R-CMD-check CRAN status

missoNet: Missingness in Multi-Task Regression with Network Estimation

missoNet is an R package that fits penalized multi-task regression – that is, with multiple correlated tasks or response variables – to simultaneously estimate the coefficients of a set of predictor variables for all tasks and the conditional response network structure given all predictors, via penalized maximum likelihood in an undirected conditional Gaussian graphical model. In contrast to most penalized multi-task regression (conditional graphical lasso) methods, missoNet has the capability of obtaining estimates even when the response data is corrupted by missing values. The method automatically enjoys the theoretical and computational benefits of convexity, and returns solutions that are comparable/close to the estimates without any missing values.

The package provides an integrated set of core routines including 1) data simulation; 2) model fitting and cross-validation; 3) visualization of results; 4) predictions in new data. The function arguments are in the same style as those of glmnet, making it easy for experienced users to get started.

Installation

To install the package missoNet from CRAN, type the following command in the R console:

install.packages("missoNet")

Or install the development version of missoNet from GitHub:

if(!require("devtools")) {
  install.packages("devtools")
}
devtools::install_github("yixiao-zeng/missoNet", build_vignettes = TRUE)

An example for getting started

An example of how to use the package:

# Simulate a dataset with response values missing completely at random (MCAR), 
# the overall missing rate is around 10%.
sim.dat <- generateData(n = 300, p = 50, q = 20, rho = 0.1, missing.type = "MCAR")
tr <- 1:240  # training set indices
tst <- 241:300  # test set indices
X.tr <- sim.dat$X[tr, ]  # predictor matrix
Y.tr <- sim.dat$Z[tr, ]  # corrupted response matrix

# Perform a five-fold cross-validation on the training set.
cvfit <- cv.missoNet(X = X.tr, Y = Y.tr, kfold = 5)

# Alternatively, compute the cross-validation folds in parallel.
cl <- parallel::makeCluster(min(parallel::detectCores()-1, 3))
cvfit <- cv.missoNet(X = X.tr, Y = Y.tr, kfold = 5,
                     parallel = TRUE, cl = cl)
parallel::stopCluster(cl)

# Plot the standardized mean cross-validated errors in a heatmap.
plot(cvfit)

# Extract the estimates at "lambda.min" that gives the minimum cross-validated error.
Beta_hat <- cvfit$est.min$Beta
Theta_hat <- cvfit$est.min$Theta

# Make predictions of response values on the test set.
newy <- predict(cvfit, newx = sim.dat$X[tst, ], s = "lambda.min")

Learn more

See the vignette for more detailed information.

vignette("missoNet")

References