Package ‘mlr3mbo’

November 18, 2022
Type Package

Title Flexible Bayesian Optimization
Version 0.1.1

Description A modern and flexible approach to Bayesian Optimization / Model
Based Optimization building on the 'bbotk’ package. 'mlr3mbo' is a toolbox
providing both ready-to-use optimization algorithms as well as their fundamental
building blocks allowing for straightforward implementation of custom
algorithms. Single- and multi-objective optimization is supported as well as
mixed continuous, categorical and conditional search spaces. Moreover, using
‘mlr3mbo’ for hyperparameter optimization of machine learning models within the
'mlr3' ecosystem is straightforward via 'mlr3tuning’. Examples of ready-to-use
optimization algorithms include Efficient Global Optimization by Jones et al.
(1998) <doi:10.1023/A:1008306431147>, ParEGO by Knowles (2006)
<doi:10.1109/TEVC.2005.851274> and SMS-EGO by Ponweiser et al. (2008)
<doi:10.1007/978-3-540-87700-4_78>.

License LGPL-3
URL https://mlr3mbo.mlr-org.com, https://github.com/mlr-org/mlr3mbo

BugReports https://github.com/mlr-org/mlr3mbo/issues
Depends mlr3tuning (>=0.14.0), R (>=3.1.0)

Imports bbotk (>=0.5.4), checkmate (>= 2.0.0), data.table, lgr (>=
0.3.4), mlr3 (>= 0.14.0), mlr3misc (>= 0.11.0), paradox (>=
0.10.0), R6 (>=2.4.1)

Suggests DiceKriging, knitr, lhs, mlr3learners (>= 0.5.4),
mlr3pipelines (>= 0.4.2), nloptr, ranger, rgenoud, rmarkdown,
rpart, spacefillr, stringi, testthat (>= 3.0.0),

ByteCompile no

Encoding UTF-8
Config/testthat/edition 3
Config/testthat/parallel false
NeedsCompilation yes

RoxygenNote 7.2.1

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1007/978-3-540-87700-4_78
https://mlr3mbo.mlr-org.com
https://github.com/mlr-org/mlr3mbo
https://github.com/mlr-org/mlr3mbo/issues

2 R topics documented:

Collate 'mlr_acqfunctions.R' 'AcqFunction.R' 'AcqFunctionCB.R'
'AcqFunctionEL.R' 'AcqFunctionEIPS.R' 'AcqFunctionMean.R'
'AcqFunctionPI.R' 'AcqFunctionSmsEgo.R' "AcqOptimizer.R'
'OptimizerMbo.R' 'Surrogate.R' 'SurrogateLearner.R'
'SurrogateLearnerCollection.R' "TunerMbo.R'
'mlr_loop_functions.R' 'bayesopt_ego.R' 'bayesopt_mpcl.R’
'bayesopt_parego.R' 'bayesopt_smsego.R' 'bibentries.R’
'helper.R' 'loop_function.R' 'mbo_defaults.R'
'result_by_default.R' 'result_by_surrogate_design.R' 'sugar.R’
'zzz.R'

VignetteBuilder knitr

Author Lennart Schneider [cre, aut] (<https://orcid.org/0000-0003-4152-5308>),
Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>),
Marc Becker [aut] (<https://orcid.org/0000-0002-8115-0400>),
Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>),
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>),
Florian Pfisterer [aut] (<https://orcid.org/0000-0001-8867-762X>),
Martin Binder [aut],

Sebastian Fischer [aut] (<https://orcid.org/0000-0002-9609-3197>),
Michael H. Buselli [cph],

Wessel Dankers [cph],

Carlos Fonseca [cph],

Manuel Lopez-Ibanez [cph],

Luis Paquete [cph]

Maintainer Lennart Schneider <lennart.sch@web.de>
Repository CRAN
Date/Publication 2022-11-18 10:40:02 UTC

R topics documented:

mlr3mbo-package 3
acqf . . . e 4
AcqFunction 5
ACO « v v e e e e e e e e e e e e e e e 7
AcqOptimizer o e e e e e e e 8
default_acqfun 10
default_acqopt. 10
default_loopfun e 11
default_surrogate e 11
loop_function L 13
mbo_defaults e e 13
mlr_acqfunctions L e 14
mlr_acqfunctions_cb 14
mlr_acqfunctions_ei e 16
mlr_acqfunctions_eips L e 18

mlr_acqfunctions_mean 20

https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-8867-762X
https://orcid.org/0000-0002-9609-3197

mlr3mbo-package 3

mlr_acqfunctions_pi e e 22
mlr_acqfunctions_smsego 24
mlr_loop_functions 26
mlr_loop_functions_ego 27
mlr_loop_functions_mpclo oL 30
mlr_loop_functions_parego 32
mlr_loop_functions_smsego e 35
mlr_optimizers_mbo e 37
mlr_tuners_ mbo e 41
result_ by default 44
result_by_surrogate_design 45
STlrn . . . e e e 45
SIIrNC . . L e e e 46
SUITOZate o e 47
Surrogatelearner 49
SurrogateLearnerCollection oL 52

Index 55

mlr3mbo-package mlr3mbo: Flexible Bayesian Optimization
Description

A modern and flexible approach to Bayesian Optimization / Model Based Optimization building
on the ’bbotk’ package. 'mlr3mbo’ is a toolbox providing both ready-to-use optimization algo-
rithms as well as their fundamental building blocks allowing for straightforward implementation
of custom algorithms. Single- and multi-objective optimization is supported as well as mixed
continuous, categorical and conditional search spaces. Moreover, using 'mlr3mbo’ for hyperpa-
rameter optimization of machine learning models within the *'mlr3’ ecosystem is straightforward
via 'mlr3tuning’. Examples of ready-to-use optimization algorithms include Efficient Global Op-
timization by Jones et al. (1998) doi:10.1023/A:1008306431147, ParEGO by Knowles (2006)
doi:10.1109/TEVC.2005.851274 and SMS-EGO by Ponweiser et al. (2008) doi:10.1007/9783540-
877004_78.

Author(s)

Maintainer: Lennart Schneider <lennart. sch@web.de> (ORCID)

Authors:

Jakob Richter <jakob1richter@gmail.com> (ORCID)
Marc Becker <marcbecker@posteo.de> (ORCID)

Michel Lang <michellang@gmail.com> (ORCID)

Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

Florian Pfisterer <pfistererf@googlemail.com> (ORCID)

Martin Binder <mlr.developer@mb706.com>

https://doi.org/10.1023/A%3A1008306431147
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1007/978-3-540-87700-4_78
https://doi.org/10.1007/978-3-540-87700-4_78
https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-8867-762X

4 acqf

¢ Sebastian Fischer <sebf . fischer@gmail.com> (ORCID)
Other contributors:

* Michael H. Buselli [copyright holder]

* Wessel Dankers [copyright holder]

* Carlos Fonseca [copyright holder]

* Manuel Lopez-Ibanez [copyright holder]
* Luis Paquete [copyright holder]

See Also
Useful links:
e https://mlr3mbo.mlr-org.com

* https://github.com/mlr-org/mlr3mbo
* Report bugs at https://github.com/mlr-org/mlr3mbo/issues

acqgf Syntactic Sugar Acquisition Function Construction

Description

This function complements mlr_acqfunctions with functions in the spirit of mlr_sugar from mlr3.

Usage
acqf(.key, ...)
Arguments
.key (character(1))
Key passed to the respective dictionary to retrieve the object.
(named 1ist())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc: :dictionary_sugar_get()
for more details.
Value
AcqFunction
Examples

acqf("ei")

https://orcid.org/0000-0002-9609-3197
https://mlr3mbo.mlr-org.com
https://github.com/mlr-org/mlr3mbo
https://github.com/mlr-org/mlr3mbo/issues
https://CRAN.R-project.org/package=mlr3

AcqFunction 5

AcgFunction Acquisition Function Base Class

Description

Abstract acquisition function class.

Based on the predictions of a Surrogate, the acquisition function encodes the preference to evaluate
a new point.

Super class

bbotk: :0bjective -> AcqgFunction

Active bindings

II|II 1I|n

direction ("same minimize maximize")
Optimization direction of the acquisition function relative to the direction of the objective

non

function of the bbotk::OptimInstance. Must be "same”, "minimize”, or "maximize”.
surrogate_max_to_min (-111)

Multiplicative factor to correct for minimization or maximization of the acquisition function.
label (character(1))

Label for this object.
man (character(1))

String in the format [pkg]: : [topic] pointing to a manual page for this object.
archive (bbotk::Archive)

Points to the bbotk::Archive of the surrogate.
fun (function)

Pointing to the private acquistion function to be implemented by subclasses.

surrogate (Surrogate)
Surrogate.

Methods
Public methods:

e AcqFunction$new()

* AcgFunction$update()

* AcgFunction$eval_many()
* AcgFunction$eval_dt()

¢ AcgFunction$clone()

Method new(): Creates a new instance of this R6 class.
Note that the surrogate can be initialized lazy and can later be set via the active binding $surrogate.

Usage:

AcqFunction

AcgFunction$new(
id,
constants = ParamSet$new(),
surrogate,
direction,

label = NA_character_,
man = NA_character_

)

Arguments:

id (character(1)).

constants (paradox::ParamSet). Changeable constants or parameters.

surrogate (NULL | Surrogate). Surrogate whose predictions are used in the acquisition func-
tion.

nlu

direction ("same minimize" | "maximize"). Optimization direction of the acquisition
function relative to the direction of the objective function of the bbotk::OptimInstance. Must

non

be "same"”, "minimize”, or "maximize".

label (character(1))
Label for this object.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object.

Method update(): Update the acquisition function.
Can be implemented by subclasses.

Usage:

AcqFunction$update()

Method eval_many(): Evaluates multiple input values on the objective function.

Usage:
AcqFunction$eval_many(xss)

Arguments:
xss (list())
A list of lists that contains multiple x values, e.g. list(list(x1 =1, x2=2), list(x1=
3, x2=4)).
Returns: data.table::data.table() that contains one y-column for single-objective functions and
multiple y-columns for multi-objective functions, e.g. data.table(y = 1:2) ordata. table(y1
=1:2,y2=3:4).

Method eval_dt(): Evaluates multiple input values on the objective function

Usage:
AcgFunction$eval_dt(xdt)

Arguments:

xdt (data.table::data.table())
One point per row, e.g. data.table(x1 =c(1, 3), x2=c(2, 4)).

acqo

Returns: data.table::data.table() that contains one y-column for single-objective functions and
multiple y-columns for multi-objective functions, e.g. data.table(y = 1:2) ordata. table(y1
=1:2,y2=3:4).

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcgFunction$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Acquisition Function: mlr_acqfunctions_cb, mlr_acqfunctions_eips, mlr_acqfunctions_ei,
mlr_acqfunctions_mean, mlr_acqfunctions_pi, mlr_acgfunctions_smsego, mlr_acqfunctions

acqo Syntactic Sugar Acquisition Function Optimizer Construction

Description

This function allows to construct an AcqOptimizer in the spirit of mlr_sugar from mlr3.

Usage
acqo(optimizer, terminator, acq_function = NULL, ...)
Arguments
optimizer (bbotk::Optimizer)
bbotk::Optimizer that is to be used.
terminator (bbotk::Terminator)

bbotk::Terminator that is to be used.

acq_function (NULL | AcgFunction)
AcqFunction that is to be used. Can also be NULL.

(named 1ist())
Named arguments passed to the constructor, to be set as parameters in the para-

dox::ParamSet.

Value

AcqOptimizer

Examples

library(bbotk)
acqo(opt("random_search”), trm("evals"), catch_errors = FALSE)

https://CRAN.R-project.org/package=mlr3

8 AcqOptimizer

AcqOptimizer Acquisition Function Optimizer

Description

Optimizer for AcqFunctions which performs the infill optimization. Wraps an bbotk::Optimizer
and bbotk:: Terminator.

Parameters

logging_level character(1)
Logging level during the infill optimization. Can be "fatal"”, "error”, "warn”, "info",
"debug” or "trace”. Default is "warn”, i.e., only warnings are logged.

warmstart logical(1)
Should the infill optimization be warm-started by evaluating the best point(s) present in the
bbotk::Archive of the actual bbotk::OptimInstance? This is sensible when using a population
based infill optimizer, e.g., local search or mutation. Default is FALSE.

warmstart_size integer(1) | "all”
Number of best points selected from the bbotk::Archive that are to be used for warm starting.
Can also be "all" to use all available points. Only relevant if warmstart = TRUE. Default is 1.

skip_already_evaluated logical(1)
It can happen that the candidate resulting of the infill optimization was already evaluated in
a previous iteration. Should this candidate proposal be ignored and the next best point be
selected as a candidate? Default is TRUE.

catch_errors logical(1)
Should errors during the infill optimization be caught and propagated to the loop_function
which can then handle the failed infill optimization appropriately by, e.g., proposing a ran-
domly sampled point for evaluation? Default is TRUE.

Public fields
optimizer (bbotk::Optimizer).
terminator (bbotk::Terminator).

acg_function (AcqFunction).

Active bindings

print_id (character)
Id used when printing.

param_set (paradox::ParamSet)
Set of hyperparameters.

AcqOptimizer

Methods

Public methods:

* AcqOptimizer$new()

e AcqOptimizer$format()

e AcqOptimizer$print()

e AcqOptimizer$optimize()
e AcqOptimizer$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcqOptimizer$new(optimizer, terminator, acq_function = NULL)

Arguments:
optimizer (bbotk::Optimizer).
terminator (bbotk::Terminator).

acq_function (NULL | AcqFunction).

Method format(): Helper for print outputs.

Usage:
AcqOptimizer$format()

Method print(): Print method.

Usage:
AcqOptimizer$print()

Returns: (character()).

Method optimize(): Optimize the acquisition function.

Usage:
AcqOptimizer$optimize()

Returns: data.table::data.table() with 1 row per optimum and x as columns.

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqOptimizer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

10 default_acqopt

default_acqgfun Default Acquisition Function

Description

Chooses a default acquisition function, i.e. the criterion used to propose future points. For single-
objective optimization, defaults to mlr_acqfunctions_ei. For multi-objective optimization, defaults
to mlr_acqfunctions_smsego.

Usage

default_acgfun(instance)

Arguments

instance (bbotk::OptimInstance).

Value

AcqFunction

See Also

Other mbo_defaults: default_acqopt(), default_loopfun(), default_surrogate(), mbo_defaults

default_acqopt Default Acquisition Function Optimizer

Description
Chooses a default acquisition function optimizer. Defaults to wrapping bbotk::OptimizerRandomSearch
allowing 10000 function evaluations (with a batch size of 1000) via a bbotk::TerminatorEvals.

Usage

default_acqopt(acq_function)

Arguments

acq_function (AcqFunction).

Value

AcqOptimizer

See Also

Other mbo_defaults: default_acqfun(), default_loopfun(), default_surrogate(), mbo_defaults

default_loopfun 11

default_loopfun Default Loop Function

Description

Chooses a default loop_function, i.e. the Bayesian Optimization flavor to be used for optimiza-
tion. For single-objective optimization, defaults to bayesopt_ego. For multi-objective optimization,
defaults to bayesopt_smsego.

Usage

default_loopfun(instance)

Arguments
instance (bbotk::OptimInstance)
An object that inherits from bbotk::OptimInstance.
Value

loop_function

See Also

Other mbo_defaults: default_acqfun(), default_acqopt(), default_surrogate(), mbo_defaults

default_surrogate Default Surrogate

Description

This is a helper function that generates a default Surrogate based on properties of the bbotk::OptimInstance.
For numeric-only (including integers) parameter spaces without any dependencies:

"

* A Kriging model “"regrkm"” with kernel “"matern3_2"" is created.

« If the objective function is deterministic we add a small nugget effect (10*-8*Var(y), y is vec-
tor of observed outcomes in current design) to increase numerical stability to hopefully prevent
crashes of DiceKriging. Whether the objective function is deterministic can be observed from
the objective function’s properties.

* If the objective function is noisy the nugget effect will be estimated with nugget.estim=
TRUE.

» Also jitter is set to TRUE to circumvent a problem with DiceKriging where already trained
input values produce the exact trained output. Whether the objective function is noisy can be
observed from the objective functions properties.

https://CRAN.R-project.org/package=DiceKriging
https://CRAN.R-project.org/package=DiceKriging

12 default_surrogate

* Instead of the default "BFGS" optimization method we use rgenoud (”"gen"), which is a hy-
brid algorithm, to combine global search based on genetic algorithms and local search based
on gradients. This may improve the model fit and will less frequently produce a constant
surrogate model.

For mixed numeric-categorical parameter spaces, or spaces with conditional parameters:

wn "9

* A ranger regression forest “"regr.ranger"” with 500 trees is created.

* The standard error of a prediction (if required by the infill criterion) is estimated via jackknife.
This is the se.method = "jack" option of the “"regr.ranger"” learner (default).

wn "

In any case, learners are encapsulated using “"evaluate"”, and a fallback learner is set, in cases where
the surrogate learner errors. Currently, the following learner is used as a fallback: 1rn("regr.ranger”,
num. trees = 20L, keep.inbag = TRUE, se.method = "jack").

If additionally dependencies are present in the parameter space, inactive conditional parameters are
represented by missing NA values in the training design data. We simply handle those with an im-
putation method, added to the ranger random forest, more concretely we use po("imputesample”)
(for logicals) and po("imputeoor") (for anything else) from package mlr3pipelines. Out of range
imputation makes sense for tree-based methods and is usually hard to beat, see Ding et al. (2010). In
the case of dependencies, the following learner is used as a fallback: 1rn("regr.featureless”).

If the instance is of class bbotk::OptimInstanceSingleCrit the learner is wrapped as a Surrogate-
Learner.

If the instance is of class bbotk::OptimInstanceMultiCrit deep clones of the learner are wrapped as
a SurrogateLearnerCollection.

Usage

default_surrogate(instance, learner = NULL, n_learner = NULL)

Arguments
instance (bbotk::OptimInstance)
An object that inherits from bbotk::OptimInstance.
learner (NULL | mlr3::Learner).
n_learner (NULL I integer(1)).
Value
Surrogate
References

* Ding, Yufeng, Simonoff, S J (2010). “An investigation of missing data methods for classifi-
cation trees applied to binary response data.” Journal of Machine Learning Research, 11(1),
131-170.
See Also

Other mbo_defaults: default_acqfun(), default_acqopt(), default_loopfun(), mbo_defaults

https://CRAN.R-project.org/package=mlr3pipelines

loop_function 13

loop_function Loop Functions for Bayesian Optimization

Description

Loop functions determine the behavior of the Bayesian Optimization algorithm on a global level.
For an overview of readily available loop functions, see as.data.table(mlr_loop_functions).

In general, a loop function is simply a decorated member of the S3 class loop_function. Attributes
must include: id (id of the loop function), 1abel (brief description), instance ("single-crit" and or
"multi_crit"), and man (link to the manual page).

As an example, see, e.g., bayesopt_ego.

See Also

Other Loop Function: mlr_loop_functions_ego, mlr_loop_functions_mpcl, mlr_loop_functions_parego,
mlr_loop_functions_smsego, mlr_loop_functions

mbo_defaults Defaults for OptimizerMbo

Description

The following defaults are set for OptimizerMbo during optimization if the respective fields are not
set during initialization.

* Optimization Loop: default_loopfun

Surrogate: default_surrogate

* Acquisition Function: default_acqfun

Acqfun Optimizer: default_acqopt

See Also

Other mbo_defaults: default_acqfun(), default_acqopt(), default_loopfun(), default_surrogate()

14 mlr_acqtfunctions_cb

mlr_acgfunctions Dictionary of Acquisition Functions

Description

A simple mlr3misc::Dictionary storing objects of class AcqFunction. Each acquisition function has
an associated help page, see mlr_acqgfunctions_[id].

For a more convenient way to retrieve and construct an acquisition function, see acqf ().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

See Also
Sugar function: acqf ()
Other Dictionary: mlr_loop_functions

Other Acquisition Function: AcqFunction, mlr_acqfunctions_cb, mlr_acgfunctions_eips,
mlr_acqfunctions_ei, mlr_acqgfunctions_mean, mlr_acgfunctions_pi, mlr_acqfunctions_smsego

Examples

as.data.table(mlr_acgfunctions)
acgf("ei")

mlr_acqfunctions_cb Acquisition Function Confidence Bound

Description

Lower / Upper Confidence Bound.

Dictionary
This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated

sugar function acqf ():

mlr_acqgfunctions$get(”"cb")
acqf ("cb™)

mlr_acqfunctions_cb 15

Parameters

e "lambda” (numeric(1))
A value used for the confidence bound. Defaults to 2.

Super classes

bbotk: :0bjective ->mlr3mbo: :AcqgFunction -> AcqFunctionCB

Methods

Public methods:

¢ AcgFunctionCB$new()
* AcqFunctionCB$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
AcgFunctionCB$new(surrogate = NULL, lambda = 2)
Arguments:
surrogate (NULL | SurrogatelLearner).
lambda (numeric(1)).

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionCB$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

* Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of
Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.),
Advances in Neural Information Processing Systems, volume 25, 2951-2959.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions_eips, mlr_acqfunctions_ei,
mlr_acqfunctions_mean, mlr_acqfunctions_pi, mlr_acgfunctions_smsego, mlr_acqfunctions

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

16 mlr_acqtfunctions_ei

fun = function(xs) {
list(y = xs$x * 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
learner = 1rn("regr.km",

covtype = "matern3_2",

optim.method = "gen"”,

nugget.stability = 10%-8,

control = list(trace = FALSE))
surrogate = srlrn(learner, archive = instance$archive)

acqg_function = acqf("cb", surrogate = surrogate, lambda = 3)

acq_function$surrogate$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

mlr_acqgfunctions_ei Acquisition Function Expected Improvement

Description

Expected Improvement.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated
sugar function acqf'():

mlr_acqgfunctions$get("ei”)
acqf("ei")
Super classes

bbotk: :0bjective ->mlr3mbo: :AcqFunction -> AcqFunctionEI

Public fields

y_best (numeric(1))
Best objective function value observed so far.

mlr_acqfunctions_ei 17

Methods

Public methods:
* AcqFunctionEI$new()
¢ AcqFunctionEI$update()
e AcqFunctionEI$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcgFunctionEI$new(surrogate = NULL)

Arguments:
surrogate (NULL | SurrogateLearner).

Method update(): Updates acquisition function and sets y_best.

Usage:
AcqFunctionEI$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcqFunctionEI$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

* Jones, R. D, Schonlau, Matthias, Welch, J. W (1998). “Efficient Global Optimization of
Expensive Black-Box Functions.” Journal of Global optimization, 13(4), 455-492.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions_cb, mlr_acqgfunctions_eips,
mlr_acqgfunctions_mean, mlr_acqfunctions_pi, mlr_acqgfunctions_smsego, mlr_acqfunctions

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace(”"DiceKriging”) &
requireNamespace("rgenoud”)) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x * 2)
}
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))

18 mlr_acqfunctions_eips

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = 1rn("regr.km",
covtype = "matern3_2",
optim.method = "gen"”,
nugget.stability = 10%-8,
control = list(trace = FALSE))

surrogate = srlrn(learner, archive = instance$archive)
acqg_function = acqf("ei"”, surrogate = surrogate)
acq_function$surrogate$update()

acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

mlr_acgfunctions_eips Acquisition Function Expected Improvement Per Second

Description

Expected Improvement per Second.

It is assumed that calculations are performed on an bbotk::OptimInstanceSingleCrit. Additionally
to target values of the codomain that should be minimized or maximized, the bbotk::Objective of the
bbotk::OptimInstanceSingleCrit should return time values. The column names of the target variable
and time variable must be passed as y_cols in the order (target, time) when constructing the
SurrogateLearnerCollection that is being used as a surrogate.

Dictionary
This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated

sugar function acqf'():

mlr_acqgfunctions$get("eips”)
acqf ("eips")

Super classes

bbotk: :0bjective ->mlr3mbo: :AcqgFunction -> AcqgFunctionEIPS

mlr_acqfunctions_eips 19

Public fields

y_best (numeric(1))
Best objective function value observed so far.

Active bindings
y_col (character(1)).

time_col (character(1)).

Methods

Public methods:
e AcqFunctionEIPS$new()
¢ AcqFunctionEIPS$update()
¢ AcqFunctionEIPS$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcgFunctionEIPS$new(surrogate = NULL)

Arguments:
surrogate (NULL | SurrogateLearnerCollection).

Method update(): Updates acquisition function and sets y_best.

Usage:
AcqFunctionEIPS$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcgFunctionEIPS$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References
* Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of
Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.),

Advances in Neural Information Processing Systems, volume 25, 2951-2959.

See Also
Other Acquisition Function: AcqFunction, mlr_acqfunctions_cb, mlr_acqfunctions_ei, mlr_acqfunctions_mean,

mlr_acqfunctions_pi, mlr_acqfunctions_smsego, mlr_acqfunctions

20

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {

list(y = xs$x * 2, time = abs(xs$x))
}
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"), time =
objective = ObjectiveRFun$new(fun = fun, domain =

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

instance$eval_batch(data.table(x =

learner = 1lrn("regr.km",
covtype = "matern3_2",
optim.method = "gen”,
nugget.stability = 10*-8,
control = list(trace = FALSE))

surrogate = srlrnc(list(learner, learner$clone(deep =

surrogate$y_cols = c("y", "time")

acq_function = acqf("eips"”, surrogate = surrogate)
acg_function$surrogates$update()
acg_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

domain, codomain =

mlr_acqfunctions_mean

p_dbl(tags = "time"))
codomain)

c(-6, -5, 3, 9)))

TRUE)), archive = instance$archive)

mlr_acgfunctions_mean Acquisition Function Mean

Description

Posterior Mean.

Dictionary

This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated

sugar function acqf'():

mlr_acqfunctions_mean

mlr_acqgfunctions$get(”"mean")
acqf ("mean”)

Super classes

bbotk: :0bjective ->mlr3mbo: :AcgFunction -> AcgFunctionMean

Methods
Public methods:

¢ AcqFunctionMean$new()
¢ AcgFunctionMean$clone()
Method new(): Creates a new instance of this R6 class.

Usage:
AcgFunctionMean$new(surrogate = NULL)

Arguments:
surrogate (NULL | SurrogateLearner).
Method clone(): The objects of this class are cloneable with this method.

Usage:
AcgFunctionMean$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

21

Other Acquisition Function: AcqFunction, mlr_acqfunctions_cb, mlr_acgfunctions_eips,
mlr_acqfunctions_ei, mlr_acqfunctions_pi, mlr_acqfunctions_smsego, mlr_acqfunctions

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x * 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,

22 mlr_acqtfunctions_pi

terminator = trm("evals”, n_evals = 5))
instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = 1rn("regr.km",
covtype = "matern3_2",
optim.method = "gen”,
nugget.stability = 10%-8,
control = list(trace = FALSE))

surrogate = srlrn(learner, archive = instance$archive)
acqg_function = acqf("mean”, surrogate = surrogate)
acq_function$surrogate$update()

acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

mlr_acgfunctions_pi Acquisition Function Probability of Improvement

Description

Probability of Improvement.

Dictionary
This AcqFunction can be instantiated via the dictionary mlr_acqfunctions or with the associated

sugar function acqf'():

mlr_acqgfunctions$get("pi”)
acqf ("pi")
Super classes

bbotk: :0bjective ->mlr3mbo: :AcqFunction -> AcqFunctionPI

Public fields
y_best (numeric(1))
Best objective function value observed so far.
Methods

Public methods:

* AcqFunctionPI$new()
* AcqFunctionPI$update()

mlr_acqtfunctions_pi 23

e AcgFunctionPI$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AcgFunctionPI$new(surrogate = NULL)

Arguments:
surrogate (NULL | SurrogateLearner).

Method update(): Updates acquisition function and sets y_best.

Usage:
AcgFunctionPI$update()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AcgFunctionPI$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

* Kushner, J. H (1964). “A New Method of Locating the Maximum Point of an Arbitrary Mul-
tipeak Curve in the Presence of Noise.” Journal of Basic Engineering, 86(1), 97-106.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions_cb, mlr_acqfunctions_eips,
mlr_acqgfunctions_ei, mlr_acqgfunctions_mean, mlr_acgfunctions_smsego, mlr_acqfunctions

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud”)) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

fun = function(xs) {
list(y = xs$x * 2)
3
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

24 mlr_acqfunctions_smsego

instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))

learner = 1rn("regr.km",
covtype = "matern3_2",
optim.method = "gen"”,
nugget.stability = 10*-8,
control = list(trace = FALSE))

surrogate = srlrn(learner, archive = instance$archive)
acg_function = acqf("pi", surrogate = surrogate)
acqg_function$surrogate$update()

acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))

mlr_acgfunctions_smsego
Acquisition Function SMS-EGO

Description

S-Metric Selection Evolutionary Multi-Objective Optimization Algorithm Acquisition Function.

Parameters

e "lambda” (numeric(1))
A value used for the confidence bound. Defaults to 1. Based on confidence = (1 -2 %
dnorm(lambda)) * m you can calculate a lambda for a given confidence level, see Ponweiser
et al. (2008).

e "epsilon” (numeric(1))
€ used for the additive epsilon dominance. Can either be a single numeric value > 0 or NULL
(default). In the case of being NULL, an epsilon vector is maintained dynamically as described
in Horn et al. (2015).

Super classes

bbotk: :0bjective ->mlr3mbo: :AcgFunction -> AcqgFunctionSmsEgo

Public fields
ys_front (matrix())
Approximated Pareto front.

ref_point (numeric())
Reference point.

epsilon (numeric())
Epsilon used for the additive epsilon dominance.

mlr_acqtfunctions_smsego 25

progress (numeric(1))
Optimization progress (typically, the number of function evaluations left). Note that this re-
quires the bbotk::OptimInstance to be terminated via a bbotk::TerminatorEvals.

Methods

Public methods:

¢ AcqFunctionSmsEgo$new()
e AcgFunctionSmsEgo$update()
¢ AcqFunctionSmsEgo$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
AcgFunctionSmsEgo$new(surrogate = NULL, lambda = 1, epsilon = NULL)
Arguments:
surrogate (NULL | SurrogateLearnerCollection).

lambda (numeric(1)).

epsilon (NULL | numeric(1)).

Method update(): Updates acquisition function and sets ys_front, ref_point, epsilon.

Usage:
AcgFunctionSmsEgo$update()

Method clone(): The objects of this class are cloneable with this method.
Usage:
AcgFunctionSmsEgo$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

* Ponweiser, Wolfgang, Wagner, Tobias, Biermann, Dirk, Vincze, Markus (2008). “Multiobjec-
tive Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selec-
tion.” In Proceedings of the 10th International Conference on Parallel Problem Solving from
Nature, 784—794.

* Horn, Daniel, Wagner, Tobias, Biermann, Dirk, Weihs, Claus, Bischl, Bernd (2015). “Model-
Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Bench-
mark.” In International Conference on Evolutionary Multi-Criterion Optimization, 64-78.

See Also

Other Acquisition Function: AcqFunction, mlr_acqfunctions_cb, mlr_acgfunctions_eips,
mlr_acqfunctions_ei, mlr_acqfunctions_mean, mlr_acqfunctions_pi, mlr_acgfunctions

26

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)

mlr_loop_functions

p_dbl(tags "minimize"))
domain, codomain = codomain)

fun = function(xs) {
list(yl = xs$x"2, y2 = (xs$x - 2) * 2)
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(yl = p_dbl(tags = "minimize"), y2
objective = ObjectiveRFun$new(fun = fun, domain
instance = OptimInstanceMultiCrit$new(
objective = objective,

terminator = trm("evals”, n_evals = 5)

instance$eval_batch(data.table(x

learner = 1rn("regr.km",
covtype = "matern3_2",
optim.method = "gen",
nugget.stability = 10%-8,
control = list(trace = FALSE))

)

c(-6, -5, 3,

9N

surrogate = srlrnc(list(learner, learner$clone(deep = TRUE)), archive = instance$archive)

acq_function = acqf("smsego”, surrogate
acg_function$surrogates$update()
acq_function$progress 5 - 4 # n_evals
acq_function$update()

acg_function$eval_dt(data.table(x

surrogate)

5 and 4 points already evaluated

c(-1, 0, D)

mlr_loop_functions

Dictionary of Loop Functions

Description

A simple mlr3misc::Dictionary storing objects of class 1loop_function. Each loop function has an
associated help page, see mlr_loop_functions_[id].

Retrieves object with key key from the dictionary. Additional arguments must be named and are

passed to the constructor of the stored object.

mlr_loop_functions_ego 27

Arguments
key (character(1)).
(any)
Passed down to constructor.
Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Value

Object with corresponding key.

Methods

See mlr3misc::Dictionary.

See Also

Other Dictionary: mlr_acqfunctions

Other Loop Function: loop_function, mlr_loop_functions_ego, mlr_loop_functions_mpcl,
mlr_loop_functions_parego, mlr_loop_functions_smsego

Examples

as.data.table(mlr_loop_functions)

mlr_loop_functions_ego
Sequential Single-Objective Bayesian Optimization

Description

Loop function for sequential single-objective Bayesian Optimization. Normally used inside an
OptimizerMbo.

In each iteration after the initial design, the surrogate and acquisition function are updated and the
next candidate is chosen based on optimizing the acquisition function.

Usage

bayesopt_ego(
instance,
init_design_size = NULL,
surrogate,
acq_function,
acq_optimizer,
random_interleave_iter = QL

28 mlr_loop_functions_ego

Arguments

instance (bbotk::OptimInstanceSingleCrit)
The bbotk::OptimInstanceSingleCrit to be optimized.
init_design_size
(NULL I integer(1))
Size of the initial design. If NULL and the bbotk:: Archive contains no evaluations,
4 * d is used with d being the dimensionality of the search space. Points are
drawn uniformly at random.
surrogate (Surrogate)
Surrogate to be used as a surrogate. Typically a SurrogateLearner.
acg_function (AcqgFunction)
AcqgFunction to be used as acquisition function.
acqg_optimizer (AcqOptimizer)
AcqOptimizer to be used as acquisition function optimizer.
random_interleave_iter
(integer (1))
Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving
is performed in the second, fourth, sixth, ... iteration. Default is 9, i.e., no
random interleaving is performed at all.

Value

invisible(instance)
The original instance is modified in-place and returned invisible.

Note

* The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.

* The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acg_function.

* The surrogate$archive, even if already populated, will always be overwritten by the bbotk:: Archive
of the bbotk::OptimInstanceSingleCrit.

References
e Jones, R. D, Schonlau, Matthias, Welch, J. W (1998). “Efficient Global Optimization of
Expensive Black-Box Functions.” Journal of Global optimization, 13(4), 455-492.

* Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of
Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.),
Advances in Neural Information Processing Systems, volume 25, 2951-2959.

See Also

Other Loop Function: loop_function, mlr_loop_functions_mpcl, mlr_loop_functions_parego,
mlr_loop_functions_smsego, mlr_loop_functions

mlr_loop_functions_ego

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y = xs$x * 2)

}
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

surrogate = default_surrogate(instance)
acg_function = acqgf("ei")

acg_optimizer = acqo(
optimizer = opt("random_search”),
terminator = trm("evals”, n_evals = 100))

optimizer = opt("mbo”,
loop_function = bayesopt_ego,
surrogate = surrogate,
acq_function = acg_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)
expected improvement per second example

fun = function(xs) {
list(y = xs$x * 2, time = abs(xs$x))

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"), time = p_dbl(tags = "time"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

surrogate = default_surrogate(instance, n_learner = 2)
surrogate$y_cols = c("y", "time")

30 mlr_loop_functions_mpcl

optimizer = opt("mbo",
loop_function = bayesopt_ego,
surrogate = surrogate,
acg_function = acqf("eips"),
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)

}

mlr_loop_functions_mpcl
Single-Objective Bayesian Optimization via Multipoint Constant Liar

Description

Loop function for single-objective Bayesian Optimization via multipoint constant liar. Normally
used inside an OptimizerMbo.

In each iteration after the initial design, the surrogate and acquisition function are updated. The
acquisition function is then optimized, to find a candidate but instead of evaluating this candidate,
the objective function value is obtained by applying the liar function to all previously obtained
objective function values. This is repeated q - 1 times to obtain a total of q candidates that are then
evaluated in a single batch.

Usage

bayesopt_mpcl(
instance,
init_design_size = NULL,
surrogate,
acq_function,
acq_optimizer,
q=2L,
liar = mean,
random_interleave_iter = QL

Arguments

instance (bbotk::OptimInstanceSingleCrit)
The bbotk::OptimInstanceSingleCrit to be optimized.

init_design_size
(NULL | integer(1))
Size of the initial design. If NULL and the bbotk::Archive contains no evaluations,
4 % d is used with d being the dimensionality of the search space. Points are
drawn uniformly at random.

mlr_loop_functions_mpcl 31

surrogate (Surrogate)
Surrogate to be used as a surrogate. Typically a SurrogateLearner.

acq_function (AcqFunction)
AcqFunction to be used as acquisition function.

acq_optimizer (AcqOptimizer)
AcqOptimizer to be used as acquisition function optimizer.

q (integer(1))
Batch size > 1. Default is 2.

liar (function)
Any function accepting a numeric vector as input and returning a single numeric
output. Default is mean. Other sensible functions include min (or max, depending
on the optimization direction).

random_interleave_iter
(integer(1))
Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving
is performed in the second, fourth, sixth, ... iteration. Default is 9, i.e., no
random interleaving is performed at all.

Value

invisible(instance)
The original instance is modified in-place and returned invisible.

Note
* The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.

* The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acg_function.

* The surrogate$archive, even if already populated, will always be overwritten by the bbotk::Archive
of the bbotk::OptimInstanceSingleCrit.

» To make use of parallel evaluations in the case of ‘q > 1, the objective function of the bbotk::OptimInstanceSingleCrit
must be implemented accordingly.

References

* Ginsbourger, David, Le Riche, Rodolphe, Carraro, Laurent (2008). “A Multi-Points Criterion
for Deterministic Parallel Global Optimization Based on Gaussian processes.”

* Wang, Jialei, Clark, C. S, Liu, Eric, Frazier, 1. P (2020). “Parallel Bayesian Global Optimiza-
tion of Expensive Functions.” Operations Research, 68(6), 1850-1865.
See Also

Other Loop Function: loop_function,mlr_loop_functions_ego, mlr_loop_functions_parego,
mlr_loop_functions_smsego, mlr_loop_functions

32 mlr_loop_functions_parego

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y = xs$x * 2)

}
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 7))

surrogate = default_surrogate(instance)
acq_function = acqf("ei")

acg_optimizer = acqo(
optimizer = opt("random_search”),
terminator = trm("evals”, n_evals = 100))

optimizer = opt("mbo”,
loop_function = bayesopt_mpcl,
surrogate = surrogate,
acq_function = acqg_function,
acq_optimizer = acq_optimizer,
args = list(q = 3))

optimizer$optimize(instance)

}

mlr_loop_functions_parego
Multi-Objective Bayesian Optimization via ParEGO

Description

Loop function for multi-objective Bayesian Optimization via ParEGO. Normally used inside an
OptimizerMbo.

mlr_loop_functions_parego 33

In each iteration after the initial design, the observed objective function values are normalized and
g candidates are obtained by scalarizing these values via the augmented Tchebycheff function, up-
dating the surrogate with respect to these scalarized values and optimizing the acquisition function.

Usage

bayesopt_parego(

instance,

init_design_size = NULL,

surrogate,
acq_function,

acg_optimizer,

q =1L,
s = 100L,
rho = 0.05,

random_interleave_iter = oL

Arguments

instance

(bbotk::OptimInstanceMultiCrit)
The bbotk::OptimInstanceMultiCrit to be optimized.

init_design_size

surrogate

acqg_function

acg_optimizer

rho

(NULL | integer (1))

Size of the initial design. If NULL and the bbotk:: Archive contains no evaluations,
4 % d is used with d being the dimensionality of the search space. Points are
drawn uniformly at random.

(SurrogateLearner)
SurrogateLearner to be used as a surrogate.

(AcqFunction)

AcqFunction to be used as acquisition function.

(AcqOptimizer)

AcqOptimizer to be used as acquisition function optimizer.

(integer(1))

Batch size, i.e., the number of candidates to be obtained for a single batch.
Defaultis 1.

(integer(1))

s in Equation 1 in Knowles (2006). Determines the total number of possible
random weight vectors. Default is 100.

(numeric(1))
p in Equation 2 in Knowles (2006) scaling the linear part of the augmented
Tchebycheff function. Default is @.05

random_interleave_iter

(integer(1))

Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving

34

Value

mlr_loop_functions_parego

is performed in the second, fourth, sixth, ... iteration. Default is 9, i.e., no
random interleaving is performed at all.

invisible(instance)
The original instance is modified in-place and returned invisible.

Note
* The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.
* The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acq_function.
» The surrogate$archive, even if already populated, will always be overwritten by the bbotk:: Archive
of the bbotk::OptimInstanceMultiCrit.
» The scalarizations of the objective function values are stored as the y_scal column in the
bbotk::Archive of the bbotk::OptimInstanceMultiCrit.
must be implemented accordingly.
References
* Knowles, Joshua (2006). “ParEGO: A Hybrid Algorithm With On-Line Landscape Approxi-
mation for Expensive Multiobjective Optimization Problems.” IEEE Transactions on Evolu-
tionary Computation, 10(1), 50-66.
See Also

* To make use of parallel evaluations in the case of ‘q > 1, the objective function of the bbotk::OptimInstanceMultiCrit

Other Loop Function: loop_function, mlr_loop_functions_ego, mlr_loop_functions_mpcl,
mlr_loop_functions_smsego, mlr_loop_functions

Examples

if (requireNamespace("mlr3learners”) &

requireNamespace(”"DiceKriging”) &
requireNamespace("rgenoud”)) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {

list(yl = xs$x*2, y2 = (xs$x - 2) * 2)
}
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(yl = p_dbl(tags = "minimize"), y2
objective = ObjectiveRFun$new(fun = fun, domain

p_dbl(tags = "minimize"))
domain, codomain = codomain)

mlr_loop_functions_smsego 35

instance = OptimInstanceMultiCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

surrogate = default_surrogate(instance, n_learner = 1)
acqg_function = acqf("ei")

acqg_optimizer = acqo(
optimizer = opt(”"random_search”),
terminator = trm("evals”, n_evals = 100))

optimizer = opt("mbo",
loop_function = bayesopt_parego,
surrogate = surrogate,
acg_function = acqg_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)

}

mlr_loop_functions_smsego
Sequential Multi-Objective Bayesian Optimization via SMS-EGO

Description

Loop function for sequential multi-objective Bayesian Optimization via SMS-EGO. Normally used
inside an OptimizerMbo.

In each iteration after the initial design, the surrogate and acquisition function (mlr_acqfunctions_smsego)

are updated and the next candidate is chosen based on optimizing the acquisition function.

Usage

bayesopt_smsego(
instance,
init_design_size = NULL,
surrogate,
acq_function,
acg_optimizer,
random_interleave_iter = QL

Arguments

instance (bbotk::OptimInstanceMultiCrit)
The bbotk::OptimInstanceMultiCrit to be optimized.

36 mlr_loop_functions_smsego

init_design_size
(NULL | integer(1))
Size of the initial design. If NULL and the bbotk::Archive contains no evaluations,
4 % d is used with d being the dimensionality of the search space. Points are
drawn uniformly at random.
surrogate (SurrogateLearnerCollection)
SurrogateLearnerCollection to be used as a surrogate.
acq_function (mlr_acqfunctions_smsego)
mlr_acqfunctions_smsego to be used as acquisition function.
acq_optimizer (AcqOptimizer)
AcqOptimizer to be used as acquisition function optimizer.
random_interleave_iter
(integer(1))
Every random_interleave_iter iteration (starting after the initial design), a
point is sampled uniformly at random and evaluated (instead of a model based
proposal). For example, if random_interleave_iter = 2, random interleaving
is performed in the second, fourth, sixth, ... iteration. Default is o, i.e., no
random interleaving is performed at all.

Value

invisible(instance)
The original instance is modified in-place and returned invisible.

Note
» The acq_function$surrogate, even if already populated, will always be overwritten by the
surrogate.

» The acq_optimizer$acq_function, even if already populated, will always be overwritten
by acq_function.

» The surrogate$archive, even if already populated, will always be overwritten by the bbotk:: Archive
of the bbotk::OptimInstanceMultiCrit.

* Due to the iterative computation of the epsilon within the mlr_acqfunctions_smsego, requires
the bbotk:: Terminator of the bbotk::OptimInstanceMultiCrit to be a bbotk::TerminatorEvals.

References

* Beume N, Naujoks B, Emmerich M (2007). “SMS-EMOA: Multiobjective selection based on
dominated hypervolume.” European Journal of Operational Research, 181(3), 1653—1669.

» Ponweiser, Wolfgang, Wagner, Tobias, Biermann, Dirk, Vincze, Markus (2008). “Multiobjec-
tive Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selec-
tion.” In Proceedings of the 10th International Conference on Parallel Problem Solving from
Nature, 784-794.

See Also

Other Loop Function: loop_function, mlr_loop_functions_ego, mlr_loop_functions_mpcl,
mlr_loop_functions_parego, mlr_loop_functions

mlr_optimizers_mbo 37

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {

library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(yl = xs$x"2, y2 = (xs$x - 2) * 2)

}
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(yl = p_dbl(tags = "minimize"”), y2 = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceMultiCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

surrogate = default_surrogate(instance)
acqg_function = acqf("smsego")

acg_optimizer = acqo(
optimizer = opt("random_search”),
terminator = trm("evals”, n_evals = 100))

optimizer = opt("mbo”,
loop_function = bayesopt_smsego,
surrogate = surrogate,
acq_function = acqg_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)

}

mlr_optimizers_mbo Model Based Optimization

Description

OptimizerMbo class that implements Model Based Optimization (MBO). The implementation fol-
lows a modular layout relying on a loop_function determining the MBO flavor to be used, e.g.,
bayesopt_ego for sequential single-objective Bayesian Optimization, a Surrogate, an AcqFunction,
e.g., mlr_acqfunctions_ei for Expected Improvement and an AcqOptimizer.

38 mlr_optimizers_mbo

MBO algorithms are iterative optimization algorithms that make use of a continuously updated
surrogate model built for the objective function. By optimizing a comparably cheap to evaluate
acquisition function defined on the surrogate prediction, the next candidate is chosen for evaluation.

Detailed descriptions of different MBO flavors are provided in the documentation of the respective
loop_function.

Termination is handled via a bbotk::Terminator part of the bbotk::OptimInstance to be optimized.

Archive
The bbotk::Archive holds the following additional columns that are specific to MBO algorithms:

* [acq_function$id] (numeric(1))
The value of the acquisition function.

* .already_evaluated (logical(1))
Whether this point was already evaluated. Depends on the skip_already_evaluated param-
eter of the AcqOptimizer.

Super class

bbotk: :Optimizer -> OptimizerMbo

Active bindings

loop_function (loop_function | NULL)
Loop function determining the MBO flavor.

surrogate (Surrogate | NULL)
The surrogate.

acq_function (AcqFunction | NULL)
The acquisition function.

acq_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.

args (named list())
Further arguments passed to the loop_function. For example, random_interleave_iter.

result_function (function | NULL)
Optional function called after the optimization terminates. Determines how the final re-
sult of the optimization is calculated. Requires arguments inst (the bbotk::OptimInstance)
and self (the OptimizerMbo). See for example result_by_surrogate_design which is used
by default if the bbotk::OptimInstance has the property "noisy” (which is the case for a
mlr3tuning:: TuningInstanceSingleCrit or mlr3tuning:: TuningInstanceMultiCrit).

param_classes (character())
Supported parameter classes that the optimizer can optimize. Determined based on the surrogate
and the acq_optimizer. Subclasses of paradox::Param.

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.
MBO in principle is very flexible and by default we assume that the optimizer has all prop-
erties. When fully initialized, properties are determined based on the loop_function and
surrogate.

mlr_optimizers_mbo 39

packages (character())
Set of required packages. A warning is signaled prior to optimization if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
Required packages are determined based on the surrogate and the acq_optimizer.

Methods

Public methods:

e OptimizerMbo$new()

e OptimizerMbo$print()
e OptimizerMbo$reset()
e OptimizerMbo$clone()

Method new(): Creates a new instance of this R6 class.

If surrogate is NULL and the acg_function$surrogate field is populated, this Surrogate is
used. Otherwise, default_surrogate(instance) is used. If acg_function is NULL and
the acq_optimizer$acq_function field is populated, this AcqFunction is used (and therefore
its $surrogate if populated; see above). Otherwise default_acqfun(instance) is used. If
acq_optimizer is NULL, default_acqopt(instance) is used.

Even if already initialized, the $surrogate$archive field will always be overwritten by the
bbotk::Archive of the current bbotk::OptimInstance to be optimized.

For more information on default values for loop_function, surrogate, acq_function and
acq_optimizer, see ?mbo_defaults.

Usage:

OptimizerMbo$new(
loop_function = NULL,
surrogate = NULL,
acg_function = NULL,
acq_optimizer = NULL,
args = NULL,
result_function = NULL

)

Arguments:
loop_function (loop_function | NULL)
Loop function determining the MBO flavor.
surrogate (Surrogate | NULL)
The surrogate.
acqg_function (AcqFunction | NULL)
The acquisition function.
acq_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.
args (named list())
Further arguments passed to the loop_function. For example, random_interleave_iter.
result_function (function | NULL)
Optional function called after the optimization terminates. Determines how the final re-
sult of the optimization is calculated. Requires arguments inst (the bbotk::OptimInstance)

40 mlr_optimizers_mbo

and self (the OptimizerMbo). See for example result_by_surrogate_design which is used
by default if the bbotk::OptimInstance has the property "noisy” (which is the case for a
mlr3tuning::TuningInstanceSingleCrit or mlr3tuning::TuningInstanceMultiCrit).

Method print(): Print method.

Usage:
OptimizerMbo$print()

Returns: (character()).

Method reset(): Reset the optimizer. Sets the following fields to NULL: loop_function,
surrogate, acq_function, acq_optimizer, args, result_function

Usage:

OptimizerMbo$reset()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerMbo$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {

library(bbotk)
library(paradox)
library(mlr3learners)

single-objective EGO
fun = function(xs) {
list(y = xs$x * 2)

3
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

learner = 1rn("regr.km",
covtype = "matern3_2",
optim.method = "gen”,
nugget.stability = 10%-8,
control = list(trace = FALSE))

mlir_tuners_mbo 41

surrogate = srlrn(learner)
acqg_function = acqgf("ei")

acg_optimizer = acqo(
optimizer = opt("random_search”),
terminator = trm("evals”, n_evals = 100))

optimizer = opt("mbo”,
loop_function = bayesopt_ego,
surrogate = surrogate,
acq_function = acqg_function,
acg_optimizer = acq_optimizer)

optimizer$optimize(instance)
multi-objective ParEGO

fun = function(xs) {
list(yl = xs$x"2, y2 = (xs$x - 2) * 2)

}
domain = ps(x = p_dbl(lower = -10@, upper = 10))
codomain = ps(yl = p_dbl(tags = "minimize"”), y2 = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceMultiCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

optimizer = opt("mbo”,
loop_function = bayesopt_parego,
surrogate = surrogate,
acq_function = acqg_function,
acq_optimizer = acq_optimizer)

optimizer$optimize(instance)

3

mlr_tuners_mbo Tuner using Model Based Optimization

Description

TunerMbo class that implements Model Based Optimization (MBO). This is a minimal interface
internally passing on to OptimizerMbo. For additional information and documentation see Opti-
mizerMbo.

Super classes

mlr3tuning: :Tuner ->mlr3tuning: : TunerFromOptimizer -> TunerMbo

42 mlir_tuners_mbo

Active bindings

loop_function (loop_function | NULL)
Loop function determining the MBO flavor.

surrogate (Surrogate | NULL)
The surrogate.

acq_function (AcqFunction | NULL)
The acquisition function.

acq_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.

args (named list())
Further arguments passed to the loop_function. For example, random_interleave_iter.

result_function (function I NULL)
Optional function called after the optimization terminates. Determines how the final re-
sult of the optimization is calculated. Requires arguments inst (the bbotk::OptimInstance)
and self (the OptimizerMbo). See for example result_by_surrogate_design which is used
by default if the bbotk::OptimInstance has the property "noisy” (which is the case for a
mlr3tuning:: TuningInstanceSingleCrit or mlr3tuning:: TuningInstanceMultiCrit).

param_classes (character())
Supported parameter classes that the optimizer can optimize. Determined based on the surrogate
and the acq_optimizer. Subclasses of paradox::Param.

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.
MBO in principle is very flexible and by default we assume that the optimizer has all prop-
erties. When fully initialized, properties are determined based on the loop_function and
surrogate.

packages (character())
Set of required packages. A warning is signaled prior to optimization if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().
Required packages are determined based on the surrogate and the acq_optimizer.

Methods

Public methods:

e TunerMbo$new()

* TunerMbo$print ()
* TunerMbo$reset()
* TunerMbo$clone()

Method new(): Creates a new instance of this R6 class. For more information on default values
for loop_function, surrogate, acq_function and acq_optimizer, see ?mbo_defaults.

Note that all the parameters below are simply passed to the OptimizerMbo and the respective
fields are simply (settable) active bindings to the fields of the OptimizerMbo.

Usage:

mlir_tuners_mbo 43

TunerMbo$new(
loop_function = NULL,
surrogate = NULL,
acq_function = NULL,
acq_optimizer = NULL,
args = NULL,
result_function = NULL

)

Arguments:

loop_function (loop_function | NULL)
Loop function determining the MBO flavor.

surrogate (Surrogate | NULL)
The surrogate.

acqg_function (AcgFunction | NULL)
The acquisition function.

acg_optimizer (AcqOptimizer | NULL)
The acquisition function optimizer.

args (named list())
Further arguments passed to the loop_function. For example, random_interleave_iter.

result_function (function I NULL)
Optional function called after the optimization terminates. Determines how the final re-
sult of the optimization is calculated. Requires arguments inst (the bbotk::OptimInstance)
and self (the OptimizerMbo). See for example result_by_surrogate_design which is used
by default if the bbotk::OptimInstance has the property "noisy” (which is the case for a
mlr3tuning::TuningInstanceSingleCrit or mlr3tuning::TuningInstanceMultiCrit).

Method print(): Print method.

Usage:
TunerMbo$print ()

Returns: (character()).
Method reset(): Reset the tuner. Sets the following fields to NULL: 1loop_function, surrogate,
acqg_function, acqg_optimizer, args, result_function

Usage:
TunerMbo$reset ()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerMbo$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

44 result_by_default

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {

library(mlr3)
library(mlr3tuning)

single-objective

task = tsk("wine")

learner = 1rn("classif.rpart”, cp = to_tune(lower = 1e-4, upper = 1, logscale = TRUE))
resampling = rsmp(”cv”, folds = 3)

measure = msr("”classif.acc")

instance = TuningInstanceSingleCrit$new(
task = task,
learner = learner,
resampling = resampling,
measure = measure,
terminator = trm("evals”, n_evals = 5))

tnr("mbo")$optimize(instance)

multi-objective

task = tsk("wine")

learner = 1rn("classif.rpart”, cp = to_tune(lower = 1e-4, upper = 1, logscale = TRUE))
resampling = rsmp(”"cv”, folds = 3)

measures = msrs(c(”classif.acc”, "selected_features”))

instance = TuningInstanceMultiCrit$new(
task = task,
learner = learner,
resampling = resampling,
measures = measures,
terminator = trm("evals”, n_evals = 5),
store_models = TRUE) # required due to selected features

tnr("mbo")$optimize(instance)

result_by_default Choose Final Point(s) based on the Archive

Description

Choose final point(s) based on all evaluations in the archive.

result_by_surrogate_design 45

Usage

result_by_default(instance, optimizer_mbo)

Arguments

instance (bbotk::OptimInstanceSingleCrit | bbotk::OptimInstanceMultiCrit)
The bbotk::OptimInstance the result should be assigned to.

optimizer_mbo (OptimizerMbo)
The OptimizerMbo that generates the final result.

result_by_surrogate_design
Choose Final Point(s) by Surrogate Mean

Description

Choose final point(s) by best surrogate mean prediction on all evaluated points.

Usage

result_by_surrogate_design(instance, optimizer_mbo)

Arguments

instance (bbotk::OptimInstanceSingleCrit | bbotk::OptimInstanceMultiCrit)
The bbotk::OptimInstance the result should be assigned to.

optimizer_mbo (OptimizerMbo)
The OptimizerMbo that generates the final result.

srlrn Syntactic Sugar Surrogate Learner Construction

Description

This function allows to construct a SurrogateLearner in the spirit of mlr_sugar from mlr3.

Usage

srlrn(learner, archive = NULL, x_cols = NULL, y_col = NULL, ...)

https://CRAN.R-project.org/package=mlr3

46 srirnc

Arguments
learner (mlr3::LearnerRegr)
mlr3::LearnerRegr that is to be used.
archive (NULL | bbotk::Archive)
bbotk::Archive of the bbotk::OptimInstance used. Can also be NULL.
x_cols (NULL | character())

Names of columns in the bbotk::Archive that should be used as features. Can
also be NULL.

y_col (NULL | character (1))
Name of the column in the bbotk::Archive that should be used as a target. Can
also be NULL.

(named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet.

Value

Surrogatelearner

Examples

srlrn(lrn("regr.featureless”), catch_errors = FALSE)

srlrnc Syntactic Sugar Surrogate Learner Collection Construction

Description

This function allows to construct a SurrogateLearnerCollection in the spirit of mlr_sugar from

mir3.
Usage
srlrnc(learners, archive = NULL, x_cols = NULL, y_cols = NULL, ...)
Arguments
learners (List of mlr3::LearnerRegr)
mlr3::LearnerRegr that are to be used.
archive (NULL I bbotk::Archive)
bbotk::Archive of the bbotk::OptimInstance used. Can also be NULL.
Xx_cols (NULL | character())

Names of columns in the bbotk::Archive that should be used as features. Can
also be NULL.

https://CRAN.R-project.org/package=mlr3

Surrogate 47

y_cols (NULL | character())
Names of the columns in the bbotk::Archive that should be used as targets. Can
also be NULL.

(named 1list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet.

Value

SurrogateLearnerCollection

Examples

srlrnc(list(1rn("regr.featureless”), 1lrn("regr.featureless")), catch_errors = FALSE)

Surrogate Surrogate Model

Description

Abstract surrogate model class.

A surrogate model is used to model the unknown objective function(s) based on all points evaluated
so far.

Public fields

model (model)
Arbitrary model object depending on the subclass.

Active bindings

print_id (character)
Id used when printing.

archive (bbotk::Archive | NULL)
bbotk::Archive of the bbotk::OptimInstance.

n_learner (integer(1))
Returns the number of surrogate models.

x_cols (character() INULL)
Column Id’s of variables that should be used as features. By default, automatically inferred
based on the archive.

y_cols (character() I NULL)

Column Id’s of variables that should be used as targets. By default, automatically inferred
based on the archive.

insample_perf (numeric())
Surrogate model’s current insample performance.

48 Surrogate

param_set (paradox::ParamSet)
Set of hyperparameters.

assert_insample_perf (numeric())
Asserts whether the current insample performance meets the performance threshold.

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().

feature_types (character())
Stores the feature types the surrogate can handle, e.g. "logical”, "numeric”, or "factor”. A
complete list of candidate feature types, grouped by task type, is stored inmlr_reflections$task_feature_types.

properties (character())
Stores a set of properties/capabilities the surrogate has. A complete list of candidate proper-
ties, grouped by task type, is stored in mlr_reflections$learner_properties.

Methods
Public methods:

* Surrogate$new()

* Surrogate$update()
* Surrogate$predict()
e Surrogate$format()
e Surrogate$print()

* Surrogate$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Surrogate$new(model, archive, x_cols, y_cols, param_set)

Arguments:
model (model)

Arbitrary model object depending on the subclass.
archive (bbotk::Archive | NULL)

bbotk:: Archive of the bbotk::OptimInstance.

x_cols (character() I NULL)
Column Id’s of variables that should be used as features. By default, automatically inferred
based on the archive.

y_cols (character() I NULL)
Column Id’s of variables that should be used as targets. By default, automatically inferred
based on the archive.

param_set (paradox::ParamSet)
Parameter space description depending on the subclass.
Method update(): Train model with new data. Subclasses must implement $private.update().

Usage:
Surrogate$update()

SurrogateLearner 49

Returns: NULL.
Method predict(): Predict mean response and standard error. Must be implemented by sub-
classes.

Usage:
Surrogate$predict(xdt)

Arguments:

xdt (data.table::data.table())
New data. One row per observation.

Returns: Arbitrary prediction object.

Method format(): Helper for print outputs.
Usage:
Surrogate$format ()

Method print(): Print method.

Usage:
Surrogate$print()

Returns: (character()).

Method clone(): The objects of this class are cloneable with this method.

Usage:
Surrogate$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Surrogatelearner Surrogate Model Containing a Single Learner

Description

Surrogate model containing a single mlr3::LearnerRegr.

Parameters

assert_insample_perf logical(1)
Should the insample performance of the mlr3::LearnerRegr be asserted after updating the
surrogate? If the assertion fails (i.e., the insample performance based on the perf_measure
does not meet the perf_threshold), an error is thrown. Default is FALSE.

perf_measure mlr3::MeasureRegr
Performance measure which should be use to assert the insample performance of the mlr3::LearnerRegr.

Only relevant if assert_insample_perf = TRUE. Default is mlr3::mlr_measures_regr.rsq.

50 SurrogateLearner

perf_threshold numeric(1)
Threshold the insample performance of the mlr3::LearnerRegr should be asserted against.
Only relevant if assert_insample_perf = TRUE. Default is 0.

catch_errors logical(1)
Should errors during updating the surrogate be caught and propagated to the loop_function
which can then handle the failed infill optimization (as a result of the failed surrogate) appro-
priately by, e.g., proposing a randomly sampled point for evaluation? Default is TRUE.

Super class

mlr3mbo: :Surrogate -> SurrogatelLearner

Active bindings

print_id (character)
Id used when printing.

n_learner (integer(1))
Returns the number of surrogate models.

assert_insample_perf (numeric())
Asserts whether the current insample performance meets the performance threshold.

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().

feature_types (character())
Stores the feature types the surrogate can handle, e.g. "logical”, "numeric”, or "factor”. A
complete list of candidate feature types, grouped by task type, is stored inmlr_reflections$task_feature_types.

properties (character())
Stores a set of properties/capabilities the learner has. A complete list of candidate properties,
grouped by task type, is stored in mlr_reflections$learner_properties.

Methods

Public methods:
e SurrogatelLearner$new()
* SurrogatelLearner$predict()
e SurrogatelLearner$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
SurrogatelLearner$new(learner, archive = NULL, x_cols = NULL, y_col = NULL)

Arguments:

learner (mlr3::LearnerRegr).

archive (bbotk::Archive | NULL)
bbotk:: Archive of the bbotk::OptimInstance.

SurrogateLearner 51

x_cols (character() I NULL)
Column Id’s of variables that should be used as features. By default, automatically inferred
based on the archive.

y_col (character(1) INULL)
Column Id of variable that should be used as a target. By default, automatically inferred
based on the archive.

Method predict(): Predict mean response and standard error.
Usage:
SurrogatelLearner$predict(xdt)
Arguments:

xdt (data.table::data.table())
New data. One row per observation.

Returns: data.table::data.table() with the columns mean and se.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SurrogatelLearner$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”)) {
library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(y = xs$x * 2)

}
domain = ps(x = p_dbl(lower = -1@, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceSingleCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))

xdt = generate_design_random(instance$search_space, n = 4)$data
instance$eval_batch(xdt)
learner = 1rn("regr.km",

covtype = "matern3_2",

optim.method = "gen"”,
nugget.stability = 10*-8,

52 SurrogateLearnerCollection

control = list(trace = FALSE))
surrogate = srlrn(learner, archive = instance$archive)
surrogate$update()

surrogate$model$model

}

SurrogatelLearnerCollection
Surrogate Model Containing Multiple Learners

Description

Surrogate model containing multiple mlr3::LearnerRegr. The mlr3::LearnerRegr are fit on the target
variables as indicated via y_cols. Note that redundant mlr3::LearnerRegr must be deep clones.

Parameters

assert_insample_perf logical(1)
Should the insample performance of the mlr3::LearnerRegr be asserted after updating the
surrogate? If the assertion fails (i.e., the insample performance based on the perf_measure
does not meet the perf_threshold), an error is thrown. Default is FALSE.

perf_measure List of mlr3::MeasureRegr
Performance measures which should be use to assert the insample performance of the mlr3::LearnerRegr.
Only relevant if assert_insample_perf = TRUE. Default is mlr3::mlr_measures_regr.rsq for
each learner.

perf_threshold List of numeric(1)
Thresholds the insample performance of the mlr3::LearnerRegr should be asserted against.
Only relevant if assert_insample_perf = TRUE. Default is @ for each learner.

catch_errors logical(1)
Should errors during updating the surrogate be caught and propagated to the loop_function
which can then handle the failed infill optimization (as a result of the failed surrogate) appro-
priately by, e.g., proposing a randomly sampled point for evaluation? Default is TRUE.

Super class

mlr3mbo: :Surrogate -> SurrogatelLearnerCollection

Active bindings
print_id (character)
Id used when printing.

n_learner (integer(1))
Returns the number of surrogate models.

SurrogateLearnerCollection 53

assert_insample_perf (numeric())
Asserts whether the current insample performance meets the performance threshold.

packages (character())
Set of required packages. A warning is signaled if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace().
feature_types (character())
Stores the feature types the surrogate can handle, e.g. "logical”, "numeric”, or "factor”. A
complete list of candidate feature types, grouped by task type, is stored inmlr_reflections$task_feature_types.

properties (character())
Stores a set of properties/capabilities the surrogate has. A complete list of candidate proper-
ties, grouped by task type, is stored in mlr_reflections$learner_properties.

Methods
Public methods:

e SurrogatelLearnerCollection$new()
e SurrogatelLearnerCollection$predict()
e SurrogatelLearnerCollection$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
SurrogatelLearnerCollection$new(
learners,
archive = NULL,
x_cols = NULL,
y_cols = NULL
)

Arguments:
learners (list of mlr3::LearnerRegr).
archive (bbotk::Archive | NULL)
bbotk:: Archive of the bbotk::OptimInstance.

x_cols (character() INULL)
Column Id’s of variables that should be used as features. By default, automatically inferred
based on the archive.

y_cols (character() INULL)
Column Id’s of variables that should be used as targets. By default, automatically inferred
based on the archive.

Method predict(): Predict mean response and standard error. Returns a named list of data.tables.
Each contains the mean response and standard error for one y_col.

Usage:

SurrogatelLearnerCollection$predict(xdt)

Arguments:

xdt (data.table::data.table())
New data. One row per observation.

54 SurrogateLearnerCollection

Returns: list of data.table::data.table()s with the columns mean and se.

Method clone(): The objects of this class are cloneable with this method.
Usage:
SurrogatelLearnerCollection$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

if (requireNamespace("mlr3learners”) &
requireNamespace("DiceKriging”) &
requireNamespace("rgenoud”) &
requireNamespace("ranger”)) {
library(bbotk)
library(paradox)
library(mlr3learners)

fun = function(xs) {
list(yl = xs$x"2, y2 = (xs$x - 2) * 2)

}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(yl = p_dbl(tags = "minimize"), y2 = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)

instance = OptimInstanceMultiCrit$new(
objective = objective,
terminator = trm("evals”, n_evals = 5))
xdt = generate_design_random(instance$search_space, n = 4)$%data

instance$eval_batch(xdt)
learner1 = 1rn("regr.km",
covtype = "matern3_2",
optim.method = "gen"”,
nugget.stability = 10%-8,
control = list(trace = FALSE))
learner2 = 1rn("regr.ranger”,
num.trees = 500,
keep.inbag = TRUE,
se.method = "jack")
surrogate = srlrnc(list(learnerl, learner2), archive = instance$archive)
surrogate$update()

surrogate$model

surrogate$model[["y2"1]1$model

Index

* Acquisition Function
AcgFunction, 5
mlr_acqgfunctions, 14
mlr_acqgfunctions_cb, 14
mlr_acqgfunctions_ei, 16
mlr_acqgfunctions_eips, 18
mlr_acgfunctions_mean, 20
mlr_acgfunctions_pi, 22
mlr_acgfunctions_smsego, 24

x Dictionary
mlr_acqgfunctions, 14
mlr_loop_functions, 26

* Loop Function
loop_function, 13
mlr_loop_functions, 26
mlr_loop_functions_ego, 27
mlr_loop_functions_mpcl, 30
mlr_loop_functions_parego, 32
mlr_loop_functions_smsego, 35

x datasets
mlr_acqfunctions, 14
mlr_loop_functions, 26

+ mbo_defaults
default_acqgfun, 10
default_acqopt, 10
default_loopfun, 11
default_surrogate, 11
mbo_defaults, 13

acqf, 4

acqaf (), 14, 16, 18, 20, 22

AcqFunction, 4,5, 7-10, 14-23, 25, 28, 31,
33,37-39,42, 43

AcqFunctionCB (mlr_acqfunctions_cb), 14

AcqFunctionEI (mlr_acqfunctions_ei), 16

AcgFunctionEIPS
(mlr_acgfunctions_eips), 18

AcgFunctionMean
(mlr_acqgfunctions_mean), 20

AcgFunctionPI (mlr_acqfunctions_pi), 22

55

AcgFunctionSmsEgo
(mlr_acgfunctions_smsego), 24

acqo, 7

AcqOptimizer, 7,8, 10, 28, 31, 33, 36-39, 42
43

bayesopt_ego, 11, 13, 37
bayesopt_ego (mlr_loop_functions_ego),
27
bayesopt_mpcl
(mlr_loop_functions_mpcl), 30
bayesopt_parego
(mlr_loop_functions_parego), 32
bayesopt_smsego, 11/
bayesopt_smsego
(mlr_loop_functions_smsego), 35
:Archive, 5, 8, 28, 30, 31, 33, 34, 36,
38, 39, 4648, 50, 53
:0Objective, 5, 15, 16, 18, 21, 22, 24
:OptimInstance, 5, 6, 8, 10-12, 25,
38-40, 42, 43, 4548, 50, 53
:OptimInstanceMultiCrit, /2,
33-36,45
:OptimInstanceSingleCrit, 12, 18,
28, 30, 31,45
:Optimizer, 7-9, 38
:OptimizerRandomSearch, 10
bbotk: :Terminator, 7-9, 36, 38
bbotk::TerminatorEvals, 10, 25, 36
bbotk_reflections$optimizer_properties
38,42

bbotk:

bbotk:
bbotk:

bbotk:
bbotk:

bbotk:
bbotk:

data.table::data.table(), 6, 9,49, 51, 53
54

default_acqgfun, 10, 10, 11-13

default_acqopt, 10, 10, 11-13

default_loopfun, 10, 11,12, 13

default_surrogate, 10, 11,11, 13

dictionary, 4, 14, 16, 18, 20, 22

56

loop_function, 11,13, 27, 28, 31, 34, 36-39,
42,43

mbo_defaults, 10-12, 13
mlr3::Learner, 12
mlr3::LearnerRegr, 46, 49, 50, 52, 53
mlr3::MeasureRegr, 49, 52
mlr3::mlr_measures_regr.rsq, 49, 52
mlr3mbo (mlr3mbo-package), 3
mlr3mbo-package, 3
mlr3mbo: :AcgFunction, 15, 16, 18, 21, 22, 24
mlr3mbo: : Surrogate, 50, 52
mlr3misc::Dictionary, 14, 26, 27
mlr3misc::dictionary_sugar_get(), 4
mlr3tuning: :Tuner, 41
mlr3tuning: :TunerFromOptimizer, 41/
mlr3tuning::TuningInstanceMultiCrit,
38, 40,42, 43
mlr3tuning::TuningInstanceSingleCrit
38, 40, 42, 43
mlr_acqfunctions, 4, 7, 14, 14, 15-23, 25, 27
mlr_acqfunctions_cbh, 7, 14,14, 17, 19, 21
23,25
mlr_acgfunctions_ei, 7, 10, 14, 15, 16, 19
21,23,25,37
mlr_acqfunctions_eips, 7, 14, 15, 17, 18,
21,23,25
mlr_acgfunctions_mean, 7, 14, 15,17, 19,
20, 23,25
mlr_acqfunctions_pi, 7, 14, 15,17, 19, 21,
22,25
mlr_acqfunctions_smsego, 7, 10, 14, 15, 17,
19,21, 23,24, 35, 36
mlr_loop_functions, 13, 14, 26, 28, 31, 34,
36
mlr_loop_functions_ego, 13, 27,27, 31, 34,
36
mlr_loop_functions_mpcl, 13,27, 28, 30,
34, 36
mlr_loop_functions_parego, 13,27, 28, 31,
32, 36
mlr_loop_functions_smsego, 13,27, 28, 31,
34,35
mlr_optimizers_mbo, 37
mlr_reflections$learner_properties, 48,
50, 53
mlr_reflections$task_feature_types, 48,
50, 53
mlr_tuners_mbo, 41

INDEX

OptimizerMbo, 13,27, 30, 32, 35, 38, 4043,
45
OptimizerMbo (mlr_optimizers_mbo), 37

paradox: :Param, 38, 42
paradox: :ParamSet, 4, 6-8, 4648

R6,5,9,15,17,19,21, 23,25, 39,42, 48, 50,
53

R6::R6Class, 14, 27

requireNamespace(), 39, 42, 48, 50, 53

result_by_default, 44

result_by_surrogate_design, 38, 40, 42,
43,45

srlrn, 45

srlrnc, 46

Surrogate, 5, 6, 11, 12, 28, 31, 37-39, 42, 43,
47

Surrogatelearner, 12, 15,17, 21, 23,28, 31,
33,45, 46, 49

SurrogatelLearnerCollection, 12, 18, 19,
25, 36, 46, 47, 52

TunerMbo (mlr_tuners_mbo), 41

	mlr3mbo-package
	acqf
	AcqFunction
	acqo
	AcqOptimizer
	default_acqfun
	default_acqopt
	default_loopfun
	default_surrogate
	loop_function
	mbo_defaults
	mlr_acqfunctions
	mlr_acqfunctions_cb
	mlr_acqfunctions_ei
	mlr_acqfunctions_eips
	mlr_acqfunctions_mean
	mlr_acqfunctions_pi
	mlr_acqfunctions_smsego
	mlr_loop_functions
	mlr_loop_functions_ego
	mlr_loop_functions_mpcl
	mlr_loop_functions_parego
	mlr_loop_functions_smsego
	mlr_optimizers_mbo
	mlr_tuners_mbo
	result_by_default
	result_by_surrogate_design
	srlrn
	srlrnc
	Surrogate
	SurrogateLearner
	SurrogateLearnerCollection
	Index

