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1 A Generalized Linear Mixed Model

Suppose that we observe a vector of data Y = (Y1, . . . , Yn) ⊂ Y ⊆ Rn corresponding to a probability

model that depends on a (p + l)-dimensional parameter vector θ, a known n × p �xed e�ects design

matrix X, a known n × k known random e�ects design matrix Z, and a k-dimensional vector of

unobservable random e�ects U . Also let U = (UT
1 , . . . , UT

l )T , and Z = (Z1 · · ·Zl) be decompositions

for the vector U and the matrix Z, respectively. We set
∑l

i ki = k so that Ui is a ki-dimensional vector

with and that Zi is a n× ki matrix.

Let θ consist of p �xed e�ects coe�cients β = (β1, . . . , βp)
T and l variance parameters, σ2 =

(σ2
1 , . . . , σ

2
l )

T , associated to the random e�ects U1, . . . , Ul, i.e. we assume that Ui has a known distri-

bution with variance that depends on the parameter σ2
i . Our �rst goal is to �nd estimators for the

(p+ l)-dimensional parameter θ in a space Θ ⊂ Rp+l.

We assume that the expected value of Yi can be written as a linear combination of the observable

and unobservable variables through a bijective �link� function g. Let X(i) and Z(i) be the ith rows of

the matrices X and Z, and let E(Yi|U = u) = µi. Then

g(µi) = Xi β + Z(i) u, for i = 1, . . . , n.

In general let µ = (µ1, . . . , µn) and let g(µ) denote the element-wise evaluation of g on the vector
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µ, then we can write the mean as

g(µ) = X β +

l∑
j=1

Z
(i)
j uj . (1)

Let hU (u) be the probability density function of U . We assume that conditional on U , the data

is generated from a probability model with probability mass function f(y|θ,X,Z, U) and that we can

write its likelihood function in terms of µ = g−1(X β +
∑l

i=1 Zi ui), and σ2. With the model de�ned

this way we can characterize it with the following likelihood functions:

1. A complete data likelihood function:

L(θ|y, u,X,Z) = f(y, u|θ,X,Z) = fY |U (y|θ,X,Z, u)hU (u|θ). (2)

2. And a marginal data likelihood function:

L(θ|y,X,Z) =

∫
Rk

f(y|θ,X,Z, U)hU (u|θ)du. (3)

Since the vector U is not observable we need to obtain the parameter estimates from 3. For the rest

of the discussion we will drop X and Z from L( · | · ) and f( · | · ) for clearer notation.

The mcemGLM package �ts models with the following types of data:

1. Bernoulli data. We say that Yi ∼ Bernoulli(pi), for i = 1, . . . , n, with 0 < pi < 1, if Yi has

probability mass function

f(yi) = pyi

i (1− pi)
1−yi , for yi = 0, 1.

With E(Yi) = pi, Var(Yi) = pi(1− pi), and g(pi) = log(pi/(1− pi)).

2. Poisson data. We say that Yi ∼ Poisson(µi) for i = 1, . . . , n, with µi > 0, if Yi has probability

mass function

f(yi) = e−µi
µyi

i

yi!
, for yi = 0, 1, 2, . . .

With E(Yi) = µi, Var(Yi) = µi, and g(µi) = log(µi).
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3. Negative binomial data. We say that Yi ∼ neg-binom(µi, α), for i = 1, . . . , n, with µi > 0, and

α > 0, if Yi has probability mass function

f(yi) =
Γ(yi + α)

Γ(α) yi!

(
α

µi + α

)α (
µi

µi + α

)yi

, for yi = 0, 1, 2, . . .

With E(Yi) = µi, Var(Yi) = µi + µ2
i /α, and g(µi) = log(µi).

The expectation and variance of Yi can be found easily by using iterated expectation with respect

to a random variable M distributed gamma with shape parameter α, and rate parameter α/µ

and setting Yi|M = m ∼ Poisson(m).

By using this de�nition of the distribution of Yi we can treat the parameter α as the amount

of over-dispersion with respect to the Poisson distribution. The value α = ∞ corresponds to no

over-dispersion. Notice that in this model, we need to estimate this extra parameter in addition

to β and σ2.

4. Gamma data. We say that Yi is distributed Gamma with shape parameter α and rate parameter

α/µi, for i = 1, . . . , n, with α > 0, and µi > 0, if Yi has probability density function

f(Yi) =

(
α

µi

)α

Γ(α)
yα−1e

− α
µi

yi , for yi > 0.

With E(Yi) = µi, and Var(Yi) = µ2
i /α.

This kind of response can be used to model variables that feature a variance proportional to

its squared mean. Similarly to the negative binomial data, α corresponds to an over-dispersion

parameter. The case with no over-dispersion, α = 1 corresponds to an exponential distribution

with rate parameter 1/µi.

In addition to a distribution for the observed data, we will specify a distribution on the random

e�ects U1, . . . , Ul. Let Ik be a k × k, Nk(a,B) a k-dimensional multivariate normal distribution with

mean vector a and covariance matrix B, and tk(ν, a,B), a k-dimensional multivariate t distribution

with ν degrees of freedom, location vector a, and scale matrix B. We will assume that the random

e�ects are normally or t distributed as follows:

1. Set Ui ∼ Nki
(0, σ2

i Iki
) for i = 1, . . . , l, with the Uis mutually independent.
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2. Set Ui ∼ tki
(νi, 0, σ

2
i Iki

) for i = 1, . . . , l, with the Uis mutually independent.

The package uses an MCEM algorithm. This is a generalization of the EM algorithm and share

the same basic idea. We start by assuming two sets of data: An �observed� dataset we call Y and a

second set of �missing� data U . In our context the observed data Y are the actual observations we

have measured, i.e., the success and failures for the logistic regression, the counts for the Poisson (and

negative binomial) regression, and measurements for the gamma regression. The missing data are the

unobservable random e�ects U which we have assumed either to be normally or t distributed.

The EM algorithm estimates the MLEs of a GLMM by an iterative algorithm. Let θ(t) denote the

current estimate at the ith iteration. Let

Q(θ, θ(t)) = E
[
log f(y, u|θ)|y, θ(t)

]
. (4)

The next value, θ(t+1), is found by maximizing 4 with respect to θ. The expectation in 4 is taken

with respect to f(u|y, θ). Hence if we want to obtain its closed form we need f(y, u|θ) and fY (y|θ).

The function fY (y|θ) is not available in closed form for the models we are considering, therefore we

need to resort to a numerical method to calculate this expectation.

In the models considered in this package we are not be able to calculate the Q function analytically.

However since what we are calculating an expectation we can approximate it by using Monte Carlo

simulation. The MCEM algorithm, introduced by [1], consists of the following steps.

1. Select an initial value θ(0) for the EM sequence.

2. At step t, obtain a sample ut,1, . . . , ut,mt , from U | θ(t), Y .

3. Obtain θ(t+1) by maximizing

Q̂t(θ) =
1

mt

mt∑
j=1

log f(y, ut,j |θ) (5)

with respect to θ.

4. Repeat 2 and 3 until a convergence criterion is reached or a maximum number of iterations has

been done.
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The key di�erence between EM and MCEM is that in the expectation step we approximate the Q

function using Monte Carlo simulation through the Q̂ function de�ned in 5. This modi�cation turns

the integration problem into a sampling problem. Now we are faced with the task of obtaining a

sample from the conditional distribution U | θ(t), Y .

To �nd the MLE of a speci�ed model, the main function of mcemGLM package runs through the

following steps:

1. Choose θ(1), the starting value for the EM step. The default method is to �t a model without

random e�ects and use the MLEs of the �xed coe�cients as starting values for β. For σ we

set a prede�ned value of 4. In the case of a negative binomial model, MLEs from a Poisson

model are used with the over-dispersion parameter set to 100. User-speci�ed initial values are

also supported.

2. At step t, obtain the sample ut,1, . . . , ut,m. This is done by using a Metropolis�Hastings algorithm

that uses a multivariate normal random variable as its proposal. The standard deviation vector

of the proposal distribution is chosen by performing an auto-tuning step before the �rst iteration.

After each iteration the rejection rate of the chain is checked and if it is either too large (> 0.40)

or to small (< 0.15) the package performs an auto-tuning step before the next iteration.

3. After obtaining the sample, 5 is maximized with respect to the parameters using the trust

function from the trust package. The maximizers are set as the current value of the estimator

of the MLEs.

4. Steps 2 and 3 are repeated until the condition

max
i

{
|θ(t)i − θ

(t−1)
i |

|θ(t)i |+ δ

}
< ϵ (6)

for speci�ed values of δ and ϵ is met three consecutive times or a maximum number of iterations

have been performed. This is a stopping rule recommended by [2].

The default values in the package are δ = 0.025 and ϵ = 0.02 but these can be easily changed by

the user. The default number of iterations is 40 and this value can also be changed by the user.
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5. After terminating the iterative process an additional sample from the conditional distribution of

U |Y to estimate Fisher's information matrix.

One condition for convergence of the MCEM algorithm is that
∑∞

t=0 m
−1
t < ∞. However there is

no consensus about a best way to approach this. The package starts by choosing a starting Monte

Carlo sample size m1 (with default value m1 = 3000) and this is increased by a multiplicative factor

f > 1 at each step of the algorithm, i.e. mt = f · mt−1. Common experience is that at the start of

algorithm small sample sizes are adequate at the beginning of the algorithm but larger sample sizes

are required towards the end. Our approach is to increase f at two times during the algorithm. First

after 15 steps we go from 1.025 to 1.2. After another 15 iterations or if we have met condition 6 twice

we increase it to 1.5.

One issue that can arise with a �tted model is that it is possible that the Monte Carlo sample size

at the last iteration of the algorithm to be inadequate to calculate the observed Fisher's information

matrix due to Monte Carlo error [3, 2, 4]. In this case the package will return a warning and will

suggest the user to run the algorithm for longer. The package o�ers functionality to continue the

MCEM procedure from an already �tted model.

The last MCMC iteration of the algorithm is saved and returned to help with convergence assess-

ment and can be used to predict the random e�ects. In addition to the sample from the distribution

U |Y , u1, . . . , umT
, the package also returns the evaluated complete log-likelihood function for each ui

which can also be used to assess convergence for MCMC step.

In addition to MLE estimation, the package also o�ers Wald tests for model terms, as well as

contrast, prediction, and residual estimation. These functions are similar in use to R's built in linear

model functionality. Now we turn and look at examples of the use of the package for each type of

supported model.

2 Using the mcemGLM package

2.1 Bernoulli model example

> require(mcemGLM)

> data("salamander")
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> summary(salamander)

Cross Female Male Mate

RR:90 1 : 6 1 : 6 Min. :0.000

RW:90 2 : 6 2 : 6 1st Qu.:0.000

WR:90 3 : 6 3 : 6 Median :1.000

WW:90 4 : 6 4 : 6 Mean :0.525

5 : 6 5 : 6 3rd Qu.:1.000

6 : 6 6 : 6 Max. :1.000

(Other):324 (Other):324

Our �rst example comes from [5]. The data consists of three experiments, each consisting in

salamander mating in two closed groups. Both groups contained 10 males and females each with �ve

species �R� and �ve species �W�. Each experiment resulted in 120 binary observations indicating which

matings were successful and which were not.

Let yij be the indicator of a successful mating between females i and male j for i, j = 1, . . . , 60.

Since the salamanders were divided in groups only 360 of these pairs are of interest. Let um and

uf be the vectors of random e�ects for males and females. Each component corresponds to a single

salamander, therefore each of these is a 60× 1 vector. The conditional mean can be written as

µij = log

(
pij

1− pij

)
= xijβ + zf,i uf + zTm,j um.

Where xij is a 1× 4 row vector indicating the type of cross, β = (βRR, βRW , βWR, βWW ), zTf,i a 60× 1

row vector indicating the female involved in the cross, and zm,j a 60×1 row vector indicating the male

involved in the cross.

We can �t the model as

> fitBernoulli <- mcemGLMM(fixed = Mate ~ 0+Cross,

+ random = list(~ 0+Female, ~ 0+Male),

+ data = salamander,

+ family = "bernoulli",

+ vcDist = "normal")
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These are the basic arguments to �t model:

� The fixed argument speci�es the �xed e�ects. Since we want to estimate the e�ects for each

type of cross we specify that we do not wish to �t an intercept in the model.

� The random argument speci�es the random e�ects. In case of more than one random e�ect these

have to be in a list. Each random e�ect must be speci�ed to not have an intercept.

� The data arguments states the name of the data frame that contains the data.

� The family argument speci�es the type of response we wish to �t.

� The vcDist argument speci�es the distribution of the random e�ects.

Given a �tted model we can look at the MLEs, standard errors, and default hypothesis tests with

the summary command.

> summary(fitBernoulli)

Call:

mcemGLMM(fixed = Mate ~ 0 + Cross, random = list(~0 + Female,

~0 + Male), data = salamander, family = "bernoulli", vcDist = "normal")

Two sided Wald tests for fixed effects coefficients:

Estimate Std. Error z value Pr(>|z|)

CrossRR 1.0199914 0.4192513 2.4328877 0.01497895

CrossRW 0.3247652 0.3973106 0.8174089 0.41369480

CrossWR -1.9538935 0.4806576 -4.0650423 0.00004802

CrossWW 1.0010712 0.4248659 2.3562050 0.01846273

One sided Wald tests for variance components:

Estimate Std. Error z value Pr(>z)
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Female 1.409038 0.6309231 2.233296 0.01276472

Male 1.259087 0.5867664 2.145807 0.01594420

This command displays the original call used to �t the model, and tables of point estimates, standard

errors, and Wald tests for the �xed e�ects and variance components respectively.

We can test multiple contrasts with the contrasts.mcemGLMM command. To do so we �rst set up a

contrast matrix. For example if we want to compare all possible pairs of means for each mating groups

the matrix is

> ctr0 <- matrix(c(1, -1, 0, 0,

+ 1, 0, -1, 0,

+ 1, 0, 0, -1,

+ 0, 1, -1, 0,

+ 0, 1, 0, -1,

+ 0, 0, 1, -1), 6, 4, byrow = TRUE)

> rownames(ctr0) <- c("RR - RW", "RR - WR", "RR - WW",

+ "RW - WR", "RW - WW", "WR - WW")

>

Once we have the contrast matrix we use the contrasts.mcemGLMM command. The �rst argument

is the mcemGLMM object that contains the model and the second argument the contrast matrix to be

tested.

> contrasts.mcemGLMM(fitBernoulli, ctr0)

Estimate Std. Err. Wald Adj. p-value

RR - RW 0.69522622 0.4815769 2.084112082 8.930325e-01

RR - WR 2.97388491 0.5792061 26.362225357 1.698131e-06

RR - WW 0.01892017 0.5854869 0.001044277 1.000000e+00

RW - WR 2.27865868 0.6245109 13.313077276 1.581369e-03

RW - WW -0.67630605 0.4889340 1.913313109 9.995742e-01

WR - WW -2.95496474 0.5877126 25.279854177 2.975165e-06

The table returns the contrast estimates, standard errors and Bonferroni adjusted p-values.
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We have access to the residuals with the residuals command. The arguments needed are the

mcemGLMM object that contains the model and type, a string that speci�es the type of residual, i.e.,

deviance residuals (default value, type = `deviance') or Pearson (type = `pearson') residuals. 2.1

shows the deviance residuals for each observation and grouped by cross type.
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Figure 1: Left: Deviance residuals for each observation. Right: Deviance residuals grouped by cross
type.

We can obtain mean predictions at the population level with the predict command. This command

can take three arguments, the �rst argument is the mcemGLMM object that contains the model. The

second argument, newdata is a list with vectors corresponding to the values of �xed e�ects where the

predictions will be evaluated. If this argument is not provided the function will return a prediction for

each observation in the model. The third argument type is a string that speci�es the type of prediction

to be returned, i.e., a link function evaluation (type = `link') or a prediction on the response mean

(type = `response').

> predict(fitBernoulli, newdata=list(Cross = c("RR", "RW", "WR", "WW")),

+ type = "link", se.fit = TRUE)

Estimate SE

[1,] 1.0199914 0.1757717

[2,] 0.3247652 0.1578557

[3,] -1.9538935 0.2310317

[4,] 1.0010712 0.1805111
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> predict(fitBernoulli, newdata=list(Cross = c("RR", "RW", "WR", "WW")),

+ type = "response", se.fit = TRUE)

Estimate SE

[1,] 0.7349709 0.006669239

[2,] 0.5804851 0.009361322

[3,] 0.1241294 0.002730870

[4,] 0.7312691 0.006970973

The �link� and �response� predictions correspond to the value of the link function and the probability

of success respectively for the value of the random e�ects when the random e�ects are set equal to

zero. If the argument se.fit is set to TRUE, the function will also return standard errors for the mean

predictions.

We can obtain random e�ect predictions ranef.mcemGLMM command. The output of this command

is not shown for space concerns but 2.1 shows Q-Q plots for the two variance components.
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Figure 2: Left: Q-Q plot for Female random e�ects. Right: Q-Q plot for Male random e�ects.

We can assess convergence of the MCEM iterations by looking at trace plots of the EM sequence

estimators. The �eld mcemEST contains a matrix with the MLE estimates at each iteration of the

MCEM algorithm. 2.1 shows trace plots for all the parameters estimated in the model.

We can also obtain a trace plot for the value of Q̂ function at each iteration, the �eld QfunVal

contains these values. 2.1 shows a trace plot for the values of this estimate across the EM iterations.
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Figure 3: Trace plots for the EM sequences of each parameter.

To assess convergence at the MCMC level we can use the sample obtained at the last EM iteration

of U |Y . In this problem we have 60 di�erent chains so it is not feasible to look at trace plots of all of

them. However it is recommended to the user to look at trace plots and autocorrelation functions of at

least a handful of them. In addition to the sample from U |Y , we can �nd the complete log-likelihood

function evaluated at each observation of the U |Y chain in the �eld QfunMCMC. This can also be useful

for convergence assessment since the maximization step of the algorithm is done on this function. 2.1

shows these assessment plots for the �rst female subject and the Q̂ function.

2.2 Negative binomial model example

The second data set by [6], comes from an experiment with i = 1, . . . , 59 epilepsy patients. Each of the

patients was assigned to a control group or a treatment group. The experiment recorded the number

of seizures experienced by each patient over four two-week periods. The experiment also recorded a

baseline count of the number of seizures the patients had experienced during the previous eight weeks.

In their analysis they used the following covariates.

� Base: The logarithm of baseline/4.

� Age: The logarithm of the patient's age in years.

� Trt: An indicator variable for the treatment group.
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EM iteration
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Figure 4: Trace plot for the Q̂ function value at each EM iteration.

� V4: An indicator variable for the fourth time period.

This data is also analyzed in [7]. One of their models replaces the variable V4 with the variable

Visit, de�ned as (j − 2.5)/5 for j = 1, 2, 3, 4 where each value corresponds to one of the four time

periods. The analysis of [6] consists in a multiplicative model, while the analysis of [7] consists a

Poisson loglinear model. [8] note that the Poisson loglinear model fails to account for over-dispersion

and consider the use of a negative binomial model. This last model is the one we �t here in this

example.

Let yij be the count for the ith subject at the jth period. Then we can write the model as

logµij = β0 + β1Base+ β2Trt+ β3Base× Trt+ β4Age+ β5Visit+ ui.

We will �t this model using t distributed random e�ects.

> fitNegbin <- mcemGLMM(fixed = count ~ base * group + age + visit,

+ random = list( ~ 0 + id),

+ data = epilepsy,

+ family = "negbinom",

+ vcDist = "t",

+ df = 10)
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MC iteration
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Figure 5: Top: Trace plot and autocorrelation function for the �rst female subject. Bottom: Trace
plot and autocorrelation function for the Q̂ function function.

The argument df speci�es the degrees of freedom for the t distribution. The summary of the model is

> summary(fitNegbin)

Call:

mcemGLMM(fixed = count ~ base * group + age + visit, random = list(~0 +

id), data = epilepsy, family = "negbinom", vcDist = "t",

df = 10)

Two sided Wald tests for fixed effects coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9920524 1.1068225 -0.8963066 0.37008903

base 0.8950982 0.1342273 6.6685284 0.00000000

group -0.8754207 0.4003589 -2.1865897 0.02877249
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age 0.3690062 0.3200139 1.1530942 0.24887171

visit -0.2578519 0.1668548 -1.5453667 0.12225760

base:group 0.3016896 0.2065637 1.4605162 0.14414825

Overdispersion parameter alpha:

Estimate Std. Error

alpha 7.385486 1.795523

One sided Wald tests for variance components:

Estimate Std. Error z value Pr(>z)

id 0.2190529 0.1140393 1.920855 0.027375

3 Options for the mcemGLM package

The help �le of the mcemGLMM function lists other possible options that can be passed through the

controlEM argument. The complete list of options is:

EMit: Maximum number of EM iterations.

MCit: Initial number of Monte Carlo iterations for the MCMC step.

MCf: Factor in which the MC iterations increase in each EM iteration.

verb: Logical value. If set to TRUE, at each EM iteration the function will print convergence informa-

tion and a trace plot for one of the random e�ects. This can be useful to assess the performance

and tuning of the algorithm but it can impact the actual running time.

MCsd: Initial standard deviation for the proposal density of the MCMC step. If zero (default) an

auto-tuning step will be performed.

EMdelta: constant for the EM error assessment, see 6.
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EMepsilon: constant for the EM error assessment, see 6.

The object returned by the mcemGLMM function has the following �elds:

mcemEST: A matrix with the value of the maximum likelihood estimators at the end of each EM

step.

iMatrix: Fisher's information matrix.

QfunVal The of the Q function (up to a constant.)

QfunMCMC: The Q function evaluated at a sample from the distribution of U |Y, θ̂n.

rande�: A sample from the distribution of U |Y, θ̂n.

y: The vector of observations.

x: The design matrix for the �xed e�ects.

z: The design matrix for the random e�ects.

EMerror The relative error at the last iteration, see 6.

MCsd: The last value for the standard deviation of the proposal distribution of the MCMC step.

call: The original call used to �t the function.
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