
Package ‘mlr3hyperband’
November 27, 2022

Title Hyperband for 'mlr3'

Version 0.4.4

Description Implements hyperband method for hyperparameter tuning.
Various termination criteria can be set and combined. The class
'AutoTuner' provides a convenient way to perform nested resampling in
combination with 'mlr3'. The hyperband algorithm was proposed by Lisha
Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh and Ameet
Talwalkar (2018) <arXiv:1603.06560>.

License LGPL-3

URL https://mlr3hyperband.mlr-org.com,

https://github.com/mlr-org/mlr3hyperband

BugReports https://github.com/mlr-org/mlr3hyperband/issues

Depends mlr3tuning (>= 0.13.0), R (>= 3.1.0)

Imports bbotk (>= 0.7.0), checkmate (>= 1.9.4), data.table, lgr, mlr3
(>= 0.13.1), mlr3misc (>= 0.10.0), paradox (>= 0.9.0), R6

Suggests emoa, mlr3learners (>= 0.5.2), mlr3pipelines, rpart, testthat
(>= 3.0.0), xgboost

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.2.2

Collate 'TunerHyperband.R' 'TunerSuccessiveHalving.R'
'OptimizerHyperband.R' 'OptimizerSuccessiveHalving.R'
'bibentries.R' 'helper.R' 'zzz.R'

Author Marc Becker [aut, cre] (<https://orcid.org/0000-0002-8115-0400>),
Sebastian Gruber [aut] (<https://orcid.org/0000-0002-8544-3470>),
Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>),
Julia Moosbauer [aut] (<https://orcid.org/0000-0002-0000-9297>),
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>)

1

https://arxiv.org/abs/1603.06560
https://mlr3hyperband.mlr-org.com
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3hyperband/issues
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0002-8544-3470
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0002-0000-9297
https://orcid.org/0000-0001-6002-6980

2 mlr3hyperband-package

Maintainer Marc Becker <marcbecker@posteo.de>

Repository CRAN

Date/Publication 2022-11-27 12:00:02 UTC

R topics documented:
mlr3hyperband-package . 2
hyperband_budget . 3
hyperband_n_configs . 3
hyperband_schedule . 4
mlr_optimizers_hyperband . 5
mlr_optimizers_successive_halving . 8
mlr_tuners_hyperband . 11
mlr_tuners_successive_halving . 14

Index 18

mlr3hyperband-package mlr3hyperband: Hyperband for ’mlr3’

Description

Implements hyperband method for hyperparameter tuning. Various termination criteria can be set
and combined. The class ’AutoTuner’ provides a convenient way to perform nested resampling in
combination with ’mlr3’. The hyperband algorithm was proposed by Lisha Li, Kevin Jamieson,
Giulia DeSalvo, Afshin Rostamizadeh and Ameet Talwalkar (2018) arXiv:1603.06560.

Author(s)

Maintainer: Marc Becker <marcbecker@posteo.de> (ORCID)

Authors:

• Sebastian Gruber <gruber_sebastian@t-online.de> (ORCID)

• Jakob Richter <jakob1richter@gmail.com> (ORCID)

• Julia Moosbauer <ju.moosbauer@googlemail.com> (ORCID)

• Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

See Also

Useful links:

• https://mlr3hyperband.mlr-org.com

• https://github.com/mlr-org/mlr3hyperband

• Report bugs at https://github.com/mlr-org/mlr3hyperband/issues

https://arxiv.org/abs/1603.06560
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0002-8544-3470
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0002-0000-9297
https://orcid.org/0000-0001-6002-6980
https://mlr3hyperband.mlr-org.com
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3hyperband/issues

hyperband_budget 3

hyperband_budget Hyperband Budget

Description

Calculates the total budget used by hyperband.

Usage

hyperband_budget(r_min, r_max, eta, integer_budget = FALSE)

Arguments

r_min (numeric(1))
Lower bound of budget parameter.

r_max (numeric(1))
Upper bound of budget parameter.

eta (numeric(1))
Fraction parameter of the successive halving algorithm: With every stage the
configuration budget is increased by a factor of eta and only the best 1/eta
points are used for the next stage. Non-integer values are supported, but eta is
not allowed to be less or equal 1.

integer_budget (logical(1))
Determines if budget is an integer.

Value

integer(1)

hyperband_n_configs Hyperband Configs

Description

Calculates how many different configurations are sampled.

Usage

hyperband_n_configs(r_min, r_max, eta)

4 hyperband_schedule

Arguments

r_min (numeric(1))
Lower bound of budget parameter.

r_max (numeric(1))
Upper bound of budget parameter.

eta (numeric(1))
Fraction parameter of the successive halving algorithm: With every stage the
configuration budget is increased by a factor of eta and only the best 1/eta
points are used for the next stage. Non-integer values are supported, but eta is
not allowed to be less or equal 1.

Value

integer(1)

hyperband_schedule Hyperband Schedule

Description

Returns hyperband schedule.

Usage

hyperband_schedule(r_min, r_max, eta, integer_budget = FALSE)

Arguments

r_min (numeric(1))
Lower bound of budget parameter.

r_max (numeric(1))
Upper bound of budget parameter.

eta (numeric(1))
Fraction parameter of the successive halving algorithm: With every stage the
configuration budget is increased by a factor of eta and only the best 1/eta
points are used for the next stage. Non-integer values are supported, but eta is
not allowed to be less or equal 1.

integer_budget (logical(1))
Determines if budget is an integer.

Value

data.table::data.table()

mlr_optimizers_hyperband 5

mlr_optimizers_hyperband

Optimizer Using the Hyperband Algorithm

Description

OptimizerHyperband class that implements hyperband optimization (HB). HB repeatedly calls
SHA (OptimizerSuccessiveHalving) with different numbers of starting points. A larger number of
starting points corresponds to a smaller budget allocated in the base stage. Each run of SHA within
HB is called a bracket. HB considers s_max + 1 brackets with s_max = floor(log(r_max / r_min, eta).
The most explorative bracket s = s_max constructs s_max + 1 stages and allocates the minimum
budget (r_min) in the base stage. The minimum budget is increased in each bracket by a factor of
eta and the number of starting points is computed so that each bracket approximately spends the
same budget. Use hyperband_schedule() to get a preview of the bracket layout.

s 3 2 1 0
i n_i r_i n_i r_i n_i r_i n_i r_i
0 8 1 6 2 4 4 8 4
1 4 2 3 4 2 8
2 2 4 1 8
3 1 8

s is the bracket number, i is stage number, n_i is the number of configurations and r_i is the budget
allocated to a single configuration.

The budget hyperparameter must be tagged with "budget" in the search space. The minimum
budget (r_min) which is allocated in the base stage of the most explorative bracket, is set by the
lower bound of the budget parameter. The upper bound defines the maximum budget (r_max) which
which is allocated to the candidates in the last stages.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt():

mlr_optimizers$get("hyperband")
opt("hyperband")

Parameters

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta points
are promoted to the next stage. Non-integer values are supported, but eta is not allowed to be
less or equal 1.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn in the base stage of
each bracket. The default is uniform sampling.

6 mlr_optimizers_hyperband

repetitions integer(1)
If 1 (default), optimization is stopped once all brackets are evaluated. Otherwise, optimiza-
tion is stopped after repetitions runs of hyperband. The bbotk::Terminator might stop the
optimization before all repetitions are executed.

Archive

The bbotk::Archive holds the following additional columns that are specific to the hyperband algo-
rithm:

• bracket (integer(1))
The bracket index. Counts down to 0.

• stage (integer(1))
The stages of each bracket. Starts counting at 0.

• repetition (integer(1))
Repetition index. Start counting at 1.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5
- categorical distribution with custom probabilities
sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampler1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

))

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Logging

Hyperband uses a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Super class

bbotk::Optimizer -> OptimizerHyperband

Methods

Public methods:
• OptimizerHyperband$new()

• OptimizerHyperband$clone()

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk

mlr_optimizers_hyperband 7

Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerHyperband$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerHyperband$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2018). “Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization.” Journal of Machine Learning Research,
18(185), 1-52. https://jmlr.org/papers/v18/16-558.html.

Examples

library(bbotk)
library(data.table)

set search space
search_space = domain = ps(

x1 = p_dbl(-5, 10),
x2 = p_dbl(0, 15),
fidelity = p_dbl(1e-2, 1, tags = "budget")

)

Branin function with fidelity, see `bbotk::branin()`
fun = function(xs) branin_wu(xs[["x1"]], xs[["x2"]], xs[["fidelity"]])

create objective
objective = ObjectiveRFun$new(

fun = fun,
domain = domain,
codomain = ps(y = p_dbl(tags = "minimize"))

)

initialize instance and optimizer
instance = OptimInstanceSingleCrit$new(

objective = objective,
search_space = search_space,
terminator = trm("evals", n_evals = 50)

)

optimizer = opt("hyperband")

optimize branin function
optimizer$optimize(instance)

https://jmlr.org/papers/v18/16-558.html

8 mlr_optimizers_successive_halving

best scoring evaluation
instance$result

all evaluations
as.data.table(instance$archive)

mlr_optimizers_successive_halving

Hyperparameter Optimization with Successive Halving

Description

OptimizerSuccessiveHalving class that implements the successive halving algorithm (SHA).
SHA randomly samples n candidate points and allocates a minimum budget (r_min) to all can-
didates. The candidates are raced down in stages to a single best candidate by repeatedly increasing
the budget by a factor of eta and promoting only the best 1 / eta fraction to the next stage. This
means promising points are allocated a higher budget overall and lower performing ones are dis-
carded early on.

#’ The budget hyperparameter must be tagged with "budget" in the search space. The minimum
budget (r_min) which is allocated in the base stage, is set by the lower bound of the budget param-
eter. The upper bound defines the maximum budget (r_max) which is allocated to the candidates in
the last stage. The number of stages is computed so that each candidate in base stage is allocated the
minimum budget and the candidates in the last stage are not evaluated on more than the maximum
budget. The following table is the stage layout for eta = 2, r_min = 1 and r_max = 8.

i n_i r_i
0 8 1
1 4 2
2 2 4
3 1 8

i is stage number, n_i is the number of configurations and r_i is the budget allocated to a single
configuration.

Parameters

n integer(1)
Number of points in base stage.

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta points
are promoted to the next stage.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn. The default is
uniform sampling.

mlr_optimizers_successive_halving 9

repetitions integer(1)
If 1 (default), optimization is stopped once all stages are evaluated. Otherwise, optimization is
stopped after repetitions runs of SHA. The bbotk::Terminator might stop the optimization
before all repetitions are executed.

adjust_minimum_budget logical(1)
If TRUE, minimum budget is increased so that the last stage uses the maximum budget defined
in the search space.

Archive

The bbotk::Archive holds the following additional columns that are specific to the successive halv-
ing algorithm:

• stage (integer(1))
Stage index. Starts counting at 0.

• repetition (integer(1))
Repetition index. Start counting at 1.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5
- categorical distribution with custom probabilities
sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampler1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

))

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Logging

Hyperband uses a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Super class

bbotk::Optimizer -> OptimizerSuccessiveHalving

Methods

Public methods:

• OptimizerSuccessiveHalving$new()

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk

10 mlr_optimizers_successive_halving

• OptimizerSuccessiveHalving$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerSuccessiveHalving$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerSuccessiveHalving$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Jamieson K, Talwalkar A (2016). “Non-stochastic Best Arm Identification and Hyperparameter
Optimization.” In Gretton A, Robert CC (eds.), Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, volume 51 series Proceedings of Machine Learning Research,
240-248. http://proceedings.mlr.press/v51/jamieson16.html.

Examples

library(bbotk)
library(data.table)

set search space
search_space = domain = ps(

x1 = p_dbl(-5, 10),
x2 = p_dbl(0, 15),
fidelity = p_dbl(1e-2, 1, tags = "budget")

)

Branin function with fidelity, see `bbotk::branin()`
fun = function(xs) branin_wu(xs[["x1"]], xs[["x2"]], xs[["fidelity"]])

create objective
objective = ObjectiveRFun$new(

fun = fun,
domain = domain,
codomain = ps(y = p_dbl(tags = "minimize"))

)

initialize instance and optimizer
instance = OptimInstanceSingleCrit$new(

objective = objective,
search_space = search_space,
terminator = trm("evals", n_evals = 50)

)

optimizer = opt("successive_halving")

http://proceedings.mlr.press/v51/jamieson16.html

mlr_tuners_hyperband 11

optimize branin function
optimizer$optimize(instance)

best scoring evaluation
instance$result

all evaluations
as.data.table(instance$archive)

mlr_tuners_hyperband Tuner Using the Hyperband Algorithm

Description

TunerHyperband class that implements hyperband tuning (HB). HB repeatedly calls SHA (Tuner-
SuccessiveHalving) with different numbers of starting configurations. A larger number of starting
configurations corresponds to a smaller budget allocated in the base stage. Each run of SHA within
HB is called a bracket. HB considers s_max + 1 brackets with s_max = floor(log(r_max / r_min, eta).
The most explorative bracket s = s_max constructs s_max + 1 stages and allocates the minimum
budget (r_min) in the base stage. The minimum budget is increased in each bracket by a factor
of eta and the number of starting configurations is computed so that each bracket approximately
spends the same budget. Use hyperband_schedule() to get a preview of the bracket layout.

s 3 2 1 0
i n_i r_i n_i r_i n_i r_i n_i r_i
0 8 1 6 2 4 4 8 4
1 4 2 3 4 2 8
2 2 4 1 8
3 1 8

s is the bracket number, i is stage number, n_i is the number of configurations and r_i is the budget
allocated to a single configuration.

The budget hyperparameter must be tagged with "budget" in the search space. The minimum
budget (r_min) which is allocated in the base stage of the most explorative bracket, is set by the
lower bound of the budget parameter. The upper bound defines the maximum budget (r_max) which
which is allocated to the candidates in the last stages.

Subsample Budget

If the learner lacks a natural budget parameter, mlr3pipelines::PipeOpSubsample can be applied to
use the subsampling rate as budget parameter. The resulting mlr3pipelines::GraphLearner is fitted
on small proportions of the mlr3::Task in the first stage, and on the complete task in last stage.

12 mlr_tuners_hyperband

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt():

mlr_optimizers$get("hyperband")
opt("hyperband")

Parameters

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta con-
figurations are promoted to the next stage. Non-integer values are supported, but eta is not
allowed to be less or equal 1.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn in the base stage of
each bracket. The default is uniform sampling.

repetitions integer(1)
If 1 (default), optimization is stopped once all brackets are evaluated. Otherwise, optimiza-
tion is stopped after repetitions runs of hyperband. The bbotk::Terminator might stop the
optimization before all repetitions are executed.

Archive

The mlr3tuning::ArchiveTuning holds the following additional columns that are specific to the hy-
perband algorithm:

• bracket (integer(1))
The bracket index. Counts down to 0.

• stage (integer(1))
The stages of each bracket. Starts counting at 0.

• repetition (integer(1))
Repetition index. Start counting at 1.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5
- categorical distribution with custom probabilities
sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampler1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

))

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

mlr_tuners_hyperband 13

Parallelization

This hyperband implementation evaluates hyperparameter configurations of equal budget across
brackets in one batch. For example, all configurations in stage 1 of bracket 3 and stage 0 of bracket
2 in one batch. To select a parallel backend, use the plan() function of the future package.

Logging

Hyperband uses a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerHyperband

Methods

Public methods:
• TunerHyperband$new()

• TunerHyperband$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerHyperband$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerHyperband$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2018). “Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization.” Journal of Machine Learning Research,
18(185), 1-52. https://jmlr.org/papers/v18/16-558.html.

Examples

if(requireNamespace("xgboost")) {
library(mlr3learners)

define hyperparameter and budget parameter
search_space = ps(
nrounds = p_int(lower = 1, upper = 16, tags = "budget"),
eta = p_dbl(lower = 0, upper = 1),
booster = p_fct(levels = c("gbtree", "gblinear", "dart"))

)

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://jmlr.org/papers/v18/16-558.html

14 mlr_tuners_successive_halving

hyperparameter tuning on the pima indians diabetes data set
instance = tune(

method = "hyperband",
task = tsk("pima"),
learner = lrn("classif.xgboost", eval_metric = "logloss"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
search_space = search_space,
term_evals = 100

)

best performing hyperparameter configuration
instance$result

}

mlr_tuners_successive_halving

Hyperparameter Tuning with Successive Halving

Description

TunerSuccessiveHalving class that implements the successive halving algorithm (SHA). SHA
randomly samples n candidate hyperparameter configurations and allocates a minimum budget
(r_min) to all candidates. The candidates are raced down in stages to a single best candidate by
repeatedly increasing the budget by a factor of eta and promoting only the best 1 / eta fraction to
the next stage. This means promising hyperparameter configurations are allocated a higher budget
overall and lower performing ones are discarded early on.

The budget hyperparameter must be tagged with "budget" in the search space. The minimum bud-
get (r_min) which is allocated in the base stage, is set by the lower bound of the budget parameter.
The upper bound defines the maximum budget (r_max) which is allocated to the candidates in the
last stage. The number of stages is computed so that each candidate in base stage is allocated the
minimum budget and the candidates in the last stage are not evaluated on more than the maximum
budget. The following table is the stage layout for eta = 2, r_min = 1 and r_max = 8.

i n_i r_i
0 8 1
1 4 2
2 2 4
3 1 8

i is stage number, n_i is the number of configurations and r_i is the budget allocated to a single
configuration.

mlr_tuners_successive_halving 15

Subsample Budget

If the learner lacks a natural budget parameter, mlr3pipelines::PipeOpSubsample can be applied to
use the subsampling rate as budget parameter. The resulting mlr3pipelines::GraphLearner is fitted
on small proportions of the mlr3::Task in the first stage, and on the complete task in last stage.

Parameters

n integer(1)
Number of candidates in base stage.

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta candi-
dates are promoted to the next stage. Non-integer values are supported, but eta is not allowed
to be less or equal 1.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn. The default is
uniform sampling.

repeats logical(1)
If FALSE (default), SHA terminates once all stages are evaluated. Otherwise, SHA starts over
again once the last stage is evaluated.

adjust_minimum_budget logical(1)
If TRUE, minimum budget is increased so that the last stage uses the maximum budget defined
in the search space.

Archive

The mlr3tuning::ArchiveTuning holds the following additional columns that are specific to the suc-
cessive halving algorithm:

• stage (integer(1))
Stage index. Starts counting at 0.

• repetition (integer(1))
Repetition index. Start counting at 1.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5
- categorical distribution with custom probabilities
sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampler1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

))

16 mlr_tuners_successive_halving

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Parallelization

The hyperparameter configurations of one stage are evaluated in parallel with the future package.
To select a parallel backend, use the plan() function of the future package.

Logging

Hyperband uses a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerSuccessiveHalving

Methods

Public methods:

• TunerSuccessiveHalving$new()

• TunerSuccessiveHalving$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

TunerSuccessiveHalving$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:

TunerSuccessiveHalving$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Jamieson K, Talwalkar A (2016). “Non-stochastic Best Arm Identification and Hyperparameter
Optimization.” In Gretton A, Robert CC (eds.), Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, volume 51 series Proceedings of Machine Learning Research,
240-248. http://proceedings.mlr.press/v51/jamieson16.html.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
http://proceedings.mlr.press/v51/jamieson16.html

mlr_tuners_successive_halving 17

Examples

if(requireNamespace("xgboost")) {
library(mlr3learners)

define hyperparameter and budget parameter
search_space = ps(
nrounds = p_int(lower = 1, upper = 16, tags = "budget"),
eta = p_dbl(lower = 0, upper = 1),
booster = p_fct(levels = c("gbtree", "gblinear", "dart"))

)

hyperparameter tuning on the pima indians diabetes data set
instance = tune(

method = "successive_halving",
task = tsk("pima"),
learner = lrn("classif.xgboost", eval_metric = "logloss"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
search_space = search_space,
term_evals = 100

)

best performing hyperparameter configuration
instance$result

}

Index

bbotk::Archive, 6, 9
bbotk::Optimizer, 6, 9
bbotk::Terminator, 6, 9, 12

data.table::data.table(), 4
dictionary, 5, 12

hyperband_budget, 3
hyperband_n_configs, 3
hyperband_schedule, 4
hyperband_schedule(), 5, 11

mlr3::Task, 11, 15
mlr3hyperband (mlr3hyperband-package), 2
mlr3hyperband-package, 2
mlr3pipelines::GraphLearner, 11, 15
mlr3pipelines::PipeOpSubsample, 11, 15
mlr3tuning::ArchiveTuning, 12, 15
mlr3tuning::Tuner, 13, 16
mlr3tuning::TunerFromOptimizer, 13, 16
mlr_optimizers, 5, 12
mlr_optimizers_hyperband, 5
mlr_optimizers_successive_halving, 8
mlr_tuners_hyperband, 11
mlr_tuners_successive_halving, 14

opt(), 5, 12
Optimizer, 5, 12
OptimizerHyperband

(mlr_optimizers_hyperband), 5
OptimizerSuccessiveHalving, 5
OptimizerSuccessiveHalving

(mlr_optimizers_successive_halving),
8

paradox::Sampler, 5, 6, 8, 9, 12, 15

R6, 7, 10, 13, 16

Terminator, 6, 9, 12, 16

TunerHyperband (mlr_tuners_hyperband),
11

TunerSuccessiveHalving, 11
TunerSuccessiveHalving

(mlr_tuners_successive_halving),
14

18

	mlr3hyperband-package
	hyperband_budget
	hyperband_n_configs
	hyperband_schedule
	mlr_optimizers_hyperband
	mlr_optimizers_successive_halving
	mlr_tuners_hyperband
	mlr_tuners_successive_halving
	Index

