
Package ‘lightgbm’
January 16, 2023

Type Package

Title Light Gradient Boosting Machine

Version 3.3.5

Date 2023-01-11

Description Tree based algorithms can be improved by introducing boosting frameworks.
'LightGBM' is one such framework, based on Ke, Guolin et al. (2017) <https://papers.nips.
cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision>.
This package offers an R interface to work with it.
It is designed to be distributed and efficient with the following advantages:

1. Faster training speed and higher efficiency.
2. Lower memory usage.
3. Better accuracy.
4. Parallel learning supported.
5. Capable of handling large-scale data.

In recognition of these advantages, 'LightGBM' has been widely-
used in many winning solutions of machine learning competitions.
Comparison experiments on public datasets suggest that 'LightGBM' can outperform exist-
ing boosting frameworks on both efficiency and accuracy, with significantly lower memory con-
sumption. In addition, parallel experiments suggest that in certain circumstances, 'Light-
GBM' can achieve a linear speed-up in training time by using multiple machines.

Encoding UTF-8

License MIT + file LICENSE

URL https://github.com/Microsoft/LightGBM

BugReports https://github.com/Microsoft/LightGBM/issues

NeedsCompilation yes

Biarch true

Suggests testthat

Depends R (>= 3.5), R6 (>= 2.0)

Imports data.table (>= 1.9.6), graphics, jsonlite (>= 1.0), Matrix (>=
1.1-0), methods, utils

SystemRequirements C++11

1

https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM/issues

2 R topics documented:

RoxygenNote 7.1.2

Author Yu Shi [aut, cre],
Guolin Ke [aut],
Damien Soukhavong [aut],
James Lamb [aut],
Qi Meng [aut],
Thomas Finley [aut],
Taifeng Wang [aut],
Wei Chen [aut],
Weidong Ma [aut],
Qiwei Ye [aut],
Tie-Yan Liu [aut],
Nikita Titov [aut],
Yachen Yan [ctb],
Microsoft Corporation [cph],
Dropbox, Inc. [cph],
Jay Loden [cph],
Dave Daeschler [cph],
Giampaolo Rodola [cph],
Alberto Ferreira [ctb],
Daniel Lemire [ctb],
Victor Zverovich [cph],
IBM Corporation [ctb],
David Cortes [ctb]

Maintainer Yu Shi <yushi2@microsoft.com>

Repository CRAN

Date/Publication 2023-01-16 19:00:07 UTC

R topics documented:
agaricus.test . 3
agaricus.train . 4
bank . 4
dim.lgb.Dataset . 5
dimnames.lgb.Dataset . 6
getinfo . 7
get_field . 8
lgb.convert_with_rules . 9
lgb.cv . 10
lgb.Dataset . 13
lgb.Dataset.construct . 15
lgb.Dataset.create.valid . 16
lgb.Dataset.save . 18
lgb.Dataset.set.categorical . 18
lgb.Dataset.set.reference . 19
lgb.dump . 20

agaricus.test 3

lgb.get.eval.result . 21
lgb.importance . 22
lgb.interprete . 23
lgb.load . 24
lgb.model.dt.tree . 25
lgb.plot.importance . 27
lgb.plot.interpretation . 28
lgb.save . 30
lgb.train . 31
lgb.unloader . 33
lightgbm . 35
predict.lgb.Booster . 37
readRDS.lgb.Booster . 39
saveRDS.lgb.Booster . 40
setinfo . 41
set_field . 42
slice . 43

Index 45

agaricus.test Test part from Mushroom Data Set

Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository. This
data set includes the following fields:

• label: the label for each record

• data: a sparse Matrix of dgCMatrix class, with 126 columns.

Usage

data(agaricus.test)

Format

A list containing a label vector, and a dgCMatrix object with 1611 rows and 126 variables

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

4 bank

agaricus.train Training part from Mushroom Data Set

Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository. This
data set includes the following fields:

• label: the label for each record
• data: a sparse Matrix of dgCMatrix class, with 126 columns.

Usage

data(agaricus.train)

Format

A list containing a label vector, and a dgCMatrix object with 6513 rows and 127 variables

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

bank Bank Marketing Data Set

Description

This data set is originally from the Bank Marketing data set, UCI Machine Learning Repository.

It contains only the following: bank.csv with 10 randomly selected from 3 (older version of this
dataset with less inputs).

Usage

data(bank)

Format

A data.table with 4521 rows and 17 variables

References

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing

S. Moro, P. Cortez and P. Rita. (2014) A Data-Driven Approach to Predict the Success of Bank
Telemarketing. Decision Support Systems

dim.lgb.Dataset 5

dim.lgb.Dataset Dimensions of an lgb.Dataset

Description

Returns a vector of numbers of rows and of columns in an lgb.Dataset.

Usage

S3 method for class 'lgb.Dataset'
dim(x, ...)

Arguments

x Object of class lgb.Dataset

... other parameters (ignored)

Details

Note: since nrow and ncol internally use dim, they can also be directly used with an lgb.Dataset
object.

Value

a vector of numbers of rows and of columns

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

stopifnot(nrow(dtrain) == nrow(train$data))
stopifnot(ncol(dtrain) == ncol(train$data))
stopifnot(all(dim(dtrain) == dim(train$data)))

6 dimnames.lgb.Dataset

dimnames.lgb.Dataset Handling of column names of lgb.Dataset

Description

Only column names are supported for lgb.Dataset, thus setting of row names would have no effect
and returned row names would be NULL.

Usage

S3 method for class 'lgb.Dataset'
dimnames(x)

S3 replacement method for class 'lgb.Dataset'
dimnames(x) <- value

Arguments

x object of class lgb.Dataset

value a list of two elements: the first one is ignored and the second one is column
names

Details

Generic dimnames methods are used by colnames. Since row names are irrelevant, it is recom-
mended to use colnames directly.

Value

A list with the dimension names of the dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)
dimnames(dtrain)
colnames(dtrain)
colnames(dtrain) <- make.names(seq_len(ncol(train$data)))
print(dtrain, verbose = TRUE)

getinfo 7

getinfo Get information of an lgb.Dataset object

Description

Get one attribute of a lgb.Dataset

Usage

getinfo(dataset, ...)

S3 method for class 'lgb.Dataset'
getinfo(dataset, name, ...)

Arguments

dataset Object of class lgb.Dataset

... other parameters (ignored)

name the name of the information field to get (see details)

Details

The name field can be one of the following:

• label: label lightgbm learn from ;

• weight: to do a weight rescale ;

• group: used for learning-to-rank tasks. An integer vector describing how to group rows to-
gether as ordered results from the same set of candidate results to be ranked. For example, if
you have a 100-document dataset with group = c(10, 20, 40, 10, 10, 10), that means that
you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the
second group, etc.

• init_score: initial score is the base prediction lightgbm will boost from.

Value

info data

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)

labels <- lightgbm::getinfo(dtrain, "label")
lightgbm::setinfo(dtrain, "label", 1 - labels)

8 get_field

labels2 <- lightgbm::getinfo(dtrain, "label")
stopifnot(all(labels2 == 1 - labels))

get_field Get one attribute of a lgb.Dataset

Description

Get one attribute of a lgb.Dataset

Usage

get_field(dataset, field_name)

S3 method for class 'lgb.Dataset'
get_field(dataset, field_name)

Arguments

dataset Object of class lgb.Dataset

field_name String with the name of the attribute to get. One of the following.

• label: label lightgbm learns from ;
• weight: to do a weight rescale ;
• group: used for learning-to-rank tasks. An integer vector describing how

to group rows together as ordered results from the same set of candidate
results to be ranked. For example, if you have a 100-document dataset with
group = c(10, 20, 40, 10, 10, 10), that means that you have 6 groups,
where the first 10 records are in the first group, records 11-30 are in the
second group, etc.

• init_score: initial score is the base prediction lightgbm will boost from.

Value

requested attribute

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)

labels <- lightgbm::get_field(dtrain, "label")
lightgbm::set_field(dtrain, "label", 1 - labels)

lgb.convert_with_rules 9

labels2 <- lightgbm::get_field(dtrain, "label")
stopifnot(all(labels2 == 1 - labels))

lgb.convert_with_rules

Data preparator for LightGBM datasets with rules (integer)

Description

Attempts to prepare a clean dataset to prepare to put in a lgb.Dataset. Factor, character, and
logical columns are converted to integer. Missing values in factors and characters will be filled with
0L. Missing values in logicals will be filled with -1L.

This function returns and optionally takes in "rules" the describe exactly how to convert values in
columns.

Columns that contain only NA values will be converted by this function but will not show up in the
returned rules.

NOTE: In previous releases of LightGBM, this function was called lgb.prepare_rules2.

Usage

lgb.convert_with_rules(data, rules = NULL)

Arguments

data A data.frame or data.table to prepare.

rules A set of rules from the data preparator, if already used. This should be an R list,
where names are column names in data and values are named character vectors
whose names are column values and whose values are new values to replace
them with.

Value

A list with the cleaned dataset (data) and the rules (rules). Note that the data must be converted
to a matrix format (as.matrix) for input in lgb.Dataset.

Examples

data(iris)

str(iris)

new_iris <- lgb.convert_with_rules(data = iris)
str(new_iris$data)

10 lgb.cv

data(iris) # Erase iris dataset
iris$Species[1L] <- "NEW FACTOR" # Introduce junk factor (NA)

Use conversion using known rules
Unknown factors become 0, excellent for sparse datasets
newer_iris <- lgb.convert_with_rules(data = iris, rules = new_iris$rules)

Unknown factor is now zero, perfect for sparse datasets
newer_iris$data[1L,] # Species became 0 as it is an unknown factor

newer_iris$data[1L, 5L] <- 1.0 # Put back real initial value

Is the newly created dataset equal? YES!
all.equal(new_iris$data, newer_iris$data)

Can we test our own rules?
data(iris) # Erase iris dataset

We remapped values differently
personal_rules <- list(

Species = c(
"setosa" = 3L
, "versicolor" = 2L
, "virginica" = 1L

)
)
newest_iris <- lgb.convert_with_rules(data = iris, rules = personal_rules)
str(newest_iris$data) # SUCCESS!

lgb.cv Main CV logic for LightGBM

Description

Cross validation logic used by LightGBM

Usage

lgb.cv(
params = list(),
data,
nrounds = 100L,
nfold = 3L,
label = NULL,
weight = NULL,
obj = NULL,
eval = NULL,
verbose = 1L,

lgb.cv 11

record = TRUE,
eval_freq = 1L,
showsd = TRUE,
stratified = TRUE,
folds = NULL,
init_model = NULL,
colnames = NULL,
categorical_feature = NULL,
early_stopping_rounds = NULL,
callbacks = list(),
reset_data = FALSE,
...

)

Arguments

params a list of parameters. See the "Parameters" section of the documentation for a list
of parameters and valid values.

data a lgb.Dataset object, used for training. Some functions, such as lgb.cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

nrounds number of training rounds

nfold the original dataset is randomly partitioned into nfold equal size subsamples.

label Vector of labels, used if data is not an lgb.Dataset

weight vector of response values. If not NULL, will set to dataset

obj objective function, can be character or custom objective function. Examples in-
clude regression, regression_l1, huber, binary, lambdarank, multiclass,
multiclass

eval evaluation function(s). This can be a character vector, function, or list with a
mixture of strings and functions.

• a. character vector: If you provide a character vector to this argument,
it should contain strings with valid evaluation metrics. See The "metric"
section of the documentation for a list of valid metrics.

• b. function: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

– name: A string with the name of the metric, used for printing and stor-
ing results.

– value: A single number indicating the value of the metric for the given
predictions and true values

– higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

• c. list: If a list is given, it should only contain character vectors and func-
tions. These should follow the requirements from the descriptions above.

https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric

12 lgb.cv

verbose verbosity for output, if <= 0, also will disable the print of evaluation during
training

record Boolean, TRUE will record iteration message to booster$record_evals

eval_freq evaluation output frequency, only effect when verbose > 0

showsd boolean, whether to show standard deviation of cross validation. This parame-
ter defaults to TRUE. Setting it to FALSE can lead to a slight speedup by avoiding
unnecessary computation.

stratified a boolean indicating whether sampling of folds should be stratified by the val-
ues of outcome labels.

folds list provides a possibility to use a list of pre-defined CV folds (each element
must be a vector of test fold’s indices). When folds are supplied, the nfold and
stratified parameters are ignored.

init_model path of model file of lgb.Booster object, will continue training from this model

colnames feature names, if not null, will use this to overwrite the names in dataset
categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

early_stopping_rounds

int. Activates early stopping. When this parameter is non-null, training will
stop if the evaluation of any metric on any validation set fails to improve for
early_stopping_rounds consecutive boosting rounds. If training stops early,
the returned model will have attribute best_iter set to the iteration number of
the best iteration.

callbacks List of callback functions that are applied at each iteration.

reset_data Boolean, setting it to TRUE (not the default value) will transform the booster
model into a predictor model which frees up memory and the original datasets

... other parameters, see Parameters.rst for more information. A few key parame-
ters:

• boosting: Boosting type. "gbdt", "rf", "dart" or "goss".
• num_leaves: Maximum number of leaves in one tree.
• max_depth: Limit the max depth for tree model. This is used to deal with

overfit when #data is small. Tree still grow by leaf-wise.
• num_threads: Number of threads for LightGBM. For the best speed, set

this to the number of real CPU cores(parallel::detectCores(logical
= FALSE)), not the number of threads (most CPU using hyper-threading to
generate 2 threads per CPU core).

NOTE: As of v3.3.0, use of ... is deprecated. Add parameters to params di-
rectly.

Value

a trained model lgb.CVBooster.

lgb.Dataset 13

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
model <- lgb.cv(

params = params
, data = dtrain
, nrounds = 5L
, nfold = 3L

)

lgb.Dataset Construct lgb.Dataset object

Description

Construct lgb.Dataset object from dense matrix, sparse matrix or local file (that was created
previously by saving an lgb.Dataset).

Usage

lgb.Dataset(
data,
params = list(),
reference = NULL,
colnames = NULL,
categorical_feature = NULL,

14 lgb.Dataset

free_raw_data = TRUE,
info = list(),
label = NULL,
weight = NULL,
group = NULL,
init_score = NULL,
...

)

Arguments

data a matrix object, a dgCMatrix object, a character representing a path to a text
file (CSV, TSV, or LibSVM), or a character representing a path to a binary
lgb.Dataset file

params a list of parameters. See The "Dataset Parameters" section of the documentation
for a list of parameters and valid values.

reference reference dataset. When LightGBM creates a Dataset, it does some preprocess-
ing like binning continuous features into histograms. If you want to apply the
same bin boundaries from an existing dataset to new data, pass that existing
Dataset to this argument.

colnames names of columns
categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

free_raw_data LightGBM constructs its data format, called a "Dataset", from tabular data. By
default, that Dataset object on the R side does not keep a copy of the raw data.
This reduces LightGBM’s memory consumption, but it means that the Dataset
object cannot be changed after it has been constructed. If you’d prefer to be able
to change the Dataset object after construction, set free_raw_data = FALSE.

info a list of information of the lgb.Dataset object. NOTE: use of info is depre-
cated as of v3.3.0. Use keyword arguments (e.g. init_score = init_score)
directly.

label vector of labels to use as the target variable

weight numeric vector of sample weights

group used for learning-to-rank tasks. An integer vector describing how to group rows
together as ordered results from the same set of candidate results to be ranked.
For example, if you have a 100-document dataset with group = c(10, 20, 40,
10, 10, 10), that means that you have 6 groups, where the first 10 records are
in the first group, records 11-30 are in the second group, etc.

init_score initial score is the base prediction lightgbm will boost from

... other parameters passed to params

Value

constructed dataset

https://lightgbm.readthedocs.io/en/latest/Parameters.html#dataset-parameters

lgb.Dataset.construct 15

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
lgb.Dataset.save(dtrain, data_file)
dtrain <- lgb.Dataset(data_file)
lgb.Dataset.construct(dtrain)

lgb.Dataset.construct Construct Dataset explicitly

Description

Construct Dataset explicitly

Usage

lgb.Dataset.construct(dataset)

Arguments

dataset Object of class lgb.Dataset

Value

constructed dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)

16 lgb.Dataset.create.valid

lgb.Dataset.create.valid

Construct validation data

Description

Construct validation data according to training data

Usage

lgb.Dataset.create.valid(
dataset,
data,
info = list(),
label = NULL,
weight = NULL,
group = NULL,
init_score = NULL,
params = list(),
...

)

Arguments

dataset lgb.Dataset object, training data

data a matrix object, a dgCMatrix object, a character representing a path to a text file
(CSV, TSV, or LibSVM), or a character representing a path to a binary Dataset
file

info a list of information of the lgb.Dataset object. NOTE: use of info is depre-
cated as of v3.3.0. Use keyword arguments (e.g. init_score = init_score)
directly.

label vector of labels to use as the target variable

weight numeric vector of sample weights

group used for learning-to-rank tasks. An integer vector describing how to group rows
together as ordered results from the same set of candidate results to be ranked.
For example, if you have a 100-document dataset with group = c(10, 20, 40,
10, 10, 10), that means that you have 6 groups, where the first 10 records are
in the first group, records 11-30 are in the second group, etc.

init_score initial score is the base prediction lightgbm will boost from

params a list of parameters. See The "Dataset Parameters" section of the documentation
for a list of parameters and valid values. If this is an empty list (the default),
the validation Dataset will have the same parameters as the Dataset passed to
argument dataset.

... additional lgb.Dataset parameters. NOTE: As of v3.3.0, use of ... is depre-
cated. Add parameters to params directly.

https://lightgbm.readthedocs.io/en/latest/Parameters.html#dataset-parameters

lgb.Dataset.create.valid 17

Value

constructed dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)

parameters can be changed between the training data and validation set,
for example to account for training data in a text file with a header row
and validation data in a text file without it
train_file <- tempfile(pattern = "train_", fileext = ".csv")
write.table(

data.frame(y = rnorm(100L), x1 = rnorm(100L), x2 = rnorm(100L))
, file = train_file
, sep = ","
, col.names = TRUE
, row.names = FALSE
, quote = FALSE

)

valid_file <- tempfile(pattern = "valid_", fileext = ".csv")
write.table(

data.frame(y = rnorm(100L), x1 = rnorm(100L), x2 = rnorm(100L))
, file = valid_file
, sep = ","
, col.names = FALSE
, row.names = FALSE
, quote = FALSE

)

dtrain <- lgb.Dataset(
data = train_file
, params = list(has_header = TRUE)

)
dtrain$construct()

dvalid <- lgb.Dataset(
data = valid_file
, params = list(has_header = FALSE)

)
dvalid$construct()

18 lgb.Dataset.set.categorical

lgb.Dataset.save Save lgb.Dataset to a binary file

Description

Please note that init_score is not saved in binary file. If you need it, please set it again after
loading Dataset.

Usage

lgb.Dataset.save(dataset, fname)

Arguments

dataset object of class lgb.Dataset

fname object filename of output file

Value

the dataset you passed in

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.save(dtrain, tempfile(fileext = ".bin"))

lgb.Dataset.set.categorical

Set categorical feature of lgb.Dataset

Description

Set the categorical features of an lgb.Dataset object. Use this function to tell LightGBM which
features should be treated as categorical.

Usage

lgb.Dataset.set.categorical(dataset, categorical_feature)

lgb.Dataset.set.reference 19

Arguments

dataset object of class lgb.Dataset

categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

Value

the dataset you passed in

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
lgb.Dataset.save(dtrain, data_file)
dtrain <- lgb.Dataset(data_file)
lgb.Dataset.set.categorical(dtrain, 1L:2L)

lgb.Dataset.set.reference

Set reference of lgb.Dataset

Description

If you want to use validation data, you should set reference to training data

Usage

lgb.Dataset.set.reference(dataset, reference)

Arguments

dataset object of class lgb.Dataset

reference object of class lgb.Dataset

Value

the dataset you passed in

20 lgb.dump

Examples

create training Dataset
data(agaricus.train, package ="lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

create a validation Dataset, using dtrain as a reference
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset(test$data, label = test$label)
lgb.Dataset.set.reference(dtest, dtrain)

lgb.dump Dump LightGBM model to json

Description

Dump LightGBM model to json

Usage

lgb.dump(booster, num_iteration = NULL)

Arguments

booster Object of class lgb.Booster

num_iteration number of iteration want to predict with, NULL or <= 0 means use best iteration

Value

json format of model

Examples

library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

lgb.get.eval.result 21

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 10L
, valids = valids
, early_stopping_rounds = 5L

)
json_model <- lgb.dump(model)

lgb.get.eval.result Get record evaluation result from booster

Description

Given a lgb.Booster, return evaluation results for a particular metric on a particular dataset.

Usage

lgb.get.eval.result(
booster,
data_name,
eval_name,
iters = NULL,
is_err = FALSE

)

Arguments

booster Object of class lgb.Booster

data_name Name of the dataset to return evaluation results for.

eval_name Name of the evaluation metric to return results for.

iters An integer vector of iterations you want to get evaluation results for. If NULL
(the default), evaluation results for all iterations will be returned.

is_err TRUE will return evaluation error instead

Value

numeric vector of evaluation result

22 lgb.importance

Examples

train a regression model
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids

)

Examine valid data_name values
print(setdiff(names(model$record_evals), "start_iter"))

Examine valid eval_name values for dataset "test"
print(names(model$record_evals[["test"]]))

Get L2 values for "test" dataset
lgb.get.eval.result(model, "test", "l2")

lgb.importance Compute feature importance in a model

Description

Creates a data.table of feature importances in a model.

Usage

lgb.importance(model, percentage = TRUE)

Arguments

model object of class lgb.Booster.

percentage whether to show importance in relative percentage.

lgb.interprete 23

Value

For a tree model, a data.table with the following columns:

• Feature: Feature names in the model.
• Gain: The total gain of this feature’s splits.
• Cover: The number of observation related to this feature.
• Frequency: The number of times a feature splited in trees.

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0

)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L

)

tree_imp1 <- lgb.importance(model, percentage = TRUE)
tree_imp2 <- lgb.importance(model, percentage = FALSE)

lgb.interprete Compute feature contribution of prediction

Description

Computes feature contribution components of rawscore prediction.

Usage

lgb.interprete(model, data, idxset, num_iteration = NULL)

Arguments

model object of class lgb.Booster.
data a matrix object or a dgCMatrix object.
idxset an integer vector of indices of rows needed.
num_iteration number of iteration want to predict with, NULL or <= 0 means use best iteration.

24 lgb.load

Value

For regression, binary classification and lambdarank model, a list of data.table with the follow-
ing columns:

• Feature: Feature names in the model.

• Contribution: The total contribution of this feature’s splits.

For multiclass classification, a list of data.table with the Feature column and Contribution
columns to each class.

Examples

Logit <- function(x) log(x / (1.0 - x))
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
set_field(

dataset = dtrain
, field_name = "init_score"
, data = rep(Logit(mean(train$label)), length(train$label))

)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test

params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0

)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 3L

)

tree_interpretation <- lgb.interprete(model, test$data, 1L:5L)

lgb.load Load LightGBM model

Description

Load LightGBM takes in either a file path or model string. If both are provided, Load will default
to loading from file

lgb.model.dt.tree 25

Usage

lgb.load(filename = NULL, model_str = NULL)

Arguments

filename path of model file

model_str a str containing the model

Value

lgb.Booster

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids
, early_stopping_rounds = 3L

)
model_file <- tempfile(fileext = ".txt")
lgb.save(model, model_file)
load_booster <- lgb.load(filename = model_file)
model_string <- model$save_model_to_string(NULL) # saves best iteration
load_booster_from_str <- lgb.load(model_str = model_string)

lgb.model.dt.tree Parse a LightGBM model json dump

Description

Parse a LightGBM model json dump into a data.table structure.

26 lgb.model.dt.tree

Usage

lgb.model.dt.tree(model, num_iteration = NULL)

Arguments

model object of class lgb.Booster

num_iteration number of iterations you want to predict with. NULL or <= 0 means use best
iteration

Value

A data.table with detailed information about model trees’ nodes and leafs.

The columns of the data.table are:

• tree_index: ID of a tree in a model (integer)

• split_index: ID of a node in a tree (integer)

• split_feature: for a node, it’s a feature name (character); for a leaf, it simply labels it as
"NA"

• node_parent: ID of the parent node for current node (integer)

• leaf_index: ID of a leaf in a tree (integer)

• leaf_parent: ID of the parent node for current leaf (integer)

• split_gain: Split gain of a node

• threshold: Splitting threshold value of a node

• decision_type: Decision type of a node

• default_left: Determine how to handle NA value, TRUE -> Left, FALSE -> Right

• internal_value: Node value

• internal_count: The number of observation collected by a node

• leaf_value: Leaf value

• leaf_count: The number of observation collected by a leaf

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary"
, learning_rate = 0.01
, num_leaves = 63L
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0

)

lgb.plot.importance 27

model <- lgb.train(params, dtrain, 10L)

tree_dt <- lgb.model.dt.tree(model)

lgb.plot.importance Plot feature importance as a bar graph

Description

Plot previously calculated feature importance: Gain, Cover and Frequency, as a bar graph.

Usage

lgb.plot.importance(
tree_imp,
top_n = 10L,
measure = "Gain",
left_margin = 10L,
cex = NULL

)

Arguments

tree_imp a data.table returned by lgb.importance.

top_n maximal number of top features to include into the plot.

measure the name of importance measure to plot, can be "Gain", "Cover" or "Frequency".

left_margin (base R barplot) allows to adjust the left margin size to fit feature names.

cex (base R barplot) passed as cex.names parameter to barplot. Set a number
smaller than 1.0 to make the bar labels smaller than R’s default and values
greater than 1.0 to make them larger.

Details

The graph represents each feature as a horizontal bar of length proportional to the defined impor-
tance of a feature. Features are shown ranked in a decreasing importance order.

Value

The lgb.plot.importance function creates a barplot and silently returns a processed data.table
with top_n features sorted by defined importance.

28 lgb.plot.interpretation

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary"
, learning_rate = 0.1
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0

)

model <- lgb.train(
params = params
, data = dtrain
, nrounds = 5L

)

tree_imp <- lgb.importance(model, percentage = TRUE)
lgb.plot.importance(tree_imp, top_n = 5L, measure = "Gain")

lgb.plot.interpretation

Plot feature contribution as a bar graph

Description

Plot previously calculated feature contribution as a bar graph.

Usage

lgb.plot.interpretation(
tree_interpretation_dt,
top_n = 10L,
cols = 1L,
left_margin = 10L,
cex = NULL

)

Arguments

tree_interpretation_dt

a data.table returned by lgb.interprete.

top_n maximal number of top features to include into the plot.

cols the column numbers of layout, will be used only for multiclass classification
feature contribution.

lgb.plot.interpretation 29

left_margin (base R barplot) allows to adjust the left margin size to fit feature names.

cex (base R barplot) passed as cex.names parameter to barplot.

Details

The graph represents each feature as a horizontal bar of length proportional to the defined contribu-
tion of a feature. Features are shown ranked in a decreasing contribution order.

Value

The lgb.plot.interpretation function creates a barplot.

Examples

Logit <- function(x) {
log(x / (1.0 - x))

}
data(agaricus.train, package = "lightgbm")
labels <- agaricus.train$label
dtrain <- lgb.Dataset(

agaricus.train$data
, label = labels

)
set_field(

dataset = dtrain
, field_name = "init_score"
, data = rep(Logit(mean(labels)), length(labels))

)

data(agaricus.test, package = "lightgbm")

params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0

)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L

)

tree_interpretation <- lgb.interprete(
model = model
, data = agaricus.test$data
, idxset = 1L:5L

)
lgb.plot.interpretation(

tree_interpretation_dt = tree_interpretation[[1L]]

30 lgb.save

, top_n = 3L
)

lgb.save Save LightGBM model

Description

Save LightGBM model

Usage

lgb.save(booster, filename, num_iteration = NULL)

Arguments

booster Object of class lgb.Booster

filename saved filename

num_iteration number of iteration want to predict with, NULL or <= 0 means use best iteration

Value

lgb.Booster

Examples

library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 10L
, valids = valids
, early_stopping_rounds = 5L

)

lgb.train 31

lgb.save(model, tempfile(fileext = ".txt"))

lgb.train Main training logic for LightGBM

Description

Logic to train with LightGBM

Usage

lgb.train(
params = list(),
data,
nrounds = 100L,
valids = list(),
obj = NULL,
eval = NULL,
verbose = 1L,
record = TRUE,
eval_freq = 1L,
init_model = NULL,
colnames = NULL,
categorical_feature = NULL,
early_stopping_rounds = NULL,
callbacks = list(),
reset_data = FALSE,
...

)

Arguments

params a list of parameters. See the "Parameters" section of the documentation for a list
of parameters and valid values.

data a lgb.Dataset object, used for training. Some functions, such as lgb.cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

nrounds number of training rounds

valids a list of lgb.Dataset objects, used for validation

obj objective function, can be character or custom objective function. Examples in-
clude regression, regression_l1, huber, binary, lambdarank, multiclass,
multiclass

eval evaluation function(s). This can be a character vector, function, or list with a
mixture of strings and functions.

https://lightgbm.readthedocs.io/en/latest/Parameters.html

32 lgb.train

• a. character vector: If you provide a character vector to this argument,
it should contain strings with valid evaluation metrics. See The "metric"
section of the documentation for a list of valid metrics.

• b. function: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

– name: A string with the name of the metric, used for printing and stor-
ing results.

– value: A single number indicating the value of the metric for the given
predictions and true values

– higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

• c. list: If a list is given, it should only contain character vectors and func-
tions. These should follow the requirements from the descriptions above.

verbose verbosity for output, if <= 0, also will disable the print of evaluation during
training

record Boolean, TRUE will record iteration message to booster$record_evals

eval_freq evaluation output frequency, only effect when verbose > 0
init_model path of model file of lgb.Booster object, will continue training from this model
colnames feature names, if not null, will use this to overwrite the names in dataset
categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

early_stopping_rounds

int. Activates early stopping. When this parameter is non-null, training will
stop if the evaluation of any metric on any validation set fails to improve for
early_stopping_rounds consecutive boosting rounds. If training stops early,
the returned model will have attribute best_iter set to the iteration number of
the best iteration.

callbacks List of callback functions that are applied at each iteration.
reset_data Boolean, setting it to TRUE (not the default value) will transform the booster

model into a predictor model which frees up memory and the original datasets
... other parameters, see the "Parameters" section of the documentation for more

information. A few key parameters:
• boosting: Boosting type. "gbdt", "rf", "dart" or "goss".
• num_leaves: Maximum number of leaves in one tree.
• max_depth: Limit the max depth for tree model. This is used to deal with

overfitting. Tree still grow by leaf-wise.
• num_threads: Number of threads for LightGBM. For the best speed, set

this to the number of real CPU cores(parallel::detectCores(logical
= FALSE)), not the number of threads (most CPU using hyper-threading to
generate 2 threads per CPU core).

NOTE: As of v3.3.0, use of ... is deprecated. Add parameters to params di-
rectly.

https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric
https://lightgbm.readthedocs.io/en/latest/Parameters.html

lgb.unloader 33

Value

a trained booster model lgb.Booster.

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids
, early_stopping_rounds = 3L

)

lgb.unloader Remove lightgbm and its objects from an environment

Description

Attempts to unload LightGBM packages so you can remove objects cleanly without having to restart
R. This is useful for instance if an object becomes stuck for no apparent reason and you do not want
to restart R to fix the lost object.

34 lgb.unloader

Usage

lgb.unloader(restore = TRUE, wipe = FALSE, envir = .GlobalEnv)

Arguments

restore Whether to reload LightGBM immediately after detaching from R. Defaults to
TRUE which means automatically reload LightGBM once unloading is performed.

wipe Whether to wipe all lgb.Dataset and lgb.Booster from the global environ-
ment. Defaults to FALSE which means to not remove them.

envir The environment to perform wiping on if wipe == TRUE. Defaults to .GlobalEnv
which is the global environment.

Value

NULL invisibly.

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids

)

lgb.unloader(restore = FALSE, wipe = FALSE, envir = .GlobalEnv)
rm(model, dtrain, dtest) # Not needed if wipe = TRUE
gc() # Not needed if wipe = TRUE

library(lightgbm)
Do whatever you want again with LightGBM without object clashing

lightgbm 35

lightgbm Train a LightGBM model

Description

Simple interface for training a LightGBM model.

Usage

lightgbm(
data,
label = NULL,
weight = NULL,
params = list(),
nrounds = 100L,
verbose = 1L,
eval_freq = 1L,
early_stopping_rounds = NULL,
save_name = "lightgbm.model",
init_model = NULL,
callbacks = list(),
...

)

Arguments

data a lgb.Dataset object, used for training. Some functions, such as lgb.cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

label Vector of labels, used if data is not an lgb.Dataset

weight vector of response values. If not NULL, will set to dataset

params a list of parameters. See the "Parameters" section of the documentation for a list
of parameters and valid values.

nrounds number of training rounds

verbose verbosity for output, if <= 0, also will disable the print of evaluation during
training

eval_freq evaluation output frequency, only effect when verbose > 0
early_stopping_rounds

int. Activates early stopping. When this parameter is non-null, training will
stop if the evaluation of any metric on any validation set fails to improve for
early_stopping_rounds consecutive boosting rounds. If training stops early,
the returned model will have attribute best_iter set to the iteration number of
the best iteration.

save_name File name to use when writing the trained model to disk. Should end in ".model".

https://lightgbm.readthedocs.io/en/latest/Parameters.html

36 lightgbm

init_model path of model file of lgb.Booster object, will continue training from this model

callbacks List of callback functions that are applied at each iteration.

... Additional arguments passed to lgb.train. For example

• valids: a list of lgb.Dataset objects, used for validation
• obj: objective function, can be character or custom objective function. Ex-

amples include regression, regression_l1, huber, binary, lambdarank,
multiclass, multiclass

• eval: evaluation function, can be (a list of) character or custom eval func-
tion

• record: Boolean, TRUE will record iteration message to booster$record_evals

• colnames: feature names, if not null, will use this to overwrite the names
in dataset

• categorical_feature: categorical features. This can either be a character
vector of feature names or an integer vector with the indices of the features
(e.g. c(1L, 10L) to say "the first and tenth columns").

• reset_data: Boolean, setting it to TRUE (not the default value) will trans-
form the booster model into a predictor model which frees up memory and
the original datasets

• boosting: Boosting type. "gbdt", "rf", "dart" or "goss".
• num_leaves: Maximum number of leaves in one tree.
• max_depth: Limit the max depth for tree model. This is used to deal with

overfit when #data is small. Tree still grow by leaf-wise.
• num_threads: Number of threads for LightGBM. For the best speed, set

this to the number of real CPU cores(parallel::detectCores(logical
= FALSE)), not the number of threads (most CPU using hyper-threading to
generate 2 threads per CPU core).

Value

a trained lgb.Booster

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

predict.lgb.Booster 37

predict.lgb.Booster Predict method for LightGBM model

Description

Predicted values based on class lgb.Booster

Usage

S3 method for class 'lgb.Booster'
predict(
object,
data,
start_iteration = NULL,
num_iteration = NULL,
rawscore = FALSE,
predleaf = FALSE,
predcontrib = FALSE,
header = FALSE,
reshape = FALSE,
params = list(),
...

)

Arguments

object Object of class lgb.Booster

data a matrix object, a dgCMatrix object or a character representing a path to a text
file (CSV, TSV, or LibSVM)

start_iteration

int or None, optional (default=None) Start index of the iteration to predict. If
None or <= 0, starts from the first iteration.

num_iteration int or None, optional (default=None) Limit number of iterations in the predic-
tion. If None, if the best iteration exists and start_iteration is None or <= 0, the
best iteration is used; otherwise, all iterations from start_iteration are used. If
<= 0, all iterations from start_iteration are used (no limits).

rawscore whether the prediction should be returned in the for of original untransformed
sum of predictions from boosting iterations’ results. E.g., setting rawscore=TRUE
for logistic regression would result in predictions for log-odds instead of proba-
bilities.

predleaf whether predict leaf index instead.

predcontrib return per-feature contributions for each record.

header only used for prediction for text file. True if text file has header

reshape whether to reshape the vector of predictions to a matrix form when there are
several prediction outputs per case.

38 predict.lgb.Booster

params a list of additional named parameters. See the "Predict Parameters" section of
the documentation for a list of parameters and valid values.

... Additional prediction parameters. NOTE: deprecated as of v3.3.0. Use params
instead.

Value

For regression or binary classification, it returns a vector of length nrows(data). For multiclass
classification, either a num_class * nrows(data) vector or a (nrows(data), num_class) dimen-
sion matrix is returned, depending on the reshape value.

When predleaf = TRUE, the output is a matrix object with the number of columns corresponding
to the number of trees.

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids

)
preds <- predict(model, test$data)

pass other prediction parameters
preds <- predict(

model,
test$data,
params = list(

predict_disable_shape_check = TRUE
)

)

https://lightgbm.readthedocs.io/en/latest/Parameters.html#predict-parameters
https://lightgbm.readthedocs.io/en/latest/Parameters.html#predict-parameters

readRDS.lgb.Booster 39

readRDS.lgb.Booster readRDS for lgb.Booster models

Description

Attempts to load a model stored in a .rds file, using readRDS

Usage

readRDS.lgb.Booster(file, refhook = NULL)

Arguments

file a connection or the name of the file where the R object is saved to or read from.

refhook a hook function for handling reference objects.

Value

lgb.Booster

Examples

library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 10L
, valids = valids
, early_stopping_rounds = 5L

)
model_file <- tempfile(fileext = ".rds")
saveRDS.lgb.Booster(model, model_file)
new_model <- readRDS.lgb.Booster(model_file)

40 saveRDS.lgb.Booster

saveRDS.lgb.Booster saveRDS for lgb.Booster models

Description

Attempts to save a model using RDS. Has an additional parameter (raw) which decides whether to
save the raw model or not.

Usage

saveRDS.lgb.Booster(
object,
file,
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL,
raw = TRUE

)

Arguments

object lgb.Booster object to serialize.

file a connection or the name of the file where the R object is saved to or read from.

ascii a logical. If TRUE or NA, an ASCII representation is written; otherwise (de-
fault), a binary one is used. See the comments in the help for save.

version the workspace format version to use. NULL specifies the current default version
(2). Versions prior to 2 are not supported, so this will only be relevant when
there are later versions.

compress a logical specifying whether saving to a named file is to use "gzip" compression,
or one of "gzip", "bzip2" or "xz" to indicate the type of compression to be
used. Ignored if file is a connection.

refhook a hook function for handling reference objects.

raw whether to save the model in a raw variable or not, recommended to leave it to
TRUE.

Value

NULL invisibly.

Examples

library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train

setinfo 41

dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 10L
, valids = valids
, early_stopping_rounds = 5L

)
model_file <- tempfile(fileext = ".rds")
saveRDS.lgb.Booster(model, model_file)

setinfo Set information of an lgb.Dataset object

Description

Set one attribute of a lgb.Dataset

Usage

setinfo(dataset, ...)

S3 method for class 'lgb.Dataset'
setinfo(dataset, name, info, ...)

Arguments

dataset Object of class lgb.Dataset

... other parameters (ignored)

name the name of the field to get

info the specific field of information to set

Details

The name field can be one of the following:

• label: vector of labels to use as the target variable

42 set_field

• weight: to do a weight rescale

• init_score: initial score is the base prediction lightgbm will boost from

• group: used for learning-to-rank tasks. An integer vector describing how to group rows to-
gether as ordered results from the same set of candidate results to be ranked. For example, if
you have a 100-document dataset with group = c(10, 20, 40, 10, 10, 10), that means that
you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the
second group, etc.

Value

the dataset you passed in

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)

labels <- lightgbm::getinfo(dtrain, "label")
lightgbm::setinfo(dtrain, "label", 1 - labels)

labels2 <- lightgbm::getinfo(dtrain, "label")
stopifnot(all.equal(labels2, 1 - labels))

set_field Set one attribute of a lgb.Dataset object

Description

Set one attribute of a lgb.Dataset

Usage

set_field(dataset, field_name, data)

S3 method for class 'lgb.Dataset'
set_field(dataset, field_name, data)

Arguments

dataset Object of class lgb.Dataset

field_name String with the name of the attribute to set. One of the following.

• label: label lightgbm learns from ;
• weight: to do a weight rescale ;

slice 43

• group: used for learning-to-rank tasks. An integer vector describing how
to group rows together as ordered results from the same set of candidate
results to be ranked. For example, if you have a 100-document dataset with
group = c(10, 20, 40, 10, 10, 10), that means that you have 6 groups,
where the first 10 records are in the first group, records 11-30 are in the
second group, etc.

• init_score: initial score is the base prediction lightgbm will boost from.

data The data for the field. See examples.

Value

The lgb.Dataset you passed in.

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)

labels <- lightgbm::get_field(dtrain, "label")
lightgbm::set_field(dtrain, "label", 1 - labels)

labels2 <- lightgbm::get_field(dtrain, "label")
stopifnot(all.equal(labels2, 1 - labels))

slice Slice a dataset

Description

Get a new lgb.Dataset containing the specified rows of original lgb.Dataset object

Usage

slice(dataset, ...)

S3 method for class 'lgb.Dataset'
slice(dataset, idxset, ...)

Arguments

dataset Object of class lgb.Dataset

... other parameters (currently not used)

idxset an integer vector of indices of rows needed

44 slice

Value

constructed sub dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

dsub <- lightgbm::slice(dtrain, seq_len(42L))
lgb.Dataset.construct(dsub)
labels <- lightgbm::get_field(dsub, "label")

Index

∗ datasets
agaricus.test, 3
agaricus.train, 4
bank, 4

agaricus.test, 3
agaricus.train, 4

bank, 4
barplot, 27

dim.lgb.Dataset, 5
dimnames.lgb.Dataset, 6
dimnames<-.lgb.Dataset

(dimnames.lgb.Dataset), 6

get_field, 8
getinfo, 7

lgb.convert_with_rules, 9
lgb.cv, 10, 11, 31, 35
lgb.Dataset, 11, 13, 35
lgb.Dataset.construct, 15
lgb.Dataset.create.valid, 16
lgb.Dataset.save, 18
lgb.Dataset.set.categorical, 18
lgb.Dataset.set.reference, 19
lgb.dump, 20
lgb.get.eval.result, 21
lgb.importance, 22, 27
lgb.interprete, 23, 28
lgb.load, 24
lgb.model.dt.tree, 25
lgb.plot.importance, 27
lgb.plot.interpretation, 28
lgb.save, 30
lgb.train, 31, 36
lgb.unloader, 33
lightgbm, 35

predict.lgb.Booster, 37

readRDS, 39
readRDS.lgb.Booster, 39

saveRDS.lgb.Booster, 40
set_field, 42
setinfo, 41
slice, 43

45

	agaricus.test
	agaricus.train
	bank
	dim.lgb.Dataset
	dimnames.lgb.Dataset
	getinfo
	get_field
	lgb.convert_with_rules
	lgb.cv
	lgb.Dataset
	lgb.Dataset.construct
	lgb.Dataset.create.valid
	lgb.Dataset.save
	lgb.Dataset.set.categorical
	lgb.Dataset.set.reference
	lgb.dump
	lgb.get.eval.result
	lgb.importance
	lgb.interprete
	lgb.load
	lgb.model.dt.tree
	lgb.plot.importance
	lgb.plot.interpretation
	lgb.save
	lgb.train
	lgb.unloader
	lightgbm
	predict.lgb.Booster
	readRDS.lgb.Booster
	saveRDS.lgb.Booster
	setinfo
	set_field
	slice
	Index

