Average treatment effect (ATE) for Restricted mean survival and years lost of Competing risks

Klaus Holst & Thomas Scheike

2023-01-16

RMST

Regression for rmst outcome \(E(T \wedge t | X) = exp(X^T \beta)\) based on IPCW adjustment for censoring. For full censoring model this is equal to integral of Kaplan-Meier. Also possible to compute Kaplan-Meier or Cox based estimator or rmst \[ \int_0^t S(s|X) ds \].

For competing risks the years lost can be computed via cumulative incidence functions or as IPCW estimator since \[ E( I(\epsilon=1) ( t - T \wedge t ) | X) = \int_0^t F_1(s) ds. \] For full censoring model these estimators are also equivalent.

set.seed(100)

     data(bmt); bmt$time <- bmt$time+runif(nrow(bmt))*0.001
     # E( min(T;t) | X ) = exp( a+b X) with IPCW estimation 
     out <- resmeanIPCW(Event(time,cause!=0)~tcell+platelet+age,bmt,
                     time=50,cens.model=~strata(platelet),model="exp")
     summary(out)
#> 
#>    n events
#>  408    245
#> 
#>  408 clusters
#> coeffients:
#>              Estimate   Std.Err      2.5%     97.5% P-value
#> (Intercept)  3.029039  0.068026  2.895710  3.162368  0.0000
#> tcell       -0.084278  0.265484 -0.604616  0.436060  0.7509
#> platelet     0.264828  0.104368  0.060271  0.469386  0.0112
#> age         -0.200527  0.082898 -0.363004 -0.038051  0.0156
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 20.67736 18.09635 23.6265
#> tcell        0.91918  0.54628  1.5466
#> platelet     1.30321  1.06212  1.5990
#> age          0.81830  0.69558  0.9627
     
      ### same as Kaplan-Meier for full censoring model 
     bmt$int <- with(bmt,strata(tcell,platelet))
     out <- resmeanIPCW(Event(time,cause!=0)~-1+int,bmt,time=30,
                                  cens.model=~strata(platelet,tcell),model="lin")
     estimate(out)
#>                        Estimate Std.Err  2.5% 97.5%   P-value
#> inttcell=0, platelet=0    13.60  0.8316 11.97 15.23 3.826e-60
#> inttcell=0, platelet=1    18.90  1.2696 16.41 21.39 3.999e-50
#> inttcell=1, platelet=0    16.19  2.4061 11.48 20.91 1.705e-11
#> inttcell=1, platelet=1    17.77  2.4536 12.96 22.58 4.461e-13
     out1 <- phreg(Surv(time,cause!=0)~strata(tcell,platelet),data=bmt)
     rm1 <- resmean.phreg(out1,times=30)
     summary(rm1)
#>   strata times    rmean  se.rmean years.lost
#> 1      0    30 13.60294 0.8315422   16.39706
#> 2      1    30 18.90129 1.2693293   11.09871
#> 3      2    30 16.19119 2.4006192   13.80881
#> 4      3    30 17.76617 2.4421866   12.23383
     
     ## competing risks years-lost for cause 1  
     out <- resmeanIPCW(Event(time,cause)~-1+int,bmt,time=30,cause=1,
                                 cens.model=~strata(platelet,tcell),model="lin")
     estimate(out)
#>                        Estimate Std.Err   2.5%  97.5%   P-value
#> inttcell=0, platelet=0   12.105  0.8508 10.438 13.773 6.162e-46
#> inttcell=0, platelet=1    6.884  1.1741  4.583  9.185 4.536e-09
#> inttcell=1, platelet=0    7.261  2.3533  2.648 11.873 2.033e-03
#> inttcell=1, platelet=1    5.780  2.0925  1.679  9.882 5.737e-03
     ## same as integrated cumulative incidence 
     rmc1 <- cif.yearslost(Event(time,cause)~strata(tcell,platelet),data=bmt,times=30,cause=1)
     summary(rmc1)
#>   strata times    intF11   intF12 se.intF11 se.intF12 total.years.lost
#> 1      0    30 12.105127 4.291933 0.8508102 0.6161447         16.39706
#> 2      1    30  6.884185 4.214527 1.1741034 0.9056995         11.09871
#> 3      2    30  7.260772 6.548042 2.3532912 1.9703328         13.80881
#> 4      3    30  5.780360 6.453473 2.0924927 2.0815028         12.23383

Average treatment effect

Computes average treatment effect for restricted mean survival


 dfactor(bmt) <- tcell~tcell
 bmt$event <- (bmt$cause!=0)*1
 out <- resmeanATE(Event(time,event)~tcell+platelet,data=bmt,time=40,treat.model=tcell~platelet)
 summary(out)
#> 
#>    n events
#>  408    241
#> 
#>  408 clusters
#> coeffients:
#>               Estimate    Std.Err       2.5%      97.5% P-value
#> (Intercept)  2.8637403  0.0756653  2.7154390  3.0120416  0.0000
#> tcell1       0.0185112  0.1981777 -0.3699100  0.4069324  0.9256
#> platelet     0.2753483  0.1452274 -0.0092922  0.5599888  0.0580
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 17.52696 15.11124 20.3289
#> tcell1       1.01868  0.69080  1.5022
#> platelet     1.31699  0.99075  1.7507
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0    19.26997  1.05138 17.20931 21.33064  0.0000
#> treat1    19.63001  3.43091 12.90554 26.35447  0.0000
#> treat:1-0  0.36003  3.87963 -7.24391  7.96397  0.9261
#> 
#> Average Treatment effects (double robust) :
#>           Estimate Std.Err    2.5%   97.5% P-value
#> treat0     19.3253  1.0516 17.2642 21.3864  0.0000
#> treat1     21.5622  3.8017 14.1111 29.0133  0.0000
#> treat:1-0   2.2369  4.1991 -5.9932 10.4670  0.5942
 
 out1 <- resmeanATE(Event(time,cause)~tcell+platelet,data=bmt,cause=1,outcome="rmst-cause",
            time=40,treat.model=tcell~platelet)
 summary(out1)
#> 
#>    n events
#>  408    157
#> 
#>  408 clusters
#> coeffients:
#>              Estimate   Std.Err      2.5%     97.5% P-value
#> (Intercept)  2.807099  0.069703  2.670483  2.943715  0.0000
#> tcell1      -0.376884  0.247936 -0.862829  0.109061  0.1285
#> platelet    -0.494384  0.165213 -0.818194 -0.170573  0.0028
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 16.56180 14.44695 18.9862
#> tcell1       0.68600  0.42197  1.1152
#> platelet     0.60995  0.44123  0.8432
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0    14.53514  0.95673 12.65999 16.41029  0.0000
#> treat1     9.97105  2.37568  5.31479 14.62730  0.0000
#> treat:1-0 -4.56409  2.57161 -9.60437  0.47618  0.0759
#> 
#> Average Treatment effects (double robust) :
#>              Estimate     Std.Err        2.5%       97.5% P-value
#> treat0     14.5202792   0.9577035  12.6432148  16.3973436  0.0000
#> treat1      9.4567098   2.4051143   4.7427723  14.1706473  0.0001
#> treat:1-0  -5.0635694   2.5856565 -10.1313629   0.0042241  0.0502

 out2 <- resmeanATE(Event(time,cause)~tcell+platelet,data=bmt,cause=2,outcome="rmst-cause",
            time=40,treat.model=tcell~platelet)
 summary(out2)
#> 
#>    n events
#>  408     84
#> 
#>  408 clusters
#> coeffients:
#>               Estimate    Std.Err       2.5%      97.5% P-value
#> (Intercept)  1.8287103  0.1312246  1.5715149  2.0859057  0.0000
#> tcell1       0.4681132  0.2432252 -0.0085996  0.9448259  0.0543
#> platelet    -0.0109542  0.2178062 -0.4378464  0.4159380  0.9599
#> 
#> exp(coeffients):
#>             Estimate    2.5%  97.5%
#> (Intercept)  6.22585 4.81394 8.0519
#> tcell1       1.59698 0.99144 2.5724
#> platelet     0.98911 0.64542 1.5158
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0     6.20457  0.71391  4.80534  7.60381  0.0000
#> treat1     9.90857  2.10922  5.77458 14.04256  0.0000
#> treat:1-0  3.70399  2.23512 -0.67676  8.08474  0.0975
#> 
#> Average Treatment effects (double robust) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0     6.21823  0.71423  4.81836  7.61809  0.0000
#> treat1    10.38475  2.22282  6.02810 14.74140  0.0000
#> treat:1-0  4.16652  2.33621 -0.41237  8.74542  0.0745

SessionInfo

sessionInfo()
#> R version 4.2.2 (2022-10-31)
#> Platform: aarch64-apple-darwin22.1.0 (64-bit)
#> Running under: macOS Ventura 13.1
#> 
#> Matrix products: default
#> BLAS:   /opt/homebrew/Cellar/openblas/0.3.21/lib/libopenblasp-r0.3.21.dylib
#> LAPACK: /opt/homebrew/Cellar/r/4.2.2_1/lib/R/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] splines   stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#> [1] ggplot2_3.4.0  cowplot_1.1.1  mets_1.3.2     timereg_2.0.5  survival_3.4-0
#> 
#> loaded via a namespace (and not attached):
#>  [1] tidyselect_1.2.0    xfun_0.36           bslib_0.4.2        
#>  [4] listenv_0.9.0       lattice_0.20-45     generics_0.1.3     
#>  [7] colorspace_2.0-3    vctrs_0.5.1         htmltools_0.5.4    
#> [10] yaml_2.3.6          utf8_1.2.2          rlang_1.0.6        
#> [13] isoband_0.2.7       jquerylib_0.1.4     pillar_1.8.1       
#> [16] withr_2.5.0         glue_1.6.2          lifecycle_1.0.3    
#> [19] lava_1.7.2          stringr_1.5.0       munsell_0.5.0      
#> [22] gtable_0.3.1        future_1.30.0       mvtnorm_1.1-3      
#> [25] codetools_0.2-18    evaluate_0.19       labeling_0.4.2     
#> [28] knitr_1.41          fastmap_1.1.0       parallel_4.2.2     
#> [31] fansi_1.0.3         highr_0.10          Rcpp_1.0.9         
#> [34] scales_1.2.1        cachem_1.0.6        jsonlite_1.8.4     
#> [37] farver_2.1.1        parallelly_1.34.0   digest_0.6.31      
#> [40] stringi_1.7.8       dplyr_1.0.10        numDeriv_2016.8-1.1
#> [43] grid_4.2.2          cli_3.5.0           tools_4.2.2        
#> [46] magrittr_2.0.3      sass_0.4.4          tibble_3.1.8       
#> [49] ucminf_1.1-4.1      future.apply_1.10.0 pkgconfig_2.0.3    
#> [52] MASS_7.3-58.1       Matrix_1.5-1        rmarkdown_2.19     
#> [55] R6_2.5.1            globals_0.16.2      compiler_4.2.2