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2 bankruptcy

AIS AIS data

Description

The set of AIS data involves recorded body factors of 202 athletes including 100 women 102 men,
see Cook (2009). Among factors, two variables body mass index (BMI) and body fat percentage
(Bfat) are chosen for cluster analysis.

Usage

data(AIS)

Format

A text file with 3 columns.

References

R. D. Cook and S. Weisberg, (2009). An Introduction to Regression Graphics, John Wiley & Sons,
New York.

Examples

data(AIS)

bankruptcy bankruptcy data

Description

The bankruptcy dataset involves ratio of the retained earnings (RE) to the total assets, and the ratio
of earnings before interests and the taxes (EBIT) to the total assets of 66 American firms, see Altman
(1969).

Usage

data(bankruptcy)

Format

A text file with 3 columns.

References

E. I. Altman, 1969. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy,
The Journal of Finance, 23(4), 589-609.
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Examples

data(bankruptcy)

dmix Approximating the density function of the finite mixture models applied
for model-based clustering.

Description

The density function of a G-component finite mixture model can be represented as

g(y|Ψ) =
G∑
g=1

ωgfY (y,Θg),

where Ψ =
(
Θ1, · · · ,ΘG

)>
with Θg =

(
ωg,µg,Σg,λg

)>
. Herein, fY (y,Θg) accounts for the

density function of random vector Y within each component. In the restricted case, fY (y,Θg)
admits the representation given by

Y
d
=µg +

√
Wλg|Z0|+

√
WΣ

1
2
g Z1,

where µg ∈ Rd is location vector, λg ∈ Rd is skewness vector, Σg is a positive definite symmetric
dispersion matrix for g = 1, · · · , G. Further, W is a positive random variable with mixing density
function fW (w|θg), Z0 ∼ N(0, 1), and Z1 ∼ Nd

(
0,Σg

)
. We note that W , Z0, and Z1 are

mutually independent. In the canonical or unrestricted case, fY (y,Θg) admits the representation
as

Y
d
=µg +

√
WΛg|Z0|+

√
WΣ

1
2
g Z1,

where Λg is the skewness matrix and random vectorZ0 follows a zero-mean normal random vector
truncated to the positive hyperplane Rd whose independent marginals have variance unity. We note
that in the unrestricted case Λg is a d × d diagonal matrix whereas in the canonical case, it is a
d× q matrix and so, random vector Z0 follows a zero-mean normal random vector truncated to the
positive hyperplane Rq .

Usage

dmix(Y, G, weight, model = "restricted", mu, sigma, lambda, family = "constant",
skewness = "FALSE", param = "NULL", theta = "NULL", tick = rep(1, 2), N = 3000)

Arguments

Y an n× d matrix of observations.

G number of components.

weight a vector of weight parameters (or mixing proportions).
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model one of expressions "canonical", "restricted", or "unrestricted". By de-
fault model = "restricted".

mu a list of location vectors of G components.

sigma a list of dispersion matrices of G components.

lambda a list of skewness vectors of G components. If model is either "canonical" or
"unrestricted", then skewness vector must be given in matrix form of appro-
priate size.

family name of mixing distribution. By default family = "constant" that corresponds
to the finite mixture of multivariate normal (or skew normal) distribution. Other
candidates for family name are: "bs" (for Birnbaum-Saunders), "burriii" (for
Burr type iii), "chisq" (for chi-square), "exp" (for exponential), "f" (for Fisher),
"gamma" (for gamma), "gig" (for generalized inverse-Gaussian), "igamma" (for
inverse-gamma), "igaussian" (for inverse-Gaussian), "lindley" (for Lindley), "loglog"
(for log-logistic), "lognorm" (for log-normal), "lomax" (for Lomax), "pstable"
(for positive α-stable), "ptstable" (for polynomially tilted α-stable), "rayleigh"
(for Rayleigh), and "weibull" (for Weibull).

skewness logical statement. By default skewness = "FALSE" which means that a symmet-
ric model is fitted to each component (cluster). If skewness = "TRUE", then an
asymmetric model is fitted to each component.

param name of the elements of θ as the parameter vector of mixing distribution with
density function fW (w|θ). By default it is NULL.

theta a list of maximum likelihood estimator for θ (parameter vector of the mixing
distribution with density function fW (w|θ)), across G components. By default
it is NULL.

tick a binary vector whose length depends on type of family. The elements of tick
are either 0 or 1. If element of tick is 0, then the corresponding element of θ is
not considered in the formula of fW (w|θ) for computing the required posterior
expectations. If element of tick is 1, then the corresponding element of θ is
considered in the formula of fW (w|θ). For instance, if family = "gamma" and
either its shape or rate parameter is one, then tick = c(1). This is while, if
family = "gamma" and both of the shape and rate parameters are in the formula
of fW (w|θ), then tick = c(1, 1). By default tick = rep(1, 2).

N an integer number for approximating the g(y|Ψ). By default N = 3000.

Value

Approximated density values of the mixxture model throught the Mone Carlo method.

Author(s)

Mahdi Teimouri

Examples

Y <- c(1, 2)
G <- 2
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weight <- rep( 0.5, 2 )
mu1 <- rep(-5 , 2 )
mu2 <- rep( 5 , 2 )

sigma1 <- matrix( c( 0.4, -0.20, -0.20, 0.5 ), nrow = 2, ncol = 2 )
sigma2 <- matrix( c( 0.5, 0.20, 0.20, 0.4 ), nrow = 2, ncol = 2 )

lambda1 <- c( 5, -5 )
lambda2 <- c(-5, 5 )

mu <- list( mu1, mu2 )
sigma <- list( sigma1 , sigma2 )
lambda <- list( lambda1, lambda2)
dmix(Y, G, weight, model = "restricted", mu, sigma, lambda, family = "constant",
skewness = "TRUE", param = "NULL", theta = "NULL", tick = rep(1, 2), N = 3000)

iris iris data

Description

This set of data introduced by Ronald Fisher (1936). It contains three plant species (setosa, vir-
ginica, versicolor) and four features measured for each sample. These quantify the morphologic
variation of the iris flower in its three species. All measurements are given in centimeters.

Usage

data(iris)

Format

A text file with 3 columns.

References

R. A. Fisher, (1936). The use of multiple measurements in taxonomic problems, Annals of eugenics,
7(2), 179-188.

Examples

data(iris)
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ofim1 Computing observed Fisher information matrix.

Description

This function computes the observed Fisher information matrix for a given finite mixture model.
For this, we use the method of Basford et al. (1997). The density function of each G-component
finite mixture model is given by

g(y|Ψ) =

G∑
g=1

ωgfY (y,Θg),

where Ψ =
(
Θ1, · · · ,ΘG

)>
with Θg =

(
ωg,µg,Σg,λg

)>
. Herein, fY (y,Θg) accounts for the

density function of random vector Y within g-th component that admits the representation given by

Y
d
=µg +

√
Wλg|Z0|+

√
WΣ

1
2
g Z1,

where µg ∈ Rd is location vector, λg ∈ Rd is skewness vector, Σ_g is a positive definite symmetric
dispersion matrix for g = 1, · · · , G. Further, W is a positive random variable with mixing density
function fW (w|θg), Z0 ∼ N(0, 1), and Z1 ∼ Nd

(
0,Σg

)
. We note that W , Z0, and Z1 are mutu-

ally independent. For approximating the observed Fisher information matrix of the finite mixture
models, we use the method of Basford et al. (1997). Based on this method, using observations
y = (y1,y2, · · · ,yn)>, an approximation of the expected information

−E
{∂2 logL(Ψ)

∂Ψ∂Ψ>

}
,

is give by the observed information as
n∑
i=1

ĥiĥ
>
i ,

where

ĥi =
∂

∂Ψ
logLi(Ψ̂)

and logL(Ψ̂) =
∑n
i=1 logLi(Ψ̂) =

∑n
i=1 log

{∑G
g=1 ω̂gfY

(
yi|Θ̂g

)}
. Herein ω̂g and Θ̂g denote

the maximum likelihood estimator of ωg and Θg , for g = 1, · · · , G, respectively.

Usage

ofim1(Y, G, weight, mu, sigma, lambda, family = "constant", skewness = "FALSE",
param = NULL, theta = NULL, tick = rep(1, 2), h = 0.001, N = 3000, level = 0.05,
PDF = NULL )
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Arguments

Y an n× d matrix of observations.

G number of components.

weight a vector of weight parameters (or mixing proportions).

mu a list of location vectors of G components.

sigma a list of dispersion matrices of G components.

lambda a list of skewness vectors of G components.

family name of the mixing distribution. By default family = "constant" that cor-
responds to the finite mixture of multivariate normal (or skew normal) distri-
bution. Other candidates for family name are: "bs" (for Birnbaum-Saunders),
"burriii" (for Burr type iii), "chisq" (for chi-square), "exp" (for exponential), "f"
(for Fisher), "gamma" (for gamma), "gig" (for generalized inverse-Gaussian),
"igamma" (for inverse-gamma), "igaussian" (for inverse-Gaussian), "lindley"
(for Lindley), "loglog" (for log-logistic), "lognorm" (for log-normal), "lomax"
(for Lomax), "pstable" (for positive α-stable), "ptstable" (for polynomially tilted
α-stable), "rayleigh" (for Rayleigh), and "weibull" (for Weibull).

skewness logical statement. By default skewness = "FALSE" which means that a symmet-
ric model is fitted to each component (cluster). If skewness = "TRUE", then an
asymmetric model is fitted to each component.

param name of the elements of θ as the parameter vector of mixing distribution with
density function fW (w|θ). By default it is NULL.

theta a list of maximum likelihood estimator for θ across G components. By default it
is NULL.

tick a binary vector whose length depends on type of family. The elements of tick
are either 0 or 1. If element of tick is 0, then the corresponding element of θ is
not considered in the formula of fW (w|θ) for computing the required posterior
expectations. If element of tick is 1, then the corresponding element of θ is
considered in the formula of fW (w|θ). For instance, if family = "gamma" and
either its shape or rate parameter is one, then tick = c(1). This is while, if
family = "gamma" and both of the shape and rate parameters are in the formula
of fW (w|θ), then tick = c(1, 1). By default tick = rep(1, 2).

h a positive small value for computing numerical derivative of fW (w|θ) with re-
spect to θ, that is ∂/∂θfW (w|θ). By default h = 0.001.

N an integer number for approximating the posterior expected values within the
E-step of the EM algorithm through the Monte Carlo method. By default N =
3000.

level significance level α for constructing 100(1 − α)% confidence interval. By de-
fault α = 0.05.

PDF mathematical expression for mixing density function fW (w|θ). By default it is
NULL.

Value

A two-part list whose first part is the observed Fisher information matrix for finite mixture model.
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Author(s)

Mahdi Teimouri

References

K. E. Basford, D. R. Greenway, G. J. McLachlan, and D. Peel, (1997). Standard errors of fitted
means under normal mixture, Computational Statistics, 12, 1-17.

Examples

n <- 100
G <- 2

weight <- rep( 0.5, 2 )
mu1 <- rep(-5 , 2 )
mu2 <- rep( 5 , 2 )

sigma1 <- matrix( c(0.4, -0.20, -0.20, 0.5 ), nrow = 2, ncol = 2 )
sigma2 <- matrix( c(0.5, 0.20, 0.20, 0.4 ), nrow = 2, ncol = 2 )

lambda1 <- c( 5, -5 )
lambda2 <- c(-5, 5 )

mu <- list( mu1, mu2 )
lambda <- list( lambda1, lambda2 )
sigma <- list( sigma1 , sigma2 )
PDF <- quote( (b/2)^(a/2)*x^(-a/2 - 1)/gamma(a/2)*exp( -b/(x*2) ) )

param <- c( "a","b")
theta1 <- c( 10, 12 )
theta2 <- c( 10, 20 )
theta <- list( theta1, theta2 )
tick <- c( 1, 1 )

Y <- rmix(n, G, weight, model = "restricted", mu, sigma, lambda, family = "igamma", theta)
out <- ofim1(Y[, 1:2], G, weight, mu, sigma, lambda, family = "igamma", skewness = "TRUE",

param, theta, tick, h = 0.001, N = 3000, level = 0.05, PDF)

ofim2 Computing observed Fisher information matrix.

Description

This function computes the observed Fisher information matrix for a given finite mixture model.
For this, we use the method of Basford et al. (1997). The density function of each G-component
finite mixture model is given by

g(y|Ψ) =

G∑
g=1

ωgfY (y,Θg),

where Ψ =
(
Θ1, · · · ,ΘG

)>
with Θg =

(
ωg,µg,Σg,λg

)>
. Herein, fY (y,Θg) accounts for the

density function of random vector Y within g-th component that admits the representation given by

Y
d
=µg +

√
Wλg|Z0|+

√
WΣ

1
2
g Z1,
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where µg ∈ Rd is location vector, λg ∈ Rd is skewness vector, Σg is a positive definite symmetric
dispersion matrix for g = 1, · · · , G. Further, W is a positive random variable with mixing density
function fW (w|θg), Z0 ∼ N(0, 1), and Z1 ∼ Nd

(
0,Σ

)
. We note that W , Z0, and Z1 are mutu-

ally independent. For approximating the observed Fisher information matrix of the finite mixture
models, we use the method of Basford et al. (1997). Based on this method, using observations
y = (y1,y2, · · · ,yn)>, an approximation of the expected information

−E
{∂2 logL(Ψ)

∂Ψ∂Ψ>

}
,

is give by the observed information as
n∑
i=1

ĥiĥ
>
i ,

where

ĥi =
∂

∂Ψ
logLi(Ψ̂)

and logL(Ψ̂) =
∑n
i=1 logLi(Ψ̂) =

∑n
i=1 log

{∑G
g=1 ω̂gfY

(
yi|Θ̂g

)}
. Herein ω̂g and Θ̂g denote

the maximum likelihood estimator of ωg and Θg , for g = 1, · · · , G, respectively.

Usage

ofim2(Y, G, weight, model, mu, sigma, lambda, family = "constant", skewness = "FALSE",
param = NULL, theta = NULL, tick = rep(1, 2), h = 0.001, N = 3000, level = 0.05,
PDF = NULL )

Arguments

Y an n× d matrix of observations.

G number of components.

weight a vector of weight parameters (or mixing proportions).

model one of expresssions "canonical" or "unrestricted".

mu a list of location vectors of G components.

sigma a list of dispersion matrices of G components.

lambda a list of skewness vectors of G components. If model is either "canonical" or
"unrestricted", then skewness vactor must be given in matrix form of appro-
priate size.

family name of the mixing distribution. By default family = "constant" that cor-
responds to the finite mixture of multivariate normal (or skew normal) distri-
bution. Other candidates for family name are: "bs" (for Birnbaum-Saunders),
"burriii" (for Burr type iii), "chisq" (for chi-square), "exp" (for exponential), "f"
(for Fisher), "gamma" (for gamma), "gig" (for generalized inverse-Gaussian),
"igamma" (for inverse-gamma), "igaussian" (for inverse-Gaussian), "lindley"
(for Lindley), "loglog" (for log-logistic), "lognorm" (for log-normal), "lomax"
(for Lomax), "pstable" (for positive α-stable), "ptstable" (for polynomially tilted
α-stable), "rayleigh" (for Rayleigh), and "weibull" (for Weibull).
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skewness logical statement. By default skewness = "FALSE" which means that a symmet-
ric model is fitted to each component (cluster). If skewness = "TRUE", then an
asymmetric model is fitted to each component.

param name of the elements of θ as the parameter vector of mixing distribution with
density function fW (w|θ). By default it is NULL.

theta a list of maximum likelihood estimator for θ across G components. By default it
is NULL.

tick a binary vector whose length depends on type of family. The elements of tick
are either 0 or 1. If element of tick is 0, then the corresponding element of θ is
not considered in the formula of fW (w|θ) for computing the required posterior
expectations. If element of tick is 1, then the corresponding element of θ is
considered in the formula of fW (w|θ). For instance, if family = "gamma" and
either its shape or rate parameter is one, then tick = c(1). This is while, if
family = "gamma" and both of the shape and rate parameters are in the formula
of fW (w|θ), then tick = c(1, 1). By default tick = rep(1, 2).

h a positive small value for computing numerical derivative of fW (w|θ) with re-
spect to θ, that is ∂/∂θfW (w|θ). By default h = 0.001.

N an integer number for approximating the posterior expected values within the
E-step of the EM algorithm through the Monte Carlo method. By default N =
3000.

level significance level α for constructing 100(1 − α)% confidence interval. By de-
fault α = 0.05.

PDF mathematical expression for mixing density function fW (w|θ). By default it is
NULL.

Value

A two-part list whose first part is the observed Fisher information matrix for finite mixture model.

Author(s)

Mahdi Teimouri

References

K. E. Basford, D. R. Greenway, G. J. McLachlan, and D. Peel, (1997). Standard errors of fitted
means under normal mixture, Computational Statistics, 12, 1-17.

Examples

n <- 100
G <- 2

weight <- rep( 0.5, 2 )
mu1 <- rep(-5 , 2 )
mu2 <- rep( 5 , 2 )

sigma1 <- matrix( c(0.4, -0.20, -0.20, 0.5 ), nrow = 2, ncol = 2 )
sigma2 <- matrix( c(0.5, 0.20, 0.20, 0.4 ), nrow = 2, ncol = 2 )
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lambda1 <- diag( c( 5, -5 ) )
lambda2 <- diag( c(-5, 5 ) )

mu <- list( mu1, mu2 )
lambda <- list( lambda1, lambda2 )
sigma <- list( sigma1 , sigma2 )
PDF <- quote( (b/2)^(a/2)*x^(-a/2 - 1)/gamma(a/2)*exp( -b/(x*2) ) )

param <- c( "a","b")
theta1 <- c( 10, 12 )
theta2 <- c( 10, 20 )
theta <- list( theta1, theta2 )
tick <- c( 1, 1 )

Y <- rmix(n, G, weight, model = "unrestricted", mu, sigma, lambda, family = "igamma",
theta)

out <- ofim2(Y[, 1:2], G, weight, model = "unrestricted", mu, sigma, lambda,
family = "igamma", skewness = "TRUE", param, theta, tick, h = 0.001, N = 3000,
level = 0.05, PDF)

rmix Generating realization from finite mixture models.

Description

The density function of a restricted G-component finite mixture model can be represented as

M(y|Ψ) =

G∑
g=1

ωgfY (y,Θg),

where positive constants ω1, ω2, · · · , ωG are called weight (or mixing proportions) parameters with
this properties that

∑G
g=1 ωg = 1 and Ψ =

(
Θ1, · · · ,ΘG

)>
with Θg =

(
ωg,µg,Σg,λg

)>
.

Herein, fY (y,Θg) accounts for the density function of random vector Y within g-th component
that admits the representation given by

Y
d
=µg +

√
Wλg|Z0|+

√
WΣ

1
2
g Z1,

where µg ∈ Rd is location vector, λg ∈ Rd is skewness vector, and Σg is a positive definite
symmetric dispersion matrix for g = 1, · · · , G. Further, W is a positive random variable with
mixing density function fW (w|θg), Z0 ∼ N(0, 1), andZ1 ∼ Nd

(
0,Σg

)
. We note that W , Z0, and

Z1 are mutually independent.

Usage

rmix(n, G, weight, model = "restricted", mu, sigma, lambda, family = "constant",
theta = NULL)
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Arguments

n number of realizations.

G number of components. model = "restricted"

weight a vector of weight parameters (or mixing proportions).

model one of epresssions "canonical", "restricted", and "unrestricted", By de-
fault model="restricted".

mu a list of location vectors of G components.

sigma a list of dispersion matrices of G components.

lambda a list of skewness vectors of G components. If mixture model is symmetric,
then a vector of zeros of appropriate size should be considered for the skewness
vector of the corresponding component.

family name of mixing distribution. By default family = "constant" that corresponds
to the finite mixture of multivariate normal (or skew normal) distribution. Other
candidates for family name are: "bs" (for Birnbaum-Saunders), "burriii" (for
Burr type iii), "chisq" (for chi-square), "exp" (for exponential), "f" (for Fisher),
"gamma" (for gamma), "gigaussian" (for generalized inverse-Gaussian), "igamma"
(for inverse-gamma), "igaussian" (for inverse-Gaussian), "lindley" (for Lindley),
"loglog" (for log-logistic), "lognorm" (for log-normal), "lomax" (for Lomax),
"pstable" (for positive α-stable), "ptstable" (for polynomially tilted α-stable),
"rayleigh" (for Rayleigh), and "weibull" (for Weibull).

theta a list of maximum likelihood estimator(s) for θ (parameter vector of mixing
distribution) across G components. By default it is NULL.

Value

a matrix with n rows and d+ 1 columns. The first d columns constitute n realizations from random
vector Y = (Y1, · · · , Yd)T and the last column is the label of realization Yi ( for i = 1, · · ·n )
indicating the component that Yi is coming from.

Author(s)

Mahdi Teimouri

Examples

n <- 100
G <- 2

weight <- rep( 0.5, 2 )
mu1 <- rep(-5 , 2 )
mu2 <- rep( 5 , 2 )

sigma1 <- matrix( c( 0.4, -0.20, -0.20, 0.5 ), nrow = 2, ncol = 2 )
sigma2 <- matrix( c( 0.5, 0.20, 0.20, 0.4 ), nrow = 2, ncol = 2 )

lambda1 <- c( 5, -5 )
lambda2 <- c(-5, 5 )
theta1 <- c( 10, 12 )
theta2 <- c( 10, 20 )
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mu <- list( mu1, mu2 )
sigma <- list( sigma1 , sigma2 )
lambda <- list( lambda1, lambda2)
theta <- list( theta1 , theta2 )

Y <- rmix( n, G, weight, model = "restricted", mu, sigma, lambda, family = "igamma",
theta )

sefm Approximating the asymptotic standard error for parameters of the
finite mixture models based on the observed Fisher information matrix.

Description

The density function of each finite mixture model can be represented as

M(y|Ψ) =

G∑
g=1

ωgfY (y,Θg),

where positive constants ω1, ω2, · · · , ωG are called weight (or mixing proportions) parameters with
this properties that

∑G
g=1 ωg = 1 and Ψ =

(
Θ1, · · · ,ΘG

)>
with Θg =

(
ωg,µg,Σg,λg

)>
.

Herein, fY (y,Θg) accounts for the density function of random vector Y within g-th component
that admits the representation given by

Y
d
=µg +

√
Wλg|Z0|+

√
WΣ

1
2
g Z1,

where µg ∈ Rd is location vector, λg ∈ Rd is skewness vector, Σg is a positive definite sym-
metric dispersion matrix for g = 1, · · · , G. Further, W is a positive random variable with mixing
density function fW (w|θg), Z0 ∼ N(0, 1), and Z1 ∼ Nd

(
0,Σg

)
. We note that W , Z0, and Z1

are mutually independent. For approximating the asymptotic standard error for parameters of the
finite mixture model based on observed Fisher information matrix, we use the method of Basford
et al. (1997). In fact, the covariance matrix of maximum likelihood (ML) estimator Ψ̂, can be
approximated by the inverse of the observed information matrix as

n∑
i=1

ĥiĥ
>
i ,

where
ĥi =

∂

∂Ψ
logLi(Ψ̂),

and logL(Ψ̂) =
∑n
i=1 logLi(Ψ̂) =

∑n
i=1 log

{∑G
g=1 ω̂gfY

(
yi|Θ̂g

)}
. Herein ω̂g and Θ̂g , for

g = 1, · · · , G, denote the ML estimator of ωg and Θg , respectively.

Usage

sefm(Y, G, weight, model = "restricted", mu, sigma, lambda, family = "constant",
skewness = "FALSE", param = NULL, theta = NULL, tick = rep(1, 2), h = 0.001, N = 3000,
level = 0.05, PDF = NULL)
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Arguments

Y an n× d matrix of observations.

G number of components.

weight a vector of weight parameters (or mixing proportions).

model one of expressions "canonical", "restricted", or "unrestricted". By de-
fault model = "restricted".

mu a list of location vectors of G components.

sigma a list of dispersion matrices of G components.

lambda a list of skewness vectors of G components. If model is either "canonical" or
"unrestricted", then skewness vactor must be given in matrix form of appro-
priate size.

family name of mixing distribution. By default family = "constant" that corresponds
to the finite mixture of multivariate normal (or skew normal) distribution. Other
candidates for family name are: "bs" (for Birnbaum-Saunders), "burriii" (for
Burr type iii), "chisq" (for chi-square), "exp" (for exponential), "f" (for Fisher),
"gamma" (for gamma), "gig" (for generalized inverse-Gaussian), "igamma" (for
inverse-gamma), "igaussian" (for inverse-Gaussian), "lindley" (for Lindley), "loglog"
(for log-logistic), "lognorm" (for log-normal), "lomax" (for Lomax), "pstable"
(for positive α-stable), "ptstable" (for polynomially tilted α-stable), "rayleigh"
(for Rayleigh), and "weibull" (for Weibull).

skewness logical statement. By default skewness = "FALSE" which means that a symmet-
ric model is fitted to each component (cluster). If skewness = "TRUE", then an
asymmetric model is fitted to each component.

param name of the elements of θ as the parameter vector of mixing distribution with
density function fW (w|θ). By default it is NULL.

PDF mathematical expression for mixing density function fW (w|θ). By default it is
NULL.

theta a list of maximum likelihood estimator for θ across G components. By default it
is NULL.

tick a binary vector whose length depends on type of family. The elements of tick
are either 0 or 1. If element of tick is 0, then the corresponding element of θ is
not considered in the formula of fW (w|θ) for computing the required posterior
expectations. If element of tick is 1, then the corresponding element of θ is
considered in the formula of fW (w|θ). For instance, if family = "gamma" and
either its shape or rate parameter is one, then tick = c(1). This is while, if
family = "gamma" and both of the shape and rate parameters are in the formula
of fW (w|θ), then tick = c(1, 1). By default tick = rep(1, 2).

h a positive small value for computing numerical derivative of fW (w|θ) with re-
spect to θ, that is ∂/∂θfW (w|θ). By default h = 0.001.

N an integer number for approximating the posterior expected values within the
E-step of the EM algorithm through the Monte Carlo method. By default N =
3000.

level significance level α for constructing 100(1 − α)% confidence interval. By de-
fault α = 0.05.
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Details

Mathematical expressions for density function of mixing distribution fW (w|θ), are given as fol-
lows.

bs

fW (w|θ) =

√
w
β +

√
β
w

2
√

2παw
exp

{
− 1

2α2

[w
β

+
β

w
− 2
]}
,

where θ = (α, β)>. Herein α > 0 and β > 0 are the first and second parameters of this family,
respectively.

burrii
fW (w|θ) = αβw−β−1

(
1 + w−β

)−α−1
,

where w > 0 and θ = (α, β)>. Herein α > 0 and β > 0 are the first and second parameters of this
family, respectively.

chisq

fW (w|θ) =
2−

α
2

Γ
(
α
2

)w α
2−1 exp

{
−w

2

}
,

where w > 0 and θ = α. Herein α > 0 is the degrees of freedom parameter of this family.

exp
fW (w|θ) = α exp

{
−αw

}
,

where w > 0 and θ = α where α > 0 is the rate parameter of this family.

f

fW (w|θ) = B−1
(α

2
,
β

2

)(α
β

)α
2

w
α
2−1

(
1 + α

w

β

)−(α+β
2 )

,

where w > 0 and B(., .) denotes the ordinary beta function. Herein θ = (α, β)> where α > 0 and
β > 0 are the first and second degrees of freedom parameters of this family, respectively.

gamma

fW (w|θ) =
βα

Γ(α)

(w
β

)α−1
exp
{
−βw

}
,

where w > 0 and θ = (α, β)>. Herein α > 0 and β > 0 are the shape and rate parameters of this
family, respectively.

gigaussian

fW (w|θ) =
1

2Kα(
√
βδ)

(ψ
α

)α/2
wα−1 exp

{
− δ

2w
− βw

2

}
,

where Kα(.) denotes the modified Bessel function of the third kind with order index α and θ =
(α, δ, β)>. Herein −∞ < α < +∞, δ > 0, and β > 0 are the first, second, and third parameters
of this family, respectively.

igamma

fW (w|θ) =
1

Γ(α)

(w
β

)−α−1
exp
{
− β
w

}
,

where w > 0 and θ = (α, β)>. Herein α > 0 and β > 0 are the shape and scale parameters of this
family, respectively.
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igaussian

fW (w|θ) =

√
β

2πw3
exp

{
−β(w − α)2

2α2w

}
,

where w > 0 and θ = (α, β)>. Herein α > 0 is the mean and β > 0 are the first (mean) and
second (shape) parameter of this family, respectively.

lidley

fW (w|θ) =
α2

α+ 1
(1 + w) exp

{
−αw

}
,

where w > 0 and θ = α where α > 0 is the only parameter of this family.

loglog

fW (w|θ) =
α

βα
wα−1

[(w
β

)α
+ 1

]−2
,

where w > 0 and θ = (α, β)>. Herein α > 0 and β > 0 are the shape and scale (median)
parameters of this family, respectively.

lognorm

fW (w|θ) =
(√

2πσw
)−1

exp

{
−1

2

(
logw − µ

σ

)2}
,

where w > 0 and θ = (µ, σ)>. Herein −∞ < µ < +∞ and σ > 0 are the first and second
parameters of this family, respectively.

lomax
fW (w|θ) = αβ

(
1 + βw

)−(α+1)
,

where w > 0 and θ = (α, β)>. Herein α > 0 and β > 0 are the shape and rate parameters of this
family, respectively.

rayleigh

fW (w|θ) = 2
w

β2
exp

{
−
(w
β

)2}
,

where w > 0 and θ = β. Herein β > 0 is the scale parameter of this family.

weibull

fW (w|θ) =
α

β

(w
β

)α−1
exp

{
−
(w
β

)α}
,

where w > 0 and θ = (α, β)>. Herein α > 0 and β > 0 are the shape and scale parameters
of this family, respectively. The density functions of positive α-stable and polynomially tilted α-
stable distribution have no closed form and so are not represented here. In what follows, we give
four examples. In the first, second, and third examples, we consider three mixture models includ-
ing: two-component normal, two-component restricted skew t, and two-component restricted skew
sub-Gaussian α-stable (SSG) mixture models are fitted to iris, AIS, and bankruptcy data, re-
spectively. In order to approximate the asymptotic standard error of the model parameters, the ML
estimators for parameters of skew t and SSG mixture models have been computed through the R
packages EMMIXcskew (developed by Lee and McLachlan (2018) for skew t) and mixSSG (devel-
oped by Teimouri (2022) for skew sub-Gaussian α-stable). To avoid running package mixSSG,
we use the ML estimators correspond to bankruptcy data provided by Teimouri (2022). The
package mixSSG is available at https://CRAN.R-project.org/package=mixSSG. In the fourth
example, we apply a three-component generalized hyperbolic mixture model to Wheat data. The

https://CRAN.R-project.org/package=mixSSG
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ML estimators of this mixture model have been obtained using the R package MixGHD available
at https://cran.r-project.org/package=MixGHD. Finally, we note that if parameter h is very
small (less than 0.001, say), then the approximated observed Fisher information matrix may not be
invertible.

Value

A list consists of the maximum likelihood estimator, approximated asymptotic standard error, upper,
and lower bounds of 100(1−α)% asymptotic confidence interval for parameters of the finite mixture
model.

Author(s)

Mahdi Teimouri

References

K. E. Basford, D. R. Greenway, G. J. McLachlan, and D. Peel, (1997). Standard errors of fitted
means under normal mixture, Computational Statistics, 12, 1-17.

S. X. Lee and G. J. McLachlan, (2018). EMMIXcskew: An R package for the fitting of a mix-
ture of canonical fundamental skew t-distributions, Journal of Statistical Software, 83(3), 1-32,
doi: 10.18637/jss.v083.i03.

M. Teimouri, (2022). Finite mixture of skewed sub-Gaussian stable distributions, https://arxiv.
org/abs/2205.14067.

C. Tortora, R. P. Browne, A. ElSherbiny, B. C. Franczak, and P. D. McNicholas, (2021). Model-
based clustering, classification, and discriminant analysis using the generalized hyperbolic distribu-
tion: MixGHD R package. Journal of Statistical Software, 98(3), 1-24, doi: 10.18637/jss.v098.i03.

Examples

# Example 1: Approximating the asymptotic standard error and 95 percent confidence interval
# for the parameters of fitted three-component normal mixture model to iris data.

data( iris )
Y <- as.matrix( iris[, 1:4] ); colnames(Y) <- NULL; rownames(Y) <- NULL
G <- 3

weight <- c( 0.334, 0.300, 0.366 )
mu1 <- c( 5.0060, 3.428, 1.462, 0.246 )
mu2 <- c( 5.9150, 2.777, 4.204, 1.298 )
mu3 <- c( 6.5468, 2.949, 5.482, 1.985 )

sigma1 <- matrix( c( 0.133, 0.109, 0.019, 0.011, 0.109, 0.154, 0.012, 0.010,
0.019, 0.012, 0.028, 0.005, 0.011, 0.010, 0.005, 0.010 ), nrow = 4 , ncol = 4)

sigma2 <- matrix( c( 0.225, 0.076, 0.146, 0.043, 0.076, 0.080, 0.073, 0.034,
0.146, 0.073, 0.166, 0.049, 0.043, 0.034, 0.049, 0.033 ), nrow = 4 , ncol = 4)

sigma3 <- matrix( c( 0.429, 0.107, 0.334, 0.065, 0.107, 0.115, 0.089, 0.061,
0.334, 0.089, 0.364, 0.087, 0.065, 0.061, 0.087, 0.086 ), nrow = 4 , ncol = 4)

mu <- list( mu1, mu2, mu3 )
sigma <- list( sigma1, sigma2, sigma3 )

mu <- list( mu1, mu2, mu3 )
sigma <- list( sigma1, sigma2, sigma3 )

https://cran.r-project.org/package=MixGHD
http://doi.org/10.18637/jss.v083.i03
https://arxiv.org/abs/2205.14067
https://arxiv.org/abs/2205.14067
http://doi.org/10.18637/jss.v098.i03
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lambda <- list( rep(0, 4), rep(0, 4), rep(0, 4) )
out <- sefm( Y, G, weight, model = "restricted", mu, sigma, lambda, family = "constant",
skewness = "FALSE")

# Example 2: Approximating the asymptotic standard error and 95 percent confidence interval
# for the parameters of fitted two-component restricted skew t mixture model to
# AIS data.

data( AIS )
Y <- as.matrix( AIS[, 2:3] )
G <- 2

weight <- c( 0.5075, 0.4925 )
mu1 <- c( 19.9827, 17.8882 )
mu2 <- c( 21.7268, 5.7518 )

sigma1 <- matrix( c(3.4915, 8.3941, 8.3941, 28.8113 ), nrow = 2, ncol = 2 )
sigma2 <- matrix( c(2.2979, 0.0622, 0.0622, 0.0120 ), nrow = 2, ncol = 2 )

lambda1 <- ( c( 2.5186, -0.2898 ) )
lambda2 <- ( c( 2.1681, 3.5518 ) )
theta1 <- c( 68.3088 )
theta2 <- c( 3.8159 )

mu <- list( mu1, mu2 )
sigma <- list( sigma1, sigma2 )
lambda <- list( lambda1, lambda2 )
theta <- list( theta1, theta2 )
param <- c( "nu" )
PDF <- quote( (nu/2)^(nu/2)*x^(-nu/2 - 1)/gamma(nu/2)*exp( -nu/(x*2) ) )

tick <- c( 1, 1 )
out <- sefm( Y, G, weight, model = "restricted", mu, sigma, lambda, family = "igamma",

skewness = "TRUE", param, theta, tick, h = 0.001, N = 3000, level = 0.05, PDF )
# Example 3: Approximating the asymptotic standard error and 95 percent confidence interval
# for the parameters of fitted two-component restricted skew sub-Gaussian
# alpha-stable mixture model to bankruptcy data.

data( bankruptcy )
Y <- as.matrix( bankruptcy[, 2:3] ); colnames(Y) <- NULL; rownames(Y) <- NULL
G <- 2

weight <- c( 0.553, 0.447 )
mu1 <- c( -3.649, -0.085 )
mu2 <- c( 40.635, 19.042 )

sigma1 <- matrix( c(1427.071, -155.356, -155.356, 180.991 ), nrow = 2, ncol = 2 )
sigma2 <- matrix( c( 213.938, 9.256, 9.256, 74.639 ), nrow = 2, ncol = 2 )

lambda1 <- c( -41.437, -21.750 )
lambda2 <- c( -3.666, -1.964 )
theta1 <- c( 1.506 )
theta2 <- c( 1.879 )

mu <- list( mu1, mu2 )
sigma <- list( sigma1, sigma2 )
lambda <- list( lambda1, lambda2 )
theta <- list( theta1, theta2 )
param <- c( "alpha" )
tick <- c( 1 )
out <- sefm( Y, G, weight, model = "restricted", mu, sigma, lambda, family = "pstable",

skewness = "TRUE", param, theta, tick, h = 0.01, N = 3000, level = 0.05 )
# Example 4: Approximating the asymptotic standard error and 95 percent confidence interval
# for the parameters of fitted two-component restricted generalized inverse-Gaussian
# mixture model to AIS data.
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data( Wheat )
Y <- as.matrix( Wheat[, 1:7] ); colnames(Y) <- NULL; rownames(Y) <- NULL
G <- 3

weight <- c( 0.400, 0.265, 0.335 )
mu1 <- c( 11.546, 13.109, 0.844, 5.186, 2.764, 5.004, 5.224 )
mu2 <- c( 18.871, 16.234, 0.901, 6.082, 3.824, 1.627, 6.026 )
mu3 <- c( 13.731, 14.033, 0.878, 5.493, 3.141, 0.473, 4.887 )

sigma1 <- matrix( c( 1.038, 0.458, 0.015, 0.118, 0.170, -0.227, 0.052,
0.458, 0.245, 0.001, 0.085, 0.054, -0.032, 0.063,
0.015, 0.001, 0.007, -0.002, 0.005, -0.012, -0.004,
0.118, 0.085, -0.002, 0.043, 0.003, 0.051, 0.042,
0.170, 0.054, 0.005, 0.003, 0.039, -0.039, -0.009,

-0.227, -0.032, -0.012, 0.051, -0.039, 4.270, 0.151,
0.052, 0.063, -0.004, 0.042, -0.009, 0.151, 0.068 ), nrow = 7, ncol = 7 )

sigma2 <- matrix( c( 1.287, 0.582, -0.002, 0.239, 0.125, 0.251, 0.209,
0.582, 0.294, -0.004, 0.134, 0.038, 0.057, 0.121,

-0.002, -0.004, 0.006, -0.003, 0.001, 0.005, -0.003,
0.239, 0.134, -0.003, 0.077, 0.007, -0.048, 0.074,
0.125, 0.038, 0.001, 0.007, 0.026, 0.099, 0.000,
0.251, 0.057, 0.005, -0.048, 0.099, 1.922, -0.044,

0.209, 0.121, -0.003, 0.074, 0.000, -0.044, 0.088 ), nrow = 7, ncol = 7 )
sigma3 <- matrix( c( 1.119, 0.550, -0.000, 0.208, 0.117, -0.477, 0.248,

0.550, 0.298, -0.003, 0.129, 0.041, -0.207, 0.157,
-0.000, -0.003, 0.006, -0.003, 0.001, -0.002, -0.004,
0.208, 0.129, -0.003, 0.071, 0.005, -0.026, 0.086,
0.117, 0.041, 0.001, 0.005, 0.024, -0.075, 0.002,

-0.477, -0.207, -0.002, -0.026, -0.075, 1.474, -0.013,
0.248, 0.157, -0.004, 0.086, 0.002, -0.013, 0.150 ), nrow = 7, ncol = 7 )

lambda1 <- diag( c( 0.838, 0.335, 0.015, 0.083, 0.214, -1.137, -0.300 ) )
lambda2 <- diag( c( 0.062, 0.236, -0.025, 0.262, -0.139, 3.355, 0.105 ) )
lambda3 <- diag( c( 2.235, 1.042, 0.004, 0.228, 0.314, 4.280, 0.664 ) )
theta1 <- c( 3.943, 4.597 )
theta2 <- c( 3.448, 4.492 )
theta3 <- c( 4.337, 6.542 )

mu <- list( mu1, mu2, mu3 )
sigma <- list( sigma1, sigma2, sigma3 )
lambda <- list( lambda1, lambda2, lambda3 )
theta <- list( theta1, theta2, theta3 )
param <- c( "alpha", "beta" )
PDF <- quote( 1/( 2*besselK(beta, alpha) )*x^(alpha - 1)*exp( -beta*(1/x + x)/2 ) )

tick <- c( 1, 1, 0 )
out2 <- sefm( Y, G, weight, model = "unrestricted", mu, sigma, lambda, family = "gigaussian",

skewness = "TRUE", param, theta, tick, h = 0.001, N = 3000, level = 0.05, PDF )

wheat wheat data

Description

These data are about 210 wheat grains belonging to three different varieties (including: Kama, Rosa,
and Canadian) on which 7 quantitative variables related to these kernel structures detected by using
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a soft X-ray visualization technique have been measured. These variables are: area, perimeter,
compactness, length of kernel, width of kernel, asymmetry coefficient, length of kernel
groove, and class label variable variety.

Usage

data(wheat)

Format

A text file with 8 columns.

References

P. Giordani, M. B. Ferraro and F. Martella, (2020). An Introduction to Clustering with R, Springer,
Singapore.

Examples

data(wheat)



Index

∗ datasets
AIS, 2
bankruptcy, 2
iris, 5
wheat, 19

AIS, 2

bankruptcy, 2

dmix, 3

iris, 5

ofim1, 6
ofim2, 8

rmix, 11

sefm, 13

wheat, 19

21


	AIS
	bankruptcy
	dmix
	iris
	ofim1
	ofim2
	rmix
	sefm
	wheat
	Index

