Average treatment effect (ATE) based on the Cox and Fine-Gray model

Klaus Holst & Thomas Scheike

2023-01-16

ATE

Computing the G-estimation based on the Cox or Fine-Gray model : \[ \hat S(t,A=a) = n^{-1} \sum_i S(t,A=a,X_i) \] and this estimator has influence function \[ S(t,A=a,X_i) - S(t,A=a) + E( D_{A_0(t), \beta} S(t,A=a,X_i) ) \epsilon_i(t) \] where \(\epsilon_i(t)\) is the iid decomposition of \((\hat A(t) - A(t), \hat \beta- \beta)\).

set.seed(100)

data(bmt); bmt$time <- bmt$time+runif(nrow(bmt))*0.001
dfactor(bmt) <- tcell~tcell
bmt$event <- (bmt$cause!=0)*1

fg1 <- cifreg(Event(time,cause)~tcell+platelet+age,bmt,cause=1,
          cox.prep=TRUE,propodds=NULL)
summary(survivalG(fg1,bmt,50))
#> risk:
#>       Estimate Std.Err   2.5%  97.5%   P-value
#> risk0   0.4331 0.02749 0.3793 0.4870 6.321e-56
#> risk1   0.2727 0.05863 0.1577 0.3876 3.313e-06
#> 
#> Average Treatment effects (G-estimator) :
#>    Estimate Std.Err   2.5%    97.5% P-value
#> p1  -0.1605 0.06353 -0.285 -0.03597 0.01153
#> 
#> Average Treatment effect ratio (G-estimator) :
#>       Estimate  Std.Err      2.5%     97.5%    P-value
#> [p1] 0.6295004 0.139248 0.3565794 0.9024214 0.00779742

fg2 <- cifreg(Event(time,cause)~tcell+platelet+age,bmt,cause=2,
          cox.prep=TRUE,propodds=NULL)
summary(survivalG(fg2,bmt,50))
#> risk:
#>       Estimate Std.Err   2.5%  97.5%   P-value
#> risk0   0.2127 0.02314 0.1674 0.2581 3.757e-20
#> risk1   0.3336 0.06799 0.2003 0.4668 9.281e-07
#> 
#> Average Treatment effects (G-estimator) :
#>    Estimate Std.Err     2.5%  97.5% P-value
#> p1   0.1208 0.07189 -0.02009 0.2617 0.09285
#> 
#> Average Treatment effect ratio (G-estimator) :
#>      Estimate   Std.Err      2.5%    97.5%   P-value
#> [p1] 1.567915 0.3627528 0.8569321 2.278897 0.1174496

ss <- phreg(Surv(time,event)~tcell+platelet+age,bmt)
summary(survivalG(ss,bmt,50))
#> risk:
#>       Estimate Std.Err   2.5%  97.5%   P-value
#> risk0   0.3461 0.02709 0.2930 0.3992 2.252e-37
#> risk1   0.4360 0.05971 0.3189 0.5530 2.850e-13
#> 
#> Average Treatment effects (G-estimator) :
#>    Estimate Std.Err     2.5%  97.5% P-value
#> p1  0.08992  0.0629 -0.03337 0.2132  0.1529
#> 
#> Average Treatment effect ratio (G-estimator) :
#>      Estimate   Std.Err      2.5%    97.5%   P-value
#> [p1] 1.259836 0.1894627 0.8884963 1.631176 0.1702385

Comparing with binomial-regression ATE


br1 <- binregATE(Event(time,cause)~tcell+platelet+age,bmt,cause=1,
         time=40,treat.model=tcell~platelet+age)
summary(br1)
#> 
#>    n events
#>  408    157
#> 
#>  408 clusters
#> coeffients:
#>              Estimate   Std.Err      2.5%     97.5% P-value
#> (Intercept) -0.188365  0.130922 -0.444967  0.068237  0.1502
#> tcell1      -0.715361  0.352473 -1.406195 -0.024527  0.0424
#> platelet    -0.537310  0.244804 -1.017117 -0.057502  0.0282
#> age          0.417814  0.107282  0.207545  0.628084  0.0001
#> 
#> exp(coeffients):
#>             Estimate    2.5%  97.5%
#> (Intercept)  0.82831 0.64085 1.0706
#> tcell1       0.48902 0.24507 0.9758
#> platelet     0.58432 0.36164 0.9441
#> age          1.51864 1.23065 1.8740
#> 
#> Average Treatment effects (G-formula) :
#>            Estimate   Std.Err      2.5%     97.5% P-value
#> treat0     0.417795  0.027029  0.364819  0.470771  0.0000
#> treat1     0.266393  0.062041  0.144795  0.387991  0.0000
#> treat:1-0 -0.151402  0.067763 -0.284214 -0.018589  0.0255
#> 
#> Average Treatment effects (double robust) :
#>            Estimate   Std.Err      2.5%     97.5% P-value
#> treat0     0.417337  0.027120  0.364184  0.470491  0.0000
#> treat1     0.231224  0.060718  0.112218  0.350229  0.0001
#> treat:1-0 -0.186114  0.066117 -0.315700 -0.056527  0.0049

sr1 <- binregATE(Event(time,event)~tcell+platelet+age,bmt,cause=1,
         time=40, treat.model=tcell~platelet+age)
summary(sr1)
#> 
#>    n events
#>  408    241
#> 
#>  408 clusters
#> coeffients:
#>              Estimate   Std.Err      2.5%     97.5% P-value
#> (Intercept)  0.679693  0.138551  0.408138  0.951248  0.0000
#> tcell1      -0.032018  0.353415 -0.724698  0.660662  0.9278
#> platelet    -0.504940  0.248245 -0.991492 -0.018387  0.0419
#> age          0.315033  0.117786  0.084178  0.545889  0.0075
#> 
#> exp(coeffients):
#>             Estimate    2.5%  97.5%
#> (Intercept)  1.97327 1.50401 2.5889
#> tcell1       0.96849 0.48447 1.9361
#> platelet     0.60354 0.37102 0.9818
#> age          1.37030 1.08782 1.7261
#> 
#> Average Treatment effects (G-formula) :
#>             Estimate    Std.Err       2.5%      97.5% P-value
#> treat0     0.6233534  0.0274214  0.5696085  0.6770983   0.000
#> treat1     0.6161006  0.0748225  0.4694512  0.7627499   0.000
#> treat:1-0 -0.0072528  0.0802736 -0.1645862  0.1500805   0.928
#> 
#> Average Treatment effects (double robust) :
#>            Estimate   Std.Err      2.5%     97.5% P-value
#> treat0     0.623341  0.027505  0.569433  0.677249   0.000
#> treat1     0.645159  0.085872  0.476853  0.813465   0.000
#> treat:1-0  0.021818  0.090254 -0.155076  0.198711   0.809

SessionInfo

sessionInfo()
#> R version 4.2.2 (2022-10-31)
#> Platform: aarch64-apple-darwin22.1.0 (64-bit)
#> Running under: macOS Ventura 13.1
#> 
#> Matrix products: default
#> BLAS:   /opt/homebrew/Cellar/openblas/0.3.21/lib/libopenblasp-r0.3.21.dylib
#> LAPACK: /opt/homebrew/Cellar/r/4.2.2_1/lib/R/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] splines   stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#> [1] ggplot2_3.4.0  cowplot_1.1.1  mets_1.3.2     timereg_2.0.5  survival_3.4-0
#> 
#> loaded via a namespace (and not attached):
#>  [1] tidyselect_1.2.0    xfun_0.36           bslib_0.4.2        
#>  [4] listenv_0.9.0       lattice_0.20-45     generics_0.1.3     
#>  [7] colorspace_2.0-3    vctrs_0.5.1         htmltools_0.5.4    
#> [10] yaml_2.3.6          utf8_1.2.2          rlang_1.0.6        
#> [13] isoband_0.2.7       jquerylib_0.1.4     pillar_1.8.1       
#> [16] withr_2.5.0         glue_1.6.2          lifecycle_1.0.3    
#> [19] lava_1.7.2          stringr_1.5.0       munsell_0.5.0      
#> [22] gtable_0.3.1        future_1.30.0       mvtnorm_1.1-3      
#> [25] codetools_0.2-18    evaluate_0.19       labeling_0.4.2     
#> [28] knitr_1.41          fastmap_1.1.0       parallel_4.2.2     
#> [31] fansi_1.0.3         highr_0.10          Rcpp_1.0.9         
#> [34] scales_1.2.1        cachem_1.0.6        jsonlite_1.8.4     
#> [37] farver_2.1.1        parallelly_1.34.0   digest_0.6.31      
#> [40] stringi_1.7.8       dplyr_1.0.10        numDeriv_2016.8-1.1
#> [43] grid_4.2.2          cli_3.5.0           tools_4.2.2        
#> [46] magrittr_2.0.3      sass_0.4.4          tibble_3.1.8       
#> [49] ucminf_1.1-4.1      future.apply_1.10.0 pkgconfig_2.0.3    
#> [52] MASS_7.3-58.1       Matrix_1.5-1        rmarkdown_2.19     
#> [55] R6_2.5.1            globals_0.16.2      compiler_4.2.2