Package ‘mirar’

January 17, 2023
Type Package

Title Minimalist Async Evaluation Framework for R
Version 0.7.2

Description Lightweight parallel code execution, local or distributed across
the network. Designed for simplicity, a 'mirai' evaluates an arbitrary
expression asynchronously, resolving automatically upon completion.
Built on 'nanonext' and 'NNG' (Nanomsg Next Gen), uses scalability protocols
not subject to R connection limits and transports faster than TCP/IP where
applicable.

License GPL (>=3)
BugReports https://github.com/shikokuchuo/mirai/issues

URL https://shikokuchuo.net/mirai/,
https://github.com/shikokuchuo/mirai/

Encoding UTF-8

Depends R (>=2.12)

Imports nanonext (>= 0.7.0)

RoxygenNote 7.2.3

NeedsCompilation no

Author Charlie Gao [aut, cre] (<https://orcid.org/0000-0002-0750-061X>),
Hibiki AI Limited [cph]

Maintainer Charlie Gao <charlie.gao@shikokuchuo.net>
Repository CRAN
Date/Publication 2023-01-17 15:20:02 UTC

R topics documented:

mirai-package L. e
call_mirai e e e e e e e
daemons L e e
eval_mirai e

https://github.com/shikokuchuo/mirai/issues
https://shikokuchuo.net/mirai/
https://github.com/shikokuchuo/mirai/
https://orcid.org/0000-0002-0750-061X

2 mirai-package

is_error_value e 7
IS_CMITAL . . . v v v e o e e e e e e e e e e e 8
IS_MITAL_EITOT . . . o v v o e e e e e e e e e e e e 9
IS_MITA_INterrupt o o v o o e e e e e e e e e e e 9
SEIVET . . o v v e e e e e e e e e e e e e 10
SEOP_IMITAL« o v v vt s e e e e 11
unresolved L L e e e 11
Do>>% e e e e e e e 12

Index 14

mirai-package mirai: Minimalist Async Evaluation Framework for R
Description

Lightweight parallel code execution, local or distributed across the network. Designed for sim-
plicity, a 'mirai’ evaluates an arbitrary expression asynchronously, resolving automatically upon
completion. Built on "nanonext’ and "’NNG’ (Nanomsg Next Gen), uses scalability protocols not
subject to R connection limits and transports faster than TCP/IP where applicable.

Notes

For local mirai processes, the default transport for intra-process communications is platform-dependent:
abstract sockets on Linux, Unix domain sockets on MacOS, Solaris and other POSIX platforms, and
named pipes on Windows.

This may be overriden if required by specifying a custom client URL in the daemons interface, and
starting server processes manually with server on the same machine.

Links

mirai website: https://shikokuchuo.net/mirai/
mirai on CRAN: https://cran.r-project.org/package=mirai

nanonext website: https://shikokuchuo.net/nanonext/
nanonext on CRAN: https://cran.r-project.org/package=nanonext

NNG website: https://nng.nanomsg.org/

Author(s)

Charlie Gao <charlie.gao@shikokuchuo.net> (ORCID)

https://shikokuchuo.net/mirai/
https://cran.r-project.org/package=mirai
https://shikokuchuo.net/nanonext/
https://cran.r-project.org/package=nanonext
https://nng.nanomsg.org/
https://orcid.org/0000-0002-0750-061X

call _mirai 3

call_mirai mirai (Call Value)

Description

Call the value of a mirai, waiting for the the asynchronous operation to resolve if it is still in
progress.

Usage

call_mirai(aio)

Arguments

aio a ’mirai’ object.

Details

This function will wait for the async operation to complete if still in progress (blocking).

A blocking call can be sent a user interrupt with e.g. ctrl+c. If the ongoing execution in the mirai is
interruptible, it will resolve into an object of class 'mirailnterrupt’ and ’errorValue’. is_mirai_interrupt
may be used to handle such cases.

If an error occurs in evaluation, the error message is returned as a character string of class *miraiEr-
ror’ and ’errorValue’. is_mirai_error may be used to test for this.

is_error_value tests for all error conditions including mirai errors, interrupts, and timeouts.

The mirai updates itself in place, so to access the value of a mirai x directly, use call_mirai(x)$data.

Value

The passed mirai (invisibly). The retrieved value is stored at $data.

Alternatively

The value of a mirai may be accessed at any time at $data, and if yet to resolve, an "unresolved’
logical NA will be returned instead.

Using unresolved on a mirai returns TRUE only if a mirai has yet to resolve and FALSE otherwise.
This is suitable for use in control flow statements such as while or if.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m<-mirai(x +y +1, x =2, y =3)
m

m$data

Sys.sleep(0.2)

4 daemons

m$data

df1 <- data.frame(a =1, b = 2)

df2 <- data.frame(a = 3, b = 1)

m <- mirai(as.matrix(rbind(df1, df2)), .args = list(df1, df2), .timeout = 1000)
call_mirai(m)$data

m <- mirai({
res <- rnorm(n)
res / rev(res)

}, n = 1eb)

while (unresolved(m)) {
cat("unresolved\n")
Sys.sleep(0.1)

3

str(m$data)

file <- tempfile()

cat("r <= rnorm(n)", file = file)

n <- 10L

m <- mirai({source(file, local = TRUE); r}, .args = list(file, n))
call_mirai(m)[["data"]]

unlink(file)

}

daemons daemons (Persistent Server Processes)

Description

Set or view the number of ’daemons’ or persistent server processes receiving mirai requests. These
are, by default, automatically created on the local machine. Alternatively, a client URL may be set
to receive connections from remote servers started with server, for distributing tasks across the
network.

Usage

daemons(n, .url)

Arguments
n integer number of daemons to set | *view’ to view the current number of dae-
mons.
.url (optional) for distributing tasks across the network: character client URL and

port accepting incoming connections e.g. ’tcp://192.168.0.2:5555° at which
server processes started using server should connect to. To listen to port 5555
(for example) on all interfaces on the host, specify one of *tcp://:5555°, *tcp://*:5555°
or 'tcp://0.0.0.0:5555’.

daemons 5

Details

Set 'n’ to O to reset all daemon connections. {mirai} will revert to the default behaviour of creating
a new background process for each request.

Specifying ’.url’ without 'n” assumes a value for 'n’ of 1. After setting ’.url’, further calls specifying
’n’ can be used to update the number of connected daemons (this is not strictly necessary as daemons
are detected automatically, but will ensure that the correct number of shutdown signals are sent when
the session is ended).

Setting a new ’.url’ value will attempt to shutdown existing daemons connected at the existing
address before opening a connection at the new address.

Value
Depending on ’n’ specified:

* integer: integer change in number of daemons (created or destroyed).

* ’view’: integer number of currently set daemons.

Calling daemons () without any arguments returns the *nanoSocket’ for connecting to the daemons,
or NULL if it is yet to be created.

About

Daemons provide a potentially more efficient solution for asynchronous operations as new processes
no longer need to be created on an ad hoc basis.

Specifying ’.url’ allows tasks to be distributed across the network. The network topology is such
that server daemons (started with server) dial into the client, which listens at the ’.url’ address.
In this way, network resources may be added or removed at any time. The client automatically
distributes tasks to all available servers.

The current implementation is low-level and ensures tasks are evenly-distributed amongst daemons
without actively managing a task queue. This approach provides a robust and resource-light solu-
tion, particularly well-suited to working with similar-length tasks, or where the number of concur-
rent tasks typically does not exceed the number of available daemons.

Examples

if (interactive()) {
Only run examples in interactive R sessions

Create 2 daemons

daemons(2)

View the number of active daemons
daemons ("view")

Reset to zero

daemons (@)

6 eval_mirai

eval_mirai mirai (Evaluate Async)

Description

Evaluate an expression asynchronously in a new background R process or persistent daemon (local
or remote). This function will return immediately with a *'mirai’, which will resolve to the evaluated
result once complete.

Usage
eval_mirai(.expr, ..., .args = list(), .timeout = NULL)
mirai(.expr, ..., .args = list(), .timeout = NULL)
Arguments
.expr an expression to evaluate asynchronously. This may be of arbitrary length,
wrapped in {} if necessary.
(optional) named arguments specifying objects referenced in ’.expr’.
.args (optional) list supplying objects referenced in ’.expr’ (used in addition to or
instead of named arguments specified as ’...").
. timeout (optional) integer value in milliseconds or NULL for no timeout. A mirai will
resolve to an ’errorValue’ 5 (timed out) if evaluation exceeds this limit.
Details

This function will return a *mirai’ object immediately.

The value of a mirai may be accessed at any time at $data, and if yet to resolve, an unresolved’
logical NA will be returned instead.

unresolved may be used on a mirai, returning TRUE if a *mirai’ has yet to resolve and FALSE
otherwise. This is suitable for use in control flow statements such as while or if.

Alternatively, to call (and wait for) the result, use call_mirai on the returned mirai. This will
block until the result is returned (although interruptible with e.g. ctrl+c).

The expression *.expr’ will be evaluated in a separate R process in a clean environment consisting
only of the named objects passed as ’..." and/or the list supplied to *.args’.

If an error occurs in evaluation, the error message is returned as a character string of class *miraiEr-
ror’ and ’errorValue’. is_mirai_error may be used to test for this.

is_error_value tests for all error conditions including *mirai’ errors, interrupts, and timeouts.

mirai is an alias for eval_mirai.

Value

A ’mirai’ object.

is_error_value 7

Examples

if (interactive()) {
Only run examples in interactive R sessions

m<-mirai(x +y + 1, x =2, y = 3)
m

m$data

Sys.sleep(0.2)

m$data

df1 <- data.frame(a =1, b = 2)

df2 <- data.frame(a = 3, b = 1)

m <- mirai(as.matrix(rbind(df1, df2)), .args = list(df1, df2), .timeout = 1000)
call_mirai(m)$data

m <- mirai({
res <- rnorm(n)
res / rev(res)

}, n = 1eb)

while (unresolved(m)) {
cat("unresolved\n")
Sys.sleep(0.1)

3

str(m$data)

file <- tempfile()

cat("r <= rnorm(n)"”, file = file)

n <- 10L

m <- mirai({source(file, local = TRUE); r}, .args = list(file, n))
call_mirai(m)[["data"]1]

unlink(file)

3

is_error_value Is Error Value

Description
Is the object an error value, such as a mirai timeout, a *miraiError’ from failed execution within a
mirai or a “mirailnterrupt’ resulting from the user interrupt of an ongoing mirai evaluation.

Usage

is_error_value(x)

Arguments

X an object.

is_mirai
Value

Logical TRUE if ’x’ is of class ’errorValue’, FALSE otherwise.

Examples

is_error_value(1L)

is_mirai Is mirai

Description

Is the object a *mirai’.

Usage

is_mirai(x)

Arguments

X an object.

Value

Logical TRUE if ’x’ is of class 'mirai’, FALSE otherwise.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai(as.matrix(df), df = data.frame())
is_mirai(m)

is_mirai(df)

3

is_mirai_error 9

is_mirai_error Is mirai Error

Description

Is the object a miraiError’. When execution in a mirai process fails, the error message is returned
as a character string of class *miraiError’ and ’errorValue’. To test for all error conditions, including
timeouts etc., is_error_value should be used instead.

Usage

is_mirai_error(x)

Arguments

X an object.

Value

Logical TRUE if ’x’ is of class 'miraiError’, FALSE otherwise.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai(stop())
call_mirai(m)
is_mirai_error(m$data)

is_mirai_interrupt Is mirai Interrupt

Description

Is the object a 'mirailnterrupt’. When a mirai is sent a user interrupt, e.g. by ctrl+c during an
ongoing call_mirai, the mirai will resolve to an empty character string classed as *mirailnterrupt’
and ’errorValue’. To test for all error conditions, including timeouts etc., is_error_value should
be used instead.

Usage

is_mirai_interrupt(x)

10 server

Arguments

X an object.

Value

Logical TRUE if ’x’ is of class *mirailnterrupt’, FALSE otherwise.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai(stop())
call_mirai(m)

is_mirai_interrupt(m$data)

}

server mirai Server (Async Executor [Daemon])

Description
Implements a [persistent] executor/server for the remote process. Awaits data, evaluates an expres-
sion in an environment containing the supplied data, and returns the result to the caller/client.
Usage

server(.url, daemon = TRUE)

Arguments
.url the client URL and port to connect to as a character string e.g. ’tcp://192.168.0.2:5555°.
daemon [default TRUE] launch as a persistent daemon or, if FALSE, an ephemeral pro-
cess.
Value
Invisible NULL.
About

The network topology is such that server daemons dial into the client, which listens at the ’.url’
address. In this way, network resources may be added or removed at any time and the client auto-
matically distributes tasks to all available servers.

stop_mirai 11

stop_mirai mirai (Stop Evaluation)

Description

Stop evaluation of a mirai that is in progress.

Usage

stop_mirai(aio)

Arguments

aio a 'mirai’ object.

Details

Stops the asynchronous operation associated with the mirai by aborting, and then waits for it to
complete or to be completely aborted. The mirai is then deallocated and attempting to access the
value at $data will result in an error.

Value

Invisible NULL.

Examples

if (interactive()) {
Only run examples in interactive R sessions

s <- mirai(Sys.sleep(n), n = 5)
stop_mirai(s)

unresolved Query if a mirai is Unresolved

Description

Query whether a mirai or mirai value remains unresolved. Unlike call_mirai, this function does
not wait for completion.

Usage

unresolved(aio)

12 %>>%

Arguments

aio a 'mirai’ object or “mirai’ value stored at $data.

Details

Suitable for use in control flow statements such as while or if.

Note: querying resolution may cause a previously unresolved ’mirai’ to resolve.

Value

Logical TRUE if ’aio’ is an unresolved mirai or mirai value, or FALSE otherwise.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai(Sys.sleep(0.1))
unresolved(m)
Sys.sleep(0.3)
unresolved(m)

}

%>>% Deferred Evaluation Pipe

Description

Pipe a possibly unresolved value forward into a function.

Usage

X %>>% f

Arguments

a value that is possibly an ’unresolvedValue’.

a function that accepts ’x’ as its first argument.

Details

An ’unresolvedExpr’ encapsulates the eventual evaluation result. Query its $data element for res-
olution. Once resolved, the object changes into a ‘resolvedExpr’ and the evaluated result will be
available at $data.

Supports stringing together a series of piped expressions (as per the below example).

unresolved may be used on an "unresolvedExpr’ or its $data element to test for resolution.

%>>% 13

Value

The evaluated result, or if x is an "unresolvedValue’, an ’unresolvedExpr’.

Usage
Usage is similar to R’s native |> pipe.
x %>>% f is equivalent to f (x)
x %>>% f() is equivalent to f(x)
x %>>% f(y) is equivalent to f(x, y)

Please note that other usage is not supported and it is not a drop-in replacement for magrittr’s %>%
pipe.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai({Sys.sleep(0.5); 13})

b <- m$data %>>% c(2, 3) %>>% as.character()
b

b$data

call_mirai(m)

b$data

b

Index

%>>%, 12
call_mirai, 3,6, 9, 11
daemons, 2, 4
eval_mirai, 6, 6
is_error_value, 3,6,7, 9
is_mirai, 8
is_mirai_error, 3,6, 9

is_mirai_interrupt, 3,9

mirai, 4, 6
mirai (eval_mirai), 6
mirai-package, 2

server, 2,4, 5,10
stop_mirai, 11

unresolved, 3,6, 11, 12

14

	mirai-package
	call_mirai
	daemons
	eval_mirai
	is_error_value
	is_mirai
	is_mirai_error
	is_mirai_interrupt
	server
	stop_mirai
	unresolved
	%>>%
	Index

