Package ‘migraph’

December 20, 2022

Title Tools for Multimodal Network Analysis
Version 0.13.2
Date 2022-12-20

Description A set of tools for analysing multimodal networks.
All functions operate with matrices, edge lists,
and 'igraph’, 'network’, and 'tidygraph' objects,
and on one-mode, two-mode (bipartite), and sometimes three-mode networks.
It includes functions for measuring
centrality, centralization, cohesion, closure, and constraint,
as well as for network block-modelling, regression, and diffusion models.
The package is released as a complement to
'Multimodal Political Networks' (2021, ISBN:9781108985000),
and includes various datasets used in the book in addition to other network data.

URL https://github.com/snlab-ch/migraph

BugReports https://github.com/snlab-ch/migraph/issues
Depends R (>=3.6.0)

License MIT + file LICENSE

Language en-GB

Encoding UTF-8

LazyData true

RoxygenNote 7.2.2

Imports BiocManager, dplyr, generics, ggforce, ggplot2, ggraph,
igraph, methods, network, future, furrr, patchwork, pillar,
purrr, rlang, sna, tidygraph, tidyr

Suggests concaveman, covr, ggdendro, knitr, minMSE, oaqc, readxl,
Rgraphviz, RSiena, rmarkdown, roxygen2, rsconnect, testthat,
xml2

VignetteBuilder knitr

NeedsCompilation no

https://github.com/snlab-ch/migraph
https://github.com/snlab-ch/migraph/issues

2 R topics documented:

Author James Hollway [cre, aut, ctb] (IHEID,
<https://orcid.org/0000-0002-8361-9647>),
Jael Tan [ctb] (IHEID, <https://orcid.org/0000-0002-6234-9764>),
Bernhard Bieri [ctb] (<https://orcid.org/0000-0001-5943-9059>),
Henrique Sposito [ctb] (IHEID, <https://orcid.org/0000-0003-3420-6085>)

Maintainer James Hollway <james.hollway@graduateinstitute.ch>
Repository CRAN
Date/Publication 2022-12-20 16:20:02 UTC

R topics documented:

add e 3
AS . e e e e e 4
auto_graph L. e e 6
brokerage_Censusol e e e e 8
centralisation L e e 9
centrality e 10
closureo e e 12
cluster e e 14
Cohesion e 15
COMMUNILY v v v vt e ittt e e e e e e e e e e e e e e 16
COMPONENLS . . ¢ . v v v v v et e e e e e e e e e e e e e e e e e e e 18
core-periphery 19
CICALE . . . v i v v e e e e e e e e e e e e 20
diversity 22
equivalence 24
features L e 27
GEMETALE e e 29
ggevOlULiON e e 31
gglineage 32
grab ..o e 32
grid_layouts 34
holes e 35
IS . e 37
1son_adolesCents e e 39
ison_algebra 40
ison_brandes e 42
ison_karateka e 43
1S0N_1Otr L e 44
1son_marvel . . . oL L. e 44
1SON_NEIWOTKETS o e e e e 45
ISON_PIOJECtion v v vttt e e e e e e 46
ison_southern_ Women e e 47
mark_nodes e 48
mark_HeS e e 50
mpn_bristol 51

MPN_COW + . vt v vt it e et e e e e e e e e e e e e e e e e 52

https://orcid.org/0000-0002-8361-9647
https://orcid.org/0000-0002-6234-9764
https://orcid.org/0000-0001-5943-9059
https://orcid.org/0000-0003-3420-6085

add 3
mpn_elite_meX e e e e e e 54
mpn_elite_usa e e e e e 56
001 0) 4 < 58
MPN_IYANAIT o o o bttt e e e e e e e e e 60
mpn_senatel12 61
NEIWOTK_CENSUS v o e e e e e e e e e e e e 63
NOE_CENSUS v v v v ettt e e e e e e e e e e 64
partition_layouts L. 66
Play . . e 67
read e e e e e e 70
reformat L 73
TEETESSION . . o v v v v i e 75
SPIit . . e e e 77
EESES . . L e e e e e e 78
tie_centrality 80
transform L 81

Index 84

add Adding and copying attributes from one graph to another

Description

These functions allow users to add attributes to a graph from another graph or from a specified
vector supplied by the user.

Usage

add_node_attribute(object, attr_name, vector)

add_tie_attribute(object, attr_name, vector)

copy_node_attributes(object, object2)

join_ties(object, object2, attr_name)

Arguments

object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

attr_name Name of the new attribute in the resulting object.

vector A vector of values for the new attribute.

object2 A second object to copy nodes or edges from.

Functions

* add_node_attribute(): Insert specified values from a vector into the graph as node at-
tributes

* add_tie_attribute(): Insert specified values from a vector into the graph as tie attributes
* copy_node_attributes(): Copies node attributes from a given graph into specified graph

» join_ties(): Copies ties from another graph to specified graph and adds a tie attribute iden-
tifying the ties that were newly added

See Also

Other manipulations: as(), grab, reformat, split(), transform()

Examples

add_node_attribute(mpn_elite_mex, "wealth”, 1:35)
add_node_attribute(mpn_elite_usa_advice, "wealth”, 1:14)
add_tie_attribute(ison_adolescents, "weight"”, <(1,2,1,1,1,3,2,2,3,1))
autographr(mpn_elite_mex)

both <- join_ties(mpn_elite_mex, generate_random(mpn_elite_mex), "random")
autographr(both)

random <- to_uniplex(both, "random")

autographr(random)

autographr(to_uniplex(both, "orig"))

as Coercion between migraph-compatible object classes

Description

The as_ functions in {migraph} coerce objects between several common classes of social network
objects. These include:

* edgelists, as data frames or tibbles

* adjacency (one-mode/unipartite) and incidence (two-mode/bipartite) matrices

e {igraph} graph objects

* {tidygraph} tbl_graph objects

* {network} network objects
An effort is made for all of these coercion routines to be as lossless as possible, though some object
classes are better at retaining certain kinds of information than others. Note also that there are

some reserved column names in one or more object classes, which could otherwise lead to some
unexpected results.

as 5

Usage
as_edgelist(object, twomode = FALSE)

as_matrix(object, twomode = NULL)

as_igraph(object, twomode = FALSE)
as_tidygraph(object, twomode = FALSE)
as_network(object, twomode = FALSE)

as_siena(object, twomode = FALSE)

as_graphAM(object, twomode = NULL)

Arguments
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph?} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package
twomode Logical option used to override heuristics for distinguishing incidence (two-
mode/bipartite) from adjacency (one-mode/unipartite) networks. By default FALSE.
Details

Edgelists are expected to be held in data.frame or tibble class objects. The first two columns of such
an object are expected to be the senders and receivers of a tie, respectively, and are typically named
"from" and "to" (even in the case of an undirected network). These columns can contain integers
to identify nodes or character strings/factors if the network is labelled. If the sets of senders and
receivers overlap, a one-mode network is inferred. If the sets contain no overlap, a two-mode
network is inferred. If a third, numeric column is present, a weighted network will be created.

Matrices can be either adjacency (one-mode) or incidence (two-mode) matrices. Incidence matrices
are typically inferred from unequal dimensions, but since in rare cases a matrix with equal dimen-
sions may still be an incidence matrix, an additional argument twomode can be specified to override
this heuristic.

This information is usually already embedded in {igraph}, {tidygraph}, and {network} objects.

Value

The currently implemented coercions or translations are:

to/from edgelists matrices igraph tidygraph network siena goldfish
edgelists (data frames) X X X X X X X
matrices X X X X X X X

6 auto_graph
igraph X X X X X X X
tidygraph X X X X X X X
network X X X X X X X
graphAM X X X X X X X

See Also

Other manipulations: add, grab, reformat, split(), transform()
Examples
test <- data.frame(from = c("A","B","B","C","C"),
to = c("I","G","1" . "G","H"))
as_edgelist(test)
as_matrix(test)
as_igraph(test)
as_tidygraph(test)
as_network(test)
as_graphAM(test)
auto_graph Quickly graph networks with sensible defaults
Description
The aim of this function is to provide users with a quick and easy graphing function that makes
best use of the data, whatever its composition. Users can also tailor the plot according to their
preferences regarding node size, colour, and shape. The function also supports visualisation of
network measures such as centrality.
Usage
autographr(
object,
layout = "stress”,

)

labels = TRUE,

node_color = NULL,
node_group = NULL,
node_shape = NULL,
node_size = NULL,
edge_color = NULL,

autographs(netlist,

)

auto_graph 7

Arguments

object A migraph-consistent object.

layout An igraph layout algorithm, currently defaults to ’stress’.

labels Logical, whether to print node names as labels if present.

node_color Node variable in quotation marks to be used for coloring the nodes. It is easiest
if this is added as a node attribute to the graph before plotting.

node_group Node variable in quotation marks to be used for drawing convex but also con-
cave hulls around clusters of nodes. These groupings will be labelled with the
categories of the variable passed.

node_shape Character string in quotation marks referring to the name of a node attribute
already present in the graph to be used for the shapes of the nodes. Shapes
follow the ordering "circle", "square", "triangle", so this aesthetic should be
used for a variable with only a few categories.

node_size Node variable in quotation marks to be used for the size of the nodes. This can be
any continuous variable on the nodes of the network. Since this function expects
this to be an existing variable, it is recommended to calculate all node-related
statistics prior to using this function.

edge_color Tie variable in quotation marks to be used for coloring the nodes. It is easiest if
this is added as an edge or tie attribute to the graph before plotting.
Extra arguments to pass on to autographr()/ggraph()/ggplot().

netlist A list of migraph-compatible networks.

Functions

* autographr(): Graphs a network with sensible defaults

* autographs(): Graphs a list of networks with sensible defaults

See Also

Other mapping: grid_layouts, partition_layouts

Examples

ison_adolescents %>%

mutate(shape = rep(c(”"circle”, "square"), times = 4)) %>%
mutate(color = rep(c(”"blue”, "red"), times = 4)) %>%
autographr(node_shape = "shape”, node_color = "color")

autographr(ison_karateka, node_size = 8)
ison_adolescents %>%
mutate(high_degree = node_is_max(node_degree())) %>%
activate(edges) %>%
mutate(high_betweenness = tie_is_max(tie_betweenness(ison_adolescents))) %>%
autographr(node_color = "high_degree”, edge_color = "high_betweenness")
autographr(mpn_elite_usa_advice, "concentric”)
autographs(to_egos(ison_adolescents))

8 brokerage_census

brokerage_census Censuses of brokerage motifs

Description

Censuses of brokerage motifs

Usage

node_brokerage_census(object, membership, standardized = FALSE)

network_brokerage_census(object, membership, standardized = FALSE)

Arguments

object An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
membership A vector of partition membership as integers.

standardized = Whether the score should be standardized into a z-score indicating how many
standard deviations above or below the average the score lies.
Functions

* node_brokerage_census(): Returns the Gould-Fernandez brokerage roles played by nodes
in a network.

* network_brokerage_census(): Returns the Gould-Fernandez brokerage roles in a network.

References
Gould, R.V. and Fernandez, R.M. 1989. “Structures of Mediation: A Formal Approach to Broker-
age in Transaction Networks.” Sociological Methodology, 19: 89-126.

See Also

Other motifs: network_census, node_census

Examples

node_brokerage_census(ison_networkers, "Discipline")
network_brokerage_census(ison_networkers, "Discipline)

centralisation 9
centralisation Measures of network centralisation
Description
Measures of network centralisation
Usage
network_degree(object, normalized = TRUE, direction = c("all”, "out”, "in"))
network_closeness(object, normalized = TRUE, direction = c(”"all”, "out”, "in"))

network_betweenness(

object,

normalized = TRUE,

direction

C(”all”, "Out", ”in”)

network_eigenvector(object, normalized = TRUE)

Arguments

object

normalized

direction

Functions

An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
Logical scalar, whether the centrality scores are normalized. Different denomi-

nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

Character string, “out” bases the measure on outgoing ties, “in” on incoming
ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses
as numerator the sum of differences between the maximum centrality score for
the mode against all other centrality scores in the network, whereas "in" uses as
numerator the sum of differences between the maximum centrality score for the
mode against only the centrality scores of the other nodes in that mode.

* network_degree(): Calculate the degree centralization for a graph

* network_closeness(): Calculate the closeness centralization for a graph

* network_betweenness(): Calculate the betweenness centralization for a graph

* network_eigenvector(): Calculate the eigenvector centralization for a graph

10 centrality

See Also

Other measures: centrality, closure, cohesion(), diversity, features, holes, tie_centrality

Examples
network_degree(ison_southern_women, direction = "in")
network_closeness(ison_southern_women, direction = "in")
network_betweenness(ison_southern_women, direction = "in"

network_eigenvector (mpn_elite_mex)
network_eigenvector (ison_southern_women)

centrality Measures of node centrality

Description

These functions calculate common centrality measures for one- and two-mode networks. All mea-
sures attempt to use as much information as they are offered, including whether the networks are
directed, weighted, or multimodal. If this would produce unintended results, first transform the
salient properties using e.g. to_undirected() functions. All centrality and centralization mea-
sures return normalized measures by default, including for two-mode networks.

Usage

node_degree(
object,
normalized = TRUE,
alpha = 0,
direction = c("all”, "out"”, "in")

)

node_closeness(object, normalized = TRUE, direction = "out”, cutoff = NULL)

node_betweenness(object, normalized = TRUE, cutoff = NULL)

node_eigenvector(object, normalized = TRUE, scale = FALSE)

node_reach(object, normalized = TRUE, k = 2)

node_power (object, normalized = TRUE, scale = FALSE, exponent = 1)

Arguments

object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

centrality

normalized

alpha

direction

cutoff

scale
k
exponent

Value

11

* network, from the {network} package

* tbl_graph, from the {tidygraph} package
Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

Numeric scalar, the positive tuning parameter introduced in Opsahl et al (2010)
for trading off between degree and strength centrality measures. By default,
alpha = 0, which ignores tie weights and the measure is solely based upon de-
gree (the number of ties). alpha = 1 ignores the number of ties and provides the
sum of the tie weights as strength centrality. Values between 0 and 1 reflect dif-
ferent trade-offs in the relative contributions of degree and strength to the final
outcome, with 0.5 as the middle ground. Values above 1 penalise for the number
of ties. Of two nodes with the same sum of tie weights, the node with fewer ties
will obtain the higher score. This argument is ignored except in the case of a
weighted network.

Character string, “out” bases the measure on outgoing ties, “in” on incoming
ties, and "all" on either/the sum of the two. For two-mode networks, "all" uses
as numerator the sum of differences between the maximum centrality score for
the mode against all other centrality scores in the network, whereas "in" uses as
numerator the sum of differences between the maximum centrality score for the
mode against only the centrality scores of the other nodes in that mode.
Maximum path length to use during calculations.

Logical scalar, whether to rescale the vector so the maximum score is 1.
Integer of steps out to calculate reach

Decay rate for the Bonacich power centrality score.

A single centralization score if the object was one-mode, and two centralization scores if the object

was two-mode.

Depending on how and what kind of an object is passed to the function, the function will return a
tidygraph object where the nodes have been updated

A numeric vector giving the betweenness centrality measure of each node.

A numeric vector giving the eigenvector centrality measure of each node.

A numeric vector giving each node’s power centrality measure.

Functions

* node_degree(): Calculates the degree centrality of nodes in an unweighted network, or
weighted degree/strength of nodes in a weighted network.

* node_closeness(): Calculate the closeness centrality of nodes in a network

¢ node_betweenness(): Calculate the betweenness centralities of nodes in a network

* node_eigenvector(): Calculate the eigenvector centrality of nodes in a network

* node_reach(): Calculate nodes’ reach centrality or how many nodes they can reach within &

steps

* node_power(): Calculate the power centrality of nodes in a network

12 closure

References

Faust, Katherine. 1997. "Centrality in affiliation networks." Social Networks 19(2): 157-191.
doi:10.1016/S03788733(96)003000.

Borgatti, Stephen P., and Martin G. Everett. 1997. "Network analysis of 2-mode data." Social
Networks 19(3): 243-270. doi:10.1016/S03788733(96)003012.

Borgatti, Stephen P., and Daniel S. Halgin. 2011. "Analyzing affiliation networks." In The SAGE
Handbook of Social Network Analysis, edited by John Scott and Peter J. Carrington, 417-33. Lon-
don, UK: Sage. doi:10.4135/9781446294413.n28.

Opsahl, Tore, Filip Agneessens, and John Skvoretz. 2010. "Node centrality in weighted networks:
Generalizing degree and shortest paths." Social Networks 32, 245-251. doi:10.1016/j.socnet.2010.03.006

Bonacich, Phillip. 1991. “Simultaneous Group and Individual Centralities.” Social Networks
13(2):155-68. doi:10.1016/03788733(91)900180.

Bonacich, Phillip. 1987. “Power and Centrality: A Family of Measures.” The American Journal of
Sociology 92(5): 1170-82. doi:10.1086/228631.

See Also

to_undirected() for removing edge directions and to_unweighted() for removing weights from
a graph.

Other measures: centralisation, closure, cohesion(), diversity, features, holes, tie_centrality

Examples

node_degree(mpn_elite_mex)
node_degree(ison_southern_women)
node_closeness(mpn_elite_mex)
node_closeness(ison_southern_women)
node_betweenness(mpn_elite_mex)
node_betweenness(ison_southern_women)
node_eigenvector(mpn_elite_mex)
node_eigenvector (ison_southern_women)
node_reach(ison_adolescents)

node_power (ison_southern_women, exponent = 0.5)

closure Measures of network closure

Description

These functions offer methods for summarising the closure in configurations in one-, two-, and
three-mode networks.

https://doi.org/10.1016/S0378-8733%2896%2900300-0
https://doi.org/10.1016/S0378-8733%2896%2900301-2
https://doi.org/10.4135/9781446294413.n28
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/0378-8733%2891%2990018-O
https://doi.org/10.1086/228631

closure 13
Usage

network_reciprocity(object, method = "default")

node_reciprocity(object)

network_transitivity(object)

node_transitivity(object)

network_equivalency(object)

network_congruency(object, object2)

Arguments
object A one-mode or two-mode matrix, igraph, or tidygraph
method For reciprocity, either default or ratio. See ?igraph: :reciprocity
object2 Optionally, a second (two-mode) matrix, igraph, or tidygraph

Details

For one-mode networks, shallow wrappers of igraph versions exist via network_reciprocity and
network_transitivity.

For two-mode networks, network_equivalency calculates the proportion of three-paths in the
network that are closed by fourth tie to establish a "shared four-cycle" structure.

For three-mode networks, network_congruency calculates the proportion of three-paths spanning
two two-mode networks that are closed by a fourth tie to establish a "congruent four-cycle" struc-
ture.

Functions

* network_reciprocity(): Calculate reciprocity in a (usually directed) network
* node_reciprocity(): Calculate nodes’ reciprocity

* network_transitivity(): Calculate transitivity in a network

* node_transitivity(): Calculate nodes’ transitivity

* network_equivalency(): Calculate equivalence or reinforcement in a (usually two-mode)
network

* network_congruency(): Calculate congruency across two two-mode networks

References

Robins, Garry L, and Malcolm Alexander. 2004. Small worlds among interlocking directors: Net-
work structure and distance in bipartite graphs. Computational & Mathematical Organization The-
ory 10(1): 69-94. doi:10.1023/B:CMOT.0000032580.12184.c0.

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal Polit-
ical Networks. Cambridge University Press. Cambridge University Press. doi:10.1017/9781108985000

https://doi.org/10.1023/B%3ACMOT.0000032580.12184.c0
https://doi.org/10.1017/9781108985000

14 cluster

See Also

Other measures: centralisation, centrality, cohesion(), diversity, features, holes, tie_centrality

Examples

network_reciprocity(ison_southern_women)
node_reciprocity(to_unweighted(ison_networkers))
network_transitivity(ison_adolescents)
node_transitivity(ison_adolescents)
network_equivalency(ison_southern_women)

cluster Methods for equivalence clustering

Description

These functions are used to cluster some census object. They are not intended to be called directly,
but are called within node_equivalence() and related functions. They are exported and listed here
to provide more detailed documentation.

Usage

cluster_hierarchical(census, distance)

cluster_concor(object, census)

Arguments
census A matrix returned by a node_*_census () function.
distance Character string indicating which distance metric to pass on to stats::dist.
By default "euclidean”, but other options include "maximum”, "manhattan”,
"canberra”, "binary"”, and "minkowski”. Fewer, identifiable letters, e.g. "e"
for Euclidean, is sufficient.
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package
Functions

* cluster_hierarchical(): Returns a hierarchical clustering object created by stats: :hclust()

* cluster_concor(): Returns a hierarchical clustering object created from a convergence of
correlations procedure (CONCOR)

cohesion 15

CONCOR

First a matrix of Pearson correlation coefficients between each pair of nodes profiles in the given
census is created. Then, again, we find the correlations of this square, symmetric matrix, and
continue to do this iteratively until each entry is either 1 or -1. These values are used to split the
data into two partitions, with members either holding the values 1 or -1. This procedure from
census to convergence is then repeated within each block, allowing further partitions to be found.
Unlike UCINET, partitions are continued until there are single members in each partition. Then a
distance matrix is constructed from records of in which partition phase nodes were separated, and
this is given to stats: :hclust () so that dendrograms etc can be returned.

References

Breiger, Ronald L., Scott A. Boorman, and Phipps Arabie. 1975. "An Algorithm for Clustering Re-
lational Data with Applications to Social Network Analysis and Comparison with Multidimensional
Scaling". Journal of Mathematical Psychology, 12: 328-83. doi:10.1016/00222496(75)900280.

cohesion Measures of network cohesion or connectedness

Description
These functions return values or vectors relating to how connected a network is and the number of
nodes or edges to remove that would increase fragmentation.

Usage

network_density(object)
network_components(object)
network_cohesion(object)
network_adhesion(object)
network_diameter(object)

network_length(object)

Arguments

object An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

https://doi.org/10.1016/0022-2496%2875%2990028-0

16 community

Functions

* network_density(): summarises the ratio of ties to the number of possible ties.

* network_components(): Returns number of (strong) components in the network. To get the
weak’ components of a directed graph, please use to_undirected() first.

¢ network_cohesion(): Returns the minimum number of nodes to remove from the network
needed to increase the number of components.

* network_adhesion(): Returns the minimum number of edges needed to remove from the
network to increase the number of components.

* network_diameter(): Returns the maximum path length in the network.

* network_length(): Returns the average path length in the network.

References

White, Douglas R and Frank Harary. 2001. "The Cohesiveness of Blocks In Social Networks: Node
Connectivity and Conditional Density." Sociological Methodology 31(1): 305-59.

See Also

Other measures: centralisation, centrality, closure, diversity, features, holes, tie_centrality

Examples

network_density(mpn_elite_mex)
network_density(mpn_elite_usa_advice)
network_cohesion(ison_marvel_relationships)
network_cohesion(to_giant(ison_marvel_relationships))
network_adhesion(ison_marvel_relationships)
network_adhesion(to_giant(ison_marvel_relationships))
network_diameter(ison_marvel_relationships)
network_diameter(to_giant(ison_marvel_relationships))
network_length(ison_marvel_relationships)
network_length(to_giant(ison_marvel_relationships))

community Community graph partitioning algorithms

Description

Community graph partitioning algorithms

Usage

node_kernighanlin(object)
node_walktrap(object, times = 50)
node_edge_betweenness(object)

node_fast_greedy(object)

community 17

Arguments
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
times Integer indicating number of simulations/walks used. By default, times=50.
Functions

* node_kernighanlin(): A greedy, iterative, deterministic graph partitioning algorithm that
results in a graph with two equally-sized communities

* node_walktrap(): A hierarchical, agglomerative algorithm based on random walks.

* node_edge_betweenness(): A hierarchical, decomposition algorithm where edges are re-
moved in decreasing order of the number of shortest paths passing through the edge, resulting
in a hierarchical representation of group membership.

* node_fast_greedy(): A hierarchical, agglomerative algorithm, that tries to optimize modu-
larity in a greedy manner.

Walktrap

The general idea is that random walks on a network are more likely to stay within the same com-
munity because few edges lead outside a community. By repeating random walks of 4 steps many
times, information about the hierarchical merging of communities is collected.

Edge-betweenness

This is motivated by the idea that edges connecting different groups are more likely to lie on multi-
ple shortest paths when they are the only option to go from one group to another. This method yields
good results but is very slow because of the computational complexity of edge-betweenness calcu-
lations and the betweenness scores have to be re-calculated after every edge removal. Networks of
~700 nodes and ~3500 ties are around the upper size limit that are feasible with this approach.

Fast-greedy

Initially, each node is assigned a separate community. Communities are then merged iteratively
such that each merge yields the largest increase in the current value of modularity, until no further
increases to the modularity are possible. The method is fast and recommended as a first approx-
imation because it has no parameters to tune. However, it is known to suffer from a resolution
limit.

References

Kernighan, Brian W., and Shen Lin. 1970. "An efficient heuristic procedure for partitioning
graphs." The Bell System Technical Journal 49(2): 291-307. doi:10.1002/j.15387305.1970.tb01770.x

https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

18 components

See Also

Other memberships: components(), core-periphery, equivalence

Examples

node_kernighanlin(ison_adolescents)
node_kernighanlin(ison_southern_women)
node_walktrap(ison_adolescents)
node_edge_betweenness(ison_adolescents)
node_fast_greedy(ison_adolescents)

components Component partitioning algorithms

Description

These functions create a vector of nodes’ memberships in components or degrees of coreness.

In graph theory, components, sometimes called connected components, are induced subgraphs from
partitioning the nodes into disjoint sets. All nodes that are members of the same partition as i are
reachable from i.

For directed networks, strongly connected components consist of subgraphs where there are paths in
each direction between member nodes. Weakly connected components consist of subgraphs where
there is a path in either direction between member nodes.

Coreness captures the maximal subgraphs in which each vertex has at least degree k, where £ is also
the order of the subgraph. As described in igraph: :coreness, a node’s coreness is k if it belongs
to the k-core but not to the (k+1)-core.

Usage

node_components(object)
node_weak_components(object)
node_strong_components(object)

node_coreness(object)

Arguments

object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

core-periphery 19

Functions

* node_components(): Returns nodes’ component membership using edge direction where
available.

* node_weak_components(): Returns nodes’ component membership ignoring edge direction.

* node_strong_components(): Returns nodes’ component membership based on edge direc-
tion.

* node_coreness(): Returns k-cores

See Also

Other memberships: community, core-periphery, equivalence

Examples

node_components(mpn_bristol)
node_coreness(ison_adolescents)

core-periphery Core-periphery clustering algorithms

Description

This function is used to identify which nodes should belong to the core, and which to the periphery.
It seeks to minimize the following quantity:

Z(51) = Z I{Ai_7:0}+ Z I{Aijzl}

(i<j)€S1 (i<j)¢S1

where nodes {4, j,...,n} are ordered in descending degree, A is the adjacency matrix, and the
indicator function is 1 if the predicate is true or 0 otherwise. Note that minimising this quantity
maximises density in the core block and minimises density in the periphery block; it ignores ties
between these blocks.

Usage

node_core(object)

Arguments

object An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

20 create

References

Borgatti, Stephen P., & Everett, Martin G. 1999. Models of core /periphery structures. Social
Networks, 21, 375-395. doi:10.1016/S03788733(99)000192

Lip, Sean Z. W. 2011. “A Fast Algorithm for the Discrete Core/Periphery Bipartitioning Problem.”
doi:10.48550/arXiv.1102.5511

See Also

Other memberships: community, components(), equivalence

Examples

mpn_elite_usa_advice %>% as_tidygraph %>%
mutate(corep = node_core(mpn_elite_usa_advice)) %>%
autographr(node_color = "corep")

network_core(mpn_elite_usa_advice)

create Make networks with defined structures

Description

These functions create networks with particular structural properties. They can create either one-
mode or two-mode networks. To create a one-mode network, pass the main argument n a single
integer, indicating the number of nodes in the network. To create a two-mode network, pass n a
vector of two integers, where the first integer indicates the number of nodes in the first mode, and
the second integer indicates the number of nodes in the second mode. As an alternative, an existing
network can be provided to n and the number of modes and nodes will be inferred.

By default, all networks are created as undirected. This can be overruled with the argument
directed = TRUE. This will return a directed network in which the arcs are out-facing or equivalent.
This direction can be swapped using to_redirected(). In two-mode networks, this is ignored.

Usage
create_empty(n)

create_complete(n, directed = FALSE)

create_ring(n, width = 1, directed = FALSE, ...)

create_star(n, directed = FALSE)

create_tree(n, directed = FALSE, width = 2)

create_lattice(n, directed = FALSE)

https://doi.org/10.1016/S0378-8733%2899%2900019-2
https://doi.org/10.48550/arXiv.1102.5511

create

21

create_components(n, membership = NULL)

create_core(n, membership = NULL)

Arguments
n Given:
* A single integer, e.g. n = 10, a one-mode network will be created.
* A vector of two integers, e.g. n=c(5,10), a two-mode network will be
created.
* A migraph-compatible object, a network of the same dimensions will be
created.
directed Logical whether the graph should be directed. By default directed = FALSE. If
the opposite direction is desired, use to_redirected().
width Integer specifying the width or breadth of the ring or branches.
Additional arguments passed on to {igraph}.
membership A vector of partition membership as integers. If left as NULL (the default), nodes
in each mode will be assigned to two, equally sized partitions.
Value

By default an igraph object is returned, but this can be coerced into other types of objects using
as_edgelist(), as_matrix(), as_tidygraph(), or as_network().

Functions

See Also

as

create_empty(): Creates an empty graph of the given dimensions.

create_complete(): Creates a filled graph of the given dimensions, with every possible tie
realised.

create_ring(): Creates a ring or chord graph of the given dimensions that loops around is
of a certain width or thickness.

create_star(): Creates a graph of the given dimensions that has a maximally central node
create_tree(): Creates a graph of the given dimensions with successive branches.

create_lattice(): Creates a graph of the given dimensions with ties to all neighbouring
nodes

create_components(): Creates a graph in which the nodes are clustered into separate com-
ponents.

create_core(): Creates a graph with a certain proportion of nodes being core nodes, densely
tied to each other and peripheral nodes, and the rest peripheral, tied only to the core.

Other makes: generate, read

22 diversity

Examples

autographr(create_empty(10)) + autographr(create_complete(10))
autographr(create_empty(c(8,6))) + autographr(create_complete(c(8,6)))
autographr(create_ring(8, width = 2)) +

autographr(create_ring(c(8,6), width = 2))

autographr(create_star(12)) +

autographr(create_star(12, directed = TRUE)) +
autographr(create_star(c(12,1)))

autographr(create_tree(c(7,8), directed = TRUE)) +
autographr(create_tree(15, directed = TRUE), "tree") +
autographr(create_tree(15, directed = TRUE, width = 3), "tree")
autographr(create_lattice(5), layout = "kk") +
autographr(create_lattice(c(5,5)))

autographr(create_components(10, membership = ¢(1,1,1,2,2,2,3,3,3,3)))
autographr(create_components(c(10, 12)))

autographr(create_core(6)) +

autographr(create_core(6, membership = c¢(1,1,1,1,2,2))) +
autographr(create_core(c(6,6)))

diversity Measures of network diversity

Description

These functions offer ways to summarise the heterogeneity of an attribute across a network, within
groups of a network, or the distribution of ties across this attribute.

Usage

network_richness(object, attribute)
node_richness(object, attribute)
network_diversity(object, attribute, clusters = NULL)
node_diversity(object, attribute)
network_homophily(object, attribute)
node_homophily(object, attribute)

network_assortativity(object)

Arguments

object An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}

diversity 23

e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

attribute Name of a nodal attribute or membership vector to use as categories for the
diversity measure.

clusters A nodal cluster membership vector or name of a vertex attribute.

Functions

* network_richness(): Calculates the number of unique categories in a network attribute.

* node_richness(): Calculates the number of unique categories of an attribute to which each
node is connected.

* network_diversity(): Calculates the heterogeneity of ties across a network or within clus-
ters by node attributes.

* node_diversity(): Calculates the heterogeneity of each node’s local neighbourhood.

* network_homophily(): Calculates how embedded nodes in the network are within groups of
nodes with the same attribute

* node_homophily(): Calculates each node’s embeddedness within groups of nodes with the
same attribute

* network_assortativity(): Calculates the degree assortativity in a graph.

network_diversity

Blau’s index (1977) uses a formula known also in other disciplines by other names (Gini-Simpson
Index, Gini impurity, Gini’s diversity index, Gibbs-Martin index, and probability of interspecific
encounter (PIE)):

k
1-> " p}
i=1

, Where p; is the proportion of group members in ¢th category and k is the number of categories for
an attribute of interest. This index can be interpreted as the probability that two members randomly
selected from a group would be from different categories. This index finds its minimum value (0)
when there is no variety, i.e. when all individuals are classified in the same category. The maximum
value depends on the number of categories and whether nodes can be evenly distributed across
categories.

network_homophily

Given a partition of a network into a number of mutually exclusive groups then The E-I index is the
number of ties between (or external) nodes grouped in some mutually exclusive categories minus
the number of ties within (or internal) these groups divided by the total number of ties. This value
can range from 1 to -1, where 1 indicates ties only between categories/groups and -1 ties only within
categories/groups.

24 equivalence

References

Blau, Peter M. (1977). Inequality and heterogeneity. New York: Free Press.

Krackhardt, David and Robert N. Stern (1988). Informal networks and organizational crises: an
experimental simulation. Social Psychology Quarterly 51(2), 123-140.

See Also

Other measures: centralisation, centrality, closure, cohesion(), features, holes, tie_centrality

Examples

marvel_friends <- to_unsigned(ison_marvel_relationships, "positive"”)
network_diversity(marvel_friends, "Gender")
network_diversity(marvel_friends, "Attractive"”)
network_diversity(marvel_friends, "Gender”, "Rich")
node_diversity(marvel_friends, "Gender")
node_diversity(marvel_friends, "Attractive"”)
network_homophily(marvel_friends, "Gender")
network_homophily(marvel_friends, "Attractive")
node_homophily(marvel_friends, "Gender")
node_homophily(marvel_friends, "Attractive"”)
network_assortativity(mpn_elite_mex)

equivalence Equivalence clustering algorithms

Description

These functions combine an appropriate _census () function together with methods for calculating
the hierarchical clusters provided by a certain distance calculation.

A plot() method exists for investigating the dendrogram of the hierarchical cluster and showing
the returned cluster assignment.

Usage
node_equivalence(
object,
census,
k = c("silhouette”, "elbow"”, "strict"),
cluster = c("hierarchical”, "concor"),
distance = c("euclidean”, "maximum”, "manhattan”, "canberra”, "binary”, "minkowski"),
range = 8L

)

node_structural_equivalence(
object,
k = c("silhouette”, "elbow”, "strict”),

equivalence 25

cluster = c("hierarchical”, "concor"),
distance = c("euclidean”, "maximum”, "manhattan”, "canberra”, "binary"”, "minkowski"),
range = 8L
)
node_regular_equivalence(
object,
k = c("silhouette”, "elbow"”, "strict”),
cluster = c("hierarchical”, "concor"),
distance = c("euclidean”, "maximum”, "manhattan”, "canberra”, "binary”, "minkowski"),
range = 8L
)
node_automorphic_equivalence(
object,
k = c("silhouette”, "elbow”, "strict”),
cluster = c("hierarchical”, "concor"),
distance = c("euclidean”, "maximum”, "manhattan”, "canberra"”, "binary”, "minkowski"),
range = 8L
)
Arguments
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package
census A matrix returned by a node_*_census () function.
k Typically a character string indicating which method should be used to select the
number of clusters to return. By default "silhouette”, other options include
"elbow” and "strict”. "strict” returns classes with members only when
strictly equivalent. "silhouette"” and "elbow” select classes based on the dis-
tance between clusters or between nodes within a cluster. Fewer, identifiable
letters, e.g. "e" for elbow, is sufficient. Alternatively, if k is passed an integer,
e.g. k=3, then all selection routines are skipped in favour of this number of
clusters.
cluster Character string indicating whether clusters should be clustered hierarchically

("hierarchical”) or through convergence of correlations ("concor”). Fewer,
identifiable letters, e.g. "c" for CONCOR, is sufficient.

distance Character string indicating which distance metric to pass on to stats: :dist.
By default "euclidean”, but other options include "maximum”, "manhattan”,
"canberra”, "binary”, and "minkowski"”. Fewer, identifiable letters, e.g. "e"
for Euclidean, is sufficient.

range Integer indicating the maximum number of (k) clusters to evaluate. Ignored
when k = "strict"” or a discrete number is given for k.

26 equivalence

Functions

* node_equivalence(): Returns nodes’ membership in according to their equivalence with
respective to some census/class

* node_structural_equivalence(): Returns nodes’ membership in structurally equivalent
classes

* node_regular_equivalence(): Returns nodes’ membership in regularly equivalent classes

* node_automorphic_equivalence(): Returns nodes’ membership in automorphically equiv-
alent classes

Source

https://github.com/aslez/concoR

References

Thorndike, Robert L. 1953. "Who Belongs in the Family?". Psychometrika, 18(4): 267-76.
doi:10.1007/BF02289263.

Rousseeuw, Peter J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of
Cluster Analysis.” Journal of Computational and Applied Mathematics, 20: 53-65. doi:10.1016/
03770427(87)901257.

See Also

Other memberships: community, components(), core-periphery

Examples

(nse <- node_structural_equivalence(mpn_elite_usa_advice))
plot(nse)

(nre <- node_regular_equivalence(mpn_elite_usa_advice,
cluster = "concor"))
plot(nre)

(nae <- node_automorphic_equivalence(mpn_elite_usa_advice,
k = "elbow"))
plot(nae)

https://github.com/aslez/concoR
https://doi.org/10.1007/BF02289263
https://doi.org/10.1016/0377-0427%2887%2990125-7
https://doi.org/10.1016/0377-0427%2887%2990125-7

features 27

features Measures of network topological features

Description

Measures of network topological features

Usage

network_core(object, membership = NULL)

network_factions(object, membership = NULL)

network_modularity(object, membership = NULL, resolution = 1)
network_smallworld(object, method = c("omega”, "sigma"”, "SWI"), times = 100)
network_scalefree(object)

network_balance(object)

Arguments

object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package

membership A vector of partition membership.

resolution A proportion indicating the resolution scale. By default 1.

method There are three small-world measures implemented:

» "sigma" is the original equation from Watts and Strogatz (1998),

NI

, where C' and L are the observed clustering coefficient and path length,
respectively, and C,. and L, are the averages obtained from random net-
works of the same dimensions and density. A ¢ > 1 is considered to be
small-world, but this measure is highly sensitive to network size.

* "omega" (the default) is an update from Telesford et al. (2011),

L. C

L

28 features

, where C} is the clustering coefficient for a lattice graph with the same
dimensions. w ranges between 0 and 1, where 1 is as close to a small-world
as possible.

¢ "SWI" is an alternative proposed by Neal (2017),

L—-1IL y C-C,
L.—L C—-C,

, where L; is the average path length for a lattice graph with the same di-
mensions. SW T also ranges between 0 and 1 with the same interpretation,
but where there may not be a network for which SW I = 1.

times Integer of number of simulations.

Functions

* network_core(): Returns correlation between a given network and a core-periphery model
with the same dimensions.

* network_factions(): Returns correlation between a given network and a component model
with the same dimensions.

* network_modularity(): Returns modularity based on nodes’ membership in pre-defined
clusters.

¢ network_smallworld(): Returns small-world metrics for one- and two-mode networks. Small-
world networks can be highly clustered and yet have short path lengths.

* network_scalefree(): Returns the exponent of the fitted power-law distribution. Usually
an exponent between 2 and 3 indicates a power-law distribution.

* network_balance(): Returns the structural balance index on the proportion of balanced tri-
angles, ranging between 0 if all triangles are imbalanced and 1 if all triangles are balanced.

Modularity

Modularity measures the difference between the number of ties within each community from the
number of ties expected within each community in a random graph with the same degrees, and
ranges between -1 and +1. Modularity scores of +1 mean that ties only appear within communities,
while -1 would mean that ties only appear between communities. A score of 0 would mean that ties
are half within and half between communities, as one would expect in a random graph.

Modularity faces a difficult problem known as the resolution limit (Fortunato and Barthélemy 2007).
This problem appears when optimising modularity, particularly with large networks or depending
on the degree of interconnectedness, can miss small clusters that *hide’ inside larger clusters. In the
extreme case, this can be where they are only connected to the rest of the network through a single
tie.

Source

{signnet} by David Schoch

generate 29

References

Borgatti, Stephen P., and Martin G. Everett. 2000. “Models of Core/Periphery Structures.” Social
Networks 21(4):375-95. doi:10.1016/S03788733(99)000192

Murata, Tsuyoshi. 2010. Modularity for Bipartite Networks. In: Memon, N., Xu, J., Hicks, D.,
Chen, H. (eds) Data Mining for Social Network Data. Annals of Information Systems, Vol 12.
Springer, Boston, MA. doi:10.1007/9781441962874_7

Watts, Duncan J., and Steven H. Strogatz. 1998. “Collective Dynamics of ‘Small-World’ Net-
works.” Nature 393(6684):440-42. doi:10.1038/30918.

Telesford QK, Joyce KE, Hayasaka S, Burdette JH, Laurienti PJ. 2011. "The ubiquity of small-
world networks". Brain Connectivity 1(5): 367-75. doi:10.1089/brain.2011.0038.

Neal Zachary P. 2017. "How small is it? Comparing indices of small worldliness". Network Science.
5 (1): 30-44. doi:10.1017/nws.2017.5.

See Also

network_transitivity() and network_equivalency() for how clustering is calculated

Other measures: centralisation, centrality, closure, cohesion(), diversity, holes, tie_centrality

Examples

network_core(ison_adolescents)
network_core(ison_southern_women)
network_factions(ison_adolescents)
network_factions(ison_southern_women)
network_modularity(ison_adolescents,
node_kernighanlin(ison_adolescents))
network_modularity(ison_southern_women,
node_kernighanlin(ison_southern_women))
network_smallworld(ison_brandes)
network_smallworld(ison_southern_women)
network_scalefree(ison_adolescents)
network_scalefree(generate_scalefree(50, 1.5))
network_scalefree(create_lattice(100))
network_balance(ison_marvel_relationships)

generate Make networks with a stochastic element

Description

These functions are similar to the create_x functions, but include some element of randomisation.
They are particularly useful for creating a distribution of networks for exploring or testing network
properties.

https://doi.org/10.1016/S0378-8733%2899%2900019-2
https://doi.org/10.1007/978-1-4419-6287-4_7
https://doi.org/10.1038/30918
https://doi.org/10.1089/brain.2011.0038
https://doi.org/10.1017/nws.2017.5

30

Usage

generate

generate_random(n, p = 0.5, directed = FALSE, with_attr = TRUE)

generate_smallworld(n, p = 0.05, width = 2, directed = FALSE)

generate_scalefree(n, p = 1, directed = FALSE)

generate_permutation(object, with_attr = TRUE)

Arguments

n

directed
with_attr

width
object

Value

Given:

* A single integer, e.g. n = 10, a one-mode network will be created.

* A vector of two integers, e.g. n=c(5,10), a two-mode network will be
created.

* A migraph-compatible object, a network of the same dimensions will be
created.

Proportion of possible ties in the network that are realised or, if integer greater
than 1, the number of ties in the network.

Whether to generate network as directed. By default FALSE.
Logical whether any attributes of the object should be retained. By default
TRUE.
Integer specifying the width or breadth of the ring or branches.
An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package

By default an igraph object is returned, but this can be coerced into other types of objects using
as_matrix(), as_tidygraph(), or as_network().

Functions

» generate_random(): Generates a random network with a particular probability.

* generate_smallworld(): Generates a small-world structure following the lattice rewiring

model.

* generate_scalefree(): Generates a scale-free structure following the preferential attach-

ment model.

* generate_permutation(): Generates a permutation of the original network using a Fisher-
Yates shuffle on both the rows and columns (for a one-mode network) or on each of the rows
and columns (for a two-mode network).

ggevolution 31

References

Erdds, Paul, and Alfréd Rényi. (1959). "On Random Graphs [" Publicationes Mathematicae. 6:
290-297.

Watts, Duncan J., and Steven H. Strogatz. 1998. “Collective Dynamics of ‘Small-World” Net-
works.” Nature 393(6684):440-42. doi:10.1038/30918.

Barabasi, Albert-Ldszl6, and Réka Albert. 1999. “Emergence of Scaling in Random Networks.”
Science 286(5439):509-12. doi:10.1126/science.286.5439.509.

See Also

as

Other makes: create, read

Examples

autographr(generate_random(12, 0.4)) +
autographr(generate_random(c(6, 6), 0.4))
autographr(generate_smallworld(12, 0.025)) +
autographr(generate_smallworld(12, 0.25)) +
autographr(generate_smallworld(c(6,6), 0.025))
autographr(generate_scalefree(12, 0.25)) +
autographr(generate_scalefree(12, 1.25))
autographr(generate_scalefree(c(12,6), 0.25)) /
autographr(generate_scalefree(c(12,6), 1.25))
autographr(mpn_elite_usa_advice) +
autographr(generate_permutation(mpn_elite_usa_advice))

ggevolution Plot the evolution of a network

Description

This function offers a method to plot a network at two or more timepoints for quick and easy
comparison. The function is currently limited to two networks and only the layout given by the first
or last network, but further extensions expected.

Usage
ggevolution(..., layout = "kk", based_on = c("first”, "last”, "both"))
Arguments
two or more networks
layout an igraph layout. Default is Kamada-Kawai ("kk")
based_on whether the layout of the joint plots should be based on the "first" or the "last"

network.

https://www.renyi.hu/~p_erdos/1959-11.pdf
https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509

32 grab

Examples

mpn_elite_mex <- mpn_elite_mex %>% to_subgraph(in_mpn == 1)
mpn_elite_mex2 <- generate_permutation(mpn_elite_mex)
ggevolution(mpn_elite_mex, mpn_elite_mex2)

ggevolution(mpn_elite_mex, mpn_elite_mex2, based_on = "last")
ggevolution(mpn_elite_mex, mpn_elite_mex2, based_on = "both")
gglineage Plot lineage graph
Description

Lineage implies a direct descent from an ancestor; ancestry or pedigree. That is, how observation
derives and is connected to previous observations. The function plots a lineage graph of citations,
amendments, and more, for example.

Usage

gglineage(object, labels = TRUE)

Arguments

object A migraph-consistent network/graph.

labels Whether to plot node labels or not. Default: TRUE.
Examples

cites <- dplyr::tibble(qID1 = c(”BNLHPB_2016P:BNLHPB_1970A",
"PARIS_2015A","INOOTO_2015A", "RUS-USA[UUF]_2015A",
"RUS-USALUUF]_2015A", "RUS-USA[UUF]_2015A", "RUS-USA[UUF]_2015A",
"INECHA_20150", "ST@4DC_2014P", "STQ4DC_2014P"),

gID2 = c("BNLHPB_1977P:BNLHPB_1970A", "UNFCCC_1992A", "INOOTO_2005A",
"RUS-USA[MFR]_1988A", "PSQ7UF_2009A", "UNCLOS_1982A", "UNCLOS_1982A",
"ERECHA_19910", "AIQ7EM_1998A", "CNEWNH_1979A"))

gglineage(cites)

grab Grab various node or edge attributes from a network

Description

These functions operate to help extract certain attributes from given network data. They are also
useful as helpers within other functions.

network_#*() functions always relate to the overall graph or network, usually returning a scalar.
node_x() and tie_x() always return vectors the same length as the number of nodes or edges in
the network, respectively.

grab 33
Usage
node_names (object)
node_mode (object)
node_attribute(object, attribute)
tie_attribute(object, attribute)
tie_weights(object)
tie_signs(object)
network_nodes(object)
network_ties(object)
network_dims(object)
network_node_attributes(object)

network_tie_attributes(object)

Arguments
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
attribute Character string naming an attribute in the object.
Functions

* node_names(): Extracts the names of the nodes in a network.

¢ node_mode (): Extracts the mode of the nodes in a network.

e node_attribute(): Extracts an attribute’s values for the nodes in a network.

e tie_attribute(): Extracts an attribute’s values for the edges in a network.

* tie_weights(): Extracts the weights of the edges in a network.

* tie_signs(): Extracts the signs of the edges in a network.

* network_nodes(): Returns the total number of nodes (of any mode) in a network.
* network_ties(): Returns the number of edges in a network.

* network_dims(): Returns the dimensions of a network in a vector as long as the number of
modes in the network.

34 grid_layouts

e network_node_attributes(): Returns a vector of nodal attributes in a network

* network_tie_attributes(): Returns a vector of edge attributes in a network

See Also

Other manipulations: add, as(), reformat, split(), transform()

Examples

node_names(mpn_elite_usa_advice)

node_mode (mpn_elite_usa_advice)
node_attribute(mpn_elite_mex, "full_name")
tie_attribute(ison_algebra, "task_tie")
tie_weights(to_model(ison_southern_women))
tie_signs(ison_marvel_relationships)
network_nodes(ison_southern_women)
network_ties(ison_southern_women)
network_dims(ison_southern_women)
network_dims(to_mode1(ison_southern_women))
network_node_attributes(mpn_elite_mex)
network_tie_attributes(mpn_elite_mex)

grid_layouts Layouts for snapping layouts to a grid

Description

The function uses approximate pattern matching to redistribute coarse layouts on square grid points,
while preserving the topological relationships among the nodes (see Inoue et al. 2012).

Usage

layout_tbl_graph_frgrid(object, circular = FALSE, times = 1000)

layout_tbl_graph_kkgrid(object, circular = FALSE, times = 1000)

1000)

layout_tbl_graph_gogrid(object, circular = FALSE, times

layout_tbl_graph_stressgrid(object, circular = FALSE, times = 1000)

Arguments

object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package
* network, from the {network} package

holes 35

e tbl_graph, from the {tidygraph} package

circular Should the layout be transformed into a radial representation. Only possible for
some layouts. Defaults to FALSE
times Maximum number of iterations, where appropriate
References

Inoue, Kentaro, Shinichi Shimozono, Hideaki Yoshida, and Hiroyuki Kurata. 2012. “Application
of Approximate Pattern Matching in Two Dimensional Spaces to Grid Layout for Biochemical
Network Maps” edited by J. Bourdon. PLoS ONE 7(6):e37739. doi:10.1371/journal.pone.0037739.

See Also

Other mapping: auto_graph, partition_layouts

holes Measures of structural holes

Description

These function provide different measures of the degree to which nodes fill structural holes, as
outlined in Burt (1992). Burt’s theory holds that while those nodes embedded in dense clusters of
close connections are likely exposed to the same or similar ideas and information, those who fill
structural holes between two otherwise disconnected groups can gain some comparative advantage
from that position.

Usage

node_bridges(object)
node_redundancy(object)
node_effsize(object)
node_efficiency(object)
node_constraint(object)

node_hierarchy(object)

Arguments

object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

https://doi.org/10.1371/journal.pone.0037739

36 holes

Details

A number of different ways of measuring these structural holes are available. Note that we use
Borgatti’s reformulation for unweighted networks in node_redundancy() and node_effsize().
Redundancy is thus % where ¢ is the sum of ties and n the sum of nodes in each node’s neighbour-
hood, and effective size is calculated as n — 2t. Node efficiency is the node’s effective size divided

by its degree. !

Functions

* node_bridges(): Returns the sum of bridges to which each node is adjacent.

* node_redundancy(): Returns a measure of the redundancy of each nodes’ contacts.
* node_effsize(): Returns nodes’ effective size

* node_efficiency(): Returns nodes’ efficiency

* node_constraint(): Returns nodes’ constraint scores for one-mode networks according to
Burt (1992) and for two-mode networks according to Hollway et al (2020).

* node_hierarchy(): Returns nodes’ exposure to hierarchy, where only one or two contacts
are the source of closure

References

Burt, Ronald S. 1992. Structural Holes: The Social Structure of Competition. Cambridge, MA:
Harvard University Press.

Borgatti, Steven. 1997. “Structural Holes: Unpacking Burt’s Redundancy Measures” Connections
20(1):35-38.

Hollway, James, Jean-Frédéric Morin, and Joost Pauwelyn. 2020. "Structural conditions for nov-
elty: the introduction of new environmental clauses to the trade regime complex." International
Environmental Agreements: Politics, Law and Economics 20 (1): 61-83. doi:10.1007/s10784019-
094645.

See Also

Other measures: centralisation, centrality, closure, cohesion(), diversity, features,
tie_centrality

Examples

node_bridges(ison_adolescents)
node_bridges(ison_southern_women)
node_redundancy(ison_adolescents)
node_redundancy (ison_southern_women)
node_effsize(ison_adolescents)
node_effsize(ison_southern_women)
node_efficiency(ison_adolescents)
node_efficiency(ison_southern_women)
node_constraint(ison_southern_women)
node_hierarchy(ison_adolescents)
node_hierarchy(ison_southern_women)

http://www.analytictech.com/connections/v20(1)/holes.htm
https://doi.org/10.1007/s10784-019-09464-5
https://doi.org/10.1007/s10784-019-09464-5

is

is Marking networks based on their properties

Description

These functions implement logical tests for various network properties.
Usage

is_migraph(object)

is_graph(object)

is_edgelist(object)

is_twomode(object)

is_weighted(object)

is_directed(object)

is_labelled(object)

is_signed(object)

is_connected(object)

is_complex(object)

is_multiplex(object)

is_uniplex(object)

is_acyclic(object)

is_aperiodic(object, max_path_length = 4)

is_perfect_matching(object, mark = "type")

is_eulerian(object)

Arguments

object An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}

38

is

e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

max_path_length

mark

Value

Maximum path length considered. If negative, paths of all lengths are consid-
ered. By default 4, to avoid potentially very long computation times.

A logical vector marking two types or modes. By default "type".

TRUE if the condition is met, or FALSE otherwise.

Functions

Source

is_migraph(): Tests whether network is migraph-compatible
is_graph(): Tests whether network contains graph-level information
is_edgelist(): Tests whether data frame is an edgelist
is_twomode (): Tests whether network is a two-mode network
is_weighted(): Tests whether network is weighted

is_directed(): Tests whether network is directed

is_labelled(): Tests whether network includes names for the nodes
is_signed(): Tests whether network is signed positive/negative

is_connected(): Tests whether network is weakly connected if the network is undirected
or strongly connected if directed. To test weak connection on a directed network, please see
to_undirected().

is_complex(): Tests whether network contains any loops

is_multiplex(): Tests whether network is multiplex, either from multiple rows with the
same sender and receiver, or multiple columns to the edgelist.

is_uniplex(): Tests whether network is simple (both uniplex and simplex)
is_acyclic(): Tests whether network is a directed acyclic graph
is_aperiodic(): Tests whether network is aperiodic

is_perfect_matching(): Tests whether there is a matching for a network that covers every
node in the network

is_eulerian(): Tests whether there is a Eulerian path for a network where that path passes
through every tie exactly once @importFrom igraph has_eulerian_path

https://stackoverflow.com/questions/55091438/r-igraph-find-all-cycles

See Also

Other marks: mark_nodes, mark_ties

ison_adolescents

Examples

is_twomode (ison_southern_women)
is_weighted(ison_southern_women)
is_directed(ison_algebra)
is_labelled(ison_southern_women)
is_signed(ison_southern_women)
is_connected(ison_southern_women)
is_complex(ison_southern_women)
is_uniplex(ison_algebra)
is_acyclic(ison_algebra)
is_aperiodic(ison_algebra)
is_perfect_matching(ison_southern_women)
is_eulerian(ison_brandes)

39

ison_adolescents One-mode subset (8 individuals) of the adolescent society (Coleman
1961).

Description

ison_adolescents

Usage

data(ison_adolescents)

Format

#> # A tbl_graph: 8 nodes and 10 edges

#H #

#> # An undirected simple graph with 1 component
#> #

40 ison_algebra

#> # Node Data: 8 x 1 (active)

#> name

#> <chr>

#> 1 Betty

#> 2 Sue

#> 3 Alice

#> 4 Jane

#> 5 Dale

#> 6 Pam

#> # ... with 2 more rows
#> #

#> # Edge Data: 10 x 2

#> from to
#> <int> <int>
#> 1 1 2
#> 2 2 3
#> 3 3 4
#> # . with 7 more rows

References

Coleman, James S. 1961. The Adolescent Society. New York: Free Press.

Feld, Scott. 1991. “Why your friends have more friends than you do” American Journal of Sociol-
0gy 96(6): 1464-1477. doi:10.1086/229693.

ison_algebra Multiplex graph object of friends, social, and task ties (McFarland
2001)

Description

Multiplex graph object of friends, social, and task ties (McFarland 2001)

Usage

data(ison_algebra)

Format

#> # A tbl_graph: 16 nodes and 144 edges

#> #

#> # A directed simple graph with 1 component
#> #

#> # Node Data: 16 x 1 (active)

#> name

#> <chr>

#> 1 Melinda

https://doi.org/10.1086/229693

ison_algebra 41

#> 2 Abby
#> 3 Darryl
#> 4 Veronica
#> 5 Rylan
#> 6 Lindsey
#> # . with 10 more rows
#> #
#> # Edge Data: 144 x 5
#> from to friends social tasks
#> <int> <int> <dbl> <dbl> <dbl>
#> 1 1 5 0 1.2 0.3
#> 2 1 8 o 0.15 0
#> 3 1 9 o 2.85 0.3
#> # ... with 141 more rows

Details

Multiplex graph object of friends, social, and task ties between 16 anonymous students. M 182 was
an honors algebra class where researchers collected friendship, social, and task ties between 16
students. The edge attribute friends contains friendship ties, where 2 = best friends, 1 = friend,
and @ is not a friend. social consists of social interactions per hour, and tasks consists of task
interactions per hour.

ison_algebra

Source
See also data(studentnets.M182, package = "NetData") Larger comprehensive data set pub-
licly available, contact Daniel A. McFarland for details.

References

McFarland, Daniel A. (2001) “Student Resistance.” American Journal of Sociology 107(3): 612-78.
doi:10.1086/338779.

https://doi.org/10.1086/338779

42 ison_brandes

ison_brandes One-mode and two-mode centrality demonstration networks

Description

This network should solely be used for demonstration purposes as it does not describe a real net-
work.

Usage

data(ison_brandes)

data(ison_brandes?2)

Format
#> # A tbl_graph: 11 nodes and 12 edges
#> #
#> # An undirected simple graph with 1 component
#
#> # Node Data: 11 x @ (active)
#> # ... with 5 more rows
#> #
#> # Edge Data: 12 x 2

#> from to
#> <int> <int>

#> 1 1 3

#> 2 2 3

#> 3 3 4

#> # ... with 9 more rows

#> # A tbl_graph: 11 nodes and 12 edges
#> #

#> # A bipartite simple graph with 1 component
#> #

#> # Node Data: 11 x 1 (active)

#> type

#> <lgl>

#> 1 FALSE

#> 2 FALSE

#> 3 TRUE

#> 4 FALSE

#> 5 TRUE

#> 6 TRUE

#> # ... with 5 more rows

#> #

#> # Edge Data: 12 x 2

ison_karateka 43

#> from to
#> <int> <int>

#> 1 1 3
#> 2 2 3
#> 3 3 4
#> # ... with 9 more rows
Details
ison_brandes
[} [} [] [}
[] [
[] | |
[] ° |]
[J [4
[] []
[J [2N] []
[J n
ison_karateka One-mode karateka network (Zachary 1977)
Description

The network was observed in a university Karate club in 1977. The network describes association
patterns among 34 members and maps out allegiance patterns between members and either Mr. Hi,
the instructor, or the John A. the club president after an argument about hiking the price for lessons.
The allegiance of each node is listed in the obc argument which takes the value 1 if the individual
sided with Mr. Hi after the fight and 2 if the individual sided with John A.

ison_karateka

. s / A s
. 7\ .
. A\ ¥ <X
A Nz ¥
.

Usage

data(ison_karateka)

Format

#> IGRAPH a87bb9f UN-- 34 78 --
#> + attr: name (v/c), obc (v/n)
#> + edges from a87bb9f (vertex names):

44 ison_marvel

[1] Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi--
#> [10] Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- Mr Hi-- -- --
#> [19] -- -- -- -- -- -- -- -- --
#> [28] -- -- -- -- -- -- -- -- --
#> [37] -~ -~ -~ -~ -~ -~ -~

#> + ... omitted several edges

References

Zachary, Wayne W. 1977. “An Information Flow Model for Conflict and Fission in Small Groups.”
Journal of Anthropological Research 33(4):452—73. doi:10.1086/jar.33.4.3629752.

ison_lotr One-mode interaction network of Lord of the Rings (book) character
interactions

Description

One-mode interaction network of Lord of the Rings (book) character interactions

Usage

data(ison_lotr)

Format

One-mode tidygraph of 36 Lord of the Rings book characters and 66 interactions

ison_marvel Multilevel two-mode affiliation, signed one-mode networks of Marvel
comic book characters (Yiiksel 2017)

Description

Multilevel two-mode affiliation, signed one-mode networks of Marvel comic book characters (Yiik-
sel 2017)

Usage

data(ison_marvel_teams)

data(ison_marvel_relationships)

https://doi.org/10.1086/jar.33.4.3629752

ison_networkers 45

Format

Two-mode igraph of 53 Marvel comic book characters and 141 team-ups, with 683 team affiliations
between them

One-mode igraph of 53 Marvel comic book characters and 558 signed (1 = friends, -1 = enemies)
undirected ties

Details

This package includes two datasets related to the Marvel comic book universe. The first, ison_marvel_teams,
is a two-mode affiliation network of 53 Marvel comic book characters and their affiliations to 141

different teams. This network includes only information about nodes’ names and nodeset, but addi-

tional nodal data can be taken from the other Marvel dataset here.

The second network, ison_marvel_relationships, is a one-mode signed network of friendships
and enmities between the 53 Marvel comic book characters. Friendships are indicated by a positive
sign in the edge sign attribute, whereas enmities are indicated by a negative sign in this edge
attribute. Additional nodal variables have been coded and included by Dr Umut Yiiksel:

* Gender: binary character, 43 "Male" and 10 "Female"

* PowerOrigin: binary character, 2 "Alien", 1 "Cyborg", 5 "God/Eternal", 22 "Human", 1
"Infection”, 16 "Mutant", 5 "Radiation", 1 "Robot"

* Appearances: integer, in how many comic book issues they appeared in
* Attractive: binary integer, 41 1 (yes) and 12 0 (no)

* Rich: binary integer, 11 1 (yes) and 42 0 (no)

¢ Intellect: binary integer, 39 1 (yes) and 14 0 (no)

* Omnilingual: binary integer, 8 1 (yes) and 45 0 (no)

* UnarmedCombat: binary integer, 51 1 (yes) and 2 0 (no)

* ArmedCombat: binary integer, 25 1 (yes) and 28 0 (no)

Source

Umut Yiiksel, 31 March 2017

ison_networkers One-mode EIES dataset (Freeman and Freeman 1979)

Description

A directed, simple, named, weighted graph with 32 nodes and 440 edges. Nodes are academics
and edges illustrate the communication patterns on an Electronic Information Exchange System
among them. Node attributes include the number of citations (Citations) and the discipline of the
researchers (Discipline). Edge weights illustrate the number of emails sent from one academic to
another over the studied time period.

46 ison_projection

Usage

data(ison_networkers)

Format
#> # A tbl_graph: 32 nodes and 440 edges
#> #
#> # A directed simple graph with 1 component
#> #
#> # Node Data: 32 x 3 (active)
#> name Discipline Citations
#> <chr> <chr> <dbl>
#> 1 LIN FREEMAN Sociology 19
#> 2 DOUG WHITE Anthropology 3
#> 3 EV ROGERS Other 170
#> 4 RICHARD ALBA Sociology 23
#> 5 PHIPPS ARABIE Other 16
#> 6 CAROL BARNER-BARRY Other 6
#> # . with 26 more rows
#> #
#> # Edge Data: 440 x 3

#> from to weight
#> <int> <int> <dbl>

#> 1 1 2 488

#> 2 1 3 28

#> 3 1 4 65

#> # ... with 437 more rows
Source

networkdata package

References

Freeman, Sue C. and Linton C. Freeman. 1979. The networkers network: A study of the impact of
a new communications medium on sociometric structure. Social Science Research Reports No 46.
Irvine CA, University of California.

Wasserman Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press, Cambridge.

ison_projection Two-mode projection examples (Hollway 2021)

Description

Two-mode projection examples (Hollway 2021)

ison_southern_women 47

Usage

data(ison_mm)
data(ison_bm)
data(ison_mb)

data(ison_bb)

Format

Directed two-mode {igraph} object with 6 nodes and 6 edges
Directed two-mode {igraph} object with 8 nodes and 9 edges
Directed two-mode {igraph} object with 8 nodes and 9 edges

Directed two-mode {igraph} object with 10 nodes and 12 edges

Details

These datasets should only be used for demonstration purposes as they do not describe a real world
network. All examples contain named nodes.

% =u o m @
of ol 6 Ce
ison_southern_women Two-mode southern women (Davis, Gardner and Gardner 1941)
Description

Two-mode network dataset collected by Davis, Gardner and Gardner (1941) about the attendance
pattern of women at informal social events during a 9 month period. Events and women are named.

Usage

data(ison_southern_women)

48 mark_nodes

Format

#> IGRAPH f8d9f5f UN-B 32 93 --
#> + attr: type (v/1), name (v/c)
#> + edges from f8d9f5f (vertex names):

#> [1] EVELYN --E1 EVELYN --E2 EVELYN --E3 EVELYN --E4 EVELYN --E5
#> [6] EVELYN --E6 EVELYN --E8 EVELYN --E9 LAURA --ET1 LAURA --E2
#> [111 LAURA --E3 LAURA --E5 LAURA --E6 LAURA --E7 LAURA --E8

#> [16] THERESA --E2 THERESA --E3 THERESA --E4 THERESA --E5 THERESA --E6
#> [21] THERESA --E7 THERESA --E8 THERESA --E9 BRENDA --E1 BRENDA --E3
#> [26] BRENDA --E4 BRENDA --E5 BRENDA --E6 BRENDA --E7 BRENDA --E8
#> [31] CHARLOTTE--E3 CHARLOTTE--E4 CHARLOTTE--E5 CHARLOTTE--E7 FRANCES --E3
#> [36] FRANCES --E5 FRANCES --E6 FRANCES --E8 ELEANOR --E5 ELEANOR --E6
#> + ... omitted several edges

Details

ison_southern_women
T AT A

| ;.l VNN
VA K

References

Davis, Allison, Burleigh B. Gardner, and Mary R. Gardner. 1941. Deep South. Chicago: University
of Chicago Press.

mark_nodes Marking nodes based on their properties

Description

These functions return logical vectors the length of the nodes in a network identifying which hold
certain properties.

node_is_cutpoint() and node_is_isolate() are useful for identifying nodes that are in partic-
ular positions in the network. More can be added here.

node_is_max() and node_is_min() are more generally useful for converting the results from some
node measure into a mark-class object. They can be particularly useful for highlighting which node
or nodes are key because they minimise or, more often, maximise some measure.

mark_nodes

Usage

49

node_is_cutpoint(object)

node_is_isolate(object)

node_is_core(object)

node_is_random(object, size = 1)

node_is_max(node_measure, ranks = 1)

node_is_min(node_measure, ranks

Arguments

object

size
node_measure

ranks

Functions

1
—_
~

An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
The number of nodes to select (as TRUE).

An object created by a node_ measure.

The number of ranks of max or min to return. For example, ranks = 3 will return
TRUE for nodes with scores equal to any of the top (or, for node_is_min(),
bottom) three scores. By default, ranks = 1.

* node_is_cutpoint(): Returns logical of which nodes cut or act as articulation points in a
network, increasing the number of connected components in a graph when removed.

* node_is_isolate(): Returns logical of which nodes are isolates, with neither incoming nor

outgoing ties.

* node_is_core(): Returns logical of which nodes are members of the core of the network.

* node_is_random(): Returns a logical vector indicating a random selection of nodes as TRUE.

* node_is_max(): Returns logical of which nodes hold the maximum of some measure

* node_is_min(): Returns logical of which nodes hold the minimum of some measure

See Also

Other marks: is(), mark_ties

50 mark_ties

Examples

node_is_cutpoint(ison_brandes)
node_is_isolate(ison_brandes)
node_is_core(ison_brandes)
node_is_random(ison_brandes, 2)
node_is_max(node_degree(ison_brandes))
node_is_min(node_degree(ison_brandes))

mark_ties Marking ties based on their properties

Description

These functions return logical vectors the length of the ties in a network, identifying which hold
some property. They are most useful in highlighting parts of the network that are particularly well-
or poorly-connected.

Usage
tie_is_multiple(object)
tie_is_loop(object)
tie_is_reciprocated(object)
tie_is_bridge(object)
tie_is_max(tie_measure)

tie_is_min(tie_measure)

Arguments
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package
tie_measure An object created by a tie_ measure.
Functions

e tie_is_multiple(): Returns logical of which ties are multiples

* tie_is_loop(): Returns logical of which ties are loops

mpn_bristol 51

e tie_is_reciprocated(): Returns logical of which ties are mutual/reciprocated
e tie_is_bridge(): Returns logical of which ties cut or act as articulation points in a network.
e tie_is_max(): Returns logical of which ties hold the maximum of some measure

e tie_is_min(): Returns logical of which ties hold the minimum of some measure

See Also

Other marks: is(), mark_nodes

Examples

tie_is_multiple(ison_marvel_relationships)
tie_is_loop(ison_marvel_relationships)
tie_is_reciprocated(ison_algebra)
tie_is_bridge(ison_brandes)
tie_is_max(tie_betweenness(ison_brandes))
tie_is_min(tie_betweenness(ison_brandes))

mpn_bristol Multimodal (3) Bristol protest events, 1990-2002 (Diani and Bison
2004)

Description

A multimodal network with three levels representing ties between individuals, civic organisations in
Bristol, and major protest and civic events that occurred between 1990 and 2000. The data contains
individuals’ affiliations to civic organizations in Bristol, the participation of these individuals in
major protest and civic events between 1990-2002, and the involvement of the civic organizations
in these events.

Usage

data(mpn_bristol)

Format

#> # A tbl_graph: 264 nodes and 1496 edges
#> #

#> # A bipartite simple graph with 3 components
#H #

#> # Node Data: 264 x 3 (active)

#> name type 1vl

#> <chr> <1gl> <dbl>

#> 101 FALSE 1

#> 102 FALSE 1

#> 103 FALSE 1

#> 104 FALSE 1

A w N =

52 mpn_cow

#> 5 105 FALSE 1

#> 6 106 FALSE 1

#> # ... with 258 more rows
#> #

#> # Edge Data: 1,496 x 2

#> from to
#> <int> <int>
#> 1 36 151
#> 2 40 151
#> 3 73 151
#> # . with 1,493 more rows

Details
Although represented as a two-mode network, it contains three levels:

1. 150 Individuals, anonymised with numeric ID

2. 97 Bristol civic organizations

3. 17 Major protest and civic events in Bristol, 1990-2002

The network represents ties between level 1 (individuals) and level 2 (organisations), level 1 (indi-
viduals) and level 3 (events), as well as level 2 (organisations) and level 3 (events). The network is

simple, undirected, and named. For a complete list of civic organisations and protest/civic events
included in the data, please see Appendix 6.1 in Multimodal Political Networks (Knoke et al., 2021).

Source
Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

References

Diani, Mario, and Ivano Bison. 2004. “Organizations, Coalitions, and Movements.” Theory and
Society 33(3—4):281-309. doi:10.1023/B:RYS0.0000038610.00045.07.

mpn_cow One-mode interstate trade relations and two-mode state membership
in IGOs (COW)

Description

One-mode interstate trade relations and two-mode state membership in IGOs (COW)

Usage

data(mpn_cow_trade)

data(mpn_cow_igo)

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://doi.org/10.1023/B%3ARYSO.0000038610.00045.07

mpn_cow

Format

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

HFH HFTooobhwNn =

H w N =

HFH HFooobhwnN = HOoH H O H

H w N =

A tbl_graph: 116 nodes and 11489 edges
A directed simple graph with 1 component

Node Data: 116 x 1 (active)
name
<chr>
United States of America
Canada
Cuba
Dominican Republic
Jamaica
Trinidad and Tobago
. with 110 more rows

Edge Data: 11,489 x 3

from to weight

<int> <int> <dbl>
1 2 180387

1 3 587.

1 4 5511,

. with 11,486 more rows

A tbl_graph: 152 nodes and 839 edges
A directed acyclic simple graph with 1 component

Node Data: 152 x 3 (active)

name type polity2
<chr> <lgl> <dbl>
Afghanistan FALSE -7
Albania FALSE 5
Algeria FALSE -3
Angola FALSE -6
Argentina FALSE 8
Australia FALSE 10

. with 146 more rows

Edge Data: 839 x 3
from to weight
<int> <int> <dbl>
1 113 1
1 114 1
1 115 %
. with 836 more rows

53

54 mpn_elite_mex

Details

mpn_cow_trade is a one-mode matrix representing the trade relations between 116 states. The
data is derived from the Correlates of War Project (COW) Trade Dataset (v3.0), which contains
the annual dyadic and national trade figures for states (listed in COW) between 1870 to 2009. This
network is based only on the dyadic trade figures in 2009 for the 116 states listed in Appendix 7.1 in
Multimodal Political Networks (Knoke et al., 2021). The value in each cell of the matrix represents
the value of exports from the 116 row states to the 116 column states.

mpn_cow_igo is a two-mode graph representing the membership of 116 states in 40 intergovern-
mental organizations (IGOs). The data is derived from the Correlates of War Project (COW) Inter-
governmental Organizations Dataset (v3.0), which contains information about intergovernmental
organizations from 1815-2014, such as founding year and membership. This network contains only
a subset of the states and IGOs listed in COW, with 116 states listed in Appendix 7.1 in Multimodal
Political Networks and 40 IGOs from Table 7.1 in Multimodal Political Networks that also overlap
with the COW dataset (Knoke et al., 2021).

Source

The Correlates of War Project. 2012. Trade.

Barbieri, Katherine and Omar Keshk. 2012. Correlates of War Project Trade Data Set Codebook,
Version 3.0.

The Correlates of War Project. 2019. Intergovernmental Organization v3.

References

Barbieri, Katherine, Omar M. G. Keshk, and Brian Pollins. 2009. “TRADING DATA: Evaluating
our Assumptions and Coding Rules.” Conflict Management and Peace Science 26(5): 471-491.
doi:10.1177/0738894209343887.

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

Pevehouse, Jon C.W., Timothy Nordstron, Roseanne W McManus, Anne Spencer Jamison. 2020.
“Tracking Organizations in the World: The Correlates of War IGO Version 3.0 datasets”. Journal
of Peace Research 57(3): 492-503. doi:10.1177/0022343319881175.

mpn_elite_mex One-mode Mexican power elite database (Knoke 1990)

Description

This data contains the full network of 35 members of the Mexican power elite. The undirected lines
connecting pairs of men represent any formal, informal, or organizational relation between a dyad;
for example, “common belonging (school, sports, business, political participation), or a common
interest (political power)” (Mendieta et al. 1997: 37). Additional nodal attributes include their full
name, place of birth, state, and region (1=North, 2=Centre, 3=South, original coding added by Frank
Heber), as well as their year of entry into politics and whether they are civilian (0) or affiliated with
the military (1). An additional variable "in_mpn" can be used to subset this network to a network of

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://doi.org/10.1177/0738894209343887
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://doi.org/10.1177/0022343319881175
https://jameshollway.com/courses/ison/heber_post
https://jameshollway.com/courses/ison/heber_post

mpn_elite_mex 55

11 core members of the 1990s Mexican power elite (Knoke 2017), three of which were successively
elected presidents of Mexico: José Lopez Portillo (1976-82), Miguel de 1a Madrid (1982-88), and
Carlos Salinas de Gortari (1988-94, who was also the son of another core member, Ratil Salinas
Lozano).

Usage

data(mpn_elite_mex)

Format

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

HOoH H O H

H w N =

HF HF HF OO W N =

A tbl_graph: 35 nodes and 117 edges
An undirected simple graph with 1 component
Node Data: 35 x 8 (active)
name full_name entry_year military in_mpn PlaceOf~ state region
<chr> <chr> <dbl> <dbl> <dbl> <chr> <chr> <dbl>
Trevino Trevino, Jacinto B. 1910 1 @ Guerrero Coah~ 1
Madero Madero, Francisco 1911 0 @ Parras ~ Coah~ 1
Carranza Carranza, Venustiano 1913 1 @ Cuatro ~ Coah~ 1
Aguilar Aguilar, Candido 1918 1 @ Cordoba Vera~ 3
Obregon Obregon, Alvaro 1920 1 @ Siquisi~ Sono~ 1
Calles Calles, Plutarco E. 1924 1 @ Guaymas Sono~ 1
. with 29 more rows
Edge Data: 117 x 2
from to

<int> <int>

2 3

2 5

2 6

. with 114 more rows

56

mpn_elite_usa

Details

mpn_elite_mex

Source

Knoke, David. 1990. Political Networks.

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

mpn_elite_usa Two-mode and three-mode American power elite database (Domhoff
2016)

Description

mpn_elite_usa_advice is a 2-mode network of persons serving as directors or trustees of think
tanks. Think tanks are “public-policy research analysis and engagement organizations that generate
policy-oriented research, analysis, and advice on domestic and international issues, thereby enabling
policymakers and the public to make informed decisions about public policy” (McGann 2016: 6).
The Power Elite Database (Domhoff 2016) includes information on the directors of 33 prominent
think tanks in 2012. Here we include only 14 directors who held three or more seats among 20 think
tanks.

mpn_elite_usa_money is based on 26 elites who sat on the boards of directors for at least two of
six economic policy making organizations (Domhoff 2016), and also made campaign contributions
to one or more of six candidates running in the primary election contests for the 2008 Presidential
nominations of the Republican Party (Rudy Giuliani, John McCain, Mitt Romney) or the Demo-
cratic Party (Hillary Clinton, Christopher Dodd, Barack Obama).

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128

mpn_elite_usa

Usage

data(mpn_elite_usa_advice)

data(mpn_elite_usa_money)

Format

#> # A tbl_graph: 34 nodes and 46 edges

#> #

#> # A bipartite simple graph with 1 component
#> #

#> # Node Data: 34 x 2 (active)

#> type name

#> <lgl> <chr>

#> 1 FALSE Albright

#> 2 FALSE Argyros

#> 3 FALSE Armitage

#> 4 FALSE Curry

#> 5 FALSE Fukuyama

#> 6 FALSE Gray

#> # . with 28 more rows
#> #

#> # Edge Data: 46 x 2

#> from to
#> <int> <int>
#> 1 17
#> 1 19
#> 1 21
#> . with 43 more rows

H w N =

#>
#>
#>
#>
#> # Node Data: 38 x 2 (active)
#> type name

#> <lgl> <chr>

A tbl_graph: 38 nodes and 103 edges

A bipartite simple graph with 1 component

HoHF H O

#> 1 FALSE Adkerson

#> 2 FALSE Akins

#> 3 FALSE Banga

#> 4 FALSE Boyce

#> 5 FALSE Britt

#> 6 FALSE Cannon

#> # . with 32 more rows
#> #

#> # Edge Data: 103 x 2

#> from to
#> <int> <int>

58 mpn_evs

#> 1 1 27

#> 2 1 28

#> 3 1 34

#> # ... with 100 more rows
Details

mpn_elite_usa_advice mpn_elite_usa_money
References

Dombhoff, G William. 2016. “Who Rules America? Power Elite Database.”
The Center for Responsive Politics. 2019. “OpenSecrets.”

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

mpn_evs Two-mode European Values Survey, 1990 and 2008 (EVS 2020)

Description

6 two-mode matrices containing individuals’ memberships to 14 different types of associations in
three countries (Italy, Germany, and the UK) in 1990 and 2008. The Italy data has 658 respondents
in 1990 and 540 in 2008. The Germany data has 1369 respondents in 1990 and 503 in 2008. The
UK data has 738 respondents in 1990 and 664 in 2008.

Usage
data(mpn_IT_1990)

data(mpn_IT_1990)
data(mpn_IT_2008)
data(mpn_DE_1990)
data(mpn_DE_2008)
data(mpn_UK_1990)

data(mpn_UK_2008)

https://whorulesamerica.ucsc.edu/power_elite/
https://www.opensecrets.org
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128

mpn_evs 59

Format

tbl_graph object based on an association matrix with 14 columns:

Welfare 1 if individual associated

Religious 1 if individual associated
Education.culture 1 if individual associated
Unions 1 if individual associated

Parties 1 if individual associated
Local.political.groups 1 if individual associated
Human.rights 1 if individual associated
Environmental.animal 1 if individual associated
Professional 1 if individual associated

Youth 1 if individual associated

Sports 1 if individual associated

Women 1 if individual associated

Peace 1 if individual associated

Health 1 if individual associated

An object of class tb1l_graph (inherits from igraph) of length 672.
An object of class tbl_graph (inherits from igraph) of length 554.
An object of class tbl_graph (inherits from igraph) of length 1383.
An object of class tbl_graph (inherits from igraph) of length 517.
An object of class tb1l_graph (inherits from igraph) of length 752.
An object of class tb1l_graph (inherits from igraph) of length 678.

Source

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

References

EVS (2020). European Values Study Longitudinal Data File 1981-2008 (EVS 1981-2008). GESIS
Data Archive, Cologne. ZA4804 Data file Version 3.1.0, doi:10.4232/1.13486.

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://doi.org/10.4232/1.13486

60

mpn_ryanair

mpn_ryanair

2006)

One-mode EU policy influence network, June 2004 (Christopoulos

Description

Network of anonymised actors reacting to the Ryanair/Charleroi decision of the EU Commission
in February 2004. The relationships mapped comprise an account of public records of interaction
supplemented with the cognitive network of key informants. Examination of relevant communiques,
public statements and a number of off-the-record interviews provides confidence that the network
mapped closely approximated interactions between 29 January and 12 February 2004. The time
point mapped is at the height of influence and interest intermediation played by actors in the AER,
a comparatively obscure body representing the interests of a number of European regional bodies
at the EU institutions.

Usage

data(mpn_ryanair)

Format

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Source

#
#
#
#
#

T HF HF o b, wNn =

H w N =

A tbl_graph: 20 nodes and 177 edges
A directed simple graph with 1 component

Node Data: 20 x 1 (active)
name

<chr>

1 AER

AER

AER/COR

RYANAIR

DG TRANSPORT

COR

. with 14 more rows

O 00 N 1N

Edge Data: 177 x 3
from to weight
<int> <int> <dbl>
1 2 1
1 3 1
1 4 1
. with 174 more rows

Christopoulos, Dimitrios C. 2006. “Relational Attributes of Political Entrepreneurs: a Network
Perspective.” Journal of European Public Policy 13(5): 757-78. doi:10.1080/13501760600808964.

https://doi.org/10.1080/13501760600808964

mpn_senatel 12 61

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

mpn_senatel12 Two-mode 112th Congress Senate Voting (Knoke et al. 2021)

Description

These datasets list the U.S. Senators who served in the 112th Congress, which met from January 3,
2011 to January 3, 2013. Although the Senate has 100 seats, 103 persons served during this period
due to two resignations and a death. However, the third replacement occurred only two days before
the end and cast no votes on the bills investigated here. Hence, the number of Senators analyzed is
102.

CQ Almanac identified 25 key bills on which the Senate voted during the 112th Congress, and
which Democratic and Republican Senators voting “yea” and “nay” on each proposal.

Lastly, we obtained data on campaign contributions made by 92 PACs from the Open Secrets Web-
site. We recorded all contributions made during the 2008, 2010, and 2012 election campaigns to
the 102 persons who were Senators in the 112th Congress. The vast majority of PAC contributions
to a candidate during a campaign was for $10,000 (the legal maximum is $5,000 each for a primary
and the general election). We aggregated the contributions across all three electoral cycles, then
dichotomized the sums into no contribution (0) and any contribution (1).

Usage
data(mpn_DemSxP)

data(mpn_RepSxP)

data(mpn_OverSxP)

Format
#> # A tbl_graph: 114 nodes and 2791 edges
#> #
#> # A directed acyclic simple graph with 1 component
#> #
#> # Node Data: 114 x 2 (active)

#> type name

#> <lgl> <chr>
#> 1 FALSE Baucus

#> 2 FALSE Begich

#> 3 FALSE Bennet

#> 4 FALSE Blumenthal
#> 5 FALSE Boxer

#> 6 FALSE BrownSh

#> # . with 108 more rows

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128

62

#>
#>
#>
#>
#>
#>
#>
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

HFHF Hoooh,wN - HoHF H O +*

H oH HF O H

HF HFT HF o oo wN =

HF w N =

H w N =

Edge Data: 2,791 x 3
to weight
<int> <int> <dbl>

from

1
1
1

A tbl_graph: 134 nodes and 3675 edges
A directed acyclic simple graph with 1 component

Node Data: 134 x 2 (active)

type

<lgl>
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

. with 128 more rows

Edge Data: 3,675 x 3
to weight
<int> <int> <dbl>

from

1
1
1

A tbl_graph: 52 nodes and 614 edges
A directed acyclic simple graph with 1 component

Node Data: 52 x 2 (active)

type

<lgl>
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

. with 46 more rows

Edge Data: 614 x 3
to weight

from

52
53
54

name
<chr>
Alexander
Ayotte
Barrasso
Baucus
Blunt
Boozman

64
66
67

name
<chr>
Baucus
Cardin
Carper
Casey
Collins
Feinstein

1
1
1

. with 2,788 more rows

1
1
1

. with 3,672 more rows

mpn_senatel 12

network_census 63

#> <int> <int> <dbl>

#> 1 1 21 1

#> 2 1 22 1

#> 3 1 23 1

#> # ... with 611 more rows
References

Knoke, David, Mario Diani, James Hollway, and Dimitris C Christopoulos. 2021. Multimodal
Political Networks. Cambridge University Press. Cambridge University Press.

network_census Censuses of motifs at the network level

Description

Censuses of motifs at the network level

Usage

network_dyad_census(object)
network_triad_census(object)

network_mixed_census(object, object2)

Arguments
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
object2 A second, two-mode migraph-consistent object.
Functions

* network_dyad_census(): Returns a census of dyad motifs in a network
e network_triad_census(): Returns a census of triad motifs in a network

* network_mixed_census(): Returns a census of triad motifs that span a one-mode and a two-
mode network

Source

Alejandro Espinosa "netmem’

https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128
https://www.cambridge.org/core/books/multimodal-political-networks/43EE8C192A1B0DCD65B4D9B9A7842128

64 node_census

References

Davis, James A., and Samuel Leinhardt. 1967. “The Structure of Positive Interpersonal Relations
in Small Groups.” 55.

Hollway, James, Alessandro Lomi, Francesca Pallotti, and Christoph Stadtfeld. 2017. “Multilevel
Social Spaces: The Network Dynamics of Organizational Fields.” Network Science 5(2): 187-212.
doi:10.1017/nws.2017.8

See Also

Other motifs: brokerage_census, node_census

Examples

network_dyad_census(ison_algebra)
network_triad_census(ison_adolescents)

marvel_friends <- to_unsigned(ison_marvel_relationships, "positive"”)
(mixed_cen <- network_mixed_census(marvel_friends, ison_marvel_teams))

node_census Censuses of nodes’ motifs

Description

These functions include ways to take a census of the positions of nodes in a network. These include
a triad census based on the triad profile of nodes, but also a tie census based on the particular tie
partners of nodes. Included also are group census functions for summarising the profiles of clusters
of nodes in a network.

@export node_igraph_census <- function(object, normalized = FALSE) out <- igraph::motifs(as_igraph(object),
4) if(is_labelled(object)) rownames(out) <- node_names(object) colnames(out) <- c("co-K4", "co-

"non "non

diamond", "co-C4", "co-paw", "co-claw", "P4", "claw", "paw", "C4", "diamond", "K4") make_node_motif(out,
object)

Usage

node_tie_census(object)
node_triad_census(object)
node_quad_census(object)

node_path_census(object)

https://files.eric.ed.gov/fulltext/ED024086.pdf
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://doi.org/10.1017/nws.2017.8

node_census

Arguments

object

65

An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

Details

The quad census uses the {oaqc} package to do the heavy lifting of counting the number of each or-
bits. See vignette('oaqc'). However, our function relabels some of the motifs to avoid conflicts
and improve some consistency with other census-labelling practices. The letter-number pairing of
these labels indicate the number and configuration of ties. For now, we offer a rough translation:

migraph

E4

140, 141

H4
L42,141,L40
D42, D40
U42, U41
Y43, Y41
P43, P42, P41
04

742,743

X4

See also this list of graph classes.

Functions

Ortmann and Brandes
co-K4
co-diamond
co-C4
co-paw
co-claw

P4

claw

paw

C4
diamond
K4

* node_tie_census(): Returns a census of the ties in a network. For directed networks, out-

ties and in-ties are bound together.

* node_triad_census(): Returns a census of the triad configurations nodes are embedded in.

* node_quad_census(): Returns a census of nodes’ positions in motifs of four nodes.

* node_path_census(): Returns the shortest path lengths of each node to every other node in

the network.

References

Davis, James A., and Samuel Leinhardt. 1967. “The Structure of Positive Interpersonal Relations

in Small Groups.” 55.

Ortmann, Mark, and Ulrik Brandes. 2017. “Efficient Orbit-Aware Triad and Quad Census in Di-
rected and Undirected Graphs.” Applied Network Science 2(1):13. doi:10.1007/s4110901700272.

https://www.graphclasses.org/smallgraphs.html#nodes4
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://files.eric.ed.gov/fulltext/ED024086.pdf
https://doi.org/10.1007/s41109-017-0027-2

66 partition_layouts

Dijkstra, Edsger W. 1959. "A note on two problems in connexion with graphs". Numerische Math-
ematik 1,269-71. doi:10.1007/BF01386390.

Opsahl, Tore, Filip Agneessens, and John Skvoretz. 2010. "Node centrality in weighted net-
works: Generalizing degree and shortest paths". Social Networks 32(3): 245-51. doi:10.1016/
j-socnet.2010.03.006.

See Also

Other motifs: brokerage_census, network_census

Examples

task_eg <- to_named(to_uniplex(ison_algebra, "task_tie"))
(tie_cen <- node_tie_census(task_eg))

(triad_cen <- node_triad_census(task_eg))
node_quad_census(ison_southern_women)
node_path_census(ison_adolescents)
node_path_census(ison_southern_women)

partition_layouts Layout algorithms based on bi- or other partitions

Description

Layout algorithms based on bi- or other partitions

Usage

layout_tbl_graph_hierarchy(object, circular = FALSE, times = 1000)
layout_tbl_graph_alluvial(object, circular = FALSE, times = 1000)
layout_tbl_graph_railway(object, circular = FALSE, times = 1000)
layout_tbl_graph_ladder(object, circular = FALSE, times = 1000)

layout_tbl_graph_concentric(
object,
membership = NULL,
radius = NULL,
order.by = NULL,
circular = FALSE,
times = 1000

https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.socnet.2010.03.006

play

Arguments

object

circular

times
membership

radius

order.by

Source

67

An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}

e igraph, from the {igraph} package

 network, from the {network} package

* tbl_graph, from the {tidygraph} package
Should the layout be transformed into a radial representation. Only possible for
some layouts. Defaults to FALSE
Maximum number of iterations, where appropriate

A vector of partition memberships.

A vector of radii at which the concentric circles should be located. By default
this is equal placement around an empty centre, unless one (the core) is a single
node, in which case this node occupies the centre of the graph.

An attribute label indicating the (decreasing) order for the nodes around the
circles. By default ordering is given by a bipartite placement that reduces the
number of edge crossings.

Diego Diez, Andrew P. Hutchins and Diego Miranda-Saavedra. 2014. "Systematic identification
of transcriptional regulatory modules from protein-protein interaction networks". Nucleic Acids
Research, 42 (1) e6.

See Also

Other mapping: auto_graph, grid_layouts

Examples

(autographr(ison_southern_women, "hierarchy") /
autographr(ison_southern_women, "railway")) |
autographr(ison_southern_women, "concentric")
autographr(ison_karateka, "hierarchy")

play

Functions to play games on networks

Description

Functions to play games on networks

68 play

Usage
play_diffusion(
object,
seeds = 1,

thresholds = 1,
transmissibility = 1,
latency = 0,

recovery = 0,

waning = 0,

immune = NULL,

steps

)

play_diffusions(
object,
seeds = 1,
thresholds = 1,
transmissibility = 1,
latency = 0,
recovery = 0,
waning = 0,
immune = NULL,
steps,
times = 5,
strategy = "sequential”,
verbose = FALSE

)

play_learning(object, beliefs, steps, epsilon = 5e-04)

Arguments
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph?} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
seeds A valid mark vector the length of the number of nodes in the network.
thresholds A numeric vector indicating the thresholds each node has. By default 1. A single

number means a generic threshold; for thresholds that vary among the popula-
tion please use a vector the length of the number of nodes in the network. If
1 or larger, the threshold is interpreted as a simple count of the number of con-
tacts/exposures sufficient for infection. If less than 1, the threshold is interpreted
as complex, where the threshold concerns the proportion of contacts.

play 69

transmissibility
A proportion indicating the transmission rate, 3. By default 1, which means any
node for which the threshold is met or exceeded will become infected. Anything
lower means a correspondingly lower probability of adoption, even when the
threshold is met or exceeded.

latency A proportion indicating the rate at which those exposed become infectious (in-
fected), 0. For example, if exposed individuals take, on average, four days to
become infectious, then 0 = 0.25. By default 0, which means those exposed
become immediately infectious (i.e. an SI model). Anything higher results in
e.g. a SEI model.

recovery A proportion indicating the rate of recovery, . For example, if infected individ-
uals take, on average, four days to recover, then v = 0.25. By default 0, which
means there is no recovery (i.e. an SI model). Anything higher results in an SIR
model.

waning A proportion indicating the rate at which those who are recovered become sus-
ceptible again, £. For example, if recovered individuals take, on average, four
days to lose their immunity, then £ = 0.25. By default 0, which means any
recovered individuals retain lifelong immunity (i.e. an SIR model). Anything
higher results in e.g. a SIRS model. £ = 1 would mean there is no period of
immunity, e.g. an SIS model.

immune A logical or numeric vector identifying nodes that begin the diffusion process
as already recovered. This could be interpreted as those who are vaccinated or
equivalent. Note however that a waning parameter will affect these nodes too.
By default NULL, indicating that no nodes begin immune.

steps The number of steps forward in the diffusion to play. By default the number of
nodes in the network. If steps = Inf then the diffusion process will continue
until there are no new infections or all nodes are infected.

times Integer indicating number of simulations used for quantile estimation. (Relevant
to the null hypothesis test only - the analysis itself is unaffected by this param-
eter.) Note that, as for all Monte Carlo procedures, convergence is slower for
more extreme quantiles. By default, times=1000. 1,000 - 10,000 repetitions
recommended for publication-ready results.

strategy If {furrr} is installed, then multiple cores can be used to accelerate the func-
tion. By default "sequential”, but if multiple cores available, then "multisession”
or "multicore” may be useful. Generally this is useful only when times >
1000. See {furrr} for more.

verbose Whether the function should report on its progress. By default FALSE. See
{progressr} for more.

beliefs A vector indicating the probabilities nodes put on some outcome being ’true’.
epsilon The maximum difference in beliefs accepted for convergence to a consensus.
Functions

* play_diffusion(): Playing compartmental diffusion on networks.
e play_diffusions(): Playing multiple compartmental diffusions on networks.

* play_learning(): Playing DeGroot learning on networks.

https://furrr.futureverse.org
https://progressr.futureverse.org

70 read

See Also

Other models: regression, tests

Examples

plot(play_diffusion(generate_smallworld(15, 0.025)))
plot(play_diffusion(generate_smallworld(15, 0.025), thresholds = 0.4))
plot(play_diffusion(generate_smallworld(15, 0.025), recovery = 0.4))
plot(play_diffusions(generate_smallworld(15, ©0.025), times = 20))
play_learning(ison_networkers,
rbinom(network_nodes(ison_networkers),1,prob = 0.25))

read Make networks from/to external formats

Description

Researchers regularly need to work with a variety of external data formats. The following functions
offer ways to import from some common external file formats into objects that {migraph} and other
graph/network packages in R can work with.

Note that these functions are not as actively maintained as others in the package, so please let us
know if any are not currently working for you or if there are missing import routines by raising an
issue on Github.

Usage
read_matrix(file = file.choose(), sv = c("comma”, "semi-colon”), ...)
read_edgelist(file = file.choose(), sv = c("comma”, "semi-colon"), ...)
write_edgelist(object, filename, name, ...)
read_nodelist(file = file.choose(), sv = c("comma”, "semi-colon"), ...)
write_nodelist(object, filename, name, ...)
read_pajek(file = file.choose(), ties = NULL, ...)
write_pajek(object, filename, ...)

read_ucinet(file = file.choose())
write_ucinet(object, filename, name)

read_dynetml(file = file.choose())

https://github.com/snlab-ch/migraph/issues
https://github.com/snlab-ch/migraph/issues

read 71

Arguments
file A character string with the system path to the file to import. If left unspec-
ified, an OS-specific file picker is opened to help users select it. Note that
in read_ucinet() the file path should be to the header file (.##h), if it exists
and that it is currently not possible to import multiple networks from a single
UCINET file. Please convert these one by one.
sv Allows users to specify whether their csv file is "comma” (English) or "semi-colon”
(European) separated.
Additional parameters passed to the read/write function.
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
filename UCINET filename (without ## extension). By default the files will have the
same name as the object and be saved to the working directory.
name name of matrix to be known in UCINET. By default the name will be the same
as the object.
ties Where there are
Details

There are a number of repositories for network data that hold various datasets in different formats.
See for example:

* UCINET data
* Pajek data

See also:

* networkdata

* GML datasets

* UClIrvine Network Data Repository

KONECT project

SNAP Stanford Large Network Dataset Collection

Please let us know if you identify any further repositories of social or political networks and we
would be happy to add them here.

The _ucinet functions only work with relatively recent UCINET file formats, e.g. type 6406 files.
To import earlier UCINET file types, you will need to update them first. To import multiple matrices
packed into a single UCINET file, you will need to unpack them and convert them one by one.

https://sites.google.com/site/ucinetsoftware/datasets?authuser=0
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://networkdata.schochastics.net/
http://www-personal.umich.edu/~mejn/netdata/
http://networkdata.ics.uci.edu/
http://konect.cc/
http://snap.stanford.edu/data/

72 read

Value

read_edgelist() and read_nodelist() will import into edgelist (tibble) format which can then
be coerced or combined into different graph objects from there.

read_pajek() and read_ucinet () will import into a tidygraph format, since they already contain
both edge and attribute data. read_matrix() will import into tidygraph format too. Note that all
graphs can be easily coerced into other formats with {migraph}’s as_ methods.

The write_functions export to different file formats, depending on the function.
A pair of UCINET files in V6404 file format (.##h, .##d)

Functions

* read_matrix(): Reading adjacency matrices from Excel/csv files
* read_edgelist(): Reading edgelists from Excel/csv files

* write_edgelist(): Writing edgelists to csv files

* read_nodelist(): Reading nodelists from Excel/csv files

* write_nodelist(): Writing nodelists to csv files

* read_pajek(): Reading pajek (.net/.paj) files

* write_pajek(): Writing pajek .net files

* read_ucinet(): Reading UCINET files

* write_ucinet(): Writing UCINET files

* read_dynetml(): Reading DynetML files

Source

read_ucinet() and write_ucinet() kindly supplied by Christian Steglich, constructed on 18
June 2015.

See Also

as

Other makes: create, generate

Examples

Not run:
import Roethlisberger & Dickson's horseplay game data set:
horseplay <- read_ucinet("WIRING-RDGAM.##h")

End(Not run)

Not run:

export it again to UCINET under a different name:
write_ucinet(horseplay, "R&D-horseplay")

End(Not run)

reformat

73

reformat

Tools for reformatting networks, graphs, and matrices

Description

These functions offer tools for reformatting migraph-consistent objects (matrices, igraph, tidygraph,
or network objects). Unlike the as_*() group of functions, these functions always return the same
object type as they are given, only transforming these objects’ properties.

Usage

to_uniplex(object, edge)

to_undirected(object)

to_redirected(object)

to_unweighted(object, threshold = 1)

to_unsigned(object, keep = c("positive”, "negative"))

to_unnamed(object)

to_named(object, names = NULL)

to_simplex(object)

to_onemode (object)

to_multilevel(object)

to_twomode(object, mark)

Arguments

object

edge
threshold
keep

An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package
Character string naming an edge attribute to retain from a graph.
For a matrix, the threshold to binarise/dichotomise at.

In the case of a signed network, whether to retain the "positive" or "negative"
ties.

74 reformat
names Character vector of the node names. NULL by default.
mark A logical vector marking two types or modes. By default "type".

Details

Since some modifications are easier to implement for some objects than others, here are the cur-
rently implemented modifications:

Value

to_ edgelists matrices igraph tidygraph network
unweighted X X X X X
undirected X X X X
redirected X X X X

unsigned X X X X

uniplex X X

unnamed X X X X X
named X X X X X
simplex X X

onemode X X

multilevel X X X

All to_ functions return an object of the same class as that provided. So passing it an igraph object
will return an igraph object and passing it a network object will return a network object, with certain
modifications as outlined for each function.

Functions

to_uniplex(): Returns an object that includes only a single type of tie

to_undirected(): Returns an object that has any edge direction removed, so that any pair
of nodes with at least one directed edge will be connected by an undirected edge in the new
network. This is equivalent to the "collapse" mode in {igraph}.

to_redirected(): Returns an object that has any edge direction transposed, or flipped, so
that senders become receivers and receivers become senders. This essentially has no effect on
undirected networks or reciprocated ties.

to_unweighted(): Returns an object that has all edge weights removed

to_unsigned(): Returns a network with either just the "positive" ties or just the "negative"
ties

to_unnamed(): Returns an object with all vertex names removed

to_named(): Returns an object that has random vertex names added

to_simplex(): Returns an object that has all loops or self-ties removed

to_onemode(): Returns an object that has any type/mode attributes removed, but other-
wise includes all the same nodes and ties. Note that this is not the same as to_mode1()
or to_mode2 (), which return only some of the nodes and new ties established by coincidence.

to_multilevel(): Returns a network that is not divided into two mode types but embeds two
or more modes into a multimodal network structure.

regression 75

See Also

to_twomode (): Returns a network that divides the nodes into two mode types.

Other manipulations: add, as(), grab, split(), transform()

Examples

autographr(ison_algebra)

a <-

to_uniplex(ison_algebra, "friends")

autographr(a)

a <-

to_giant(a)

autographr(a)

a <-

to_undirected(a)

autographr(a)

a <-

to_unweighted(a)

autographr(a)

regression Linear and logistic regression for network data

Description

This function provides an implementation of the multiple regression quadratic assignment proce-
dure (MRQAP) for both one-mode and two-mode network linear models. It offers several advan-
tages:

Usage

it works with combined graph/network objects such as igraph and network objects by con-
structing the various dependent and independent matrices for the user.

it uses a more intuitive formula-based system for specifying the model, with several ways to
specify how nodal attributes should be handled.

it can handle categorical variables (factors/characters) and interactions intuitively, naming the
reference variable where appropriate.

it relies on {furrr} for parallelising and {progressr} for reporting progress to the user,
which can be useful when many simulations are required.

results are {broom}-compatible, with tidy() and glance() reports to facilitate comparison
with results from different models. Note that a 7- or z-value is always used as the test statistic,
and properties of the dependent network — modes, directedness, loops, etc — will always be
respected in permutations and analysis.

network_reg(
formula,
object,
method = c(”gap”, "qapy"),
times = 1000,

https://furrr.futureverse.org
https://progressr.futureverse.org
https://broom.tidymodels.org

76 regression

strategy = "sequential”,
verbose = FALSE

Arguments

formula A formula describing the relationship being tested. Several additional terms
are available to assist users investigate the effects they are interested in. These
include:

e ego() constructs a matrix where the cells reflect the value of a named nodal
attribute for an edge’s sending node

e alter() constructs a matrix where the cells reflect the value of a named
nodal attribute for an edge’s receiving node

e same() constructs a matrix where a 1 reflects if two nodes’ attribute values
are the same

e dist() constructs a matrix where the cells reflect the absolute difference
between the attribute’s values for the sending and receiving nodes

* sim() constructs a matrix where the cells reflect the proportional similarity
between the attribute’s values for the sending and receiving nodes

* tertius() constructs a matrix where the cells reflect some aggregate of an
attribute associated with a node’s other ties. Currently "mean" and "sum"
are available aggregating functions. ’ego’ is excluded from these calcula-
tions. See Haunss and Hollway (2023) for more on this effect.

* dyadic covariates (other networks) can just be named
object An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

* network, from the {network} package

e tbl_graph, from the {tidygraph} package

method A method for establishing the null hypothesis. Note that "qap" uses Dekker et
al’s (2007) double semi-partialling technique, whereas "qapy" permutes only the
y variable. "qap" is the default.

times Integer indicating number of simulations used for quantile estimation. (Relevant
to the null hypothesis test only - the analysis itself is unaffected by this param-
eter.) Note that, as for all Monte Carlo procedures, convergence is slower for
more extreme quantiles. By default, times=1000. 1,000 - 10,000 repetitions
recommended for publication-ready results.

strategy If {furrr} is installed, then multiple cores can be used to accelerate the func-
tion. By default "sequential”, butif multiple cores available, then "multisession”
or "multicore” may be useful. Generally this is useful only when times >
1000. See {furrr} for more.

verbose Whether the function should report on its progress. By default FALSE. See
{progressr} for more.

https://furrr.futureverse.org
https://progressr.futureverse.org

split 77

References

Krackhardt, David. 1988. “Predicting with Networks: Nonparametric Multiple Regression Analy-
sis of Dyadic Data.” Social Networks 10(4):359-81. doi:10.1016/03788733(88)900044.

Dekker, David, David Krackhard, and Tom A. B. Snijders. 2007. “Sensitivity of MRQAP tests to
collinearity and autocorrelation conditions.” Psychometrika 72(4): 563-581. doi:10.1007/s11336-
00790161.

See Also

vignette(”"p7linearmodel™)

Other models: play, tests

Examples

networkers <- ison_networkers %>% to_subgraph(Discipline == "Sociology")

modell <- network_reg(weight ~ alter(Citations) + sim(Citations),
networkers, times = 20)

Should be run many more ‘times‘ for publication-ready results

tidy(model?)

glance(modell)

plot(modell)

split Tools for splitting networks, graphs, and matrices

Description

These functions offer tools for splitting migraph-consistent objects (matrices, igraph, tidygraph, or
network objects). Splitting means that the returned object will be a list of objects.

Usage

to_egos(object, max_dist = 1, min_dist = @)
to_subgraphs(object, attribute)

to_components(object)

Arguments

object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
* tbl_graph, from the {tidygraph} package

https://doi.org/10.1016/0378-8733%2888%2990004-4
https://doi.org/10.1007/s11336-007-9016-1
https://doi.org/10.1007/s11336-007-9016-1

78 tests

max_dist The maximum breadth of the neighbourhood. By default 1.

min_dist The minimum breadth of the neighbourhood. By default 0. Increasing this to 1
excludes the ego, and 2 excludes ego’s direct alters.

attribute A character string indicating the categorical attribute in a network used to split
into subgraphs.
Functions

* to_egos(): Returns a list of ego (or focal) networks.
* to_subgraphs(): Returns a list of subgraphs on some given attribute.
* to_components(): Returns a list of the components in a network.

See Also

Other manipulations: add, as(), grab, reformat, transform()

Examples

autographs(to_egos(ison_adolescents))
autographs(to_egos(ison_adolescents,2))
to_components(ison_marvel_relationships)

tests Conditional uniform graph and permutation tests

Description

These functions conduct conditional uniform graph (CUG) or permutation (QAP) tests of any graph-
level statistic.

Usage

test_random(
object,
FUN,
times = 1000,
strategy = "sequential”,
verbose = FALSE

test_permutation(
object,
FUN,
times = 1000,
strategy = "sequential”,
verbose = FALSE

tests 79

Arguments
object An object of a migraph-consistent class:
* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package
* network, from the {network} package
e tbl_graph, from the {tidygraph} package
FUN A graph-level statistic function to test.
Additional arguments to be passed on to FUN, e.g. the name of the attribute.
times Integer indicating number of simulations used for quantile estimation. (Relevant
to the null hypothesis test only - the analysis itself is unaffected by this param-
eter.) Note that, as for all Monte Carlo procedures, convergence is slower for
more extreme quantiles. By default, times=1000. 1,000 - 10,000 repetitions
recommended for publication-ready results.
strategy If {furrr} is installed, then multiple cores can be used to accelerate the func-
tion. By default "sequential”, butif multiple cores available, then "multisession”
or "multicore” may be useful. Generally this is useful only when times >
1000. See {furrr} for more.
verbose Whether the function should report on its progress. By default FALSE. See
{progressr?} for more.
Functions

* test_random(): Returns test results for some measure on an object against a distribution of
measures on random networks of the same dimensions

* test_permutation(): Returns test results for some measure on an object against a distribu-
tion of measures on permutations of the original network
See Also

Other models: play, regression

Examples

marvel_friends <- to_unsigned(ison_marvel_relationships)
marvel_friends <- to_giant(marvel_friends) %>%

to_subgraph(PowerOrigin == "Human")

(cugtest <- test_random(marvel_friends, network_homophily, attribute = "Attractive”,
times = 200))

plot(cugtest)

(gaptest <- test_permutation(marvel_friends,
network_homophily, attribute = "Attractive”,
times = 200))

plot(gaptest)

https://furrr.futureverse.org
https://progressr.futureverse.org

80 tie_centrality

tie_centrality Measures of tie centrality

Description

Measures of tie centrality

Usage

tie_degree(object, normalized = TRUE)
tie_closeness(object, normalized = TRUE)
tie_betweenness(object, normalized = TRUE)

tie_eigenvector(object, normalized = TRUE)

Arguments

object An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R

* edgelist, a data frame from {base} R or tibble from {tibble}
* igraph, from the {igraph} package

* network, from the {network} package

* tbl_graph, from the {tidygraph} package

normalized Logical scalar, whether the centrality scores are normalized. Different denomi-
nators are used depending on whether the object is one-mode or two-mode, the
type of centrality, and other arguments.

Functions

* tie_degree(): Calculate the degree centrality of edges in a network
* tie_closeness(): Calculate the closeness of each edge to each other edge in the network.
* tie_betweenness(): Calculate number of shortest paths going through an edge

* tie_eigenvector(): Calculate the eigenvector centrality of edges in a network

See Also

Other measures: centralisation, centrality, closure, cohesion(), diversity, features,
holes

transform 81

Examples

tie_degree(ison_adolescents)
(ec <- tie_closeness(ison_adolescents))
plot(ec)
ison_adolescents %>%
activate(edges) %>% mutate(weight = ec) %>%
autographr()
(tb <- tie_betweenness(ison_adolescents))
plot(tb)
ison_adolescents %>%
activate(edges) %>% mutate(weight = tb) %>%
autographr()
tie_eigenvector(ison_adolescents)

transform Tools for transforming networks, graphs, and matrices

Description

These functions offer tools for transforming migraph-consistent objects (matrices, igraph, tidy-
graph, or network objects). Transforming means that the returned object may have different dimen-
sions than the original object.

Usage
to_model(object, similarity = c("count”, "jaccard”, "rand”, "pearson”, "yule"))
to_mode2(object, similarity = c("count”, "jaccard”, "rand”, "pearson”, "yule"))

to_giant(object)

to_subgraph(object, ...)

to_ties(object)

to_blocks(object, membership, FUN = mean)
to_matching(object, mark = "type")

to_anti(object)

Arguments

object An object of a migraph-consistent class:

* matrix (adjacency or incidence) from {base} R
* edgelist, a data frame from {base} R or tibble from {tibble}
e igraph, from the {igraph} package

82 transform

* network, from the {network} package
* tbl_graph, from the {tidygraph} package

similarity Method for establishing ties, currently "count" (default), "jaccard", or "rand".
"count" calculates the number of coinciding ties, and can be interpreted as indi-
cating the degree of opportunities between nodes. "jaccard" uses this count as
the numerator in a proportion, where the denominator consists of any cell where
either node has a tie. It can be interpreted as opportunity weighted by partici-
pation. "rand", or the Simple Matching Coefficient, is a proportion where the
numerator consists of the count of cells where both nodes are present or both are
absent, over all possible cells. It can be interpreted as the (weighted) degree of
behavioral mirroring between two nodes. "pearson" (Pearson’s coefficient) and
"yule" (Yule’s Q) produce correlations for valued and binary data, respectively.
Note that Yule’s Q has a straightforward interpretation related to the odds ratio.

Arguments passed on to dplyr::filter

membership A vector of partition memberships.
FUN A function for summarising block content. By default mean. Other recom-
mended options include median, sum, min or max.
mark A logical vector marking two types or modes. By default "type".
Details

Since some modifications are easier to implement for some objects than others, here are the cur-
rently implemented modifications:

to_ edgelists matrices igraph tidygraph network
model X X X X X
mode2 X X X X X
giant X X X X X
subgraph X X X X X
ties X X X X X
blocks X X X X X
matching X X X X X

Functions

* to_model(): Results in a weighted one-mode object that retains the row nodes from a two-
mode object, and weights the ties between them on the basis of their joint ties to nodes in the
second mode (columns)

* to_mode2(): Results in a weighted one-mode object that retains the column nodes from a
two-mode object, and weights the ties between them on the basis of their joint ties to nodes in
the first mode (rows).

e to_giant(): Returns an object that includes only the main component without any smaller
components or isolates

* to_subgraph(): Returns a network subgraph filtered on the basis of some node-related logi-
cal statement.

transform 83

e to_ties(): Returns a matrix (named if possible) where the edges are the nodes

* to_blocks(): Returns a reduced graph from a given partition membership vector. Reduced
graphs provide summary representations of network structures by collapsing groups of con-
nected nodes into single nodes while preserving the topology of the original structures.

* to_matching(): Returns a network with only matching ties

* to_anti(): Returns the complement of a network where only ties not present in the original
network are included in the new network.

to_matching

to_matching() uses {igraph}’s max_bipartite_match() to return a network in which each node
is only tied to one of its previous ties. The number of these ties left is its cardinality, and the
algorithm seeks to maximise this such that, where possible, each node will be associated with just
one node in the other mode or some other mark. The algorithm used is the push-relabel algorithm
with greedy initialization and a global relabelling after every 5 steps, where n is the number of

nodes in the network.

References

Goldberg, A V; Tarjan, R E (1986). "A new approach to the maximum flow problem". Proceed-
ings of the eighteenth annual ACM symposium on Theory of computing — STOC ’86. p. 136.
doi:10.1145/12130.12144

See Also

Other manipulations: add, as(), grab, reformat, split()

Examples

autographr (ison_southern_women) /

(autographr(to_mode1 (ison_southern_women)) |

autographr(to_mode2(ison_southern_women)))

autographr(ison_adolescents) +

autographr(to_ties(ison_adolescents))

(adolblock <- to_blocks(ison_adolescents,
node_regular_equivalence(ison_adolescents, k = 3)))

autographr(adolblock)

autographr(to_matching(ison_southern_women), "hierarchy")

autographr(to_anti(ison_southern_women), "hierarchy")

https://doi.org/10.1145/12130.12144

Index

+ datasets
ison_adolescents, 39
ison_algebra, 40
ison_brandes, 42
ison_karateka, 43
ison_lotr, 44
ison_marvel, 44
ison_networkers, 45
ison_projection, 46
ison_southern_women, 47
mpn_bristol, 51
mpn_cow, 52
mpn_elite_mex, 54
mpn_elite_usa, 56
mpn_evs, 58
mpn_ryanair, 60
mpn_senatel12, 61

+ makes
create, 20
generate, 29
read, 70

* manipulations
add, 3
as, 4
grab, 32
reformat, 73
split, 77
transform, 81

* mapping
auto_graph, 6
grid_layouts, 34
partition_layouts, 66

+ marks
is, 37
mark_nodes, 48
mark_ties, 50

closure, 12
cohesion, 15
diversity, 22
features, 27
holes, 35
tie_centrality, 80

+* memberships
community, 16
components, 18
core-periphery, 19
equivalence, 24

+* models
play, 67
regression, 75
tests, 78

* motifs
brokerage_census, 8
network_census, 63
node_census, 64

add, 3, 6, 34, 75,78, 83
add_node_attribute (add), 3
add_tie_attribute (add), 3
as,4,4,21,31,34,72,75,78, 83
as_edgelist (as), 4
as_graphAM (as), 4
as_igraph (as), 4

as_matrix (as), 4
as_network (as), 4

as_siena (as), 4
as_tidygraph (as), 4
auto_graph, 6, 35, 67
autographr (auto_graph), 6
autographs (auto_graph), 6

brokerage_census, 8, 64, 66

centralisation, 9, 12, 14, 16, 24, 29, 36, 80
centrality, 10, 10, 14, 16, 24, 29, 36, 80
closure, 10, 12,12, 16, 24, 29, 36, 80

* measures
centralisation, 9
centrality, 10

84

INDEX

cluster, 14

cluster_concor (cluster), 14
cluster_hierarchical (cluster), 14
cohesion, 10, 12, 14, 15, 24, 29, 36, 80
community, 16, 19, 20, 26
components, 18, 18, 20, 26
copy_node_attributes (add), 3
core-periphery, 19
create, 20, 31,72

create_complete (create), 20
create_components (create), 20
create_core (create), 20
create_empty (create), 20
create_lattice (create), 20
create_ring (create), 20
create_star (create), 20
create_tree (create), 20

diversity, 10, 12, 14, 16, 22, 29, 36, 80
equivalence, 18-20, 24
features, 10, 12, 14, 16, 24, 27, 36, 80

generate, 21,29, 72
generate_permutation (generate), 29
generate_random (generate), 29
generate_scalefree (generate), 29
generate_smallworld (generate), 29
ggevolution, 31

gglineage, 32

grab, 4, 6,32,75,78,83
grid_layouts, 7, 34, 67

holes, 10, 12, 14, 16, 24, 29, 35, 80

is, 37,49, 51
is_acyclic (is), 37
is_aperiodic (is), 37
is_complex (is), 37
is_connected (is), 37
is_directed (is), 37
is_edgelist (is), 37
is_eulerian (is), 37
is_graph (is), 37
is_labelled (is), 37
is_migraph (is), 37
is_multiplex (is), 37
is_perfect_matching (is), 37
is_signed (is), 37

85

is_twomode (is), 37
is_uniplex (is), 37
is_weighted (is), 37
ison_adolescents, 39
ison_algebra, 40
ison_bb (ison_projection), 46
ison_bm (ison_projection), 46
ison_brandes, 42
ison_brandes?2 (ison_brandes), 42
ison_karateka, 43
ison_lotr, 44
ison_marvel, 44
ison_marvel_relationships
(ison_marvel), 44
ison_marvel_teams (ison_marvel), 44
ison_mb (ison_projection), 46
ison_mm (ison_projection), 46
ison_networkers, 45
ison_projection, 46
ison_southern_women, 47

join_ties (add), 3

layout_tbl_graph_alluvial
(partition_layouts), 66

layout_tbl_graph_concentric
(partition_layouts), 66

layout_tbl_graph_frgrid(grid_layouts),
34

layout_tbl_graph_gogrid (grid_layouts),
34

layout_tbl_graph_hierarchy
(partition_layouts), 66

layout_tbl_graph_kkgrid (grid_layouts),
34

layout_tbl_graph_ladder
(partition_layouts), 66

layout_tbl_graph_railway
(partition_layouts), 66

layout_tbl_graph_stressgrid
(grid_layouts), 34

mark_nodes, 38, 48, 51
mark_ties, 38, 49, 50
mpn_bristol, 51

mpn_cow, 52

mpn_cow_igo (mpn_cow), 52
mpn_cow_trade (mpn_cow), 52
mpn_DE_1990 (mpn_evs), 58

86 INDEX

mpn_DE_2008 (mpn_evs), 58 network_smallworld (features), 27
mpn_DemSxP (mpn_senatel12), 61 network_tie_attributes (grab), 32
mpn_elite_mex, 54 network_ties (grab), 32
mpn_elite_usa, 56 network_transitivity (closure), 12
mpn_elite_usa_advice (mpn_elite_usa), 56 network_transitivity(), 29
mpn_elite_usa_money (mpn_elite_usa), 56 network_triad_census (network_census),
mpn_evs, 58 63

mpn_IT_1990 (mpn_evs), 58 node_attribute (grab), 32
mpn_IT_2008 (mpn_evs), 58 node_automorphic_equivalence
mpn_OverSxP (mpn_senatel12), 61 (equivalence), 24
mpn_RepSxP (mpn_senate112), 61 node_betweenness (centrality), 10
mpn_ryanair, 60 node_bridges (holes), 35
mpn_senate112, 61 node_brokerage_census
mpn_UK_1990 (mpn_evs), 58 (brokerage_census), 8
mpn_UK_2008 (mpn_evs), 58 node_census, 8, 64, 64

node_closeness (centrality), 10
node_components (components), 18
node_constraint (holes), 35
node_core (core-periphery), 19
node_coreness (components), 18
node_degree (centrality), 10
node_diversity (diversity), 22
node_edge_betweenness (community), 16
node_efficiency (holes), 35
node_effsize (holes), 35
node_eigenvector (centrality), 10
node_equivalence (equivalence), 24
node_fast_greedy (community), 16
node_hierarchy (holes), 35
node_homophily (diversity), 22
node_is_core (mark_nodes), 48
node_is_cutpoint (mark_nodes), 48

network_adhesion (cohesion), 15
network_assortativity (diversity), 22
network_balance (features), 27
network_betweenness (centralisation), 9
network_brokerage_census
(brokerage_census), 8
network_census, 8, 63, 66
network_closeness (centralisation), 9
network_cohesion (cohesion), 15
network_components (cohesion), 15
network_congruency (closure), 12
network_core (features), 27
network_degree (centralisation), 9
network_density (cohesion), 15
network_diameter (cohesion), 15
network_dims (grab), 32
network_diversity (diversity), 22

network_dyad_census (network_census), 63 node_is_isolate (mark_nodes), 48
network_eigenvector (centralisation), 9 node_is_max (mark_nodes), 48
network_equivalency (closure), 12 node_is_min (mark_nodes), 48
network_equivalency(), 29 node_is_random (mark_nodes), 48
network_factions (features), 27 node_kernighanlin (community), 16
network_homophily (diversity), 22 node_mode (grab), 32
network_length (cohesion), 15 node_names (grab), 32
network_mixed_census (network_census), node_path_census (node_census), 64

63 node_power (centrality), 10
network_modularity (features), 27 node_quad_census (node_census), 64
network_node_attributes (grab), 32 node_reach (centrality), 10
network_nodes (grab), 32 node_reciprocity (closure), 12
network_reciprocity (closure), 12 node_redundancy (holes), 35
network_reg (regression), 75 node_regular_equivalence (equivalence),
network_richness (diversity), 22 24

network_scalefree (features), 27 node_richness (diversity), 22

INDEX

node_strong_components (components), 18 to_matching (transform), 81
node_structural_equivalence to_mode1 (transform), 81
(equivalence), 24 to_mode2 (transform), 81
node_tie_census (node_census), 64 to_multilevel (reformat), 73
node_transitivity (closure), 12 to_named (reformat), 73
node_triad_census (node_census), 64 to_onemode (reformat), 73
node_walktrap (community), 16 to_redirected (reformat), 73
node_weak_components (components), 18 to_simplex (reformat), 73
to_subgraph (transform), 81
partition_layouts, 7, 35, 66 to_subgraphs (split), 77
play, 67, 77,79 to_ties (transform), 81
play_diffusion (play), 67 to_twomode (reformat), 73
play_diffusions (play), 67 to_undirected (reformat), 73
play_learning (play), 67 to_undirected(), 10, 12
to_uniplex (reformat), 73
read, 21/, 31,70 to_unnamed (reformat), 73
read_dynetml (read), 70 to_unsigned (reformat), 73
read_edgelist (read), 70 to_unweighted (reformat), 73
read_matrix (read), 70 to_unweighted(), 12
read_nodelist (read), 70 transform, 4, 6, 34, 75, 78, 81
read_pajek (read), 70
read_ucinet (read), 70 write_edgelist (read), 70
reformat, 4, 6, 34,73, 78, 83 write_nodelist (read), 70
regression, 70, 75, 79 write_pajek (read), 70

write_ucinet (read), 70
split, 4,6,34,75,77, 83

test_permutation (tests), 78
test_random (tests), 78

tests, 70, 77,78

tie_attribute (grab), 32
tie_betweenness (tie_centrality), 80
tie_centrality, 10, 12, 14, 16, 24, 29, 36, 80
tie_closeness (tie_centrality), 80
tie_degree (tie_centrality), 80
tie_eigenvector (tie_centrality), 80
tie_is_bridge (mark_ties), 50
tie_is_loop (mark_ties), 50
tie_is_max (mark_ties), 50
tie_is_min (mark_ties), 50
tie_is_multiple (mark_ties), 50
tie_is_reciprocated (mark_ties), 50
tie_signs (grab), 32

tie_weights (grab), 32

to_anti (transform), 81

to_blocks (transform), 81
to_components (split), 77

to_egos (split), 77

to_giant (transform), 81

	add
	as
	auto_graph
	brokerage_census
	centralisation
	centrality
	closure
	cluster
	cohesion
	community
	components
	core-periphery
	create
	diversity
	equivalence
	features
	generate
	ggevolution
	gglineage
	grab
	grid_layouts
	holes
	is
	ison_adolescents
	ison_algebra
	ison_brandes
	ison_karateka
	ison_lotr
	ison_marvel
	ison_networkers
	ison_projection
	ison_southern_women
	mark_nodes
	mark_ties
	mpn_bristol
	mpn_cow
	mpn_elite_mex
	mpn_elite_usa
	mpn_evs
	mpn_ryanair
	mpn_senate112
	network_census
	node_census
	partition_layouts
	play
	read
	reformat
	regression
	split
	tests
	tie_centrality
	transform
	Index

