Package 'mdsdt'

October 13, 2022

Version 1.2 Date 2016-03-11 Title Functions for Analysis of Data with General Recognition Theory Author Robert X.D. Hawkins <rxdh@stanford.edu>, Joe Houpt <joseph.houpt@wright.edu>, Noah Silbert <noahpoah@gmail.com>, Leslie Blaha <Leslie.Blaha@wpafb.af.mil>, Thomas D. Wickens <twickens@socrates.berkeley.edu> Maintainer Robert X.D. Hawkins <rxdh@stanford.edu> **Depends** R (>= 1.8.0), ellipse, mnormt, polycor Description Tools associated with General Recognition Theory (Townsend & Ashby, 1986), including Gaussian model fitting of 2x2 and more general designs, associated plotting and model comparison tools, and tests of marginal response invariance and report independence. License GPL (>= 2) Collate 'grt-data.R' 'grt_base.R' NeedsCompilation no

Repository CRAN

Date/Publication 2016-03-12 09:57:29

R topics documented:

anova.grt	 	
fit.grt	 	
GOF	 	3
mriTest	 · · · · · · · · · · · ·	4
plot.grt	 	5
print.grt	 	6
riTest	 	6
silbert09a	 	7
silbert09b	 	8

fit.grt

silbert12	8
summary.grt	9
thomas01a	9
thomas01b	10
thomas15a	10
thomas15b	11
wo89xt	12
	13

Index

anova.grt	Compare	nested	GRT	models
0				

Description

Conducts a likelihood-ratio G-test on nested GRT models. Currently only accepts pairs of nested models, not arbitrary sequences.

Usage

S3 method for class 'grt'
anova(object, ...)

Arguments

object	A fitted GRT model returned by fit.grt
	A larger GRT model, with model1 nested inside

fit.grt

Fit full Gaussian GRT model

Description

Fit the mean and covariance of a bivariate Gaussian distribution for each stimulus class, subject to given constraints. Standard case uses confusion matrix from a 2x2 full-report identification experiment, but will also work in designs with N levels of confidence associated with each dimension (e.g. in Wickens, 1992).

Usage

```
fit.grt(freq, PS_x = FALSE, PS_y = FALSE, PI = "none", method = NA)
```

GOF

Arguments

freq	Can be entered in two ways: 1) a 4x4 confusion matrix containing counts, with each row corresponding to a stimulus and each column corresponding to a response. row/col order must be a_1b_1, a_1b_2, a_2b_1, a_2b_2. 2) A three-way 'xtabs' table with the stimuli as the third index and the NxN possible responses as the first two indices.
PS_x	if TRUE, will fit model with assumption of perceptual separability on the x dimension (FALSE by default)
PS_y	if TRUE, will fit model with assumption of perceptual separability on the y dimension (FALSE by default)
PI	'none' by default, imposing no restrictions and fitting different correlations for all distributions. If 'same_rho', will constrain all distributions to have same correlation parameter. If 'all', will constain all distribution to have 0 correlation.
method	The optimization method used to fit the Gaussian model. Newton-Raphson gra- dient descent by default, but may also specify any method available in optim, e.g. "BFGS".

Value

An S3 grt object

Examples

```
# Fit unconstrained model
data(thomas01b);
grt_obj <- fit.grt(thomas01b);
# Use standard S3 generics to examine
print(grt_obj);
summary(grt_obj);
plot(grt_obj);
# Fit model with assumption of perceptual separability on both dimensions
grt_obj_PS <- fit.grt(thomas01b, PS_x = TRUE, PS_y = TRUE);
summary(grt_obj_PS);
plot(grt_obj_PS);
plot(grt_obj_PS);
# Compare models
GOF(grt_obj, teststat = 'AIC');
GOF(grt_obj_PS, teststat = 'AIC');
```

GOF

Conduct goodness of fit tests

Description

Includes a number of common goodness of fit measures to compare different GRT models.

Usage

GOF(grtMod, teststat = "X2", observed = NULL)

Arguments

grtMod	a grt object
teststat	a string indicating which statistic to use in the test. May be one of the following:
	• 'X2' for a chi-squared test
	• 'G2' for a likelihood-ratio G-test
	• 'AIC'for Akaike information criterion score
	• 'AIC.c' for the AIC with finite sample size correction
	'BIC' for Bayesian information criterion score
observed	optional, to provide a matrix of observed frequencies if no fit conducted.

Examples

```
data(thomas01a)
fit1 <- fit.grt(thomas01a)
fit2 <- fit.grt(thomas01a, PI = 'same_rho')
# Take the model with the lower AIC
GOF(fit1, teststat = 'AIC')
GOF(fit2, teststat = 'AIC')</pre>
```

mriTest

Test marginal response invariance

Description

Tests marginal response invariance at both levels on each dimension

Usage

mriTest(x)

Arguments

х

four-by-four confusion matrix

Details

If the p value for either level of the x dimension is significant, we are justified in rejecting the null hypothesis of perceptual separability on the x dimension. Similarly for the y dimension.

The estimator is derived in a footnote of Thomas (2001).

plot.grt

Value

data frame containing z-scores and p-values for all four tests

Source

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological review, 93(2), 154.

Thomas, R. D. (2001).Perceptual interactions of facial dimensions in speeded classification and identification. Perception & Psychophysics, 63(4), 625–650.

Silbert, N. H., & Thomas, R. D. (2013). Decisional separability, model identification, and statistical inference in the general recognition theory framework. Psychonomic bulletin & review, 20(1), 1-20.

Examples

data(thomas01a)
mriTest(thomas01a)

plot.grt

Plot the object returned by fit.grt

Description

Plot the object returned by fit.grt

Usage

```
## S3 method for class 'grt'
plot(x, level = 0.5, xlab = NULL, ylab = NULL,
    marginals = F, main = "", plot.mu = T, ...)
```

Arguments

х	a grt object, as returned by fit.grt
level	number between 0 and 1 indicating which contour to plot (defaults to .5)
xlab	optional label for the x axis (defaults to NULL)
ylab	optional label for the y axis (defaults to NULL)
marginals	Boolean indicating whether or not to plot marginals (only available for $2x2$ model; defaults to FALSE)
main	string to use as title of plot (defaults to empty string)
plot.mu	Boolean indicating whether or not to plot means (defaults to T)
	Arguments to be passed to methods, as in generic plot function

print.grt

Description

Print the object returned by fit.grt

Usage

S3 method for class 'grt'
print(x, ...)

Arguments

х	An object returned by fit.grt
	further arguments passed to or from other methods, as in the generic print func- tion

riTest	Test report independence	

Description

Test report independence for each stimulus response distribution

Usage

riTest(x)

Arguments

х

four-by-four confusion matrix

Details

If p value is sufficiently low, we're justified in rejecting the null hypothesis of sampling within that factor. p values come from a chi-squared test on the confusion matrix, as explaned in a footnote of Thomas (2001).

Value

data frame containing z-scores and p-values for all four tests

silbert09a

Source

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological review, 93(2), 154.

Thomas, R. D. (2001).Perceptual interactions of facial dimensions in speeded classification and identification. Perception & Psychophysics, 63(4), 625–650.

Silbert, N. H., & Thomas, R. D. (2013). Decisional separability, model identification, and statistical inference in the general recognition theory framework. Psychonomic bulletin & review, 20(1), 1-20.

Examples

data(thomas01a)
riTest(thomas01a)

silbert09a

2x2 Frequency vs. Duration confusion matrix

Description

Confusion matrix from auditory perception experiment, in which listeners identified noise stimuli varying across frequency range and duration (Experiment 1, Observer 3 in Ref.)

Usage

data(silbert09a)

Format

A matrix instance, containing counts for all stimulus-response combinations. Rows correspond to stimuli, columns to responses

Author(s)

Noah H. Silbert

Source

Silbert, N. H., Townsend, J. T., & Lentz, J. J. (2009). Independence and separability in the perception of complex nonspeech sounds. Attention, Perception, & Psychophysics, 71(8), 1900-1915.

silbert09b

Description

Confusion matrix from auditory perception experiment, in which listeners identified 13-component harmonic stimuli varying across fundamental frequency and location of spectral prominence (Experiment 2, Observer 7 in Ref..

Usage

data(silbert09b)

Format

A matrix instance, containing counts for all stimulus-response combinations. Rows correspond to stimuli, columns to responses

Author(s)

Noah H. Silbert

Source

Silbert, N. H., Townsend, J. T., & Lentz, J. J. (2009). Independence and separability in the perception of complex nonspeech sounds. Attention, Perception, & Psychophysics, 71(8), 1900-1915.

silbert12

2x2 phoneme confusion matrix

Description

Confusion matrix from speech perception experiment probing confusions between noise-masked tokens of English [p],[b],[f], and [v] (observer 3 in Ref.)

Usage

data(silbert12)

Format

A matrix instance, containing counts for all stimulus-response combinations. Rows correspond to stimuli, columns to responses

Author(s)

Noah H. Silbert

summary.grt

Source

Silbert, N. H. (2012). Syllable structure and integration of voicing and manner of articulation information in labial consonant identification. Journal of the Acoustical Society of America, 131(5), 4076-4086.

summary.grt

Summarize the object returned by fit.grt

Description

Summarize the object returned by fit.grt

Usage

```
## S3 method for class 'grt'
summary(object, ...)
```

Arguments

object	An object returned by fit.grt
	additional arguments affecting the summary produced, as in the generic summary function

thomas01a	2x2 face recognition confusion matrix for Observer A	
-----------	--	--

Description

This data set contains the results of a full-report face recognition experiment reported in Thomas (2001). For Observer A, the two channels are degree of eye separation and nose length.

Usage

```
data(thomas01a)
```

Format

a matrix instance, containing counts for all stimulus-response combinations. Each row corresponds to a different stimulus presentation (in the order aa, ab, ba, bb) and each column in that row represents the frequency of each response (in the order aa, ab, ba, bb).

Author(s)

Robin D. Thomas

Source

Thomas, R. D. (2001). Characterizing perceptual interactions in face identification using multidimensional signal detection theory. In M.Wenger & J.T. Townsend (Eds.) Computational, geometric, and process perspectives on facial cognition: Contexts and challenges. Hillsdale, NJ: Erlbaum.

thomas01b

2x2 face recognition confusion matrix for Observer B

Description

This data set contains the results of a full-report face recognition experiment reported in Thomas (2001). For Observer B, the two channels are degree of eye separation and mouth width.

Usage

data(thomas01b)

Format

a matrix instance, containing counts for all stimulus-response combinations. Each row corresponds to a different stimulus presentation (in the order aa, ab, ba, bb) and each column in that row represents the frequency of each response (in the order aa, ab, ba, bb).

Author(s)

Robin D. Thomas

Source

Thomas, R. D. (2001). Characterizing perceptual interactions in face identification using multidimensional signal detection theory. In M.Wenger & J.T. Townsend (Eds.) Computational, geometric, and process perspectives on facial cognition: Contexts and challenges. Hillsdale, NJ: Erlbaum.

thomas15a

3x3 face recognition confusion matrix for Observer A

Description

This data set contains the results of a 3x3 full-report face recognition experiment reported in Thomas et al (2015). The two channels are degree of eye separation and nose width, with three levels on each dimension.

Usage

data(thomas15a)

thomas15b

Format

an xtabs instance, containing counts for all stimulus-response combinations. The first two dimensions consist of the response counts on each level of nose width and eye separation, respectively, and the third dimension indexes the stimulus.

Author(s)

Robin D. Thomas

Source

Thomas, R. D., Altieri, N. A., Silbert, N. H., Wenger, M. J., & Wessels, P. M. (2015). Multidimensional signal detection decision models of the uncertainty task: Application to face perception. Journal of Mathematical Psychology, 66, 16-33.

thomas15b

3x3 face recognition confusion matrix for Observer B

Description

This data set contains the results of a 3x3 full-report face recognition experiment reported in Thomas et al (2015). The two channels are degree of eye separation and nose width, with three levels on each dimension.

Usage

data(thomas15b)

Format

an xtabs instance, containing counts for all stimulus-response combinations. The first two dimensions consist of the response counts on each level of nose width and eye separation, respectively, and the third dimension indexes the stimulus.

Author(s)

Robin D. Thomas

Source

Thomas, R. D., Altieri, N. A., Silbert, N. H., Wenger, M. J., & Wessels, P. M. (2015). Multidimensional signal detection decision models of the uncertainty task: Application to face perception. Journal of Mathematical Psychology, 66, 16-33.

wo89xt

Description

This data set contains a slightly coarse-grained version of Table 1 from Wickens and Olzak (1989). For each of four possible combinations of stimuli, participants gave a graded confidence judgement (collapsed here to 1-4) on both dimensions concurrently. A rating of 1 corresponded to "definitely absent" and a rating of 4 corresponded to "definitely present".

Usage

data(wo89xt)

Format

an xtabs instance, containing counts for all stimulus-response combinations. For each of 4 Stim levels (where NN = absent+absent, LN = low-frequency signal+absent, NH = absent+high-frequency signal, LH = low-frequency signal+high-frequency signal), there is a 4x4 table giving the frequency of each rating.

Author(s)

Thomas D. Wickens and Lynn A. Olzak

Source

Wickens, T. D., & Olzak, L. A. (1989). The statistical analysis of concurrent detection ratings. Perception & psychophysics, 45(6), 514-528.

Index

anova.grt, 2fit.grt,2 GOF, <mark>3</mark> mriTest,4 optim,*3* plot.grt,5 print.grt, 6riTest, <mark>6</mark> silbert09a,7 silbert09b, 8 silbert12,8 summary.grt,9 thomas01a,9 thomas01b, 10 thomas15a, 10 thomas15b, 11 wo89xt, 12