <- NA

barrier_ras <- create_barrier_cs(raster = r, barrier = r2)

create_CCP_lcps Calculate Cumulative Cost Paths from Radial Locations

Description

Calculates Least Cost Paths from radial locations of a specified distance to the centre location. This
is based on the method proposed by Verhagen (2013).

Usage

create_CCP_lcps(
cost_surface,
location,
distance,
radial_points,
cost_distance = FALSE,
parallel = FALSE,
ncores = 1

)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

location SpatialPoints* (sp package). Location from which the Least Cost Paths are
calculated. If there are multiple SpatialPoints in the supplied data, only the first
SpatialPoint is taken into account

distance numeric value. Distance from centre location to the radial locations

radial_points numeric value. Number of radial locations around centre location

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE

parallel logical. if TRUE, the Least Cost Paths will be calculated in parallel. Default
is FALSE

ncores numeric. Number of cores used if parallel is TRUE. Default value is 1.

12 create_cost_corridor

Value

SpatialLinesDataFrame (sp package). The resultant object contains least cost paths (number of
LCPs is dependent on radial_points argument) calculated from radial locations to a centre location
within a specified distance.

Author(s)

Joseph Lewis

References

Verhagen, P. (2013). On the road to nowhere? Least cost paths, accessibility and the predictive
modelling perspective. In Contreras F, Farjas M, Melero FJ (eds). Fusion of cultures. Proceedings
of the 38th annual conference on computer applications and quantitative methods in archaeology,
Granada, Spain, April 2010. (pp 383-389). Oxford: Archaeopress

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=1,'regular')

lcp_network <- create_CCP_lcps(cost_surface = slope_cs, location = locs,
distance = 20, radial_points = 10, cost_distance = FALSE, parallel = FALSE)

create_cost_corridor Create a Cost Corridor

Description

Combines the accumulated cost surfaces from origin-to-destination and destination-to-origin to
identify areas of preferential movement that takes into account both directions of movement.

Usage

create_cost_corridor(cost_surface, origin, destination, rescale = FALSE)

create_distance_cs 13

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Cost Corridor
calculation

origin SpatialPoints* (sp package). orgin location from which the Accumulated
Cost is calculated. Only the first cell is taken into account.

destination SpatialPoints* (sp package). destination location from which the Accumu-
lated Cost is calculated. Only the first cell is taken into account

rescale logical. if TRUE raster values scaled to between 0 and 1. Default is FALSE

Value

RasterLayer (raster package). The resultant object is the accumulated cost surface from origin-to-
destination and destination-to-origin and can be used to identify areas of preferential movement in
the landscape.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
slope_cs <- create_slope_cs(r, cost_function = 'tobler', neighbours = 16)

loc1 = cbind(2667670, 6479000)
loc1 = sp::SpatialPoints(loc1)

loc2 = cbind(2667800, 6479400)
loc2 = sp::SpatialPoints(loc2)

cost_corridor <- create_cost_corridor(slope_cs, loc1, loc2, rescale = FALSE)

create_distance_cs Create a Distance based cost surface

Description

Creates a cost surface based on the distance between neighbouring cells. Distance corrected for
if neighbours value greater than 4 (diagonal distance greater than straight line distance). Distance
units are derived from the maximum resolution of the supplied RasterLayer.

Usage

create_distance_cs(raster, neighbours = 16)

14 create_feature_cs

Arguments

raster RasterLayer (raster package).

neighbours numeric value. Number of neighbouring cells. See Huber and Church (1985)
for methodological considerations when choosing number of neighbours. Ex-
pected numeric values are 4, 8, 16, 32, 48 or a matrix object. Default is numeric
value 16

Value

TransitionLayer (gdistance package) numerically expressing the distance between neighbouring
cells

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
distance_cs <- create_distance_cs(r, neighbours = 16)

create_feature_cs Create a Landscape Feature cost surface

Description

Creates a Landscape Feature Cost Surface representing the attraction/repulsion of a feature in the
landscape. See Llobera (2000) for theoretical discussion in its application

Usage

create_feature_cs(raster, locations, x, neighbours = 16)

Arguments

raster RasterLayer (raster package). The Resolution, Extent, and Spatial Reference
System of the provided RasterLayer is used when creating the resultant Barrier
Cost Surface

locations SpatialPoints* (sp package). Location of Features within the landscape

x numeric vector. Values denoting the attraction/repulsion of the landscape fea-
tures within the landscape. Each value in the vector is assigned to each ring of
cells moving outwards from supplied locations

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected numeric values are 4, 8, 16, 32, 48 or a matrix
object. Default is numeric value 16

create_FETE_lcps 15

Value

TransitionLayer (gdistance package) numerically expressing the attraction/repulsion of a feature
in the landscape. The resultant TransitionLayer can be incorporated with other TransitionLayer
through Raster calculations.

Author(s)

Joseph Lewis

References

Llobera, M. (2000). Understanding movement: a pilot model towards the sociology of movement.
In: Lock G (ed) Beyond the map. Archaeology and spatial technologies. (pp 66-84). Amsterdam:
IOS Press/Ohmsha.

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
loc1 = cbind(2667670, 6479000)
loc1 = sp::SpatialPoints(loc1)

num <- seq(200, 1, length.out = 20)

feature <- create_feature_cs(raster = r, locations = loc1, x = num)

create_FETE_lcps Calculate least cost paths from each location to all other locations.

Description

Calculates least cost paths from each location to all other locations (i.e. From Everywhere To
Everywhere (FETE)). This is based on the method proposed by White and Barber (2012).

Usage

create_FETE_lcps(
cost_surface,
locations,
cost_distance = FALSE,
parallel = FALSE,
ncores = 1

)

16 create_FETE_lcps

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

locations SpatialPoints* (sp package). Locations to calculate Least Cost Paths from
and to

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE

parallel logical. if TRUE, the Least Cost Paths will be calculated in parallel. Default
is FALSE

ncores numeric. Number of cores used if parallel is TRUE. Default value is 1.

Value

SpatialLinesDataFrame (sp package). The resultant object contains least cost paths calculated
from each location to all other locations

Author(s)

Joseph Lewis

References

White, DA. Barber, SB. (2012). Geospatial modeling of pedestrian transportation networks: a
case study from precolumbian Oaxaca, Mexico. J Archaeol Sci 39:2684-2696. doi: 10.1016/
j.jas.2012.04.017

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=5,'regular')

lcp_network <- create_FETE_lcps(cost_surface = slope_cs, locations = locs,
cost_distance = FALSE, parallel = FALSE)

https://doi.org/10.1016/j.jas.2012.04.017
https://doi.org/10.1016/j.jas.2012.04.017

create_lcp 17

create_lcp Calculate Least Cost Path from Origin to Destination

Description

Calculates a Least Cost Path from an origin location to a destination location. Applies Dijkstra’s
algorithm.

Usage

create_lcp(
cost_surface,
origin,
destination,
directional = FALSE,
cost_distance = FALSE

)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

origin SpatialPoints* (sp package) location from which the Least Cost Path is cal-
culated. Only the first row is taken into account

destination SpatialPoints* (sp package) location to which the Least Cost Path is calcu-
lated. Only the first row is taken into account

directional logical. if TRUE Least Cost Path calculated from origin to destination only. If
FALSE Least Cost Path calculated from origin to destination and destination to
origin. Default is FALSE

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE

Value

SpatialLinesDataFrame (sp package) of length 1 if directional argument is TRUE or 2 if direc-
tional argument is FALSE. The resultant object is the shortest route (i.e. least cost) between origin
and destination using the supplied TransitionLayer.

Author(s)

Joseph Lewis

References

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik.
1: 269-271.

18 create_lcp_density

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

loc1 = cbind(2667670, 6479000)
loc1 = sp::SpatialPoints(loc1)

loc2 = cbind(2667800, 6479400)
loc2 = sp::SpatialPoints(loc2)

lcps <- create_lcp(cost_surface = slope_cs, origin = loc1,
destination = loc2, directional = FALSE, cost_distance = FALSE)

create_lcp_density Creates a cumulative Least Cost Path Raster

Description

Cumulatively combines Least Cost Paths in order to identify routes of preferential movement within
the landscape.

Usage

create_lcp_density(lcps, raster, rescale = FALSE, rasterize_as_points = TRUE)

Arguments

lcps SpatialLines* (sp package). Least Cost Paths

raster RasterLayer (raster package). This is used to derive the resolution, extent, and
spatial reference system to be used when calculating the cumulative least cost
path raster

rescale logical. if TRUE, raster values scaled to between 0 and 1. Default is FALSE
rasterize_as_points

logical. if TRUE (default) then the coordinates of the Least Cost Path vertices
are rasterised. If FALSE Least Cost Paths are represented as lines and rasterised.
As the Least Cost Path SpatialLines are converted from vector to raster, the Least
Cost Paths represented as lines may result in the width of the rasterized line
being greater than one cell, particularly at places of diagonal movement. Con-
versely, the Least Cost Paths represented as points (default) will result in some
raster cells not being counted in the resultant RasterLayer. A greater number of
cells not counted is expected when the number of neighbours used when creat-
ing the cost surface increases. NOTE: rasterisation of Lines takes much longer
than rasterizing points.

create_lcp_network 19

Value

RasterLayer (raster package). The resultant object is the cumulatively combined Least Cost Paths.
This identifies routes of preferential movement within the landscape.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50, crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

x1 <- c(seq(1,10), seq(11,25), seq(26,30))
y1 <- c(seq(1,10), seq(11,25), seq(26,30))
line1 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x1,y1)), ID='a')))

x2 <- c(seq(1,10), seq(11,25), seq(26, 30))
y2 <- c(seq(1,10), seq(11,25), rep(25, 5))
line2 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x2,y2)), ID='b')))

lcp_network <- rbind(line1, line2)

cumulative_lcps <- create_lcp_density(lcps = lcp_network, raster = r, rescale = FALSE)

create_lcp_network Calculate least cost paths from specified origins and destinations

Description

Calculates least cost paths from each origins and destinations as specified in the neighbour matrix.

Usage

create_lcp_network(
cost_surface,
locations,
nb_matrix = NULL,
cost_distance = FALSE,
parallel = FALSE,
ncores = 1

)

20 create_slope_cs

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation.

locations SpatialPoints* (sp package). Potential locations to calculate Least Cost Paths
from and to.

nb_matrix matrix. 2 column matrix representing the index of origins and destinations to
calculate least cost paths between.

cost_distance logical. if TRUE computes total accumulated cost for each Least Cost Path.
Default is FALSE.

parallel logical. if TRUE, the Least Cost Paths will be calculated in parallel. Default
is FALSE

ncores numeric. Number of cores used if parallel is TRUE. Default value is 1.

Value

SpatialLinesDataFrame (sp package). The resultant object contains least cost paths calculated
from each origins and destinations as specified in the neighbour matrix.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=5,'regular')

lcp_network <- create_lcp_network(slope_cs, locations = locs,
nb_matrix = cbind(c(1, 4, 2, 1), c(2, 2, 4, 3)), cost_distance = FALSE, parallel = FALSE)

create_slope_cs Create a slope based cost surface

Description

Creates a cost surface based on the difficulty of moving up/down slope. This function provides the
choice of multiple isotropic and anisotropic cost functions that estimate human movement across
a landscape. Maximum percentage slope possible for traversal can also be supplied. Lastly, geo-
graphical slant exaggeration can be accounted for.

create_slope_cs 21

Usage

create_slope_cs(
dem,
cost_function = "tobler",
neighbours = 16,
crit_slope = 12,
max_slope = NULL,
percentile = 0.5,
exaggeration = FALSE

)

Arguments

dem RasterLayer (raster package). Digital Elevation Model

cost_function character. Cost Function used in the Least Cost Path calculation. Imple-
mented cost functions include ’tobler’, ’tobler offpath’, ’irmischer-clarke male’,
’irmischer-clarke offpath male’, ’irmischer-clarke female’, ’irmischer-clarke off-
path female’, ’modified tobler’, ’wheeled transport’, ’herzog’, ’llobera-sluckin’
and ’campbell 2019’. Default is ’tobler’. See Details for more information

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected numeric values are 4, 8, 16, 32, 48 or a matrix
object. Default is numeric value 16

crit_slope numeric value. Critical Slope (in percentage) is ’the transition where switch-
backs become more effective than direct uphill or downhill paths’. Cost of
climbing the critical slope is twice as high as those for moving on flat terrain
and is used for estimating the cost of using wheeled vehicles. Default value is
12, which is the postulated maximum gradient traversable by ancient transport
(Verhagen and Jeneson, 2012). Critical slope only used in ’wheeled transport’
cost function

max_slope numeric value. Maximum percentage slope that is traversable. Slope values
that are greater than the specified max_slope are given a conductivity value of
0. If cost_function argument is ’campbell 2019’ then max_slope is fixed at 30
degrees slope to reflect the maximum slope that the cost function is parametised
to. Default is NULL

percentile numeric value. Travel rate percentile only used in ’campbell 2019’ cost_function.
Expected numeric values are 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99. Default is
numeric value 0.50

exaggeration logical. if TRUE, positive slope values (ie. up-hill movement) multiplied by
1.99 and negative slope values (ie. down-hill movement) multiplied by 2.31.
Based on how observers overestimate the slant of a hill. See Details for more
information

22 create_slope_cs

Details

Tobler’s ’Hiking Function’ is the most widely used cost function when approximating the difficulty
of moving across a landscape (Gorenflo and Gale, 1990; Wheatley and Gillings, 2001). The function
assesses the time necessary to traverse a surface and takes into account up-slope and down-slope
(Kantner, 2004; Tobler, 1993). Time unit measured in seconds.

Tobler’s offpath Hiking Function reduces the speed of the Tobler’s Hiking Function by 0.6 to take
into account walking off-path (Tobler, 1993). Time unit measured in seconds.

The Irmischer and Clark cost functions (2018) were modelled from speed estimates of United States
Military Academy (USMA) cadets while they navigated on foot over hilly, wooded terrain as part
of their summer training in map and compass navigation. Time unit measured in seconds.

The Modified Hiking cost function combines MIDE (París Roche, 2002), a method to calculate
walking hours for an average hiker with a light load (Márquez-Pérez et al. 2017), and Tobler’s
’Hiking Function’ (Tobler, 1993). Time unit measured in seconds.

Herzog (2013), based on the cost function provided by Llobera and Sluckin (2007), has provided a
cost function to approximate the cost for wheeled transport. The cost function is symmetric and is
most applicable for use when the same route was taken in both directions.

Herzog’s (2010) Sixth-degree polynomial cost function approximates the energy expenditure values
(J/(kg*m)) found in Minetti et al. (2002) but eliminates the problem of unrealistic negative energy
expenditure values for steep downhill slopes.

Llobera and Sluckin (2007) cost function approximates the metabolic energy expenditure (KJ/m)
when moving across a landscape.

Campbell (2019) cost function (Lorentz distribution) approximates the time taken to traverse a
surface based on crowdsourced GPS data (1.05 million travel rate records). Data divided into travel
rate percentiles (1st, 5th to 95th, by 5, and 99th). max_slope argument is fixed at 30 degrees slope to
reflect the maximum slope that the cost function is parametised to. Time unit measured in seconds.

Exaggeration

When observers face directly toward a hill, their awareness of the slant of the hill is greatly overes-
timated (Pingel, 2009; Proffitt, 1995; Proffitt, 2001). Pingel (2009) identified that downhill slopes
are overestimated at approximately 2.3 times, whilst uphill slopes are overestimated at 2 times.

Value

TransitionLayer (gdistance package) numerically expressing the difficulty of moving up/down
slope based on the cost function provided in the cost_function argument.

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
slope_cs_16 <- create_slope_cs(r, cost_function = 'tobler', neighbours = 16, max_slope = NULL)
slope_cs_48 <- create_slope_cs(r, cost_function = 'tobler', neighbours = 48, max_slope = NULL)

create_stochastic_lcp 23

create_stochastic_lcp Calculate Stochastic Least Cost Path from Origin to Destination

Description

Calculates a Stochastic Least Cost Path from an origin location to a destination location by ran-
domly determining the neighbourhood adjacency. Method based on Pinto and Keitt (2009). Applies
Dijkstra’s algorithm. See details for more information.

Usage

create_stochastic_lcp(
cost_surface,
origin,
destination,
directional = FALSE,
percent_quantile

)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation. Threshold value applied to cost surface before calculating least
cost path

origin SpatialPoints* (sp package) location from which the Least Cost Path is cal-
culated. Only the first row is taken into account

destination SpatialPoints* (sp package) location to which the Least Cost Path is calcu-
lated. Only the first row is taken into account

directional logical. if TRUE Least Cost Path calculated from origin to destination only. If
FALSE Least Cost Path calculated from origin to destination and destination to
origin. Default is FALSE

percent_quantile

numeric. Optional numeric value between 0 and 1. If argument is supplied
then threshold is a random value between the minimum value in the supplied
cost surface and the corresponding percent quantile value in the supplied cost
surface. If no argument is supplied, then the threshold is a random value between
the minimum value and maximum valie in the supplied cost surface. See details
for more information

Details

The calculation of a stochastic least cost path is based on the method proposed by Pinto and Keitt
(2009). Instead of using a static neighbourhood (for example as supplied in the neighbours function
in the create_slope_cs), the neighbourhood is redefined such that the adjacency is non-deterministic
and is instead determined randomly based on the threshold value.

The algorithm proceeds as follows:

24 create_stochastic_lcp

1. If threshold_quantile is not supplied, draw a random value from a uniform distribution between
the minimum value and maximum value in the supplied cost surface. If threshold_quantile is sup-
plied, draw a random value between the minimum value in the supplied cost surface and the percent
quantile as calculated using the supplied percent_quantile

2. Replace values in cost surface below the random value with 0. This ensures that the conductance
between the neighbours are 0, and thus deemed non-adjacent.

Supplying a percent_quantile of 0 is equivalent to calculating the non-stochastic least cost path.
That is, if the supplied percent_quantile is 0, then no values are below this value and thus no values
will be replaced with 0 (see step 2). This therefore does not change the neigbourhood adjacency.

Supplying a percent_quantile of 1 is equivalent to not supplying a percent_quantile value at all.
That is, if the supplied percent_quantile is 1, then the possible random threshold value is between
the minimum and maximum values in the cost surface.

The closer the percent_quantile is to 0, the less the stochastic least cost paths are expected to deviate
from the least cost path. For example, a percent_quantile value of 0.2 will result in the threshold
being a random value between the minimum value in the cost surface and the 0.2 percent quantile
of the values in the cost surface. All values in the cost surface below the threshold will be replaced
with 0 (i.e. the neighbours are no longer adjacent). In contrast, a percent_quantile value of 0.8 will
result in the threshold being a random value between the minimum value in the cost surface and the
0.8 percent quantile of the values in the cost surface. In this case, there is greater probability that the
random value will result in an increased number of values in the cost surface being replaced with 0.

Value

SpatialLinesDataFrame (sp package) of length 1 if directional argument is TRUE or 2 if direc-
tional argument is FALSE. The resultant object is the shortest route (i.e. least cost) between origin
and destination after a random threshold has been applied to the supplied TransitionLayer.

Author(s)

Joseph Lewis

References

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik.
1: 269-271.

Pinto, N., Keitt, T.H. (2009) Beyond the least-cost path: evaluating corridor redundancy using a
graph-theoretic approach. Landscape Ecol 24, 253-266 doi: 10.1007/s109800089303y

Examples

r <- raster::raster(nrow=50, ncol=50, xmn=0, xmx=50, ymn=0, ymx=50,
crs='+proj=utm')

r[] <- stats::runif(1:length(r))

slope_cs <- create_slope_cs(r, cost_function = 'tobler')

https://doi.org/10.1007/s10980-008-9303-y

create_traversal_cs 25

locs <- sp::spsample(as(raster::extent(r), 'SpatialPolygons'),n=2,'random')

stochastic_lcp <- create_stochastic_lcp(cost_surface = slope_cs,
origin = locs[1,], destination = locs[2,], directional = FALSE)

create_traversal_cs Create a Traversal across Slope Cost Surface

Description

Creates a cost surface based on the difficulty of traversing across slope. Difficulty of traversal is
based on the figure given in Bell and Lock (2000). Traversal across slope accounts for movement
directly perpendicular across slope being easier than movement diagonally up/down slope.

Usage

create_traversal_cs(dem, neighbours = 16)

Arguments

dem RasterLayer (raster package). Digital Elevation Model

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected numeric values are 4, 8, 16, 32, 48 or a matrix
object. Default is numeric value 16

Value

TransitionLayer (gdistance package) numerically expressing the difficulty of moving across slope
based on figure given in Bell and Lock (2000). The traversal_cs TransitionLayer should be
multiplied by the create_slope_cs TransitionLayer, resulting in a TransitionLayer that takes
into account movement across slope in all directions

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))
traversal_cs <- create_traversal_cs(r, neighbours = 16)

26 create_wide_lcp

create_wide_lcp Calculate wide least cost path

Description

Calculates a wide least cost path from an origin location to a destination location. Applies Dijkstra’s
algorithm. See details for more information

Usage

create_wide_lcp(
cost_surface,
origin,
destination,
neighbours = 16,
path_ncells

)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to be used in Least Cost
Path calculation

origin SpatialPoints* (sp package) location from which the Least Cost Path is cal-
culated. Only the first row is taken into account

destination SpatialPoints* (sp package) location to which the Least Cost Path is calcu-
lated. Only the first row is taken into account

neighbours numeric value. Number of directions used in the Least Cost Path calculation.
See Huber and Church (1985) for methodological considerations when choosing
number of neighbours. Expected numeric values are 4, 8, 16, 32, 48 or a matrix
object. Default is numeric value 16

path_ncells numeric value. Dimension of wide path matrix. Note that the value refers to the
number of cells and not distance. See wide_path_matrix for example

Details

The calculation of a wide least cost path is inspired by Shirabe (2015).Instead of calculating a
least cost path where the path width is assumed to be zero or negligible compared to the cell size,
create_wide_lcp creates a wide least cost path where the path is calculated based on a cost surface
that incorporates the total permeability of passage from adjacent cells

The algorithm proceeds as follows:

Each column of the supplied cost surface is summed, resulting in a raster with each cell representing
the total permeability of passage from each adjacent neighbour (adjacent cells specificed when
creating cost surface through the use of wide_path_matirx(). A transitionMatrix is created from this
total permeability of passage raster, with the permeability of movement between cells based on the

crop_cs 27

total permeability raster. That is, moving into each cell regardless of direction will incur the same
cost.

Using this total permeability of passage cost surface, the least cost path can be calculated. This
represents the least cost path between two locations based on the total permeability of passage cost
surface that incorporates the summed permeability of passage. To visualise the wide least cost
path, the least cost path is represented as a polygon with the width as supplied in the path_ncells
argument.

Value

SpatialPolygons (sp package). The resultant object is the shortest wide path route (i.e. least cost)
between origin and destination

Author(s)

Joseph Lewis

References

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik.
1: 269-271.

Shirabe, T. (2015). A method for finding a least-cost wide path in raster space. International Journal
of Geographical Information Science 30, 1469-1485. doi: 10.1080/13658816.2015.1124435

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))

n <- 3

slope_cs <- create_slope_cs(r, cost_function = 'tobler', neighbours = wide_path_matrix(n))

loc1 = cbind(2667670, 6479000)
loc1 = sp::SpatialPoints(loc1)

loc2 = cbind(2667800, 6479400)
loc2 = sp::SpatialPoints(loc2)

lcps <- create_wide_lcp(cost_surface = slope_cs, origin = loc1,
destination = loc2, path_ncells = n)

crop_cs Crop Cost Surface

Description

Crops Cost Surfaces to the supplied SpatialPolygon* boundary

https://doi.org/10.1080/13658816.2015.1124435

28 crop_cs

Usage

crop_cs(cost_surface, boundary)

Arguments

cost_surface TransitionLayer (gdistance package). Cost surface to crop

boundary Spatial* (sp package) or RasterLayer (raster package). Boundary used when
cropping Cost Surface. See details for more

Details

The resultant Cost Surface is cropped to the Spatial* or RasterLayer object. All areas of the Cost
Surface that are outside the supplied boundary are given a conductance value of 0. The conductance
value of 0 ensures that movement is inhibited within these areas. If a RasterLayer object is supplied
in the boundary argument then all cells with a value of NA will be given a Conductance value of 0.

Value

TransitionLayer (gdistance package). Cropped Cost Surface

Author(s)

Joseph Lewis

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))

pt = cbind(2667670, 6479000)
pt = sp::SpatialPoints(pt)
polygon <- rgeos::gBuffer(spgeom = pt, width = 200)
raster::crs(pt) <- raster::crs(r)
raster::crs(polygon) <- raster::crs(r)

slope_cs <- create_slope_cs(r, cost_function = 'tobler', neighbours = 16, max_slope = NULL)

slope_cs_pt <- crop_cs(cost_surface = slope_cs, boundary = pt)
slope_cs_polygon <- crop_cs(cost_surface = slope_cs, boundary = polygon)

r2 <- r
ext <- raster::extent(2667500, 2667900, 6478800, 6479500)
cells <- unlist(raster::cellFromPolygon(object = r, p = as(ext, 'SpatialPolygons')))
r2[-cells] <- NA

slope_cs_raster <- crop_cs(cost_surface = slope_cs, boundary = r2)

force_isotropy 29

force_isotropy Convert anisotropic cost surfaces to isotropic

Description

Averages transition values from-to adjacent cells

Usage

force_isotropy(cost_surface)

Arguments

cost_surface TransitionLayer (gdistance package). Conductance surface

Details

force_isotropy averages (mean) the transition values from-to adjacent cells in a cost_surface. Through
this, anisotropic cost functions (i.e. where movement down-slope is easier than movement up-slope)
are converted to an isotropic cost function. When calculating an least cost path using the resultant
surface, the least cost path from A-B and B-A will be the same. This is in contrast to anisotropic
cost surfaces where the least cost path from A-B and B-A can differ.

Value

TransitionLayer (gdistance package) Conductance surface where transition values from-to adja-
cent cells have been averaged

Author(s)

Joseph Lewis

References

Herzog, I (2020). Spatial Analysis Based On Cost Functions, in Gillings, M., Hacıgüzeller, P., Lock,
G. Archaeological Spatial Analysis. Routledge. pp. 333-358. doi: 10.4324/978135124385818

Examples

r <- raster::raster(system.file('external/maungawhau.grd', package = 'gdistance'))

slope_cs <- create_slope_cs(r, cost_function = 'tobler', neighbours = 16, max_slope = NULL)

slope_cs_iso <- force_isotropy(slope_cs)

https://doi.org/10.4324/9781351243858-18

30 neighbours_48

neighbours_32 32 Neighbourhood matrices based on Kovanen and Sarjakoski (2015)

Description

see leastcostpath::neighbours_32 for layout

Usage

neighbours_32

Format

An object of class matrix (inherits from array) with 7 rows and 7 columns.

Author(s)

Joseph Lewis

References

Kovanen, J., Sarjakoski, T. (2015). Tilewise Accumulated Cost Surface Computation with Graphics
Processing Units. ACM Transactions on Spatial Algorithms and Systems 1, 1-27. doi: 10.1145/
2803172

neighbours_48 48 Neighbourhood matrices based on Kovanen and Sarjakoski (2015)

Description

see leastcostpath::neighbours_48 for layout

Usage

neighbours_48

Format

An object of class matrix (inherits from array) with 9 rows and 9 columns.

Author(s)

Joseph Lewis

https://doi.org/10.1145/2803172
https://doi.org/10.1145/2803172

PDI_validation 31

References

Kovanen, J., Sarjakoski, T. (2015). Tilewise Accumulated Cost Surface Computation with Graphics
Processing Units. ACM Transactions on Spatial Algorithms and Systems 1, 1-27. doi: 10.1145/
2803172

PDI_validation Calculate Path Deviation Index

Description

Calculates the Path Deviation Index of a Least Cost Path and a comparison SpatialLines using the
method proposed by Jan et al. (1999).

Usage

PDI_validation(lcp, comparison)

Arguments

lcp SpatialLines* (sp package). Least Cost Path to assess the accuracy of. Ex-
pects object of class SpatialLines. Only first feature used.

comparison SpatialLines* to validate the Least Cost Path against. Expects object of class
SpatialLines. Only first feature used.

Details

The Path Deviation Index measures the deviation (i.e. the spatial separation) between a pair of paths
and aims to overcome the shortcomings of measuring the percentage of coverage of a least cost path
from a comparison path (for example, the validation_lcp function).

The index is defined as the area between paths divided by the distance of the shortest path (i.e.
Euclidean) between an origin and destination. The index can be interpreted as the average distance
between the paths.

Path Deviation Index = Area between paths / length of shortest path

The value of the Path Deviation Index depends on the length of the path and makes comparison of
PDIs difficult for paths with different origins and destinations. This can be overcome by normalising
the Path Deviation Index by the distance of the shortest path (i.e. Euclidean) between an origin and
destination.

Normalised PDI = PDI / length of shortest path x 100

The normalised Path Deviation Index is the percent of deviation between the two paths over the
shortest path. For example, if a normalised PDI is 30 percent, it means that the average distance
between two paths is 30 percent of the length of the shortest path. With normalised PDI, all path
deviation can be compared regardless of the length of the shortest path.

Note: Direction of lcp and comparison SpatialLines must be in the same order. Check First point
(Origin) and Last point (Destination) for confirmation.

https://doi.org/10.1145/2803172
https://doi.org/10.1145/2803172

32 validate_lcp

Value

SpatialPolygonsDataFrame or SpatialLinesDataFrame (sp package). SpatialPolygonsDataFrame
of Area between the LCP and comparison SpatialLines if LCP and comparison SpatialLines are not
identical, else returns SpatialLinesDataFrame. Data frame containing Area, PDI, distance of the
Euclidean shortest path between the origin and destination and normalised PDI.

Author(s)

Joseph Lewis

References

Jan, O., Horowitz, A.J., Peng, Z.R. (2000). Using Global Positioning System Data to Understand
Variations in Path Choice. Transportation Research Record, 1725, 37-44

Examples

x1 <- c(1,5,4,50)
y1 <- c(1,3,4,50)
line1 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x1,y1)), ID='a')))
x2 <- c(1,5,5,50)
y2 <- c(1,4,6,50)
line2 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x2,y2)), ID='b')))

val_lcp <- PDI_validation(lcp = line1, line2)

validate_lcp Calculate accuracy of Least Cost Path

Description

Calculates the accuracy of a Least Cost Path using the buffer method proposed by Goodchild and
Hunter (1997).

Usage

validate_lcp(lcp, comparison, buffers = c(50, 100, 250, 500, 1000))

Arguments

lcp SpatialLines* (sp package). Least Cost Path to assess the accuracy of. Ex-
pects object of class SpatialLines/SpatialLinesDataFrame

comparison SpatialLines* to validate the Least Cost Path against.

buffers numeric vector of buffer distances to assess. Default values are c(50, 100, 250,
500, 1000).

wide_path_matrix 33

Value

data.frame (base package). The resultant object identifies the percentage of the lcp within x
distance (as supplied in the buffers argument) from the provided comparison object.

Author(s)

Joseph Lewis

References

Goodchild, F. M., and G. J. Hunter, 1997. A Simple Positional Accuracy Measure for Linear
Features. International Journal of Geographical Information Sciences, 11(3), 299-306.

Examples

x1 <- c(1,5,4,8)
y1 <- c(1,3,4,7)
line1 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x1,y1)), ID='a')))
x2 <- c(1,5,5,8)
y2 <- c(1,4,6,7)
line2 <- sp::SpatialLines(list(sp::Lines(sp::Line(cbind(x2,y2)), ID='b')))

val_lcp <- validate_lcp(lcp = line1, comparison = line2, buffers = c(0.1, 0.2, 0.5, 1))

wide_path_matrix Create a wide path matrix

Description

Creates a wide path matrix to be used when calculating wide path least cost paths. This function
will return an odd-dimension matrix approximating the shape of an octogon. The centre cell of the
matrix has a value of 0 and represents the focal cell. See focal, focalWeight and adjacent for
more information.

Usage

wide_path_matrix(ncells)

Arguments

ncells numeric value. Dimension of wide path matrix. Note that the value refers to the
number of cells and not distance

Value

matrix wide path matrix used when calculating wide path least cost paths via create_wide_lcp

34 wide_path_matrix

Author(s)

Joseph Lewis

Examples

w <- wide_path_matrix(9)

Index

∗ datasets
neighbours_32, 30
neighbours_48, 30

add_dem_error, 2
adjacent, 33
apply_cost, 4

calculate_slope, 6
check_locations, 6
cost_matrix, 7
create_banded_lcps, 8
create_barrier_cs, 9
create_CCP_lcps, 11
create_cost_corridor, 12
create_distance_cs, 13
create_feature_cs, 14
create_FETE_lcps, 15
create_lcp, 17
create_lcp_density, 18
create_lcp_network, 19
create_slope_cs, 20
create_stochastic_lcp, 23
create_traversal_cs, 25
create_wide_lcp, 26, 33
crop_cs, 27

focal, 33
focalWeight, 33
force_isotropy, 29

neighbours_32, 30
neighbours_48, 30

PDI_validation, 31

validate_lcp, 32

wide_path_matrix, 26, 33

35

	add_dem_error
	apply_cost
	calculate_slope
	check_locations
	cost_matrix
	create_banded_lcps
	create_barrier_cs
	create_CCP_lcps
	create_cost_corridor
	create_distance_cs
	create_feature_cs
	create_FETE_lcps
	create_lcp
	create_lcp_density
	create_lcp_network
	create_slope_cs
	create_stochastic_lcp
	create_traversal_cs
	create_wide_lcp
	crop_cs
	force_isotropy
	neighbours_32
	neighbours_48
	PDI_validation
	validate_lcp
	wide_path_matrix
	Index

