Package 'mistral'

October 13, 2022

Type Package

Title Methods in Structural Reliability

Version 2.2.1

Author Clement WALTER, Gilles DEFAUX, Bertrand IOOSS, Vincent MOUTOUSSAMY with contributions from Nicolas BOUSQUET, Claire CANNAMELA and Paul LEMAITRE

Maintainer Bertrand Iooss <biooss@yahoo.fr>

Depends R (>= 3.0.0)

- **Imports** e1071, Matrix, mvtnorm, ggplot2, doParallel, foreach, iterators, DiceKriging, emoa, quadprog, Rcpp
- Suggests microbenchmark, deSolve, scatterplot3d, KrigInv, rgenoud, kernlab, knitr, rmarkdown, markdown
- **Description** Various reliability analysis methods for rare event inference:1) computing failure probability (probability that the output of a numerical model exceeds a threshold), 2) computing quantile of low or high-order, 3) Wilks formula to compute quantile(s) from a sample or the size of the required i.i.d. sample.

LinkingTo Rcpp

License CeCILL

NeedsCompilation yes

Repository CRAN

LazyData true

RoxygenNote 7.0.2

VignetteBuilder knitr, rmarkdown

Date/Publication 2021-04-18 23:00:02 UTC

R topics documented:

mistral-pac	ka	ge	•	•							•	•	•	 												2
AKMCS .			 •	•							•	•	•	 												4
BMP			 •										•	 												8
cantilever			 •			•				•	•	•	•	 				•	•	•	•			•		12

Compute Distribution Deremotor	12
	13
	13
FORM	15
FORMv0	17
generateK	18
IRW	20
kiureghian	23
LSVM	23
MetaIS	25
MetropolisHastings	29
modelLSVM	31
ModifCorrMatrix	32
MonotonicQuantileEstimation	33
MonteCarlo	36
MP	38
MRM	42
ok	44
oscillator d6	45
plot I SVM	46
precomputeIndateData	47
quantileWilks	48
rackwitz	49
S2MΔRT	50
SZAMARI	52
SubsetSimulation	56
	50
twodef	59
	60
	01
	63
updateSd.old	63
UtoX	64
waarts	66
WilksFormula	67
XtoU	68
	<i>(</i> 0
	09

Index

mistral-package Methods In Structural Reliability Analysis

nemous in sincennan nemuenny innary

Description

Provide tools for structural reliability analysis (failure probability, quantile).

Details

Package:	mistral	
Type:	Package	
Version:	2.2.1 Date:	2016-12-21
License:	CeCILL	

This package provides tools for structural reliability analysis:

- Calculate failure probability with FORM method and importance sampling.
- · Calculate failure probability with crude Monte Carlo method
- Calculate failure probability with Subset Simulation algorithm
- Calculate failure probability with Monotonic Reliability Methods (MRM)
- · Calculate failure probability with metamodel based algorithms : AKMCS, SMART and MetaIS
- · Calculate failure probability with a metamodel based Subset Simulation : S2MART
- Wilks formula: Compute a quantile (or tolerance interval) with a given confidence level from a i.i.d. sample,
- Wilks formula: Compute the minimal sample size to estimate a quantile with a given confidence level,
- · Calculate a quantile under monotonicity constraints

Author(s)

Clement Walter, Gilles Defaux, Bertrand Iooss, Vincent Moutoussamy, with contributions from Nicolas Bousquet, Claire Cannamela and Paul Lemaitre (maintainer: Bertrand Iooss <biooss@yahoo.fr>)

References

S.-K. Au, J. L. Beck. Estimation of small failure probabilities in high dimensions by Subset Simulation. Probabilistic Engineering Mechanics, 2001.

J.-M. Bourinet, F. Deheeger, M. Lemaire. Assessing small failure probabilities by combined Subset Simulation and Support Vector Machines. Structural Safety, 2011.

N. Bousquet. Accelerated monte carlo estimation of exceedance probabilities under monotonicity constraints. Annales de la Faculte des Sciences de Toulouse. XXI(3), 557-592, 2012

H.A. David and H.N. Nagaraja. Order statistics, Wiley, 2003.

F. Deheeger. Couplage mecano-fiabiliste : 2SMART - methodologie d'apprentissage stochastique en fiabilite. PhD. Thesis, Universite Blaise Pascal - Clermont II, 2008

A. Der Kiureghian, T. Dakessian. Multiple design points in first and second-order reliability. Structural Safety, vol.20, 1998.

O. Ditlevsen and H.O. Madsen. Structural reliability methods, Wiley, 1996.

V. Dubourg. Meta-modeles adaptatifs pour l'analyse de fiabilite et l'optimisation sous containte fiabiliste. PhD. Thesis, Universite Blaise Pascal - Clermont II, 2011.

B. Echard, N. Gayton, M. Lemaire. AK-MCS : an Active learning reliability method combining Kriging and Monte Carlo Simulation

M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009.

V. Moutoussamy. Contributions to structural reliability analysis: accounting for monotonicity constraints in numerical models, PhD Thesis of Universite de Toulouse, France, 2015.

W.T. Nutt and G.B. Wallis. Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties. Reliability Engineering and System Safety, 83:57-77, 2004.

P.-H. Waarts. Structural reliability using finite element methods: an appraisal of DARS, Directional Adaptive Response Surface Sampling. PhD. Thesis, Technical University of Delft, The Netherlands, 2000.

C. Walter. Using Poisson processes for rare event simulation, PhD Thesis of Universite Paris Diderot, France, 2016.

S.S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits. Annals Mathematical Statistics, 12:91-96, 1941.

Examples

form.IS\$p

```
########## Wilks ##########
```

N <- WilksFormula(0.95,0.95,order=1)
print(N)</pre>

AKMCS

Active learning reliability method combining Kriging and Monte Carlo Simulation

Description

Estimate a failure probability with the AKMCS method.

Usage

```
AKMCS(
dimension,
lsf,
```

AKMCS

```
N = 5e + 05,
N1 = 10 * dimension,
Nmax = 200,
Nmin = 2,
X = NULL,
y = NULL,
failure = 0,
precision = 0.05,
bayesian = TRUE,
compute.PPP = FALSE,
meta_model = NULL,
kernel = "matern5_2",
learn_each_train = TRUE,
crit_min = 2,
lower.tail = TRUE,
limit_fun_MH = NULL,
failure_MH = 0,
sampling_strategy = "MH",
first_DOE = "Gaussian",
seeds = NULL,
seeds_eval = limit_fun_MH(seeds),
burnin = 30,
plot = FALSE,
limited_plot = FALSE,
add = FALSE,
output_dir = NULL,
verbose = 0
```

Arguments

)

dimension	dimension of the input space.
lsf	the function defining the failure/safety domain.
Ν	Monte-Carlo population size.
N1	size of the first DOE.
Nmax	maximum number of calls to the LSF.
Nmin	minimum number of calls during enrichment step.
Х	coordinates of already known points.
У	value of the LSF on these points.
failure	failure threshold.
precision	maximum desired cov on the Monte-Carlo estimate.
bayesian	estimate the conditional expectation E_X [P[meta(X) <failure]].<="" td=""></failure]>
compute.PPP	to simulate a Poisson process at each iteration to estimate the conditional ex- pectation and the SUR criteria based on the conditional variance: h (average probability of misclassification at level failure) and I (integral of h over the whole interval [failure, infty))

meta_model	provide here a kriging metamodel from km if wanted.
kernel	specify the kernel to use for km.
learn_each_tra	in
	specify if kernel parameters are re-estimated at each train.
crit_min	minimum value of the criteria to be used for refinement.
lower.tail	as for pxxxx functions, TRUE for estimating $P(lsf(X) < failure)$, FALSE for $P(lsf(X) > failure)$
limit_fun_MH	define an area of exclusion with a limit function.
failure_MH	the theshold for the limit_fun_MH function.
sampling_strat	egy
	either MH for Metropolis-Hastings of AR for accept-reject.
first_DOE	either Gaussian or Uniform, to specify the population on which clustering is done. Set to "No" for no initial DoE (use together with a first DoE given in X for instance).
seeds	if some points are already known to be in the appropriate subdomain.
seeds_eval	value of the metamodel on these points.
burnin	burnin parameter for MH.
plot	set to TRUE for a full plot, ie refresh at each iteration.
limited_plot	set to TRUE for a final plot with final DOE, metamodel and LSF.
add	if plots are to be added to a current device.
output_dir	if plots are to be saved in jpeg in a given directory.
verbose	either 0 for almost no output, 1 for medium size output and 2 for all outputs.

Details

AKMCS strategy is based on a original Monte-Carlo population which is classified with a krigingbased metamodel. This means that no sampling is done during refinements steps. Indeed, it tries to classify this Monte-Carlo population with a confidence greater than a given value, for instance 'distance' to the failure should be greater than crit_min standard deviation.

Thus, while this criterion is not verified, the point minimizing it is added to the learning database and then evaluated.

Finally, once all points are classified or when the maximum number of calls has been reached, crude Monte-Carlo is performed. A final test controlling the size of this population regarding the targeted coefficient of variation is done; if it is too small then a new population of sufficient size (considering ordre of magnitude of found probability) is generated, and algorithm run again.

Value

An object of class list containing the failure probability and some more outputs as described below:

р	the estimated failure probability.
COV	the coefficient of variation of the Monte-Carlo probability estimate.

AKMCS

the total number of calls to the lsf.
the final learning database, ie. all points where 1sf has been calculated.
the value of the 1sf on the learning database.
the sequence of the estimated relative SUR criteria.
the sequence of the estimated integrated SUR criteria.
the metamodel approximation of the lsf. A call output is a list containing the value and the standard deviation.
the final metamodel. An S4 object from DiceKriging . Note that the algorithm enforces the problem to be the estimation of $P[lsf(X) < failure]$ and so using 'predict' with this object will return inverse values if lower.tail==FALSE; in this scope prefer using directly meta_fun which handles this possible issue.
points in the failure domain according to the metamodel.
evaluation of the metamodel on these points.
if plot==TRUE, the evaluation of the metamodel on the plot grid.

Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore, each time a set of vector is defined as a matrix, 'nrow' = dimension and 'ncol' = number of vector to be consistent with as.matrix transformation of a vector.

Algorithm calls lsf(X) (where X is a matrix as defined previously) and expects a vector in return. This allows the user to optimise the computation of a batch of points, either by vectorial computation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

• B. Echard, N. Gayton, M. Lemaire:

AK-MCS : an Active learning reliability method combining Kriging and Monte Carlo Simulation

Structural Safety, Elsevier, 2011.

- B. Echard, N. Gayton, M. Lemaire and N. Relun: *A combined Importance Sampling and Kriging reliability method for small failure probabili- ties with time-demanding numerical models* Reliability Engineering \& System Safety,2012
- B. Echard, N. Gayton and A. Bignonnet: *A reliability analysis method for fatigue design* International Journal of Fatigue, 2014

See Also

SubsetSimulation MonteCarlo MetaIS km (in package DiceKriging)

Examples

```
## Not run:
res = AKMCS(dimension=2,lsf=kiureghian,plot=TRUE)
#Compare with crude Monte-Carlo reference value
N = 500000
dimension = 2
U = matrix(rnorm(dimension*N), dimension, N)
G = kiureghian(U)
P = mean(G<0)
cov = sqrt((1-P)/(N*P))
## End(Not run)
#See impact of kernel choice with serial function from Waarts:
waarts = function(u) {
  u = as.matrix(u)
  b1 = 3+(u[1,]-u[2,])^2/10 - sign(u[1,] + u[2,])*(u[1,]+u[2,])/sqrt(2)
  b2 = sign(u[2,]-u[1,])*(u[1,]-u[2,])+7/sqrt(2)
  val = apply(cbind(b1, b2), 1, min)
}
## Not run:
res = list()
res$matern5_2 = AKMCS(2, waarts, plot=TRUE)
res$matern3_2 = AKMCS(2, waarts, kernel="matern3_2", plot=TRUE)
res$gaussian = AKMCS(2, waarts, kernel="gauss", plot=TRUE)
              = AKMCS(2, waarts, kernel="exp", plot=TRUE)
res$exp
#Compare with crude Monte-Carlo reference value
N = 500000
dimension = 2
U = matrix(rnorm(dimension*N), dimension, N)
G = waarts(U)
P = mean(G<0)
cov = sqrt((1-P)/(N*P))
## End(Not run)
```

BMP

Bayesian Moving Particles

Description

This function runs the Bayesian Moving Particles algorithm for estimating extreme probability and quantile.

BMP

Usage

```
BMP(
  dimension,
 lsf,
 q,
 N = 1000,
 N.final = N,
 N.iter = 30,
  adaptive = FALSE,
 N.DoE = 5 * dimension,
  firstDoE = "uniform",
  radius = qnorm(1e-10, lower.tail = FALSE),
 Х,
 у,
  covariance = NULL,
 learn_each_train = Inf,
 km.param = list(nugget.estim = TRUE, multistart = 1, optim.method = "BFGS", coef.trend
   = q),
  burnin = 20,
  fast = TRUE,
  sur = list(integrated = TRUE, r = 1, approx.pnorm = FALSE),
  lower.tail = TRUE,
  save.dir,
 plot = FALSE,
 plot.lsf = TRUE,
 plot.lab = c("x_1", "x_2"),
  chi2 = FALSE,
  verbose = 1,
 breaks
)
```

Arguments

dimension	the dimension of the input space.
lsf	the function defining the RV of interest $Y = lsf(X)$.
q	a given quantile to estimate the corresponding probability.
Ν	the total number of Poisson processes during the refinement step.
N.final	the total number of Poisson processes for the final alpha estimate.
N.iter	the total number of iteration of the algorithm, ie that total number of calls to the lsf will be N.DoE + N.iter*r.
adaptive	if the algorithm should stop automatically if the stopping criterion is verified, precisely the mean probability of misclassification of the particles being over a given threshold.
N.DoE	the number of points for the initial Design of Experiment
firstDoE	default is "uniform" for a random uniform sampling over a sphere of radius radius. Also available "maximim" for a maximim LHS.

9

radius	the size of the radius of the sphere for uniform DoE or the semi length of the interval on each dimension for maximin LHS
Х	(optional) a first Design of Experiemnt to be used instead of building a new DoE
У	the value of lsf on the X
covariance	(optional) to give a covariance kernel for the km object.
learn_each_trai	n
	a integer: after this limit the covariance parameters are not learnt any more and model is just updated with the new datapoints.
km.param	(optional) list of parameters to be passed to DiceKriging::km.
burnin	a burnin parameter for Markov Chain drawing of the metamodel based Poisson process (this does not change the number of calls to lsf).
fast	in current implementation it appears that the call to the metamodel is faster when doing batch computation. This parameter lets do the Markov chain the other way around: instead of first selecting a starting point and then applying burnin times the transition kernel, it creates a working population by apply the kernel to all the particles and then makes some moves with the generated discretised distribution.
sur	a list containing any parameters to be passed to estimateSUR. Default is sur\$integrated=TRUE and sur\$r=1 for a one step ahead integrated SUR criterion.
lower.tail	as for pxxxx functions, TRUE for estimating P(lsf(X) < q), FALSE for P(lsf(X) > q).
save.dir	(optional) a directory to save the X and y at each iteration.
plot	to plot the DoE and the updated model.
plot.lsf	to plot the contour of the true lsf. Note that this requires its evaluation on a grid and should be used only on toy examples.
plot.lab	the labels of the axis for the plot.
chi2	for a chi2 test on the number of events.
verbose	controls the level of outputs of the algorithm.
breaks	optional, for the final histogram if chi2 == TRUE.

Details

The Bayesian Moving Particles algorithm uses the point process framework for rare event to iteratively estimate the conditional expectation of the (random) limit-state function, to quantify the quality of the learning and to propose a new point to be added to the model with a SUR criterion.

Value

An object of class list containing the outputs described below:

alpha	the estimated conditional expectation of the probability.
alpha.seq	the sequence of estimated alpha during the refinement step.
cv2	an estimate of the squarred coefficient of variation of alpha.

the sequence of the estimated coefficients of variations.
the sequence of the estimated upper bound of the conditional variance divided by estimated alpha.
the sequence of the estimated integrated h.
a list containing the sequence of corresponding thresholds and -log proba- bility of the sample minimising the SUR criterion.
a list containing at each iterations number of points tried for the SUR criterion as well as the computational spent.
the reference quantile for the probability estimate.
the empirical cdf, i.e. the estimation of the function $q \rightarrow E(alpha(q))$.
the farthest state reached by the random process. Validity range for the ecdf is then (-Inf, L_max] or [L_max , Inf).
the last Poisson process generated with N.final particles.
the metamodel approximation of the lsf. A call output is a list containing the value and the standard deviation.
the final metamodel. An S4 object from DiceKriging . Note that the algorithm enforces the problem to be the estimation of $P[lsf(X)>q]$ and so using 'predict' with this object will return inverse values if lower.tail==TRUE; in this scope prefer using directly meta_fun which handles this possible issue.
the first metamodel with the intial DoE.
a 95% confidence intervalle on the estimate of alpha.
a vector containing the number of moves for each one of the N.batch particles.
the output of the chisq.test function.

Note

Probleme should be defined in the standard space. Transformations can be made using UtoX and XtoU functions.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

- A. Guyader, N. Hengartner and E. Matzner-Lober: Simulation and estimation of extreme quantiles and extreme probabilities Applied Mathematics \& Optimization, 64(2), 171-196.
- C. Walter:

Moving Particles: a parallel optimal Multilevel Splitting method with application in quantiles estimation and meta-model based algorithms Structural Safety, 55, 10-25.

• J. Bect, L. Li and E. Vazquez: Bayesian subset simulation arXiv preprint arXiv:1601.02557

See Also

SubsetSimulation MonteCarlo IRW MP

Examples

```
# Estimate P(g(X)<0)
## Not run: p <- BMP(dimension = 2, lsf = kiureghian, q = 0, N = 100, N.iter = 30, plot = TRUE)
# More extreme event
## Not run: p <- BMP(dimension = 2, lsf = waarts, q = -4, N = 100, N.iter = 50, plot = TRUE)
# One can also estimate probability of the form P(g(X)>q)
## Not run: p <- BMP(dimension = 2, lsf = cantilever, q = 1/325, N = 100, N.iter = 30, plot = TRUE)</pre>
```

cantilever

A function calculating the deviation of a cantilever beam.

Description

The limit-state function is defined in the standard space and isoprobabilistic transformation is used internally.

Usage

cantilever

Format

The function can handle a vector or a matrix with column vectors.

References

Gayton, N. and Bourinet, J.-M. and Lemaire, M.: *CD2RS: a new statistical approach to the response surface method for reliability analysis.* Structural Safety 25 99-121, 2003. ComputeDistributionParameter

Compute internal parameters and moments for univariate distribution functions

Description

Compute the internal parameters needed in the definition of several distribution functions when unknown

Usage

ComputeDistributionParameter(margin)

Arguments

margin A list containing the definition of the marginal distribution function

Value

margin The updated list

Author(s)

gilles DEFAUX, <gilles.defaux@cea.fr>

Examples

```
distX1 <- list(type='Lnorm', MEAN=120.0, STD=12.0, P1=NULL, P2=NULL, NAME='X1')
distX1 <- ComputeDistributionParameter(distX1)
print(distX1)</pre>
```

estimateSUR EstimateSUR

Description

A function for estimating a SUR criterion with a realisation of a PPP

Usage

```
estimateSUR(
    PPP,
    xi_PPP_X,
    integrated = TRUE,
    N_ppp,
    method = "discrete",
    SUR_pop,
    r = N.batch,
    optimcontrol = list(pop.size = 50 * d, max.generations = 10 * d),
    approx.pnorm,
    J = 0,
    N.batch = foreach::getDoParWorkers(),
    verbose = 0,
    ...
)
```

Arguments

PPP	the Poisson point process generated to get alpha.
xi_PPP_X	the output of xi(cbind(PPP\$X, PPP\$final_X)).
integrated	boolean to specify of SUR criterion is standard or integrated.
N_ppp	the number of Poisson processes used for the SUR criterion estimation.
method	eiter "genoud" for an optimisation using the package rgenoud or "discrete" for a discrete search over SUR_pop.
SUR_pop	if optimcontrol\$method=="discrete", SUR_pop is the population onto which minimizer is sought. Should be a matrix d x n.
r	number of points to be added to the DoE.
optimcontrol	a list of control parameters for the optimisation of the SUR criterion using the rgenoud package.
approx.pnorm	(optional) an approximation of base pnorm function running faster.
J	the center of an interval of size 8 for pnorm approximation.
N.batch	Number of batchs for parallel computation.
verbose	to control the print level of the algorithm
	further arguments to be passed to fSUR.

Value

a list containing the points minimising the criterion

14

FORM

Description

The First-Order Reliability Method computes an estimation of the failure probability by approximating the limit-state function at the Most Probable Failure Point with a hyperplane.

Usage

```
FORM(
    dimension,
    lsf,
    u.dep = rep(0, dimension),
    N.calls = 100,
    eps = 1e-07,
    Method = "HLRF",
    IS = FALSE,
    IS.ratio = 0.5,
    plot = FALSE,
    plot.lsf = FALSE,
    plot.lab = c("x_1", "x_2")
)
```

Arguments

dimension	the dimension of the input space.
lsf	the limit-state function.
u.dep	the starting point for the MPFP search.
N.calls	the total number of calls for the whole algorithm.
eps	stopping criterion: distance of two points between two iterations.
Method	choice of the method to search the design point: "AR" for Abdo-Rackwitz and "HLRF" for Hasofer-Lindt-Rackwitz-Fiessler.
IS	"TRUE" for using importance Sampling method with an standard Gaussian importance density centred at the MPFP.
IS.ratio	ratio of N.calls for the search of the design point by FORM. Default = 0.5. 1-IS.ratio = the remaining ratio to be used for importance sampling.
plot	to plot the generated samples.
plot.lsf	a boolean indicating if the lsf should be added to the plot. This requires the evaluation of the lsf over a grid and consequently should be used only for illustation purposes.
plot.lab	the x and y labels for the plot.

Details

The FORM method has to be used in the standard Gaussian input space. It is designed to estimate probability of the form $P[g(\mathbf{X}) < 0]$ with g the limit-state function. This function has to be modified accordingly to fit into this framework

Furthermore, it should be able to handle matrix input of column vectors. See the mistral vignette for more info about 1sf definition

Value

A list containing the following objects

р	Failure probability
indice.reliab	Reliability index
Ncall	Number of calls to f
Design.Point	Coordinates of the design point
fact.imp	Importance factors
variance	Standard error of the probability estimator (if IS = TRUE)
Interval.conf	Confidence interval of the estimator at 0.95 (if IS = TRUE)
DOE	List which contains the design of experiments

Author(s)

Vincent MOUTOUSSAMY and Clement WALTER <clementwalter@icloud.com>

References

- O. Ditlevsen and H.O. Madsen. Structural reliability methods, Wiley, 1996
- M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009.

Examples

F0RMv0

Description

Calculate failure probability by FORM method and important sampling.

Usage

```
FORMv0(f, u.dep, inputDist, N.calls, eps = 1e-7,
        Method = "HLRF", IS = FALSE, q = 0.5, copula = "unif")
```

Arguments

f	A failure fonction
u.dep	A vector, starting point to the research of the design point
inputDist	A list which contains the name of the input distribution and their parameters. For the input "i", inputDistribution[[i]] = list("name_law",c(parameters1,, parametersN))
N.calls	Number of calls to f allowed
eps	Stop criterion : distance of two points between two iterations
Method	Choice of the method to research the design point: "AR" for Abdo-Rackwitz and "HLRF" for Hasofer-Lindt-Rackwitz-Fiessler
IS	"TRUE" for using importance Sampling method (applied after FORM which provides the importance density). Default = "FALSE".
q	Ratio of N.calls for the research of the design point by FORM. Default = 0.5 . 1-q = the remaining ratio to use importance sampling.
copula	Choice of the copula. Default = "unif" (uniform copula)

Details

This function estimate the probability that the output of the failure function is negative using FORM algorithm. The importance sampling procedure estimate a probability using a Gaussian distribution centered in the design point with a covariance matrix equal to the indentity.

Value

pf	Failure probability
beta	Reliability index (beta)
compt.f	Number of calls to f
design.point	Coordinates of the design point
fact.imp	Importance factors
variance	Standard error of the probability estimator (if IS = TRUE)

generateK

conf	Confidence interval of the estimator at 0.95 (if IS = TRUE)
x	A data frame containing the input design of experiments
У	A vector of model responses (corresponding to x)
dy	A data frame of model response derivatives (wrt each input and corresponding to x); for the IS sample, the derivatives are not computed

Author(s)

Vincent Moutoussamy and Bertrand Iooss

References

O. Ditlevsen and H.O. Madsen. Structural reliability methods, Wiley, 1996

M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009.

Examples

```
## Not run:
distribution = list()
distribution[[1]] = list("gamma",c(2,1))
distribution[[2]] = list("gamma",c(3,1))
f <- function(X){
    X[1]/sum(X) - qbeta((1e-5),2,3)
}
res <- mistral:::FORMv0(f, u.dep = c(0,0.1), inputDist = distribution,
    N.calls = 1000, eps = 1e-7, Method = "HLRF", IS = "TRUE",
    q = 0.1, copula = "unif")
names(res)
print(res)
print(res$pf)
## End(Not run)
```

generateK	Generate Standard Gaussian samples with a Gaussian transiiton ker-
	nel

Description

Generate Standard Gaussian samples with a Gaussian transiiton kernel

Usage

```
generateK(X, N = 100, thinning = 4, sigma = 1, lsf, burnin = 20)
```

generateK

Arguments

Х	the seeds for the Markov Chain. There are as many MC drawn as given seeds
Ν	the number of desired samples"'
thinning	the proportion of kept samples, ie. 1 each thinning draw.
sigma	the exploration parameter for the transition kernel
lsf	a boolean limit-state function for definig a subdomain of the input space.
burnin	the burnin parameter, ie. the number of discarded samples before keeping one.

Details

This function generates standard Gaussian samples with a Markov Chain using a suitable transition kernel

Value

A matrix X with the number of desired samples

Author(s)

Clement WALTER <clementwalter@icloud.com>

Examples

```
# Get a seed in dimension 2
X <- matrix(rnorm(2), nrow = 2)
X <- generateK(X, N = 1000)
library(ggplot2)
ggplot(as.data.frame(t(X)), aes(x_1,x_2)) + geom_point()
# One can also specify a limit-state function
lsf <- function(X){
    sqrt(colSums(X^2)) > 2
}
X <- matrix(c(2, 2), nrow = 2)
X <- generateK(X, N = 1000, lsf = lsf)</pre>
```

```
ggplot(as.data.frame(t(X)), aes(x_1,x_2)) + geom_point()
```

Increasing Randow Walk

Description

Simulate the increasing random walk associated with a real-valued continuous random variable.

Usage

```
IRW(
  dimension,
 lsf,
 N = 10,
 q = Inf,
 Nevent = Inf,
 Х,
 y = lsf(X),
 Κ,
 burnin = 20,
  sigma = 0.3,
  last.return = TRUE,
  use.potential = TRUE,
  plot = FALSE,
  plot.lsf = FALSE,
 print_plot = FALSE,
 output_dir = NULL,
 plot.lab = c("x_1", "x_2")
)
```

Arguments

dimension	dimension of the input space.
lsf	limit state function.
Ν	number of particules.
q	level until which the randow walk is to be generated.
Nevent	the number of desired events.
Х	to start with some given particles.
У	value of the 1sf on X.
К	kernel transition for conditional generations.
burnin	burnin parameter.
sigma	radius parameter for K.
last.return	if the last event should be returned.
use.potential	tu use a 'potential' matrix to select starting point not directly related to the sam- ple to be moved with the MH algorithm.

IRW

plot	if TRUE, the algorithm plots the evolution of the particles. This requieres to evaluate the lsf on a grid and is only for visual purpose.
plot.lsf	a boolean indicating if the lsf should be added to the plot. This requires the evaluation of the lsf over a grid and consequently should be used only for illustation purposes.
print_plot	if TRUE, print the updated plot after each iteration. This might be slow; use with a small N. Otherwise it only prints the final plot.
output_dir	if plots are to be saved in pdf in a given directory. This will be pasted with '_IRW.pdf'. Together with print_plot==TRUE this will produce a pdf with a plot at each iteration, enabling 'video' reconstitution of the algorithm.
plot.lab	the x and y labels for the plot

Details

This function lets generate the increasing random walk associated with a continous real-valued random variable of the form Y = lsf(X) where X is vectorial random variable.

This random walk can be associated with a Poisson process with parameter N and hence the number of iterations before a given threshold q is directly related to P[lsf(X) > q]. It is the core tool of algorithms such as nested sampling, Last Particle Algorithm or Tootsie Pop Algorithm.

Bascially for N = 1, it generates a sample Y = lsf(X) and iteratively regenerates greater than the found value: $Y_{n+1} \sim \mu^Y(\cdot | Y > Y_n)$. This regeneration step is done with a Metropolis-Hastings algorithm and that is why it is useful to consider generating several chains all together (N > 1).

The algorithm stops when it has simulated the required number of events Nevent or when it has reached the sought threshold q.

Value

An object of class list containing the following data:

L	the events of the random walk.
М	the total number of iterations.
Ncall	the total number of calls to the lsf.
х	a matrix containing the final particles.
У	the value of 1sf on X.
q	the threshold considered when generating the random walk.
Nevent	the target number of events when generating the random walk.
Nwmoves	the number of rejected transitions, ie when the proposed point was not stricly greater/lower than the current state.
acceptance	a vector containing the acceptance rate for each use of the MH algorithm.

Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore, each time a set of vector is defined as a matrix, 'nrow' = dimension and 'ncol' = number of vector to be consistent with as.matrix transformation of a vector.

Algorithm calls lsf(X) (where X is a matrix as defined previously) and expects a vector in return. This allows the user to optimise the computation of a batch of points, either by vectorial computation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

• C. Walter:

Moving Particles: a parallel optimal Multilevel Splitting method with application in quantiles estimation and meta-model based algorithms Structural Safety, 55, 10-25.

• C. Walter:

Point Process-based Monte Carlo estimation Statistics and Computing, in press, 1-18. arXiv preprint arXiv:1412.6368.

- J. Skilling: Nested sampling for general Bayesian computation Bayesian Analysis, 1(4), 833-859.
- M. Huber \& S. Schott: Using TPA for Bayesian inference Bayesian Statistics 9, 9, 257.
- A. Guyader, N. Hengartner and E. Matzner-Lober: Simulation and estimation of extreme quantiles and extreme probabilities Applied Mathematics \& Optimization, 64(2), 171-196.

See Also

MP

Examples

```
# Get failing samples for the kiureghian limit state function
# Failure is defined as lsf(X) < 0 so we have to invert the lsf
lsf <- function(x) -1*kiureghian(x)
## Not run:
fail.samp <- IRW(2, lsf, q = 0, N = 10, plot = TRUE)</pre>
```

22

kiureghian

End(Not run)

kiureghian

A limit-state-function defined by Der Kiureghian

Description

The limit-state function is defined by:

$$f(x) = b - x_2 - \kappa * (x_1 - e)^2$$

with b = 5, $\kappa = 0.5$ and e = 0.1.

Usage

kiureghian

Format

The function can handle a vector or matrix with column vectors.

References

Der Kiureghian, A and Dakessian, T: *Multiple design points in first and second-order reliability* Structural Safety, 20, 1, 37-49, 1998.

LSVM

Linear Support Vector Machine under monotonicity constraints

Description

Produce a globally increasing binary classifier built from linear monotonic SVM

Usage

LSVM(x, A.model.lsvm, convexity)

Arguments

х	a set of points where the class must be estimated.
A.model.lsvm	a matrix containing the parameters of all hyperplanes.
convexity	Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise.

Details

LSVM is a monotonic binary classifier built from linear SVM under the constraint that one of the two classes of data is convex.

Value

An object of class integer representing the class of x

res A vector of -1 or +1.

Author(s)

Vincent Moutoussamy

References

- R.T. Rockafellar: *Convex analysis* Princeton university press, 2015.
- N. Bousquet, T. Klein and V. Moutoussamy : *Approximation of limit state surfaces in monotonic Monte Carlo settings* Submitted.

See Also

modelLSVM

Examples

```
# A limit state function
f <- function(x){ sqrt(sum(x^2)) - sqrt(2)/2 }
# Creation of the data sets
n <- 200
X <- matrix(runif(2*n), nrow = n)
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})
#The convexity is known
## Not run:
model.A <- modelLSVM(X, Y, convexity = -1)
m <- 10
X.test <- matrix(runif(2*m), nrow = m)
classOf.X.test <- LSVM(X.test, model.A, convexity = -1)
## End(Not run)
```

MetaIS

Description

Estimate failure probability by MetaIS method.

Usage

```
MetaIS(
  dimension,
  lsf,
 N = 5e + 05,
 N_alpha = 100,
 N_DOE = 10 * dimension,
 N1 = N_DOE * 30,
 Ru = 8,
 Nmin = 30,
 Nmax = 200,
 Ncall_max = 1000,
  precision = 0.05,
 N_seeds = 2 * dimension,
 Niter_seed = Inf,
 N_alphaLOO = 5000,
 K_alphaL00 = 1,
  alpha_{int} = c(0.1, 10),
  k_{margin} = 1.96,
  lower.tail = TRUE,
  X = NULL,
  y = NULL,
  failure = 0,
 meta_model = NULL,
  kernel = "matern5_2",
  learn_each_train = TRUE,
  limit_fun_MH = NULL,
  failure_MH = 0,
  sampling_strategy = "MH",
  seeds = NULL,
  seeds_eval = limit_fun_MH(seeds),
  burnin = 20,
  compute.PPP = FALSE,
  plot = FALSE,
  limited_plot = FALSE,
  add = FALSE,
  output_dir = NULL,
  verbose = 0
)
```

Arguments

dimension	of the input space
lsf	the failure defining the failure/safety domain
Ν	size of the Monte-Carlo population for P_epsilon estimate
N_alpha	initial size of the Monte-Carlo population for alpha estimate
N_DOE	size of the initial DOE got by clustering of the N1 samples
N1	size of the initial uniform population sampled in a hypersphere of radius Ru
Ru	radius of the hypersphere for the initial sampling
Nmin	minimum number of call for the construction step
Nmax	maximum number of call for the construction step
Ncall_max	maximum number of call for the whole algorithm
precision	desired maximal value of cov
N_seeds	number of seeds for MH algoritm while generating into the margin (according to MP*gauss)
Niter_seed	maximum number of iteration for the research of a seed for alphaLOO refine- ment sampling
N_alphaLOO	number of points to sample at each refinement step
K_alphaLOO	number of clusters at each refinement step
alpha_int	range for alpha to stop construction step
k_margin	margin width; default value means that points are classified with more than $97{,}5\%$
lower.tail	specify if one wants to estimate P[lsf(X) <failure] or="" p[lsf(x)="">failure].</failure]>
Х	Coordinates of alredy known points
У	Value of the LSF on these points
failure	Failure threshold
meta_model	Provide here a kriging metamodel from km if wanted
kernel	Specify the kernel to use for km
learn_each_train	
	Specify if kernel parameters are re-estimated at each train
limit_fun_MH	Define an area of exclusion with a limit function
failure_MH	Threshold for the limit_MH function
sampling_strate	gy Fither MH for Metropolis Hastings of AP for accent reject
soods	If some points are already known to be in the appropriate subdomain
seeds eval	Value of the metamodel on these points
burnin	Burnin parameter for MH
	to simulate a Daisson measure at each iteration to estimate the conditional or
compute.PPP	pectation and the SUR criteria based on the conditional variance: h (average probability of misclassification at level failure) and I (integral of h over the whole interval [failure, infty))

26

MetaIS

plot	Set to TRUE for a full plot, ie refresh at each iteration
limited_plot	Set to TRUE for a final plot with final DOE, metamodel and LSF
add	If plots are to be added to a current device
output_dir	If plots are to be saved in jpeg in a given directory
verbose	Either 0 for almost no output, or 1 for medium size or 2 for all outputs

Details

MetaIS is an Important Sampling based probability estimator. It makes use of a kriging surogate to approximate the optimal density function, replacing the indicatrice by its kriging pendant, the probability of being in the failure domain. In this context, the normallizing constant of this quasi-optimal PDF is called the 'augmented failure probability' and the modified probability 'alpha'.

After a first uniform Design of Experiments, MetaIS uses an alpha Leave-One-Out criterion combined with a margin sampling strategy to refine a kriging-based metamodel. Samples are generated according to the weighted margin probability with Metropolis-Hastings algorithm and some are selected by clustering; the N_seeds are got from an accept-reject strategy on a standard population.

Once criterion is reached or maximum number of call done, the augmented failure probability is estimated with a crude Monte-Carlo. Then, a new population is generated according to the quasioptimal instrumenal PDF; burnin and thinning are used here and alpha is evaluated. While the coefficient of variation of alpha estimate is greater than a given threshold and some computation spots still available (defined by Ncall_max) the estimate is refined with extra calculus.

The final probability is the product of p_epsilon and alpha, and final squared coefficient of variation is the sum of p_epsilon and alpha one's.

Value

An object of class list containing the failure probability and some more outputs as described below:

р	The estimated failure probability.
cov	The coefficient of variation of the Monte-Carlo probability estimate.
Ncall	The total number of calls to the lsf.
х	The final learning database, ie. all points where 1sf has been calculated.
У	The value of the 1sf on the learning database.
meta_fun	The metamodel approximation of the lsf. A call output is a list containing the value and the standard deviation.
meta_model	The final metamodel. An S4 object from DiceKriging . Note that the algorithm enforces the problem to be the estimation of P[lsf(X) <failure] 'predict'="" and="" directly="" handle="" if="" in="" inverse="" issue.<="" lower.tail="FALSE;" meta_fun="" object="" possible="" prefer="" return="" scope="" so="" td="" this="" using="" values="" which="" will="" with=""></failure]>
points	Points in the failure domain according to the metamodel.
h	the sequence of the estimated relative SUR criteria.
I	the sequence of the estimated integrated SUR criteria.

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore, each time a set of vector is defined as a matrix, 'nrow' = dimension and 'ncol' = number of vector to be consistent with as.matrix transformation of a vector.

Algorithm calls lsf(X) (where X is a matrix as defined previously) and expects a vector in return. This allows the user to optimise the computation of a batch of points, either by vectorial computation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

• V. Dubourg:

Meta-modeles adaptatifs pour l'analyse de fiabilite et l'optimisation sous containte fiabiliste PhD Thesis, Universite Blaise Pascal - Clermont II,2011

• V. Dubourg, B. Sudret, F. Deheeger: Metamodel-based importance sampling for structural reliability analysis Original Research Article Probabilistic Engineering Mechanics, Volume 33, July 2013, Pages 47-57

• V. Dubourg, B. Sudret:

Metamodel-based importance sampling for reliability sensitivity analysis. Accepted for publication in Structural Safety, special issue in the honor of Prof. Wilson Tang.(2013)

• V. Dubourg, B. Sudret and J.-M. Bourinet: Reliability-based design optimization using kriging surrogates and subset simulation. Struct. Multidisc. Optim.(2011)

See Also

SubsetSimulation MonteCarlo km (in package DiceKriging)

Examples

```
kiureghian = function(x, b=5, kappa=0.5, e=0.1) {
x = as.matrix(x)
b - x[2,] - kappa*(x[1,]-e)^2
}
## Not run:
res = MetaIS(dimension=2,lsf=kiureghian,plot=TRUE)
```

28

Note

```
#Compare with crude Monte-Carlo reference value
N = 500000
dimension = 2
U = matrix(rnorm(dimension*N), dimension, N)
G = kiureghian(U)
P = mean(G<0)
cov = sqrt((1-P)/(N*P))
## End(Not run)
#See impact of kernel choice with Waarts function :
waarts = function(u) {
  u = as.matrix(u)
  b1 = 3+(u[1,]-u[2,])^2/10 - sign(u[1,] + u[2,])*(u[1,]+u[2,])/sqrt(2)
  b2 = sign(u[2,]-u[1,])*(u[1,]-u[2,])+7/sqrt(2)
  val = apply(cbind(b1, b2), 1, min)
}
## Not run:
res = list()
res$matern5_2 = MetaIS(2,waarts,plot=TRUE)
res$matern3_2 = MetaIS(2,waarts,kernel="matern3_2",plot=TRUE)
res$gaussian = MetaIS(2,waarts,kernel="gauss",plot=TRUE)
res$exp = MetaIS(2,waarts,kernel="exp",plot=TRUE)
#Compare with crude Monte-Carlo reference value
N = 500000
dimension = 2
U = matrix(rnorm(dimension*N), dimension, N)
G = waarts(U)
P = mean(G<0)
cov = sqrt((1-P)/(N*P))
## End(Not run)
```

MetropolisHastings The modified Metropolis-Hastings algorithm

Description

The function implements the specific modified Metropolis-Hastings algorithm as described first by Au \& Beck and including another scaling parameter for an extended search in initial steps of the SMART algorithm.

Usage

```
MetropolisHastings(
    x0,
    eval_x0 = -1,
```

```
chain_length,
modified = TRUE,
sigma = 0.3,
proposal = "Uniform",
lambda = 1,
limit_fun = function(x) { -1 },
burnin = 20,
thinning = 4
)
```

Arguments

x0	the starting point of the Markov chain
eval_x0	the value of the limit-state function on $x0$
chain_length	the length of the Markov chain. At the end the chain will be chain_length + 1 long
modified	a boolean to use either the original Metropolis-Hastings transition kernel or the coordinate-wise one
sigma	a radius parameter for the Gaussian or Uniform proposal
proposal	either "Uniform" for a Uniform random variable in an interval [-sigma, sigma] or "Gaussian" for a centred Gaussian random variable with standard deviation sigma
lambda	the coefficient to increase the likelihood ratio
limit_fun	the limite-state function delimiting the domain to sample in
burnin	a burnin parameter, ie a number of initial discards samples
thinning	a thinning parameter, ie that one sample over thinning samples is kept along the chain

Details

The modified Metropolis-Hastings algorithm is supposed to be used in the Gaussian standard space. Instead of using a proposed point for the multidimensional Gaussian random variable, it applies a Metropolis step to each coordinate. Then it generates the multivariate candidate by checking if it lies in the right domain.

This version proposed by Bourinet et al. includes an scaling parameter lambda. This parameter is multiplied with the likelihood ratio in order to increase the chance of accepting the candidate. While it biases the output distribution of the Markov chain, the authors of SMART suggest its use (lambda > 1) for the exploration phase. Note such a value disable to possiblity to use the output population for Monte Carlo estimation.

Value

A list containing the following entries:

points	the generated Markov chain
eval	the value of the limit-state function on the generated samples

30

modelLSVM

the acceptation rate
the total number of call to the limit-state function
all the generated samples
the evaluation of the limit-state function on the samples samples

modelLSVM

Estimation of the parameters of the LSVM

Description

Produce a matrix containing the parameters of a set of hyperplanes separating the two classes of data

Usage

modelLSVM(X, Y, convexity)

Arguments

Х	a matrix containing the data sets
Y	a vector containing -1 or +1 that reprensents the class of each elements of X.
convexity	Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise.

Details

modelLSVM evaluate the classifier on a set of points.

Value

An object of class matrix containing the parameters of a set of hyperplanes

res A matrix where each lines contains the parameters of a hyperplane.

Author(s)

Vincent Moutoussamy

References

- R.T. Rockafellar: *Convex analysis* Princeton university press, 2015.
- N. Bousquet, T. Klein and V. Moutoussamy : *Approximation of limit state surfaces in monotonic Monte Carlo settings* Submitted.

See Also

LSVM

Examples

```
# A limit state function
f <- function(x){ sqrt(sum(x^2)) - sqrt(2)/2 }
# Creation of the data sets
n <- 200
X <- matrix(runif(2*n), nrow = n)
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})
#The convexity is known
## Not run:
model.A <- modelLSVM(X, Y, convexity = -1)
## End(Not run)
```

ModifCorrMatrix Modification of a correlation matrix to use in UtoX

Description

ModifCorrMatrix modifies a correlation matrix originally defined using SPEARMAN correlation coefficients to the correlation matrix to be used in the NATAF transformation performed in UtoX.

Usage

```
ModifCorrMatrix(Rs)
```

Arguments

Rs

Original correlation matrix defined using SPEARMAN correlation coefficient :

 $R_s = [\rho_{ij}^s]$

Value

RØ Modified correlation matrix

32

Note

The NATAF distribution is reviewed from the (normal) copula viewpoint as a particular and convenient means to describe a joint probabilistic model assuming that the normal copula fits to the description of the input X. The normal copula is defined by a symmetric positive definite matrix R0. Even though the off-diagonal terms in this matrix are comprised in]-1; 1[and its diagonal terms are equal to 1, it shall not be confused with the more usual correlation matrix. Lebrun and Dutfoy point out that the SPEARMAN (or rank) correlation coefficient is better suited to parametrize a copula because it leads to a simpler closed-form expression for ρ_{ij} .

Author(s)

Gilles DEFAUX, <gilles.defaux@cea.fr>

References

- M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009
- Lebrun, R. and A. Dutfoy. A generalization of the Nataf transformation to distributions with elliptical copula. Prob. Eng. Mech., 24(2), 172-178.
- V. Dubourg, Meta-modeles adaptatifs pour l'analyse de fiabilite et l'optimisation sous containte fiabiliste, PhD Thesis, Universite Blaise Pascal - Clermont II,2011

See Also

UtoX

Examples

MonotonicQuantileEstimation

Quantile estimation under monotonicity constraints

Description

Estimate a quantile with the constraints that the function is monotone

Usage

MonotonicQuantileEstimation(f,

```
inputDimension,
inputDistribution,
dir.monot,
N.calls,
p,
method,
X.input = NULL,
Y.input = NULL)
```

Arguments

f	a failure fonction
inputDimension	dimension of the inputs
inputDistribution	
	a list of length 'inputDimension' which contains the name of the input distribu- tion and their parameters. For the input "i", inputDistribution[[i]] = list("name_law",c(parameters1,, parametersN))
dir.monot	vector of size inputDimension which represents the monotonicity of the failure function. dir.monot[i] = -1 (resp. 1) if the failure function f is decreasing (resp. increasing) according with direction i.
N.calls	Number of calls to f allowed
method	there are four methods available. "MonteCarloWB" provides the empirical quan- tile estimator, "MonteCarloWB" provides the empirical quantile estimator as well as two bounds for the searched quantile, "Bounds" provides two bounds for a quantile from a set of points and "MonteCarloIS" provides an estimate of a quantile based on a sequential framework of simulation.
р	the probability associated to the quantile
X.input	a set of points
Y.input	value of f on X.input

Details

MonotonicQuantileEstimation provides many methods to estimate a quantile under monotonicity constraints.

Value

An object of class list containing the quantile as well as:

qm	A lower bound of the quantile.
qM	A upperer bound of the quantile.
q.hat	An estimate of the quantile.
Um	A lower bounds of the probability obtained from the desing of experiments.

34

UM	An upper bounds of the probability obtained from the desing of experiments.
XX	Design of experiments
YY	Values of on XX

Note

Inputs X.input and Y.input are useful only for method = "Bounds"

Author(s)

Vincent Moutoussamy

References

Bousquet, N. (2012) Accelerated monte carlo estimation of exceedance probabilities under monotonicity constraints. Annales de la Faculte des Sciences de Toulouse. XXI(3), 557-592.

Examples

```
## Not run:
inputDistribution <- list()</pre>
inputDistribution[[1]] <- list("norm",c(4,1))</pre>
inputDistribution[[2]] <- list("norm",c(0,1))</pre>
inputDimension <- length(inputDistribution)</pre>
dir.monot <- c(1, -1)
N.calls <- 80
f <- function(x){</pre>
  return(x[1] - x[2])
}
probability <- 1e-2</pre>
trueQuantile <- qnorm(probability,</pre>
                      inputDistribution[[1]][[2]][1] - inputDistribution[[2]][[2]][1],
                   sqrt(inputDistribution[[1]][[2]][2] + inputDistribution[[1]][[2]][2]))
resQuantile <- MonotonicQuantileEstimation(f, inputDimension, inputDistribution,</pre>
                               dir.monot, N.calls, p = probability, method = "MonteCarloIS")
quantileEstimate <- resQuantile[[1]][N.calls, 3]</pre>
## End(Not run)
```

MonteCarlo

Description

Estimate a failure probability using a crude Monte Carlo method.

Usage

```
MonteCarlo(
  dimension,
  lsf,
  N_max = 5e+05,
  N_batch = foreach::getDoParWorkers(),
  q = 0,
  lower.tail = TRUE,
  precision = 0.05,
  plot = FALSE,
  output_dir = NULL,
  save.X = TRUE,
  verbose = 0
)
```

Arguments

dimension	the dimension of the input space.
lsf	the function defining safety/failure domain.
N_max	maximum number of calls to the lsf.
N_batch	number of points evaluated at each iteration.
q	the quantile.
lower.tail	as for pxxxx functions, TRUE for estimating P(lsf(X) < q), FALSE for P(lsf(X) > q).
precision	a targeted maximum value for the coefficient of variation.
plot	to plot the contour of the lsf as well as the generated samples.
output_dir	to save a copy of the plot in a pdf. This name will be pasted with "_Monte_Carlo_brut.pdf".
save.X	to save all the samples generated as a matrix. Can be set to FALSE to reduce output size.
verbose	to control the level of outputs in the console; either 0 or 1 or 2 for almost no outputs to a high level output.

Details

This implementation of the crude Monte Carlo method works with evaluating batchs of points sequentialy until a given precision is reached on the final estimator

MonteCarlo

Value

An object of class list containing the failure probability and some more outputs as described below:

р	the estimated probabilty.
ecdf	the empiracal cdf got with the generated samples.
cov	the coefficient of variation of the Monte Carlo estimator.
Ncall	the total number of calls to the lsf, ie the total number of generated samples.
Х	the generated samples.
Υ	the value lsf(X).

Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore, each time a set of vector is defined as a matrix, 'nrow' = dimension and 'ncol' = number of vector to be consistent with as.matrix transformation of a vector.

Algorithm calls lsf(X) (where X is a matrix as defined previously) and expects a vector in return. This allows the user to optimise the computation of a batch of points, either by vectorial computation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel computation.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

• R. Rubinstein and D. Kroese: Simulation and the Monte Carlo method Wiley (2008)

See Also

SubsetSimulation foreach

Examples

```
#First some considerations on the usage of the lsf.
#Limit state function defined by Kiureghian & Dakessian :
# Remember you have to consider the fact that the input will be a matrix ncol >= 1
lsf_wrong = function(x, b=5, kappa=0.5, e=0.1) {
    b - x[2] - kappa*(x[1]-e)^2 # work only with a vector of lenght 2
}
lsf_correct = function(x){
    apply(x, 2, lsf_wrong)
}
lsf = function(x, b=5, kappa=0.5, e=0.1) {
```

```
x = as.matrix(x)
 b - x[2,] - kappa*(x[1,]-e)^2 # vectorial computation, run fast
}
y = lsf(X <- matrix(rnorm(20), 2, 10))</pre>
#Compare running time
## Not run:
  require(microbenchmark)
  X = matrix(rnorm(2e5), 2)
  microbenchmark(lsf(X), lsf_correct(X))
## End(Not run)
#Example of parallel computation
require(doParallel)
lsf_par = function(x){
foreach(x=iter(X, by='col'), .combine = 'c') %dopar% lsf(x)
}
#Try Naive Monte Carlo on a given function with different failure level
## Not run:
  res = list()
  res[[1]] = MonteCarlo(2,lsf,q = 0,plot=TRUE)
  res[[2]] = MonteCarlo(2,lsf,q = 1,plot=TRUE)
  res[[3]] = MonteCarlo(2,lsf,q = -1,plot=TRUE)
## End(Not run)
#Try Naive Monte Carlo on a given function and change number of points.
## Not run:
  res = list()
  res[[1]] = MonteCarlo(2,lsf,N_max = 10000)
  res[[2]] = MonteCarlo(2,lsf,N_max = 100000)
  res[[3]] = MonteCarlo(2,lsf,N_max = 500000)
## End(Not run)
```

MP

Moving Particles

Description

This function runs the Moving Particles algorithm for estimating extreme probability and quantile.

Usage

MP(

38

```
dimension,
lsf,
N = 100,
N.batch = foreach::getDoParWorkers(),
p,
q,
lower.tail = TRUE,
Niter_1fold,
alpha = 0.05,
compute_confidence = FALSE,
verbose = 0,
chi2 = FALSE,
breaks = N.batch/5,
....
)
```

Arguments

dimension	the dimension of the input space.
lsf	the function defining the RV of interest $Y = lsf(X)$.
Ν	the total number of particles,
N.batch	the number of parallel batches for the algorithm. Each batch will then have N/N.batch particles. Typically this could be detectCores() or some other machine-derived parameters. Note that N/N.batch has to be an integer.
р	a given probability to estimate the corresponding quantile (as in qxxxx functions).
q	a given quantile to estimate the corresponding probability (as in pxxxx functions).
lower.tail	as for pxxxx functions, TRUE for estimating $P(lsf(X) < q)$, FALSE for $P(lsf(X) > q)$.
Niter_1fold	a function = $fun(N)$ giving the deterministic number of iterations for the first pass.
alpha	when using default Niter_1fold function, this is the risk not to have simulated enough samples to produce a quantile estimator.
compute_confide	nce
	if TRUE, the algorithm runs a little bit longer to produces a 95% interval on the quantile estimator.
verbose	to control level of print (either 0, or 1, or 2).
chi2	for a chi2 test on the number of events.
breaks	for the final histogram is chi2 == TRUE.
	further arguments past to IRW.

MP

Details

MP is a wrap up of IRW for probability and quantile estimation. By construction, the several calls to IRW are parallel (**foreach**) and so is the algorithm. Especially, with N.batch=1, this is the Last Particle Algorithm, which is a specific version of SubsetSimulation with $p_0 = 1-1/N$. However, note that this algorithm not only gives a quantile or a probability estimate but also an estimate of the whole cdf until the given threshold q.

The probability estimator only requires to generate several random walks as it is the estimation of the parameter of a Poisson random variable. The quantile estimator is a little bit more complicated and requires a 2-passes algorithm. It is thus not exactly fully parallel as cluster/cores have to communicate after the first pass. During the first pass, particles are moved a given number of times, during the second pass particles are moved until the farthest event reach during the first pass. Hence, the random process is completely simulated until this given state.

For an easy user experiment, all the parameters are defined by default with the optimised values as described in the reference paper (see References below) and a typical use will only specify N and N.batch.

Value

An object of class list containing the outputs described below:

р	the estimated probability or the reference for the quantile estimate.
q	the estimated quantile or the reference for the probability estimate.
CV	the coefficient of variation of the probability estimator.
ecdf	the empirical cdf.
L	the states of the random walk.
L_max	the farthest state reached by the random process. Validity range for the ecdf is then (-Inf, L_max] or [L_max , Inf).
times	the <i>times</i> of the random process.
Ncall	the total number of calls to the lsf.
Х	the N particles in their final state.
У	the value of the lsf(X).
moves	a vector containing the number of moves for each batch.
p_int	a 95% confidence intervalle on the probability estimate.
cov	the coefficient of variation of the estimator
q_int	a 95% confidence intervall on the quantile estimate.
chi2	the output of the chisq.test function.

Note

The alpha parameter is set to 0.05 by default. Indeed it should not be set too small as it is defined approximating the Poisson distribution with the Gaussian one. However if no estimate is produce then the algorithm can be restarted for the few missing events. In any cases, setting Niter_1fold = -N/N.batch*log(p) gives 100% chances to produces a quantile estimator.

MP

MP

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

- A. Guyader, N. Hengartner and E. Matzner-Lober: Simulation and estimation of extreme quantiles and extreme probabilities Applied Mathematics \& Optimization, 64(2), 171-196.
- C. Walter:

Moving Particles: a parallel optimal Multilevel Splitting method with application in quantiles estimation and meta-model based algorithms Structural Safety, 55, 10-25.

• E. Simonnet: *Combinatorial analysis of the adaptive last particle method* Statistics and Computing, 1-20.

See Also

SubsetSimulation MonteCarlo IRW

Examples

```
## Not run:
# Estimate some probability and quantile with the parabolic lsf
p.est <- MP(2, kiureghian, N = 100, q = 0) # estimate P(lsf(X) < 0)
p.est <- MP(2, kiureghian, N = 100, q = 7.8, lower.tail = FALSE) # estimate P(lsf(X) > 7.8)
q.est <- MP(2, kiureghian, N = 100, p = 1e-3) # estimate q such that P(lsf(X) < q) = 1e-3
q.est <- MP(2, kiureghian, N = 100, p = 1e-3, lower.tail = FALSE) # estimate q such
# that P(lsf(X) > q) = 1e-3
# plot the empirical cdf
plot(xplot <- seq(-3, p.est$L_max, 1 = 100), sapply(xplot, p.est$ecdf_MP))</pre>
# check validity range
p.est$ecdf_MP(p.est$L_max - 1)
# this example will fail because the quantile is greater than the limit
tryCatch({
   p.est$ecdf_MP(p.est$L_max + 0.1)},
   error = function(cond) message(cond))
# Run in parallel
library(doParallel)
registerDoParallel()
p.est <- MP(2, kiureghian, N = 100, q = 0, N.batch = getDoParWorkers())</pre>
```

End(Not run)

MRM

MRM method

Description

Estimate a failure probability by MRM method.

Usage

```
MRM(f, inputDimension, inputDistribution, dir.monot, N.calls, Method, silent = FALSE)
```

Arguments

f	a failure fonction
inputDimension	dimension of the inputs
inputDistributi	lon
	a list of length 'inputDimension' which contains the name of the input distribu-
	tion and their parameters. For the input "i", inputDistribution[[i]] = list("name_law",c(parameters1,, parametersN))
dir.monot	vector of size inputDimension which represents the monotonicity of the failure
	function. dir.monot[i] = -1 (resp. 1) if the failure function f is decreasing (resp.
	increasing) according with direction 1.
N.calls	Number of calls to f allowed
Method	there is two methods available. "MC" is an adapation of the Monte Carlo method
	under constraints of monotony. "MRM" is based on a sequential sampling.
silent	if silent = TRUE, print curent number of call to f. Default: FALSE.

Details

These methods compute the probability that the output of the failure function is negative

Value

Um	Exact lower bounds of the failure probability
UM	Exact upper bounds of the failure probability
MLE	Maximum likelihood estimator of the failure probability
IC.inf	Lower bound of the confidence interval of the failure probability based on MLE
IC.sup	Upper bound of the confidence interval of the failure probability based on MLE
CV.MLE	Coefficient of variation of the MLE
Х	design of experiments
Υ	value of f on X
N.tot	Total number of simulation (only for "MC_monotone")

MRM

Author(s)

Vincent Moutoussamy and Nicolas Bousquet

References

Bousquet, N. (2012) Accelerated monte carlo estimation of exceedance probabilities under monotonicity constraints. Annales de la Faculte des Sciences de Toulouse. XXI(3), 557-592.

Examples

```
## Not run:
```

```
inputDistribution <- list()</pre>
inputDistribution[[1]] <- list("norm",c(4,1))</pre>
inputDistribution[[2]] <- list("norm",c(0,1))</pre>
inputDistribution[[3]] <- list("norm",c(-1,3))</pre>
inputDimension <- length(inputDistribution)</pre>
p <- 1e-5
threshold <- qnorm(p, 3, sqrt(11))</pre>
f <- function(Input){</pre>
  sum(Input) - threshold
}
dir.monot <- c(1, 1, 1)
N.calls <- 300
res.MRM <- MRM(f, inputDimension, inputDistribution,</pre>
                 dir.monot, N.calls, Method = "MRM", silent = FALSE)
N <- 1:dim(res.MRM[[1]])[1]</pre>
plot(N, res.MRM[[1]][, 1],
      col = "black", lwd=2, type='1', ylim=c(0, 50*p),
      xlab="Number of runs to the failure function",
      ylab="")
lines(N, res.MRM[[1]][, 2], col = "black", lwd = 2)
lines(N, res.MRM[[1]][, 3], col = "red", lwd = 2)
lines(N, res.MRM[[1]][, 7], col = "blue", lwd = 2, lty = 2)
lines(N, rep(p, length(N)), lwd= 2, col= "orange", lty=3 )
legend("topright",
        c("Exact Bounds", "MLE","p.hat", "p"),
col = c("black", "red", "blue", "orange"),
         text.col = c("black", "red", "blue", "orange"),
        lty = c(1, 1, 2, 3),
        merge = TRUE)
```

End(Not run)

ok

Class of Ordinary Kriging

Description

An implementation of Ordinary Kriging based upon a km-class object that should be faster than usual predict method.

Usage

ok(model, beta = NULL)

Arguments

model	a kriging model object from DiceKriging::km-class
beta	the trend of the model

Details

The Ordinary Kriging is a special case of kriging where the trend is supposed to be and unknown constant. Consequently some linear algebra operations can be reduced by knowning that the vector of parameter beta is indeed a real.

The ok class defines three functions: xi the kriging predictor, updateSd and updateSdfast two methods for updating the kriging variance when some points are virtually added to the model. These two last functions differ in their implementation: the first one allows for the user to specify which are the predicted points and which are the added points. The second one outputs a matrix where the kriging variances of all the points is updated when each one is iteratively added the the Design of Experiments.

The faster between looping updateSd and using updateSdfast is indeed problem dependent (depending on parallel computer, size of the data, etc.) and should be benchmark by the user.

Value

An object of S3 class 'ok' containing

Kinv	the inverse of the covariance matrix of the data
beta	the estimated coefficient of the trend
y_centred	the data centred according to the estimated trend
sigma_beta	the standard deviation of the estimation of beta
xi	the kriging predictor
updateSd	a function to calculate the updated kriging variance when Xnew points are added to the Design of Experiments
updateSdfast	a function to calculate the update kriging variance when the SUR criterion is minimised over a population which is also the one used to estimate it.

oscillator_d6

Author(s)

Clement WALTER <clementwalter@icloud.com>

Examples

```
# Generate a dataset
X <- data.frame(x1 = rnorm(10), x2 = rnorm(10))
y <- cos(sqrt(rowSums(X^2)))
# Learn a model
krig <- DiceKriging::km(design=X, response=y)
# Create Ordinary Kriging object
OK <- ok(krig)
# Microbenchmark
# create a dataset
X = data.frame(x1 = rnorm(100), x2 = rnorm(100))
microbenchmark::microbenchmark(OK$xi(t(X)), predict(krig, X, type="UK"))
# Check identical results
X <- rnorm(2)
OK$xi(X)[c('mean', 'sd')]
predict(krig, data.frame(x1=X[1], x2=X[2]), type="UK")[c('mean', 'sd')]
```

oscillator_d6	A limit-state-function defined with a non-linear oscillator in dimension
	6.

Description

The limit-state function is defined in the standard space and isoprobabilistic transformation is used internally.

Usage

oscillator_d6

Format

The function can handle a vector or a matrix with column vectors.

References

Echard, B and Gayton, N and Lemaire, M and Relun, N: A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models Reliability Engineering & System Safety 111 232-240, 2013. plotLSVM

Description

Make a plot of the data and the LSVM classifier

Usage

```
plotLSVM(X,
            Y,
            A.model.lsvm,
            hyperplanes = FALSE,
            limit.state.estimate = TRUE,
            convexity)
```

Arguments

Х	a matrix containing the data sets	
Y	a vector containing -1 or +1 that reprensents the class of each elements of X.	
A.model.lsvm	a matrix containing the parameters of all hyperplanes.	
hyperplanes	A boolean. If TRUE, plot the hyperplanes obtained.	
limit.state.estimate		
	A boolean. If TRUE, plot the estimate of the limit state.	
convexity	Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise	

Details

plotLSVM makes a plot of the data as well as the estimate limit state and the hyperplanes involved in this construction.

Note

This function is useful only in dimension 2.

Author(s)

Vincent Moutoussamy

References

• R.T. Rockafellar: *Convex analysis* Princeton university press, 2015.

precomputeUpdateData

• N. Bousquet, T. Klein and V. Moutoussamy : Approximation of limit state surfaces in monotonic Monte Carlo settings Submitted.

See Also

LSVM modelLSVM

Examples

```
# A limit state function
f <- function(x){ sqrt(sum(x^2)) - sqrt(2)/2 }
# Creation of the data sets
n <- 200
X <- matrix(runif(2*n), nrow = n)
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})
## Not run:
    model.A <- modelLSVM(X,Y, convexity = -1)
    plotLSVM(X, Y, model.A, hyperplanes = FALSE, limit.state.estimate = TRUE, convexity = -1)
## End(Not run)</pre>
```

precomputeUpdateData precomputeUpdateData

Description

precomputeUpdateData

Usage

precomputeUpdateData(model, integration.points)

Arguments

model a object from km

integration.points

the points onto which the updated variance will be computed

Value

A list containing the following elements

Kinv.c.olddata	kriging weights for the integrations.points over krig@X
Kinv.F	The matrix product of the inverse covariance and F the matrix of the trend functions at model@X $% \left[{{{\rm{T}}_{{\rm{T}}}} \right] = {{\rm{T}}_{{\rm{T}}}} \right] = {{\rm{T}}_{{\rm{T}}}} \left[{{{\rm{T}}_{{\rm{T}}}} \right] = {{{\rm{T}}_{{\rm{T}}}} \left[{{{\rm{T}}_{{\rm{T}}}} \right$
first.member	

quantileWilks Computing quantiles with the Wilks formula

Description

From the Wilks formula, compute a quantile (or a tolerance interval) with a given confidence level from a i.i.d. sample, or compute the minimal sample size to estimate a quantile (or a tolerance interval) with a given confidence level.

Usage

quantileWilks(alpha=0.95,beta=0.95,data=NULL,bilateral=FALSE)

Arguments

alpha	level of the unilateral or bilateral quantile (default = 0.95)
beta	level of the confidence interval on quantile value(s) (default = 0.95)
data	the data sample (vector format) to compute the quantile(s); if data=NULL (by default), the function returns the minimal sample size to compute the required quantile
bilateral	TRUE for bilateral quantile (default = unilateral = FALSE)

Value

4 output values if 'data' is specified; 1 output value (nmin) if 'data' is not specified

lower	lower bound of the bilateral tolerance interval; if bilateral=FALSE, no value
upper	upper bound of the tolerance interval (bilateral case) or quantile value (unilateral case)
nmin	minimal size of the required i.i.d. sample for given alpha and beta: - bilateral case: tolerance interval will be composed with the min and max of the sample; - unilateral case: the quantile will correspond to max of the sample.
ind	the index (unilateral case) or indices (bilateral case) of the quantiles in the or- dered sample (increasing order)

Author(s)

Claire Cannamela and Bertrand Iooss

rackwitz

References

H.A. David and H.N. Nagaraja. Order statistics, Wiley, 2003.

W.T. Nutt and G.B. Wallis. Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties. Reliability Engineering and System Safety, 83:57-77, 2004.

S.S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits. Annals Mathematical Statistics, 12:91-96, 1941.

Examples

N <- quantileWilks(alpha=0.95,beta=0.95)
print(N)</pre>

rackwitz

A limit-state-function defined by Rackwitz

Description

The function is defined in the standard space and internal normal-lognormal transformation is done. Its definition with iid lognormal random variables is:

$$d + a\sigma\sqrt{d} - \sum_{i=1}^{d} x_i$$

Default values are: a = 1, mean=1 and $\sigma = 0.2$.

Usage

rackwitz

Format

The function can handle a vector or a matrix with column vectors.

References

Rackwitz, R: *Reliability analysis: a review and some perspectives* Structural Safety, 23, 4, 365-395, 2001.

S2MART

Description

S2MART introduces a metamodeling step at each subset simulation threshold, making number of necessary samples lower and the probability estimation better according to subset simulation by itself.

Usage

```
S2MART(
   dimension,
   lsf,
   Nn = 100,
   alpha_quantile = 0.1,
   failure = 0,
   lower.tail = TRUE,
   ...,
   plot = FALSE,
   output_dir = NULL,
   verbose = 0
)
```

Arguments

dimension	the dimension of the input space
lsf	the function defining the failure domain. Failure is $lsf(X) < failure$
Nn	number of samples to evaluate the quantiles in the subset step
alpha_quantile	cutoff probability for the subsets
failure	the failure threshold
lower.tail	as for pxxxx functions, TRUE for estimating $P(lsf(X) < failure)$, FALSE for $P(lsf(X) > failure)$
	All others parameters of the metamodel based algorithm
plot	to produce a plot of the failure and safety domain. Note that this requires a lot of calls to the lsf and is thus only for training purpose
output_dir	to save the plot into the given directory. This will be pasted with "_S2MART.pdf"
verbose	either 0 for almost no output, 1 for medium size output and 2 for all outputs

Details

S2MART algorithm is based on the idea that subset simulations conditional probabilities are estimated with a relatively poor precision as it requires calls to the expensive-to-evaluate limit state function and does not take benefit from its numerous calls to the limit state function in the Metropolis-Hastings algorithm. In this scope, the key concept is to reduce the subset simulation population to its minimum and use it only to estimate crudely the next quantile. Then the use of a metamodel-based algorithm lets refine the border and calculate an accurate estimation of the conditional probability by the mean of a crude Monte-Carlo.

In this scope, a compromise has to be found between the two sources of calls to the limit state function as total number of calls = (Nn + number of calls to refine the metamodel) x (number of subsets) :

- Nn calls to find the next threshold value : the bigger Nn, the more accurate the 'decreasing speed' specified by the alpha_quantile value and so the smaller the number of subsets
- total number of calls to refine the metamodel at each threshold

Value

An object of class list containing the failure probability and some more outputs as described below:

р	The estimated failure probability.
cov	The coefficient of variation of the Monte-Carlo probability estimate.
Ncall	The total number of calls to the lsf.
x	The final learning database, ie. all points where lsf has been calculated.
y	The value of the lsf on the learning database.
meta_model	The final metamodel. An object from e1071.

Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore, each time a set of vector is defined as a matrix, 'nrow' = dimension and 'ncol' = number of vector to be consistent with as.matrix transformation of a vector.

Algorithm calls lsf(X) (where X is a matrix as defined previously) and expects a vector in return. This allows the user to optimise the computation of a batch of points, either by vectorial computation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

• J.-M. Bourinet, F. Deheeger, M. Lemaire:

Assessing small failure probabilities by combined Subset Simulation and Support Vector Machines

Structural Safety (2011)

 F. Deheeger: *Couplage m?cano-fiabiliste : 2SMART - m?thodologie d'apprentissage stochastique en fia- bilit?* PhD. Thesis, Universit? Blaise Pascal - Clermont II, 2008

51

SMART

- S.-K. Au, J. L. Beck: *Estimation of small failure probabilities in high dimensions by Subset Simulation* Probabilistic Engineering Mechanics (2001)
- A. Der Kiureghian, T. Dakessian: *Multiple design points in first and second-order reliability* Structural Safety, vol.20 (1998)
- P.-H. Waarts: Structural reliability using finite element methods: an appraisal of DARS: Directional Adaptive Response Surface Sampling PhD. Thesis, Technical University of Delft, The Netherlands, 2000

See Also

SMART SubsetSimulation MonteCarlo km (in package DiceKriging) svm (in package e1071)

Examples

```
## Not run:
 res = S2MART(dimension = 2,
               lsf = kiureghian,
              N1 = 1000, N2 = 5000, N3 = 10000,
              plot = TRUE)
 #Compare with crude Monte-Carlo reference value
 reference = MonteCarlo(2, kiureghian, N_max = 500000)
## End(Not run)
#See impact of metamodel-based subset simulation with Waarts function :
## Not run:
 res = list()
 # SMART stands for the pure metamodel based algorithm targeting directly the
 # failure domain. This is not recommended by its authors which for this purpose
 # designed S2MART : Subset-SMART
 res$SMART = mistral:::SMART(dimension = 2, lsf = waarts, plot=TRUE)
 res$S2MART = S2MART(dimension = 2,
                      lsf = waarts,
                      N1 = 1000, N2 = 5000, N3 = 10000,
                      plot=TRUE)
 res$SS = SubsetSimulation(dimension = 2, waarts, n_init_samples = 10000)
 res$MC = MonteCarlo(2, waarts, N_max = 500000)
## End(Not run)
```

52

SMART

Description

Calculate a failure probability with SMART method. This should not be used by itself but only through S2MART.

Usage

```
SMART(
 dimension,
 lsf,
 N1 = 10000,
 N2 = 50000,
 N3 = 2e+05,
 Nu = 50,
 lambda1 = 7,
 lambda2 = 3.5,
  lambda3 = 1,
  tune_cost = c(1, 10, 100, 1000),
  tune_gamma = c(0.5, 0.2, 0.1, 0.05, 0.02, 0.01),
  clusterInMargin = TRUE,
  alpha_margin = 1,
 k1 = round(6 * (dimension/2)^{(0.2)}),
 k_{2} = round(12 * (dimension/2)^{(0.2)}),
 k3 = k2 + 16,
 X = NULL,
 y = NULL,
  failure = 0,
 limit_fun_MH = NULL,
  sampling_strategy = "MH",
  seeds = NULL,
  seeds_eval = NULL,
 burnin = 20,
  thinning = 4,
  plot = FALSE,
  limited_plot = FALSE,
 add = FALSE,
 output_dir = NULL,
 z_MH = NULL,
 z_lsf = NULL,
  verbose = 0
)
```

Arguments

dimension	the dimension of the input space
lsf	the limit-state function
N1	Number of samples for the (L)ocalisation step
N2	Number of samples for the (S)tabilisation step

N3	Number of samples for the (C)onvergence step	
Nu	Size of the first Design of Experiments	
lambda1	Relaxing parameter for MH algorithm at step L	
lambda2	Relaxing parameter for MH algorithm at step S	
lambda3	Relaxing parameter for MH algorithm at step C	
tune_cost	Input for tuning cost paramter of the SVM	
tune_gamma	Input for tuning gamma parameter of the SVM	
clusterInMargir	1	
	Enforce selected clusterised points to be in margin	
alpha_margin	a real value defining the margin. While 1 is the 'real' margin for a SVM, one can decide here to stretch it a bit.	
k1	Rank of the first iteration of step S	
k2	Rank of the first iteration of step C	
k3	Rank of the last iteration of step C	
Х	Coordinates of alredy known points	
У	Value of the LSF on these points	
failure	Failure threshold	
limit_fun_MH	Define an area of exclusion with a limit function	
<pre>sampling_strate</pre>	еду	
	Either MH for Metropolis-Hastings of AR for accept-reject	
seeds	If some points are already known to be in the subdomain defined by $limit_fun_MH$	
seeds_eval	Value of the metamodel on these points	
burnin	Burnin parameter for MH	
thinning	Thinning parameter for MH	
plot	Set to TRUE for a full plot, ie. refresh at each iteration	
limited_plot	Set to TRUE for a final plot with final DOE, metamodel and LSF	
add	If plots are to be added to the current device	
output_dir	If plots are to be saved in jpeg in a given directory	
z_MH	For plots, if the limit_fun_MH has already been evaluated on the grid	
z_lsf	For plots, if LSF has already been evaluated on the grid	
verbose	Either 0 for almost no output, 1 for medium size output and 2 for all outputs	

Details

SMART is a reliability method proposed by J.-M. Bourinet et al. It makes uses of a SVM-based metamodel to approximate the limit state function and calculates the failure probability with a crude Monte-Carlo method using the metamodel-based limit state function. As SVM is a classification method, it makes use of limit state function values to create two classes : greater and lower than the failure threshold. Then the border is taken as a surogate of the limit state function.

Concerning the refinement strategy, it distinguishes 3 stages, known as Localisation, Stalibilisation and Convergence stages. The first one is proposed to reduce the margin as much as possible, the second one focuses on switching points while the last one works on the final Monte-Carlo population and is designed to insure a strong margin; see F. Deheeger PhD thesis for more information.

SMART

Value

An object of class list containing the failure probability and some more outputs as described below:

proba	The estimated failure probability.
cov	The coefficient of variation of the Monte-Carlo probability estimate.
Ncall	The total number of calls to the limit_state_function.
х	The final learning database, ie. all points where lsf has been calculated.
У	The value of the limit_state_function on the learning database.
meta_fun	The metamodel approximation of the limit_state_function. A call output is a list containing the value and the standard deviation.
meta_model	The final metamodel.
points	Points in the failure domain according to the metamodel.
meta_eval	Evaluation of the metamodel on these points.
z_meta	If plot==TRUE, the evaluation of the metamodel on the plot grid.

Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so.

Furthermore, each time a set of vector is defined as a matrix, 'nrow' = dimension and 'ncol' = number of vector.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

- J.-M. Bourinet, F. Deheeger, M. Lemaire: Assessing small failure probabilities by combined Subset Simulation and Support Vector Machines Structural Safety (2011)
- F. Deheeger: *Couplage mecano-fiabiliste : 2SMART - methodologie d'apprentissage stochastique en fia- bilite* PhD. Thesis, Universite Blaise Pascal - Clermont II, 2008

See Also

SubsetSimulation MonteCarlo svm (in package e1071) S2MART

SubsetSimulation Subset S

Description

Estimate a probability of failure with the Subset Simulation algorithm (also known as Multilevel Splitting or Sequential Monte Carlo for rare events).

Usage

```
SubsetSimulation(
  dimension,
  lsf,
  p_0 = 0.1,
 N = 10000,
  q = 0,
  lower.tail = TRUE,
 Κ,
  thinning = 20,
  save.all = FALSE,
  plot = FALSE,
  plot.level = 5,
  plot.lsf = TRUE,
  output_dir = NULL,
 plot.lab = c("x", "y"),
  verbose = 0
)
```

Arguments

dimension	the dimension of the input space.
lsf	the function defining failure/safety domain.
p_0	a cutoff probability for defining the subsets.
Ν	the number of samples per subset, ie the population size for the Monte Carlo estimation of each conditional probability.
q	the quantile defining the failure domain.
lower.tail	as for pxxxx functions, TRUE for estimating $P(lsf(X) < q)$, FALSE for $P(lsf(X) < q)$
	> q)
К	a transition Kernel for Markov chain drawing in the regeneration step. $K(X)$ should propose a matrix of candidate sample (same dimension as X) on which 1sf will be then evaluated and transition accepted of rejected. Default kernel is the one defined $K(X) = (X + sigma^*W)/sqrt(1 + sigma^2)$ with $W \sim N(0, 1)$.
thinning	a thinning parameter for the the regeneration step.
save.all	if TRUE, all the samples generated during the algorithms are saved and return at the end. Otherwise only the working population is kept at each iteration.

SubsetSimulation

plot	to plot the generated samples.
plot.level	maximum number of expected levels for color consistency. If number of levels exceeds this value, the color scale will change according to ggplot2 default policy.
plot.lsf	a boolean indicating if the lsf should be added to the plot. This requires the evaluation of the lsf over a grid and consequently should be used only for illustation purposes.
output_dir	to save the plot into a pdf file. This variable will be paster with "_Subset_Simulation.pdf"
plot.lab	the x and y labels for the plot
verbose	Either 0 for almost no output, 1 for medium size output and 2 for all outputs

Details

This algorithm uses the property of conditional probabilities on nested subsets to calculate a given probability defined by a limit state function.

It operates iteratively on 'populations' to estimate the quantile corresponding to a probability of p_0 . Then, it generates samples conditionnally to this threshold, until found threshold be lower than 0.

Finally, the estimate is the product of the conditional probabilities.

Value

An object of class list containing the failure probability and some more outputs as described below:

р	the estimated failure probability.
cv	the estimated coefficient of variation of the estimate.
Ncall	the total number of calls to the lsf.
Х	the working population.
Υ	the value lsf(X).
Xtot	if save.list==TRUE, all the Ncall samples generated by the algorithm.
Ytot	the value lsf(Xtot).
sigma.hist	if default kernel is used, sigma is initialized with 0.3 and then further adaptively updated to have an average acceptance rate of 0.3

Note

Problem is supposed to be defined in the standard space. If not, use UtoX to do so. Furthermore, each time a set of vector is defined as a matrix, 'nrow' = dimension and 'ncol' = number of vector to be consistent with as.matrix transformation of a vector.

Algorithm calls lsf(X) (where X is a matrix as defined previously) and expects a vector in return. This allows the user to optimise the computation of a batch of points, either by vectorial computation, or by the use of external codes (optimised C or C++ codes for example) and/or parallel computation; see examples in MonteCarlo.

Author(s)

Clement WALTER <clementwalter@icloud.com>

References

- S.-K. Au, J. L. Beck: Estimation of small failure probabilities in high dimensions by Subset Simulation Probabilistic Engineering Mechanics (2001)
- A. Guyader, N. Hengartner and E. Matzner-Lober: Simulation and estimation of extreme quantiles and extreme probabilities Applied Mathematics \& Optimization, 64(2), 171-196.
- F. Cerou, P. Del Moral, T. Furon and A. Guyader: Sequential Monte Carlo for rare event estimation Statistics and Computing, 22(3), 795-808.

See Also

IRW MP MonteCarlo

Examples

comp })

#Try Subset Simulation Monte Carlo on a given function and change number of points.

```
## Not run:
 res = list()
 res[[1]] = SubsetSimulation(2,kiureghian,N=10000)
 res[[2]] = SubsetSimulation(2,kiureghian,N=100000)
 res[[3]] = SubsetSimulation(2,kiureghian,N=500000)
## End(Not run)
# Compare SubsetSimulation with MP
## Not run:
p <- res[[3]]$p # get a reference value for p</pre>
p_0 <- 0.1 # the default value recommended by Au \& Beck
N_mp <- 100
# to get approxumately the same number of calls to the lsf
N_ss <- ceiling(N_mp*log(p)/log(p_0))</pre>
comp <- replicate(50, {</pre>
```

ss <- SubsetSimulation(2, kiureghian, N = N_ss)</pre> $mp <- MP(2, kiureghian, N = N_mp, q = 0)$ comp <- c(ss\$p, mp\$p, ss\$Ncall, mp\$Ncall)</pre> names(comp) = rep(c("SS", "MP"), 2)

boxplot(t(comp[1:2,])) # check accuracy

sd.comp <- apply(comp,1,sd)</pre>

testConvexity

print(sd.comp[1]/sd.comp[2]) # variance increase in SubsetSimulation compared to MP
colMeans(t(comp[3:4,])) # check similar number of calls
End(Not run)

testConvexity Test the convexity of set of data

Description

Provides the

Usage

testConvexity(X,Y)

Arguments

Х	a matrix containing the data sets
Y	a vector containing -1 or +1 that reprensents the class of each elements of X.

Details

testConvexity test if one of the two data set is potentially convex.

Value

An object of class list containing the number of the class which is convex and the parameters of a set of hyperplanes separating the two classes

Author(s)

Vincent Moutoussamy

References

• R.T. Rockafellar: *Convex analysis* Princeton university press, 2015.

See Also

LSVM modelLSVM

twodof

Examples

```
# A limit state function
f \leq function(x) \{ sqrt(sum(x^2)) - sqrt(2)/2 \}
# Creation of the data sets
n <- 200
X <- matrix(runif(2*n), nrow = n)</pre>
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})</pre>
## Not run:
  TEST.Convexity <- testConvexity(X, Y)</pre>
  if(length(TEST.Convexity) == 2){
    Convexity <- TEST.Convexity[[1]]</pre>
    model.A <- TEST.Convexity[[2]]</pre>
  }
  if(length(TEST.Convexity) == 1){
    # The problem is not convex
    Convexity <- 0 #the problem is not convex
  }
## End(Not run)
```

twodof	A limit-state-function defined with a two degrees of freedom damped
	oscillator

Description

The limit-state function is defined in the standard space and isoprobabilistic transformation is used internally.

Parameters mean_Fs and p can be specified and default are 27.5 and 3 respectively.

Usage

twodof

Format

The function can handle a vector or a matrix with column vectors.

References

Dubourg, V and Deheeger, F and Sudret, B: *Metamodel-based importance sampling for the simulation of rare events* arXiv preprint arXiv:1104.3476, 2011.

60

updateLSVM

Description

Update the existing classifier LSVM with a new set of data.

Usage

```
updateLSVM(X.new,
Y.new,
X,
Y,
A.model.lsvm,
convexity,
PLOTSVM = FALSE,
step.plot.LSVM = 1,
hyperplanes = FALSE,
limit.state.estimate = TRUE)
```

Arguments

X.new	a matrix containing a new data sets	
Y.new	a vector containing -1 or +1 that reprensents the class of each elements of X.new.	
Х	a matrix containing the data sets	
Y	a vector containing -1 or +1 that represents the class of each elements of X.	
A.model.lsvm	a matrix containing the parameters of all hyperplanes.	
convexity	Either -1 if the set of data associated to the label "-1" is convex or +1 otherwise.	
PLOTSVM	A boolean. If TRUE, plot the data.	
step.plot.LSVM	A plot is made each step.plot.LSVM steps.	
hyperplanes	A boolean. If TRUE, plot the hyperplanes obtained.	
limit.state.estimate		
	A boolean. If TRUE, plot the estimate of the limit state.	

Details

updateLSVM allows to make an update of the classifier LSVM.

Value

An object of class matrix containing the parameters of a set of hyperplanes

Note

The argument PLOTSVM is useful only in dimension 2.

Author(s)

Vincent Moutoussamy

References

- R.T. Rockafellar: *Convex analysis* Princeton university press, 2015.
- N. Bousquet, T. Klein and V. Moutoussamy : Approximation of limit state surfaces in monotonic Monte Carlo settings Submitted.

See Also

LSVM modelLSVM

Examples

```
# A limit state function
f <- function(x){ sqrt(sum(x^2)) - sqrt(2)/2 }
# Creation of the data sets
n <- 200
X <- matrix(runif(2*n), nrow = n)
Y <- apply(X, MARGIN = 1, function(w){sign(f(w))})
## Not run:
model.A <- modelLSVM(X,Y, convexity = -1)
M <- 20
X.new <- matrix(runif(2*M), nrow = M)
Y.new <- apply(X.new, MARGIN = 1, function(w){ sign(f(w))})
X.new.S <- X.new[which(Y.new > 0), ]
Y.new.S <- Y.new[which(Y.new > 0), ]
Y.new.S <- Y.new[which(Y.new > 0)]
model.A.new <- updateLSVM(X.new.S, Y.new.S, X, Y,
model.A, convexity = -1, PLOTSVM = TRUE, step.plot.LSVM = 5)
```

End(Not run)

updateSd

UpdateSd

Description

Update kriging variance when adding new points to the DoE

Usage

```
updateSd(
  X.new,
  integration.points.oldsd,
  model,
  precalc.data,
  integration.points
)
```

Arguments

X.new	the d x N matrix containing the points added to the model for the update of the
	kriging variance.
integration.poi	nts.oldsd
	a vector containing the standard deviation of the points to be added to the meta- model learning database.
model	the current kriging model (a km object).
precalc.data	precomputed data from KrigInv::precomputeUpdateData.
integration.poi	nts
	points where the updated sd is to be calculated.

Value

a vector containing the kriging sd at points integration.points

		UpdateSd.old	updateSd.old
--	--	--------------	--------------

Description

UpdateSd.old

Usage

updateSd.old(X.new, newdata.oldsd, model, precalc.data, integration.points)

Arguments

X.new	the d x N matrix containing the points added to the model for the update of the kriging variance.	
newdata.oldsd	a vector containing the standard deviation of the points to be added to the meta- model learning database.	
model	the current kriging model (a km object).	
precalc.data	precomputed data from KrigInv::precomputeUpdateData.	
integration.points		
	points where the updated sd is to be calculated.	

UtoX

Iso-probabilistic transformation from U space to X space

Description

UtoX performs as iso-probabilistic transformation from standardized space (U) to physical space (X) according to the NATAF transformation, which requires only to know the means, the standard deviations, the correlation matrix $\rho(Xi, Xj) = \rho_{ij}$ and the marginal distributions of Xi. In standard space, all random variables are uncorrelated standard normal distributed variables whereas they are correlated and defined using the following distribution functions: Normal (or Gaussian), Lognormal, Uniform, Gumbel, Weibull and Gamma.

Usage

UtoX(U, input.margin, L0)

Arguments

U	a matrix containing the realisation of all random variables in U-space
input.margin	A list containing one or more list defining the marginal distribution functions of all random variables to be used
LØ	the lower matrix of the Cholesky decomposition of correlation matrix R0 (result of ModifCorrMatrix)

Details

Supported distributions are :

• NORMAL: distribution, defined by its mean and standard deviation

$$distX < -list(type = "Norm", MEAN = 0.0, STD = 1.0, NAME = "X1")$$

• LOGNORMAL: distribution, defined by its internal parameters P1=meanlog and P2=sdlog (plnorm)

distX < -list(type = "Lnorm", P1 = 10.0, P2 = 2.0, NAME = "X2")

• UNIFORM: distribution, defined by its internal parameters P1=min and P2=max (punif)

distX < -list(type = "Unif", P1 = 2.0, P2 = 6.0, NAME = "X3")

• GUMBEL: distribution, defined by its internal parameters P1 and P2

distX < -list(type =' Gumbel', P1 = 6.0, P2 = 2.0, NAME =' X4')

• WEIBULL: distribution, defined by its internal parameters P1=shape and P2=scale (pweibull)

distX < -list(type =' Weibull', P1 = NULL, P2 = NULL, NAME =' X5')

• GAMMA: distribution, defined by its internal parameters P1=shape and P2=scale (pgamma)

distX < -list(type =' Gamma', P1 = 6.0, P2 = 6.0, NAME =' X6')

• BETA: distribution, defined by its internal parameters P1=shape1 and P2=shapze2 (pbeta)

$$distX < -list(type =' Beta', P1 = 6.0, P2 = 6.0, NAME =' X7')$$

Value

a matrix containing the realisation of all random variables in X-space

Author(s)

Х

gilles DEFAUX, <gilles.defaux@cea.fr>

References

- M. Lemaire, A. Chateauneuf and J. Mitteau. Structural reliability, Wiley Online Library, 2009
- V. Dubourg, Meta-modeles adaptatifs pour l'analyse de fiabilite et l'optimisation sous containte fiabiliste, PhD Thesis, Universite Blaise Pascal - Clermont II,2011

See Also

ModifCorrMatrix, ComputeDistributionParameter

Examples

waarts

```
lsf = function(U) {
    X <- UtoX(U, input.margin, L0)
    G <- 5.0 - 0.2*(X[1,]-X[2,])^2.0 - (X[1,]+X[2,])/sqrt(2.0)
    return(G)
}
u0 <- as.matrix(c(1.0,-0.5))
lsf(u0)</pre>
```

waarts

A limit-state-function defined by Waarts

Description

The limit-state function is defined by:

$$b1 = 3 + (u_1 - u_2)^2 / 10 - sign(u_1 + u_2) * (u_1 + u_2) / sqrt(2)$$
$$b2 = sign(u_2 - u_1) * (u_1 - u_2) + 7 / sqrt(2)$$

$$f(u) = min(b1, b2)$$

Usage

waarts

Format

The function can handle a vector or matrix with column vectors.

References

Waarts, PH: An appraisal of DARS: directional adaptive response surface sampling Delft University Press, The Netherlands, 2000.

66

WilksFormula

Description

Compute Wilks formula for setting size of a i.i.d. sample for quantile estimation with confidence level or for tolerance intervals

Usage

```
WilksFormula(alpha=0.95,beta=0.95,bilateral=FALSE,order=1)
```

Arguments

alpha	order of the quantile (default = 0.95)
beta	level of the confidence interval (default = 0.95)
bilateral	TRUE for bilateral quantile (default = unilateral = FALSE)
order	order of the Wilks formula (default = 1)

Value

N	The minimal	sample size t	to apply	Wilks	formula
---	-------------	---------------	----------	-------	---------

Author(s)

Paul Lemaitre and Bertrand Iooss

References

H.A. David and H.N. Nagaraja. Order statistics, Wiley, 2003.

W.T. Nutt and G.B. Wallis. Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties. Reliability Engineering and System Safety, 83:57-77, 2004.

S.S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits. Annals Mathematical Statistics, 12:91-96, 1941.

Examples

```
N <- WilksFormula(0.95,0.95,order=1)
print(N)</pre>
```

XtoU

Description

XtoU lets transform datapoint in the original space X to the standard Gaussian space U with isoprobalisitc transformation.

Usage

XtoU(X, input.margin, L0)

Arguments

Х	the matrix d x n of the input points
input.margin	A list containing one or more list defining the marginal distribution functions of all random variables to be used
LØ	the lower matrix of the Cholesky decomposition of correlation matrix R0 (result of $ModifCorrMatrix$)

Author(s)

Clement WALTER <clement.walter@cea.fr>

See Also

UtoX

Index

* datasets cantilever, 12 kiureghian, 23 oscillator_d6,45 rackwitz, 49 twodof, 60 waarts, 66 * package mistral-package, 2 AKMCS, 4 BMP, 8 cantilever, 12 ComputeDistributionParameter, 13, 65 estimateSUR, 13 foreach, 37 FORM. 15 FORMv0, 17 generateK, 18 IRW, 12, 20, 39-41, 58 kiureghian, 23 km, 8, 28, 52 LPA (MP), 38 LSVM, 23, 32, 47, 59, 62 MetaIS, 8, 25 MetropolisHastings, 29 mistral (mistral-package), 2 mistral-package, 2 modelLSVM, 24, 31, 47, 59, 62 ModifCorrMatrix, 32, 64, 65, 68 MonotonicQuantileEstimation, 33 MonteCarlo, 7, 8, 12, 22, 28, 36, 41, 51, 52, 55, 57, 58

MP, 12, 22, 38, 58 MRM, 42 NestedSampling (IRW), 20 ok. 44 oscillator_d6,45 oscillator_d8 (twodof), 60 pbeta, 65 pgamma, 65 plnorm, 64 plotLSVM, 46 precomputeUpdateData, 47 punif, 65 pweibull, 65 quantileWilks, 48 rackwitz, 49 S2MART, 50, 55 SMART, 52, 52 ss (SubsetSimulation), 56 subset(SubsetSimulation), 56 SubsetSimulation, 8, 12, 28, 37, 40, 41, 52, 55.56 svm, 52, 55 testConvexity, 59 TPA (IRW), 20 twodof, 60 updateLSVM, 61 updateSd, 63 updateSd.old, 63 UtoX, 7, 22, 28, 33, 37, 51, 55, 57, 64 waarts, 66 WilksFormula, 67 XtoU, 68