To install the stable version of mcglm
, use
devtools::install_git()
. For more information, visit mcglm/README.
library(devtools)
install_git("wbonat/mcglm")
library(mcglm)
packageVersion("mcglm")
The mcglm
package implements the multivariate covariance
generalized linear models (McGLMs) proposed by Bonat and J\(\o\)rgensen (2016). In this introductory
vignette we employed the mcglm
package for fitting a set of
generalized linear models and compare our results with the ones obtained
by ordinary R
functions like lm
and
glm
.
Consider the count data obtained in Dobson (1990).
## Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
## treatment outcome counts
## 1 1 1 18
## 2 1 2 17
## 3 1 3 15
## 4 2 1 20
## 5 2 2 10
## 6 2 3 20
## 7 3 1 25
## 8 3 2 13
## 9 3 3 12
Ordinary analysis using quasi-Poisson model.
fit.glm <- glm(counts ~ outcome + treatment, family = quasipoisson)
The orthodox quasi-Poisson model is obtained by specifying the
variance function as tweedie
and fix the power parameter at
\(1\). Since, we are dealing with
independent data, the matrix linear predictor is composed of a diagonal
matrix.
require(mcglm)
require(Matrix)
# Matrix linear predictor
Z0 <- mc_id(d.AD)
fit.qglm <- mcglm(linear_pred = c(counts ~ outcome + treatment),
matrix_pred = list("resp1" = Z0),
link = "log", variance = "tweedie", data = d.AD,
control_algorithm = list(verbose = FALSE,
method = "chaser",
tuning = 0.8))
## Automatic initial values selected.
Comparing regression parameter estimates and standard errors.
cbind("GLM" = coef(fit.glm),
"McGLM" = coef(fit.qglm, type = "beta")$Estimates)
## GLM McGLM
## (Intercept) 3.044522e+00 3.044522e+00
## outcome2 -4.542553e-01 -4.542553e-01
## outcome3 -2.929871e-01 -2.929871e-01
## treatment2 1.337909e-15 -1.751522e-16
## treatment3 1.421085e-15 -6.040927e-17
cbind("GLM" = sqrt(diag(vcov(fit.glm))),
"McGLM" = coef(fit.qglm, type = "beta", std.error = TRUE)$Std.error)
## GLM McGLM
## (Intercept) 0.1943517 0.1943517
## outcome2 0.2299154 0.2299154
## outcome3 0.2191931 0.2191931
## treatment2 0.2274467 0.2274467
## treatment3 0.2274467 0.2274467
Consider the example from Venables & Ripley (2002, p.189). The
response variable is continuous for which we can assume the Gaussian
distribution. In this example, we exemplify the use of the
offset
argument.
# Loading the data set
utils::data(anorexia, package = "MASS")
# GLM fit
anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian, data = anorexia)
# McGLM fit
Z0 <- mc_id(anorexia)
fit.anorexia <- mcglm(linear_pred = c(Postwt ~ Prewt + Treat),
matrix_pred = list(Z0),
offset = list(anorexia$Prewt),
power_fixed = TRUE, data = anorexia,
control_algorithm = list("correct" = TRUE))
## Automatic initial values selected.
Comparing parameter estimates and standard errors.
# Estimates
cbind("McGLM" = round(coef(fit.anorexia, type = "beta")$Estimates,5),
"GLM" = round(coef(anorex.1),5))
## McGLM GLM
## (Intercept) 49.77111 49.77111
## Prewt -0.56554 -0.56554
## TreatCont -4.09707 -4.09707
## TreatFT 4.56306 4.56306
# Standard errors
cbind("McGLM" = sqrt(diag(vcov(fit.anorexia))),
"GLM" = c(sqrt(diag(vcov(anorex.1))),NA))
## McGLM GLM
## beta10 13.3909581 13.3909581
## beta11 0.1611824 0.1611824
## beta12 1.8934926 1.8934926
## beta13 2.1333359 2.1333359
## tau11 6.1832255 NA
Consider the following data set from McCullagh & Nelder (1989, pp.300-2). It is an example of Gamma regression model.
clotting <- data.frame(
u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))
Analysis using generalized linear models glm
function in
R
.
fit.lot1 <- glm(lot1 ~ log(u), data = clotting,
family = Gamma(link = "inverse"))
fit.lot2 <- glm(lot2 ~ log(u), data = clotting,
family = Gamma(link = "inverse"))
The code below exemplify how to use the control_initial
argument for fixing the power parameter at \(p
= 2\).
list_initial = list()
list_initial$regression <- list(coef(fit.lot1))
list_initial$power <- list(c(2))
list_initial$tau <- list(summary(fit.lot1)$dispersion)
list_initial$rho = 0
The control_initial
argument should be a named list with
initial values for all parameters involved in the model. Note that, in
this example we used the parameter estimates from the glm
fit as initial values for the regression and dispersion parameters. The
power parameter was fixed at \(p = 2\),
since we want to fit Gamma regression models. In that case, we have only
one response variable, but the initial value for correlation parameter
\(\rho\) should be specified.
Z0 <- mc_id(clotting)
fit.lot1.mcglm <- mcglm(linear_pred = c(lot1 ~ log(u)),
matrix_pred = list(Z0),
link = "inverse", variance = "tweedie",
data = clotting,
control_initial = list_initial)
Comparing parameter estimates and standard errors.
# Estimates
cbind("mcglm" = round(coef(fit.lot1.mcglm, type = "beta")$Estimates,5),
"glm" = round(coef(fit.lot1),5))
## mcglm glm
## (Intercept) -0.01655 -0.01655
## log(u) 0.01534 0.01534
# Standard errors
cbind("mcglm" = sqrt(diag(vcov(fit.lot1.mcglm))),
"glm" = c(sqrt(diag(vcov(fit.lot1))),NA))
## mcglm glm
## beta10 0.0009275501 0.0009275466
## beta11 0.0004149601 0.0004149596
## tau11 0.0005340030 NA
Initial values for the response variable lot2
list_initial$regression <- list("resp1" = coef(fit.lot2))
list_initial$tau <- list("resp1" = c(var(1/clotting$lot2)))
Note that, since the list_initial
object already have
all components required, we just modify the entries
regression and tau.
fit.lot2.mcglm <- mcglm(linear_pred = c(lot2 ~ log(u)),
matrix_pred = list(Z0),
link = "inverse", variance = "tweedie",
data = clotting,
control_initial = list_initial)
Comparing parameter estimates and standard errors.
# Estimates
cbind("mcglm" = round(coef(fit.lot2.mcglm, type = "beta")$Estimates,5),
"glm" = round(coef(fit.lot2),5))
## mcglm glm
## (Intercept) -0.02391 -0.02391
## log(u) 0.02360 0.02360
# Standard errors
cbind("mcglm" = sqrt(diag(vcov(fit.lot2.mcglm))),
"glm" = c(sqrt(diag(vcov(fit.lot2))),NA))
## mcglm glm
## beta10 0.0013215825 0.0013264571
## beta11 0.0005746644 0.0005767841
## tau11 0.0002649003 NA
The main contribution of the mcglm
package is that it
easily fits multivariate regression models. For example, for the
clotting
data a bivariate Gamma model is a suitable
choice.
# Initial values
list_initial = list()
list_initial$regression <- list(coef(fit.lot1), coef(fit.lot2))
list_initial$power <- list(c(2),c(2))
list_initial$tau <- list(c(0.00149), c(0.001276))
list_initial$rho = 0.80
# Matrix linear predictor
Z0 <- mc_id(clotting)
# Fit bivariate Gamma model
fit.joint.mcglm <- mcglm(linear_pred = c(lot1 ~ log(u), lot2 ~ log(u)),
matrix_pred = list(Z0, Z0),
link = c("inverse", "inverse"),
variance = c("tweedie", "tweedie"),
data = clotting,
control_initial = list_initial,
control_algorithm = list("correct" = TRUE,
"method" = "chaser",
"tuning" = 0.1,
"max_iter" = 1000))
summary(fit.joint.mcglm)
## Call: lot1 ~ log(u)
##
## Link function: inverse
## Variance function: tweedie
## Covariance function: identity
## Regression:
## Estimates Std.error Z value Pr(>|z|)
## (Intercept) -0.01655946 0.0009226782 -17.94716 5.050529e-72
## log(u) 0.01534500 0.0004128619 37.16739 2.296479e-302
##
## Dispersion:
## Estimates Std.error Z value Pr(>|z|)
## 1 0.002422623 0.0005447457 4.447255 8.697457e-06
##
## Call: lot2 ~ log(u)
##
## Link function: inverse
## Variance function: tweedie
## Covariance function: identity
## Regression:
## Estimates Std.error Z value Pr(>|z|)
## (Intercept) -0.02385457 0.0013224002 -18.03884 9.654067e-73
## log(u) 0.02357948 0.0005747444 41.02603 0.000000e+00
##
## Dispersion:
## Estimates Std.error Z value Pr(>|z|)
## 1 0.001800727 0.0002773475 6.492676 8.432517e-11
##
## Correlation matrix:
## Parameters Estimates Std.error Z value Pr(>|z|)
## 1 rho12 0.7262051 NaN NaN NaN
##
## Algorithm: chaser
## Correction: TRUE
## Number iterations: 47
We also can easily change the link function. The code below fit a
bivariate Gamma model using the log
link function.
# Initial values
list_initial = list()
list_initial$regression <- list(c(log(mean(clotting$lot1)),0),
c(log(mean(clotting$lot2)),0))
list_initial$power <- list(c(2), c(2))
list_initial$tau <- list(c(0.023), c(0.024))
list_initial$rho = 0
# Fit bivariate Gamma model
fit.joint.log <- mcglm(linear_pred = c(lot1 ~ log(u), lot2 ~ log(u)),
matrix_pred = list(Z0,Z0),
link = c("log", "log"),
variance = c("tweedie", "tweedie"),
data = clotting,
control_initial = list_initial)
summary(fit.joint.log)
## Call: lot1 ~ log(u)
##
## Link function: log
## Variance function: tweedie
## Covariance function: identity
## Regression:
## Estimates Std.error Z value Pr(>|z|)
## (Intercept) 5.5032302 0.19030106 28.91855 6.979582e-184
## log(u) -0.6019177 0.05530784 -10.88304 1.388474e-27
##
## Dispersion:
## Estimates Std.error Z value Pr(>|z|)
## 1 0.02435442 0.004609548 5.283472 1.267584e-07
##
## Call: lot2 ~ log(u)
##
## Link function: log
## Variance function: tweedie
## Covariance function: identity
## Regression:
## Estimates Std.error Z value Pr(>|z|)
## (Intercept) 4.9187575 0.18554086 26.51037 7.359390e-155
## log(u) -0.5674356 0.05392437 -10.52280 6.782394e-26
##
## Dispersion:
## Estimates Std.error Z value Pr(>|z|)
## 1 0.02315125 0.00491656 4.708832 2.491407e-06
##
## Correlation matrix:
## Parameters Estimates Std.error Z value Pr(>|z|)
## 1 rho12 0.9807089 NaN NaN NaN
##
## Algorithm: chaser
## Correction: TRUE
## Number iterations: 11
Consider the example menarche
from the MASS
R
package.
require(MASS)
data(menarche)
data <- data.frame("resp" = menarche$Menarche/menarche$Total,
"Ntrial" = menarche$Total,
"Age" = menarche$Age)
Logistic regression model.
glm.out = glm(cbind(Menarche, Total-Menarche) ~ Age,
family=binomial(logit), data=menarche)
The same fitted by mcglm
function.
# Matrix linear predictor
Z0 <- mc_id(data)
fit.logit <- mcglm(linear_pred = c(resp ~ Age),
matrix_pred = list(Z0),
link = "logit", variance = "binomialP",
Ntrial = list(data$Ntrial), data = data)
## Automatic initial values selected.
Comparing parameter estimates and standard errors.
# Estimates
cbind("GLM" = coef(glm.out),
"McGLM" = coef(fit.logit, type = "beta")$Estimates)
## GLM McGLM
## (Intercept) -21.226395 -21.226395
## Age 1.631968 1.631968
# Standard error
cbind("GLM" = c(sqrt(diag(vcov(glm.out))),NA),
"McGLM" = sqrt(diag(vcov(fit.logit))))
## GLM McGLM
## (Intercept) 0.77068466 0.75151473
## Age 0.05895308 0.05748669
## NA 0.09310035
We can estimate a more flexible model using the extended binomial variance function.
fit.logit.power <- mcglm(linear_pred = c(resp ~ Age),
matrix_pred = list(Z0),
link = "logit", variance = "binomialP",
Ntrial = list(data$Ntrial),
power_fixed = FALSE, data = data)
## Automatic initial values selected.
summary(fit.logit.power)
## Call: resp ~ Age
##
## Link function: logit
## Variance function: binomialP
## Covariance function: identity
## Regression:
## Estimates Std.error Z value Pr(>|z|)
## (Intercept) -21.378210 0.75681833 -28.24748 1.528506e-175
## Age 1.643005 0.05784811 28.40205 1.907701e-177
##
## Power:
## Estimates Std.error Z value Pr(>|z|)
## 1 1.071814 0.0599217 17.88691 1.491508e-71
##
## Dispersion:
## Estimates Std.error Z value Pr(>|z|)
## 1 1.199726 0.2431969 4.933146 8.091577e-07
##
## Algorithm: chaser
## Correction: TRUE
## Number iterations: 9